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SUMMARY

In this paper we describe a class of topological spaces X such that Cp(X), the space of continuous
functions on A'endowed with the topology of pointwise convergence, is an angelic space. This class contains
the topological spaces with a dense and countably determined subspace; in particular the topological spaces
which are ^-analytic in the sense of G. Choquet. Our results include previous ones of A. Grothendieck,
J. L. Kelley and I. Namioka, J. D. Pryce, R. Haydon, M. De Wilde, K. Floret and M. Talagrand. As a
consequence we obtain an improvement of the Eberlein-Smulian theorem in the theory of locally convex
spaces. This result allows us to deduce, for instance, that (LF)-spaces and dual metric spaces, in particular
(Z)F)-spaces of Grothendieck, are weakly angelic. In this way the answer to a question posed by K. Floret
about the weak angelic character of (L/)-spaces is given.

I. Introduction and preliminary results

All the topological spaces we shall use here are assumed to be Hausdorff. Standard
references for notation and concepts are [8, 13].

A subset M of a topological space ̂  is said to be countably compact (briefly NK),
or relatively countably compact (briefly RNK), if every sequence in M has an adherent
point in M, or in X, respectively; M is said to be sequentially compact (briefly SK),
or relatively sequentially compact (briefly RSK), if every sequence in M has a
subsequence convergent to an element of M, or of X, respectively. We shall use the
abbreviations K for compact and RK for relatively compact. Naturally we have the
following relationships:

K : NK :> SK

/ I \
RK = = > R N K — > RSK

and these are the only implications that generally hold [6, 8].
V. L. Smulian showed in 1940 [16] that RK=> RSK in the weak topology of a

Banach space. He also proved that RNK o RSK if the weak-* dual is separable. The
last result was extended by J. Dieudonne and L. Schwartz [4] to locally convex spaces
with a coarser metrizable topology. But the converse to Smulian's theorem was to wait
until W. F. Eberlein [5] who in 1947 proved for the weak topology of a Banach space
that RKoRNK. Soon after Eberlein's proof, A. Grothendieck [10] in 1952 provided
a considerable generalization by showing that weakly-RNK o weakly-RK in any
locally convex space that is quasicomplete for its Mackey topology. Grothendieck's
result is based upon a similar one on the space CP(K) of continuous functions on a
compact space K endowed with the pointwise convergence topology. As J. L. Kelley
and I. Namioka have pointed out [12], these results can be obtained using a refinement
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of a theorem of Kaplansky's to see that a cluster point of an RNK subset A of CP(K)
is the limit of a sequence in A. Whitley's proof [20] of the Eberlein-Smulian theorem
uses this idea and J. D. Pryce [14] has extended it to spaces CP(X) where A" is a
topological space with a dense and a-compact subset. Fremlin's notion of angelic
space [14] and some of its consequences provide us with the necessary tools for proving
those results in a clear-cut way (see K. Floret [8]).

A topological space is called angelic (or has a countably determined compactness)
if for every RNK subset A of X the following holds:

(a) A is RK;
(b) for each x belonging to A there is a sequence in A which converges to x.

In angelic spaces K = NK = SK and RK = RNK = RSK.
The following lemma will constitute the basic idea of the joint investigation of all

the compactness notions as well as for the question whether the sequential closure
of an RNK set is its closure.

ANGELIC LEMMA (K. Floret [8, p. 27]). Let X and Y be topological spaces, let X
be regular, and let <j>:X-> Ybe continuous and injective. If A c X is RNK and for all
B c (j>{A) the sequential closure of B is closed, that is, B = {yeY: there is (yn) in B
with limnj>n=>>}, then (j>{A) is closed in Y and the restriction of <f> on A is a
homeomorphism.

As a consequence of this result, if Y is angelic, then X is angelic too. In particular
any topology on Y which is regular and finer than the original one is angelic; and
subspaces of regular angelic topological spaces are also angelic.
On the other hand, the study of compact subsets of CP(X), where A'is a K-analytic

space, or more generally a countably determined space, called Talagrand and Gul'ko
compact spaces, respectively, has become of great interest in the descriptive theory of
Banach spaces and they have been studied by M. Talagrand [17], S. P. Gul'ko [10]
and L. Vasak [20] among others. Nevertheless, as far as the author knows, given a
K-analytic space X and an RNK subset A of CP(X), it is only known that if A is
countable then the closure of A in IRR is an angelic compact subset of Cp(X), in fact
much deeper results about countable sets of K-analytic functions on X have been
proved by Bourgain, Fremlin and Talagrand [1]. Furthermore, if A is any compact
subset of CP(X) then every closure point of a subset of A is the limit of a sequence
of points in the subset [17]. In fact, CP(X) is an angelic space as we are going to prove
here. In any case, more can be done and we shall introduce a class of topological spaces
X, called web-compact spaces, that contains many of the topological spaces described
in the descriptive theory of sets, and such that CP(X) will be angelic. We shall improve
the Eberlein-Smulian theorem in such a way that (LF)-spaces and dual metric spaces,
in particular (ZXF)-spaces of Grothendieck, are checked as weakly angelic spaces. That
contains the answer to a problem posed by K. Floret about the weak angelic character
of (L/)-spaces [7, question 7.6].

II. Accessibility by sequences

We present in this section a result that ensures the accessibility by sequences of
closure points of certain subsets in a space of functions. It has its origin in a result
of De Wilde [3, Lemma 4.6] that is based upon an argument of Kelley and Namioka
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[12, Theorem 8.20] related to the classical result of Kaplansky [8, p. 37]. However,
on dealing with a 'web' in the base space instead of a countable cover, we shall obtain
a result that will be applicable to spaces that arise in the descriptive theory of sets.
This result will be the basis of all the applications that follow. Its proof is strongly
based upon Floret's proof of the theorem of De Wilde [8, p. 33].

