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Preface

Banach spaces are objects with a linear structure so linear maps have been
considered the natural tool for transferring good norms from one Banach space
to another. It is well known that a Banach space X admits an equivalent
strictly convex (rotund) norm if there is a bounded linear one-to-one operator
T : X → Y where Y has such a norm. For example, J. Lindenstrauss proved
that in any reflexive space X there is such an operator T : X → c0(Γ) for some
set Γ. F. Dashiell and J. Lindenstrauss gave an example of a strictly convex
renormable space without such an operator into c0(Γ) for any Γ. For that
reason we are searching for a non linear transfer technique. We consider here
locally uniformly rotund (LUR) norms, a property adding to strict convexity
the coincidence of the weak and the norm topologies on the unit sphere. For
these norms a class of non linear maps was not only more powerful but even
more natural for this purpose, as evinced by the solution of an old open
problem due to Kadec using this class of non linear maps. The scope of this
technique is not restricted to that particular case but, on the contrary, offers
a unified method of obtaining this renorming, roughly speaking, in all cases
in which this is known to be possible.

We have been lecturing on these new techniques throughout the courses
given in the Spring School of Paseky nad Jizerou in 1998; in the Workshop in
Banach spaces, Prague 2000; and in the 28th, 30th and 31st Winter Schools
of Lhota nad Rohanovem on Abstract Analysis, in 2000, 2002 and 2003,
places where these notes had their genesis. We would like to thank Professors
J. Lukes, J. Kottas, V. Zizler, P. Holický, L. Zaj́ıček, J. Tiser, M. Fabian
and O. Kalenda for their invitations and their warm hospitality. Different
parts of these notes have also been presented in seminars and conferences,
such as the Choquet, Godefroy, Rogalski, Saint Raymond Analysis Seminar,
University Pierre and Marie Curie, Paris VI, 1999 and 2001; Laboratoire de
mathématiques pures de Bordeaux, University of Bordeaux, 1999; Functional
Analysis Seminar and Analytic Topology Seminar, Mathematical Institute,
Oxford University 2001 and 2002; VII Conference on Function Theory on
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VI Preface

Infinite Dimensional Spaces, UCM, Madrid in 2001; Geometry of Banach
spaces, Mathematisches Forschungsinstitut Oberwolfach, Germany, 2003; In-
terplay between Topology and Analysis at the International Congress Massee,
Borovets, Bulgaria, 2003; Spring School on Non Separable Banach Spaces,
Paseky nad Jizerou in 2004, and the Contemporary Ramifications of Banach
space theory conference in honour of Joram Lindenstrauss and Lior Tzafriri,
Institute of Advance Studies, Hebrew University of Jerusalem, 2005. We would
like to thank G. Godefroy, R. Deville, C. J. K. Batty, P. Collins, J. L. González
Llavona, D. Azagra, M. Jiménez, H. König, J. Lindenstrauss, N. Tomczak-
Jaegermann, P. Kenderov, J. Lukes, M. Fabian, P. Hájek, V. Zizler, L. Tzafriri,
T. Szankowski and M. Zippin for their excellent qualities as hosts and their
grace and patience as audiences. J. Lindenstrauss deserves special gratitude
for his insightful comments and encouragement with the topics presented here.
Thanks are also due to I. Namioka for reading these notes, providing us with
different points of view and excellent mathematical ideas. We wish to thank
R. Haydon for many helpful suggestions and for our always interesting and
stimulating conversations. Last, but certainly not least, we would like to ex-
press our debt to G. Godefroy, who was the first mathematician to suggest to
us the idea of publishing all this material together, constantly encouraging us
to finish our project.

Therefore despite the fact that the content of these notes is new and has
not been published elsewhere, they have a self-contained and unified approach
to the study of the existence of local uniformly rotund norms with a new
point of view. As a result we hope they are accessible for readers with a basic
knowledge of Functional Analysis and Set Theoretic Topology.

We study maps from a normed space X to a metric space Y which provide
a LUR renorming in X. These maps are just those which satisfy two condi-
tions that we call σ-slicely continuity and co-σ-continuity. Our main goal here
is to characterize both properties, applying them as a new frame for LUR
renormings. The characterization is an interplay between Functional Analysis,
Optimization and Topology. We use ε-subdifferentials of Lipschitz functions
and apply methods of metrization theory to the study of weak topologies. For
example we find that any one-to-one operator T from X (reflexive, or even
weakly countably determined) into c0(Γ) satisfies both conditions. Neverthe-
less our maps can be far away from the class of linear maps even when Y is a
normed space. For instance the duality map from X into its dual is σ-slicely
continuous if the norm of X is Fréchet differentiable. If in addition the dual
norm is Gâteaux differentiable, then the duality map is co-σ-continuous and
X is LUR renormable.

Murcia and Valencia, Ańıbal Moltó
July 2007 José Orihuela

Stanimir Troyanski
Manuel Valdivia
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1

Introduction

Renorming in Banach space theory involves finding isomorphisms which
improve the norm. That means making the geometrical and topological prop-
erties of the unit ball of a given Banach space as close as possible to those of
the unit ball in a Hilbert space. Historically the first result in this direction
is due to Clarkson [Clr36] who proved that every separable Banach space has
an equivalent rotund norm. Indeed, if {fi}∞1 is a norm bounded sequence of
linear functionals which separates the points of X then the equivalent norm
given by

|x| = ‖x‖ +

( ∞∑

1

2−if2
i (x)

)1/2

, x ∈ X (1.1)

is rotund. Let us recall that a norm ‖ · ‖ is rotund (strictly convex) if the
unit sphere does not contain non-trivial segments, i.e. x = y whenever ‖x‖ =
‖y‖ = ‖(x + y)/2‖ = 1.

An excellent monograph of renorming theory up to 1993 is [DGZ93]. In
order to have an up-to-date account of the theory we should add [Hay99],
[God01] and [Ziz03]. In [Hay99] the most important properties in renorming
are characterized for C(Υ), where Υ is a tree, deducing a lot of counter-
examples. In this way [Hay99] fixes the exact boundary of this theory. In the
survey [God01] most of its results and proofs are devoted to separable and
super-reflexive Banach spaces. The survey [Ziz03] gives an overview of the
renorming theory of non-separable spaces with the classical approach.

In these notes we are focused mainly on locally uniformly rotund (locally
uniformly convex) renorming. Let us recall that a norm ‖ ·‖ in a normed space
is locally uniformly rotund (LUR for short) if limk ‖xk − x‖ = 0 whenever one
of the two equivalent conditions holds limk

(
2 ‖xk‖2 + 2 ‖x‖2 − ‖xk + x‖2

)
=0

or limk ‖(xk + x) /2‖ = limk ‖xk‖ = ‖x‖. Clearly every LUR norm is rotund.
The converse is not true. If we construct in c0 an equivalent norm using (1.1)
we get a rotund norm which is not LUR.

A. Moltó et al., A Nonlinear Transfer Technique for Renorming. 1
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2 1 Introduction

The methods in these notes stem from the following result which gives a
new starting point for LUR renorming.

Theorem 1.1. Let X be a normed space and let F be a norming subspace of
its dual. Then X admits an equivalent σ(X,F )-lower semicontinuous LUR
norm if, and only if, for every ε > 0 we can write

X =
⋃

n∈N
Xn,ε

in such way that for every x ∈ Xn,ε there exists a σ(X,F )-open half space H
containing x with

diam (H ∩ Xn,ε) < ε .

This linear topological concept is a particular case of a notion introduced in
[JNR92] called countable cover by sets of small local diameter, which turns
out to be equivalent for Banach spaces to the notion of descriptive spaces
studied by R. W. Hansell in [Han01] (see Sect. 3.2).

The theorem above was proved in [MOT97] in the case where F = X∗.
The proof was fully probabilistic and it was based on the following theorem.

For a set A in a normed space X we set

γ(A) = sup
k

γk(A), γk(A) = sup
m

inf
(
E ‖Mm‖2

)1/2
,

where the infimum is taken over all Walsh-Paley X-valued martingales {Mn}∞0
such that

#

{
n ∈ N :

∫

M−1
n (A)

‖Mn − Mn−1‖2 ≥ 1

}
≥ k .

The quantities γk(A) measure how fast a dyadic tree must grow when it has
many large branches ending at points of A.

Theorem 1.2. [Tro79] A normed space X admits an equivalent LUR norm
if, and only if, for every ε > 0 we can write X =

⋃
n∈N Xn,ε in such a way

that Xn,ε are cones with

inf
n

γ (Xn,ε) > ε−1 .

Historically the theorem above is the first characterization of LUR renorma-
bility in linear topological terms. The origin of this theorem goes back to
Pisier’s renorming [Pi75] of super-reflexive Banach spaces with power type
modulus of rotundity.



1 Introduction 3

The general case of Theorem 1.1 was proved in [Raja99], where instead of
probabilistic arguments geometrical ones were applied, specially the Bourgain-
Namioka superlemma (see, for example, [Die84, p 157]) which played an es-
sential role there. In Sect. 4.2 we present another proof of this result where
the Bourgain-Namioka superlemma is replaced by an optimization argument.
An important contribution of M. Raja [Raja99] is an elegant proof to show
that a rotund space in which the norm and the weak topologies coincide on
the unit sphere admits a LUR renorming. Originally this result was proved in
[Tro85] using Theorem 1.2. In turn, Raja’s [Raja99] approach is a variation of
a method of Lancien [Lan95] based on the dentability index which is defined
through a modification of the “Cantor derivation”. Namely, for a subset C of
a normed space X and ε > 0

Dε(C) = {x ∈ C : diam (C ∩ H)ε for every open halfspace H of X
with x ∈ H} .

Using this “derivation” Lancien got a new geometrical proof of the well-known
renorming result of James-Enflo-Pisier for super-reflexive Banach spaces (see
[God01, Sect. 3]).

It turns out that it is rather difficult to apply Theorem 1.2 and even
Theorem 1.1 in a straightforward way. This motivates us to build up some
technique to use Theorem 1.1. The most usual technique for renorming is the
so-called transfer technique designed to transfer a good convexity property
from a normed space to another. The easiest example illustrating this method
is the following.

Theorem 1.3. Let Y be a rotund space and T be a linear bounded one-to-one
operator from X into Y , then the norm

|x| = ‖x‖X + ‖Tx‖Y , x ∈ X

is rotund.

Actually (1.1) is a particular case of the above formula for the operator from X
into '2 defined by x →

(
2−ifi(x)

)∞
1

∈ '2. The simple geometrical interpreta-
tion of this fact is that the sum of convex functions is strictly convex whenever
one of them, at least, is strictly convex. Unfortunately it is not possible to
get LUR renormings by a direct application of this technique. Indeed let us
consider the operator from '∞ to '2 defined by x = (xi)

∞
1 →

(
2−ixi

)∞
1

; it is
one-to-one but '∞ is not LUR renormable. In [God82] (see also [GTWZ83]
and [Fab91]) a transfer technique was developed to obtain rotund or LUR
renormings by imposing compactness conditions on T : X → Y . For example
we have

Theorem 1.4. Let X be a dual Banach space, let Y be a LUR Banach space
and T : Y → X a bounded linear operator such that TY

‖·‖ =X and TBY is
weak∗-compact. Then X admits an equivalent dual LUR norm.



4 1 Introduction

In Sect. 4.1 we shall present Theorem 4.8, a reformulation of the former result
in terms of our nonlinear approach to LUR renorming.

In order to be able to replace rotund by LUR in Theorem 1.3 we need the
following.

Definition 1.5. Let Φ be a map from the metric space (X, d) into the metric
space (Y, (). Φ is said to be co-σ-continuous if for every ε > 0 we can write

X =
⋃

n

Xn,ε

and find δn(x) > 0 for every x ∈ Xn,ε in such a way that d(x, y) < ε whenever
y ∈ Xn,ε and ((Φx,Φy) < δn(x).

Now we can formulate the following (see [MOT97]).

Theorem 1.6. Let Y be a LUR normed space and T be a bounded linear
co-σ-continuous operator from the normed space X into Y , then X admits an
equivalent LUR norm.

In order to apply the former theorem we need the following characterization
of co-σ-continuous maps.

Theorem 1.7. A map Φ from a metric space (X, d) into a metric space (Y, ()
is co-σ-continuous if, and only if, for every x ∈ X there exists a separable
subset Zx of X such that

x ∈
⋃

{Zxn : n ∈ N}
d

(1.2)

whenever limn Φxn = Φx.

If X is a normed space then the condition (1.2) can be replaced by

x ∈ span
⋃

{Zxn : n ∈ N}
‖·‖

.

The proof of the former theorem can be found in Sect. 2.2 where co-σ-continuous
maps are fully studied (see Theorem 2.32 and Proposition 2.33).

Example 1.8. Let us recall that the class of Baire maps between two met-
ric spaces is the smallest family of functions which contains all continuous
functions and the pointwise limit of sequences in it. So for any Baire map
Ψ between metric spaces (Y, () and (X, d) there exists a countable family
{Ψn : n ∈ N} of continuous functions such that Ψy ∈ {Ψny : n ∈ N} for all
y ∈ Y . A straightforward consequence of Theorem 1.7 is that when Φ is a
one-to-one map from (X, d) into (Y, () and Φ−1 is a Baire map then Φ is
co-σ-continuous.
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From the last two theorems we now have corollaries that are easier to apply.

Corollary 1.9. Let Y be a LUR normed space, let T be a bounded linear
operator from the normed space X into Y such that for every x ∈ X there
exists a separable subspace Zx of X with

x ∈ span
⋃

{Zxn : n ∈ N}
‖·‖

whenever lim ‖Txn − Tx‖ = 0.

Then X admits an equivalent LUR norm.

Actually in many cases we can require less than LUR renormability of Y in
Corollary 1.9 and this fact will be a contribution developed in Sect. 3.4. To
explain it let us firstly extend the notion of LUR norm.

Definition 1.10. Let (X, ‖ · ‖) be a normed space and T a topology on it.
We say that the norm ‖ · ‖ is T LUR if

T − lim
k

xk = x ,

whenever
lim

k→∞

∥∥∥∥
xk + x

2

∥∥∥∥ = lim
k→∞

‖xk‖ = ‖x‖ . (1.3)

In this way we define weak LUR, weak∗ LUR and more general σ(X,F )
LUR norms if F is a subspace of X∗. In the case when X is a subspace of
'∞(Γ) we define pointwise LUR norm requiring that for all γ ∈ Γ

lim
k

xk(γ) = x(γ)

whenever (1.3) holds.

Clearly σ(X,F ) LUR does not imply LUR renorming in general, for
example '∞ has a pointwise LUR norm which is weak∗ LUR but fails to be
weakly LUR renormable [Lin72] and therefore LUR renormable. However
we have (see Corollary 3.23, 3.24 and [MOTV99]) the following.

Theorem 1.11. Every weakly LUR normed space is LUR renormable. Ev-
ery weak∗ LUR dual norm in a dual Banach space with the Radon-Nikodym
property has an equivalent dual LUR norm.

By '∞c (Γ) we denote the subspace of '∞(Γ) containing only those x ∈ '∞(Γ)
for which # supp x ≤ ℵ0 and δγ is the projection on the γ-coordinate for
γ ∈ Γ, i.e. δγ(x) := x(γ). Now we state the following.

Theorem 1.12. Let Y be a subspace of '∞c (Γ) with a pointwise LUR norm
which is pointwise lower semicontinuous, let T be a bounded linear opera-
tor from the normed space X into Y and {Xγ}γ∈Γ be a family of separable
subspaces of X such that for every x ∈ X we have

x ∈ span
⋃

{Xγ : γ ∈ supp Tx}
‖·‖

.

Then X admits an equivalent LUR norm.



6 1 Introduction

This theorem is a generalization of a result in [FT90] where Y is the
Mercourakis space c1(Z ×K) [Mer87], which is not LUR renormable since it
contains a subspace isomorphic to '∞ whenever Z is an infinite set. It seems
surprising that it is not necessary to assume that Y is LUR renormable but
it is enough that Y is pointwise LUR. In Theorem 3.46 we shall present a
nonlinear version of it. For the moment let us apply Theorem 1.12 to a large
class of Banach spaces X which admits some suitable linear bounded operator
with range in c0(Γ).

Indeed J. Lindenstrauss [Lin65] and [Lin66] introduced the projectional
resolution of the identity (PRI for short) and using it constructed in every
reflexive Banach space a linear bounded one-to-one map T : X → c0(Γ) for
some Γ. Later this technique was extended to weakly compactly generated
Banach spaces by D. Amir and J. Lindenstrauss [AL68], to weakly compactly
determined spaces by L. Vašak [Vas81], to weakly Lindelöf determined spaces
by S. Argyros and S. Mercourakis [AM93, Val90, Val91, Vald90], and to duals
of Asplund spaces by M. Fabian and G. Godefroy [FG88]. There exists a PRI
in C(K) when K is a Corson compact and its generalization (see [AMN88] and
[Val90] respectively), when K is a compact of ordinals [Alex80] and a compact
topological group [Alex82]. Quite recently M. Fabian, G. Godefroy and V.
Zizler [FGZ01] have obtained a PRI for Banach spaces with a uniformly
Gâteaux diffentiable norm. All these classes of Banach spaces are included
in the so-called class P and, as is shown in [DGZ93, p. 236], using PRI and
some hereditary properties of some complemented subspaces it is possible to
construct a transfinite sequence of projections {Qα : 0 ≤ α ≤ µ} such that if
we set Rα = (Qα+1 − Qα) / (‖Qα+1‖ + ‖Qα‖) we have

i) Q0 = 0, Qα += 0 for α > 0, Qµ = Id;
ii) QαQβ = QβQα = Qmin(α,β);
iii) (Qα+1 − Qα) X is separable for all α ∈ [0, µ);
iv) {‖Rαx‖}0≤α<µ ∈ c0([0, µ)) for all x ∈ X;

v) Qβx ∈ span {Rαx : 0 ≤ α < β}
‖·‖

for all x ∈ X.

If a Banach space has such a transfinite sequence of projections it is easy to
construct a bounded linear operator T : X → c0([0, µ) × N) and to find a
separable subspace Xα,n satisfying the conditions of the last theorem. Indeed
we can find for every α < µ a sequence fα,n ∈ X∗, ‖fα,n‖ ≤ 1, n ∈ N, which
separates the points of RαX. We set Xα,n = RαX and define a bounded linear
operator T : X → c0([0, µ) × N) by the formula

Tx(α, n) =
fα,n (Rαx)

n
.

having in mind that {Qα : 0 ≤ α ≤ µ} satisfies conditions i)–v) it is easy to see
that T and {Xα,n : (α, n) ∈ [0, µ)× N} fulfill the conditions of Theorem 1.12,
and therefore X is LUR renormable.



1 Introduction 7

First J. Lindenstrauss [Lin72] asked whether every strictly convex Banach
space X admits a one-to-one bounded linear operator to c0(Γ) for some Γ.
Later in a joint paper with Dashiell [DL73] they constructed a strictly con-
vex Banach space without a one-to-one bounded linear operator into c0(Γ)
for any Γ. The first example of a LUR Banach space without a one-to-one
bounded linear operator in c0(Γ) was found by R. Deville [Dev86].

Throughout these notes some applications of the above theorems will be
shown. However, in many cases the linearity of T is rather restrictive. At first
glance it seems that the linearity of T is necessary to transfer slices from
Y to X. It is clear that if a map sends zero into zero and transfers slices into
slices then it must be linear. Nevertheless the linearity of T can be avoided
as it is shown by a comparison of Theorems 3.46 and 1.12. Taking advantage
of the possibility to take additional countable splittings we can replace the
linearity of T by something less restrictive. Our Theorem 1.1 motivates the
following.

Definition 1.13. Let A be a subset of a linear topological space X, let Φ be
a map from A into a metric space (Y, (). We say that Φ is slicely continuous
at x ∈ A if for every ε > 0 there exists an open half space H of X containing
x with osc (Φ !H∩A) = diam Φ (H ∩ A) < ε. We say that Φ is σ-slicely
continuous on A if for every ε > 0 we can write

A =
⋃

n∈N
An,ε (1.4)

in such a way that for every x ∈ An,ε there exists an open half space H of X
containing x with osc

(
Φ !H∩An,ε

)
= diam Φ (H ∩ An,ε) < ε.

Maps of this kind can be very far from linear. For example see the oscilla-
tion map defined in Sect. 2.7, the maps defined in Propositions 4.1–4.5 and
Theorems 5.1, 5.13 and 5.15.

Now we can reformulate Theorem 1.1 in the following way: A normed space
X admits an equivalent σ(X,F )-lower semicontinuous LUR norm if and only
if the identity map Id : (X,σ(X,F )) → (X, ‖ · ‖) is σ-slicely continuous. And
consequently we have for any bounded linear operator the following.

Proposition 1.14. Let T be a bounded linear operator from the normed space
X into the normed space Y . Then T is σ-slicely continuous provided one of
the spaces X or Y is LUR renormable.

Moreover taking advantage of the nonlinear structure of the sets which
satisfy (1.4) for the identity map, we can formulate our transfer result as
follows.

Theorem 1.15. Let X be a normed space and let F be a norming subspace of
its dual. Then X admits an equivalent σ(X,F )-lower semicontinuous LUR
equivalent norm if, and only if, there exists a metric space (Y, () and a map
Φ : X → Y which is σ-slicely continuous for σ(X,F ) and co-σ-continuous for
the norm topology.
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Proof. If X admits an equivalent σ(X,F )-lower semicontinuous LUR equiv-
alent norm we can take Y = X and the identity map as Φ, which according to
Theorem 1.1 is σ-slicely continuous for σ(X,F ). Conversely, let Φ : X → (Y, ()
be co-σ-continuous and σ-slicely continuous for σ(X,F ).

Let us fix ε > 0, by co-σ-continuity we have that X =
⋃∞

n=1 Xn,ε where for
every x ∈ Xn,ε there is δ(x, n, ε) > 0 so that ‖x − y‖ < ε whenever y ∈ Xn,ε

and ((Φx,Φy) < δ(x, n, ε). Let us make another decomposition defining

Xn,p,ε :=
{

x ∈ Xn,ε : δ(x, n, ε) >
1
p

}

then we have Xn,ε =
⋃∞

p=1 Xn,p,ε. Now we apply the σ-slicely continuity of
the map Φ for fixed p and we get another splitting of X as X =

⋃∞
m=1 Xm

p

in such a way that for every m and every x ∈ Xm
p we have a σ(X,F )-open

half space Hx with x ∈ Hx and osc
(
Φ!H∩Xm

p

)
< 1/p. Fix m, n, p and then if

x ∈ Xn,p,ε ∩Xm
p we have ‖y−x‖ < ε whenever y ∈ Hx ∩Xn,p,ε ∩Xm

p . Indeed
since y ∈ Hx ∩ Xm

p we have ((Φx,Φy) < 1/p and consequently ‖y − x‖ < ε
since y ∈ Xn,ε and ((Φx,Φy) < 1/p < δ(x, n, ε). From the construction it
is clear that X =

⋃{
Xn,p,ε ∩ Xm

p : m,n, p ∈ N
}
, and the argument holds

for every ε > 0 so the identity map from (X,σ(X,F )) into X is σ-slicely
continuous, and to finish the proof it is enough to apply Theorem 1.1. ,-

From Theorem 1.15 and Proposition 1.14 the proof of the linear transfer
technique (Theorem 1.6) immediately follows. In particular, we see that if
T : X → Y is a bounded linear one-to-one map with Y LUR renormable and
T−1 a Baire map for the norms, then X is LUR renormable.

In these notes we characterize co-σ-continuous and σ-slicely continuous
maps and using Theorem 1.15 we obtain almost all known LUR renorm-
ing results as well as some new ones. Until now, LUR equivalent norms
have been constructed ad hoc for each particular situation (see, for exam-
ple, [Tro71], [GTWZ83], [GTWZ85], [HR90], [Fab91], [Hay99], [HJNR00] and
others). Mainly they were based on the Deville Master Lemma [DGZ93,
Chap. VII, Lemma 1.1.] (whose origin is in [Tro71]), distance to the unit
sphere of LUR spaces, convolutions with LUR norms, and the three space
problem for LUR renorming.

Theorems 1.7 and 1.15 together assert that a normed space X has an
equivalent LUR norm if, and only if, there is a metric d on X generating a
topology finer than the weak topology and such that the identity map from
(X,weak) into (X, d) is σ-slicely continuous. For that reason it cannot be a
surprise that the method of covers which has had such a strong influence in
the problem of metrization [Fro95] of topological spaces turns out to be an
important tool in LUR renorming. Let us recall some definitions to be precise
on the relationships.
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Definition 1.16. A family of subsets {Dγ : γ ∈ Γ} in a topological space
X is called discrete (resp. isolated) if for every point x ∈ X (resp. x ∈⋃

{Dγ : γ ∈ Γ}) there is a neighbourhood U of x such that U meets at most
one member of the family {Dγ : γ ∈ Γ}. When X is a linear topological space
and U can be taken to be an open half space then the family is said to be
slicely discrete family (resp. slicely isolated).

A family of subsets {Dγ : γ ∈ Γ} in a linear topological space X is called
σ-slicely isolatedly decomposable if Dγ =

⋃∞
n=1 Dn

γ for every γ ∈ Γ and{
Dn

γ : γ ∈ Γ
}

is slicely isolated for each n ∈ N.

Definition 1.17. Let A be a subset of a linear topological space, ϕ : A → R.
For x ∈ U ⊂ A and ε > 0 we denote by

∂εϕ(x|U)

the ε-subdifferential of ϕ as a function on U , at point x ∈ U , i.e. the set of all
continuous linear functionals f on X such that for all y ∈ U we have

ϕ(y) ≥ ϕ(x) + f(y − x) − ε .

We denote by ∂ϕ(x|U) the subdifferential of ϕ at x, i.e.

∂ϕ(x|U) =
⋂

ε>0

∂εϕ(x|U) .

It seems that E. Asplund and R. Rockafellar [AR69] were the first to apply the
concept of ε-subdifferentiability as a tool in nonlinear analysis. More about
subdifferentials can be found in [Cla90], [Phe93], [RW98].

Now we can state our characterization result for σ-slicely continuity.

Theorem 1.18. Let A be a σ-bounded subset of a locally convex linear topo-
logical space X, let (Y, () be a metric space and Φ : A → Y . The following are
equivalent:

i) Φ is σ-slicely continuous.
ii) for every ε > 0 we can write A =

⋃
n An,ε in such a way that

for all x ∈ An,ε and every Lipschitz 1 function g : ΦA → R we
have

∂εg ◦ Φ (x|An,ε) += ∅ (1.5)

iii) If {Dγ : γ ∈ Γ} is a discrete family of subsets of (Y, () then{
Φ−1 (Dγ) : γ ∈ Γ

}
is σ-slicely isolatedly decomposable.

If Y is in addition a LUR renormable space then it is enough to require (1.5)
in condition ii) only for all norm one linear functionals g on Y .

The former theorem is a particular case of Theorem 4.16 we study in
Chap. 4. Subdifferentials and Lipschitz functions in renorming theory have
been recently considered in [BGV02].
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Remark 1.19. It is essential in the above theorem that Y is LUR renormable.
Indeed if Y is not LUR renormable and if we consider the identity map
Id : Y → Y clearly g ∈ ∂g ◦ Id(x|Y ) for all x ∈ Y and g ∈ Y ∗ but Id is not
σ-slicely continuous since Y is not LUR renormable.

From the proof of the above theorem we get the remarkable fact that if Φ
and Ψ are σ-slicely continuous then Φ + Ψ is σ-slicely continuous and when
X is a normed algebra then the product ΦΨ is σ-slicely continuous too, see
Lemma 4.22 of joint σ-slicely continuity. Indeed we obtain the following.

Corollary 1.20. Let X be a normed space and let Φn : X → X, n = 1, 2, . . .
be a sequence of σ-slicely continuous maps such that for every x ∈ X we have
x ∈ span {Φnx : n = 1, 2, . . .}

‖·‖
. Then X admits a LUR norm.

This is a particular case of Corollary 4.23.

Taking advantage of the existence of a lattice LUR norm in c0(Γ) we can
deduce from Theorem 1.18 the following.

Corollary 1.21. Let Φ be a locally bounded map from a normed space X into
c0(Γ) for some Γ such that for every γ ∈ Γ the real function δγ ◦ Φ on X is
non-negative and convex, where δγ is the Dirac measure on Γ at γ. Then Φ
is σ-slicely continuous.

This is a particular case of Corollary 4.34. We develop all these results in
Chapter 4.

A useful notion in topology due to Arhangel’skĭı [Arca92] is the following.

Definition 1.22. A family N of subsets of a topological space (X, T ) is called
a network if for every x ∈ X and U ∈ T with x ∈ U there exists N ∈ N with
x ∈ N ⊂ U (see [Gru84]).

We can now present the following.

Theorem 1.23. A normed space X has an equivalent LUR norm if, and
only if, there exists a metric d on X generating a topology finer than the weak
topology such that any of the three equivalent conditions holds:

i) For every ε > 0 we can write X =
⋃∞

n=1 Xn,ε in such a way that for all
x ∈ Xn,ε and every Lipschitz 1 function g : (X, d) → R we have

∂εg (x|Xn,ε) += ∅ .

ii) If {Dγ : γ ∈ Γ} is a d-discrete family of subsets of X then it is σ-slicely
isolatedly decomposable.

iii) The topology of the metric d has a network N =
⋃∞

n=1 Nn where every Nn

is a slicely isolated family.
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Conditions (i) to (iii) are equivalent to the σ-slicely continuity of the iden-
tity map on X when the metric d is used on the range, by Theorem 1.18 and
Proposition 2.24. Since the metric d is finer than the weak topology, Corollary
2.36 and Theorem 1.15 give the proof of the former theorem.

Theorems 1.15, 1.18, and 1.23 show the relations between LUR renorma-
bility, optimizations and metrization theory. On the other hand LUR renorma-
bility is a useful tool in optimization and smooth approximation theories,
namely if both X and X∗ are LUR then the duality mapping is a homeo-
morphism between the unit spheres, and the Banach space X admits C(1)-
partitions of the unity; see, for example, [Zei90, p. 861], [Zei85, p. 400], [Cio90],
[Pas78], [DGZ93, Chap. VIII], [Hay]. In order to see the intimate connection
between the geometry of Banach spaces and the duality mapping in opti-
mization theory, see, for example, [Zei85, p. 401]. In [DZ93, p. 50] there is a
discussion on the well-posedness problem and LUR renorming.

The method of the equivalent norms and specially LUR renormings has
many applications inside Banach space theory. For example the core of Kadec’s
construction [Kad66] of a homeomorphism between a Banach space with a ba-
sis and '2 is the LUR renormability of separable Banach spaces. The original
Asplund proof showing that every Banach space with a separable dual is As-
plund used the fact that every dual separable Banach space admits a dual
LUR norm [Asp68]. J. Lindenstrauss [Lin63] proved that if X is a LUR
renormable Banach space then every weakly compact convex subset K of X
is the closed convex hull of its strongly exposed points. Having in mind that
span K

‖·‖ is LUR renormable [Tro71] we obtain that the above generaliza-
tion of the Krein-Milman theorem holds for any weakly compact convex sub-
set of a Banach space. In LUR renormable Banach spaces Cepedello [Cep98]
proved that any bounded norm continuous function is the pointwise limit of
a sequence of differences of convex continuous functions.

Motivated by all these considerations we present in the notes an up-to-
date account of LUR renormings inside a new frame of nonlinear maps suit-
able for geometric nonlinear analysis of non-separable Banach spaces. For
instance, in Chap. 2 we present the solution of a problem of Kadec about the
LUR renormability of the space C(H) where H is the compact of Helly. Such
a compact space is a particular example of a separable Rosenthal compact
space, a class widely studied [Ros74, BFT78, God80, Tod99, Tod06, HMO07],
but still not clear at all for renormings of C(K). In Chap. 3 we connect
LUR renormings with metrization theory proving our Theorem 3.46 as a
first nonlinear transfer result. In Chap. 4 we study deeper facts of σ-slicely
continuous maps related with differentiability, presenting the Joint Continu-
ity Lemma 4.22 which is the core for reducing weak open neighbourhoods to
slices with small oscillation. In Chap. 5 we present some applications, and in
particular a general frame in Sect. 5.3 from which almost all results can be
obtained.
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Fréchet differentiability of Lipschitz mappings between infinite di-
mensional Banach spaces, Proc. London Math. Soc., 84, 711–746
(2002)
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tiable norms in certain nonseparable Banach spaces. Studia Math.,
37, 173–180 (1971)

[Tro72] Troyanski, S.: On equivalent norms and minimal systems in non-
separable Banach spaces. Studia Math, 43, 125–138 (1972) (Russian)

[Tro79] Troyanski, S.: Locally uniformly convex norms. C. R. Acad. Bulg.
Sci., 32, 1167–1169 (1979) (Russian)

[Tro85] Troyanski, S.: On a property of the norm which is close to locally
uniformly convexity. Math. Ann., 271, 305–313 (1985)

[Tro94] Troyanski, S.: On some generalizations of denting points. Israel J.
Math., 88, 175–188 (1994)



References 139

[Val90] Valdivia, M.: Projective resolutions of the identity in C(K) spaces.
Archiv. Math., 54, 493–498 (1990)

[Val91] Valdivia, M.: Simultaneous resolutions of the identity operator in
normed spaces. Collect. Math., 42, 265–284 (1991)

[Vald90] Valdivia, M.: Resoluciones proyectivas del operador identidad y bases
de Markushevich en ciertos espacios de Banach. Rev. Real Acad.
Ciencias, Madrid., 84, (1), 23–34 (1990)

[VWZ94] Vanderwerff, J., Withfield, J.H.M., Zizler, V.: Markushevich bases
and Corson compacta in duality. Canadian J. Math., 46, (1), 200-211
(1994)
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lain, M. Lachowicz, J. Miȩkisz, Multiscale Problems in
the Life Sciences. From Microscopic to Macroscopic.
Bȩdlewo, Poland 2006. Editors: V. Capasso, M. Lachow-
icz (2008)
Vol. 1941: S.M.J. Haran, Arithmetical Investigations.
Representation Theory, Orthogonal Polynomials, and
Quantum Interpolations (2008)
Vol. 1942: S. Albeverio, F. Flandoli, Y.G. Sinai, SPDE in
Hydrodynamic. Recent Progress and Prospects. Cetraro,
Italy 2005. Editors: G. Da Prato, M. Röckner (2008)
Vol. 1943: L.L. Bonilla (Ed.), Inverse Problems and Imag-
ing. Martina Franca, Italy 2002 (2008)

Vol. 1944: A. Di Bartolo, G. Falcone, P. Plaumann,
K. Strambach, Algebraic Groups and Lie Groups with
Few Factors (2008)
Vol. 1945: F. Brauer, P. van den Driessche, J. Wu (Eds.),
Mathematical Epidemiology (2008)
Vol. 1946: G. Allaire, A. Arnold, P. Degond, T.Y. Hou,
Quantum Transport. Modelling, Analysis and Asymp-
totics. Cetraro, Italy 2006. Editors: N.B. Abdallah,
G. Frosali (2008)
Vol. 1947: D. Abramovich, M. Mariño, M. Thaddeus,
R. Vakil, Enumerative Invariants in Algebraic Geo-
metry and String Theory. Cetraro, Italy 2005. Editors:
K. Behrend, M. Manetti (2008)
Vol. 1948: F. Cao, J-L. Lisani, J-M. Morel, P. Musé,
F. Sur, A Theory of Shape Identification (2008)
Vol. 1949: H.G. Feichtinger, B. Helffer, M.P. Lamoureux,
N. Lerner, J. Toft, Pseudo-Differential Operators. Quan-
tization and Signals. Cetraro, Italy 2006. Editors: L.
Rodino, M.W. Wong (2008)
Vol. 1950: M. Bramson, Stability of Queueing Networks,
Ecole d’Eté de Probabilités de Saint-Flour XXXVI-2006
(2008)
Vol. 1951: A. Moltó, J. Orihuela, S. Troyanski,
M. Valdivia, A Nonlinear Transfer Technique for
Renorming (2009)
Vol. 1952: R. Mikhailov, I.B.S. Passi, Lower Central and
Dimension Series of Groups (2009)
Vol. 1953: K. Arwini, C.T.J. Dodson, Information Geo-
metry (2008)
Vol. 1954: P. Biane, L. Bouten, F. Cipriani, N. Konno,
N. Privault, Q. Xu, Quantum Potential Theory. Editors:
U. Franz, M. Schuermann (2009)
Vol. 1955: M. Bernot, V. Caselles, J.-M. Morel, Optimal
transportation networks (2009)
Vol. 1956: C.-H. Chu, Matrix Convolution Operators on
Groups (2008)
Vol. 1957: A. Guionnet, On Random Matrices: Macro-
scopic Asymptotics, Ecole d’Eté de Probabilités de Saint-
Flour XXXVI-2006 (2009)
Vol. 1958: M.C. Olsson, Compactifying Moduli Spaces
for Abelian Varieties (2008)

Recent Reprints and New Editions
Vol. 1702: J. Ma, J. Yong, Forward-Backward Stochas-
tic Differential Equations and their Applications. 1999 –
Corr. 3rd printing (2007)
Vol. 830: J.A. Green, Polynomial Representations of
GLn, with an Appendix on Schensted Correspondence
and Littelmann Paths by K. Erdmann, J.A. Green and
M. Schoker 1980 – 2nd corr. and augmented edition
(2007)
Vol. 1693: S. Simons, From Hahn-Banach to Monotonic-
ity (Minimax and Monotonicity 1998) – 2nd exp. edition
(2008)
Vol. 470: R.E. Bowen, Equilibrium States and the Ergodic
Theory of Anosov Diffeomorphisms. With a preface by
D. Ruelle. Edited by J.-R. Chazottes. 1975 – 2nd rev.
edition (2008)
Vol. 523: S.A. Albeverio, R.J. Høegh-Krohn, S. Maz-
zucchi, Mathematical Theory of Feynman Path Integral.
1976 – 2nd corr. and enlarged edition (2008)
Vol. 1764: A. Cannas da Silva, Lectures on Symplectic
Geometry 2001 – Corr. 2nd printing (2008)



LECTURE NOTES IN MATHEMATICS

Edited by J.-M. Morel, F. Takens, B. Teissier, P.K. Maini

Editorial Policy (for the publication of monographs)

1. Lecture Notes aim to report new developments in all areas of mathematics and their
applications - quickly, informally and at a high level. Mathematical texts analysing new
developments in modelling and numerical simulation are welcome.

Monograph manuscripts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related work by
other people. They may be based on specialised lecture courses. Furthermore, the manu-
scripts should provide sufficient motivation, examples and applications. This clearly dis-
tinguishes Lecture Notes from journal articles or technical reports which normally are
very concise. Articles intended for a journal but too long to be accepted by most journals,
usually do not have this “lecture notes” character. For similar reasons it is unusual for
doctoral theses to be accepted for the Lecture Notes series, though habilitation theses may
be appropriate.

2. Manuscripts should be submitted either to Springer’s mathematics editorial in Heidelberg,
or to one of the series editors. In general, manuscripts will be sent out to 2 external referees
for evaluation. If a decision cannot yet be reached on the basis of the first 2 reports, further
referees may be contacted: The author will be informed of this. A final decision to publish
can be made only on the basis of the complete manuscript, however a refereeing process
leading to a preliminary decision can be based on a pre-final or incomplete manuscript.
The strict minimum amount of material that will be considered should include a detailed
outline describing the planned contents of each chapter, a bibliography and several sample
chapters.

Authors should be aware that incomplete or insufficiently close to final manuscripts
almost always result in longer refereeing times and nevertheless unclear referees’ recom-
mendations, making further refereeing of a final draft necessary.

Authors should also be aware that parallel submission of their manuscript to another
publisher while under consideration for LNM will in general lead to immediate rejection.

3. Manuscripts should in general be submitted in English. Final manuscripts should contain
at least 100 pages of mathematical text and should always include

– a table of contents;
– an informative introduction, with adequate motivation and perhaps some historical re-

marks: it should be accessible to a reader not intimately familiar with the topic treated;
– a subject index: as a rule this is genuinely helpful for the reader.

For evaluation purposes, manuscripts may be submitted in print or electronic form, in
the latter case preferably as pdf- or zipped ps-files. Lecture Notes volumes are, as a rule,
printed digitally from the authors’ files. To ensure best results, authors are asked to use
the LaTeX2e style files available from Springer’s web-server at:

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs).

ABC



Additional technical instructions, if necessary, are available on request from:
lnm@springer.com.

4. Careful preparation of the manuscripts will help keep production time short besides en-
suring satisfactory appearance of the finished book in print and online. After acceptance
of the manuscript authors will be asked to prepare the final LaTeX source files (and also
the corresponding dvi-, pdf- or zipped ps-file) together with the final printout made from
these files. The LaTeX source files are essential for producing the full-text online version
of the book (see www.springerlink.com/content/110312 for the existing online volumes
of LNM).

The actual production of a Lecture Notes volume takes approximately 12 weeks.

5. Authors receive a total of 50 free copies of their volume, but no royalties. They are entitled
to a discount of 33.3% on the price of Springer books purchased for their personal use, if
ordering directly from Springer.

6. Commitment to publish is made by letter of intent rather than by signing a formal contract.
Springer-Verlag secures the copyright for each volume. Authors are free to reuse material
contained in their LNM volumes in later publications: a brief written (or e-mail) request
for formal permission is sufficient.

Addresses:

Professor J.-M. Morel, CMLA,
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