Grothendieck introduced the following notion, which is an extremely useful tool
for dealing with compactness. Let Z be a topological space, let Xbe a set and A c Zx.
If (fn) a A and (xm) c X, it is said that (/„) has the interchangeable double limit
property (in Z) with (xm) if

lim lim/n(xm) = lim l im/ n (x j
n m m n

whenever all the limits involved exist.
In the following theorem X will be a non-void set, 1 will be a non-void subset of

NN, the space of sequences of positive integers, and S will be the subset of the set
of finite sequences defined by

Let us suppose that there is a family {Aa: aeZ} of non-void subsets of A" that covers
X. Given a = (am) in 2 and n in N, we put

The family of subsets {Cffli>a2 Un: (ax,a2,...,an)eS) constructed in this way is
clearly countable.

THEOREM 1. Let (Z, d) be a compact metric space and let A be a set of functions
from X into Z. We suppose that for every a = (am) e £ and every sequence (xn) in X,
that is, eventually in every set Cai Oji a for n = 1,2,..., we have for every sequence
in A the interchangeable double limit property with (xn) in Z. Then for every f in the
closure of A in the product space Zx there is a sequence (/„) in A such that (/„) converges
pointwise to f on X.

Proof. Step I. Given functions gx,g2, . ..,gn in Zx,e > 0, and a subset C of X,
there is a finite subset L of C such that

min max {d(gk(x), gk(y))} ^ e for every xsC.
yeL k

Indeed, it is enough to consider the mapping G from C into Zn defined by

G(x) = (g^x), g2(x),..., gn(x))

and to use the compactness of Z".
Step II. The interchangeable double limit property together with step I will now

enable us to find a sequence of functions (/n) in A that converges pointwise to /on
X. The idea is to construct a countable subset L in X together with a sequence of
functions (fm) in A satisfying \imm fm(y) =J{y) for every y belonging to L; we shall
do it in such a way that for every x in X we shall have enough points of the countable
set L 'close to x' such that we shall obtain the convergence of the sequence (fm) at
the point x by iteration of limits.

Since S is countable there is a bijection y/: N -> S. For every positive integer n
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let Dn be equal to Cv(n) and let / be equal to/. By step I there is a finite subset L\ c Z^

such that {4/i(*)»/iO0)} < 1 for every « Z ) ,

i
But/is in the closure of A, so there isf2eA such that

Proceeding by recurrence, for every positive integer n, we find finite subsets Dn <=. Dt

for / < n and functions/, i = 1,2,...,« + 1 such that

min max{</(/*(*),/.(;;))} < 1 /n for every
yeLf

n k < n
and

max Wn+1O0,/O0): * e U tf*»'
III. The sequence { /„ :«= 1,2,...} selected above clearly satisfies

lim/nO0 =f(y)

We are now going to see that \imnfn(x) =J{x) whatever x in X we take. Indeed, let
us take x e X and a e S , a = (am), such that xeAa. We set

P=y/-1({(a1,a2,...,an):n=\,2,...}),

which is an infinite subset of positive integers because y/ is a bijection. The point x
clearly belongs to every Dp for p e P and so, given p e P and « ^ p, by step II there
is yn>peL% such that m a x ^ l ^ / ^ x ) , / ^ ^ ) } ^ l//i.

We put j'p = ^ p p and we have

max{d(fk(x)Jk(yp))}£\/p. (1)

Since ^ p = yPtPeL$ <= D p for every p e P , the sequence { ^ : p e P } is eventually in
every COi Os,..., On for « = 1,2, — Indeed, let m be a positive integer and Pj be equal
to yrx((alta%t...ta})) f o r ; = l ,2 , . . . ,w. I f p e P andp ?ppj = l ,2 , . . . ,w, we have
j>p eZ)p = COl> Oi am with mo> m and the conclusion follows when we bear in mind
that COl>O2>...>a <= Cai>a2 am.

We shall now use the permutability of limits to conclude that limn/n(;t) =j(x).
It will be enough to prove tha t /0 ) is the only adherent point of the sequence (fn(x)) in
Z, since Z is compact. Let y be an adherent point of (/„(*)) and (nk) be a strictly
increasing sequence of positive integers such that lim^ / „ (x) = y. Since P is infinite,
it is a cofinal subset in N and there is a strictly increasing sequence (/^) in P. Property
(1) ensures that Mm^ fk(yv^ =fk(x) for k= 1,2,.... Thus we have

= limlim/w (j; ) = limlim/n (^ )
k j * } j k k '

= \imJ{yPj) = li

III. Web-compact spaces

Let J!f be a topological space and let Z be a compact metric space. Let A be an
RNK subset of CP(X, Z), the space of all continuous functions from X into Z,
endowed with the topology Tp of pointwise convergence on X. A subset A is RK in
Cp(X Z) if and only if the closure of A in the topological product space Zx is
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contained in C(X, Z). If we can find sequences in A converging to the closure points
in Tp, then because of the relative countable compactness of A in CV{X, Z), we shall
have the closure points as continuous functions. So in order to prove the angelic
character of CV{X, Z) it seems to be natural to ask for conditions on the topological
space X that will force A to verify the hypothesis of Theorem 1. An easy way to do
that is to demand that the sequences involved in it have an adherent point in X. This
idea motivates us to introduce the web-compact spaces.

DEFINITION. A topological space will be called a web-compact space if there is a
subset I of Nw and a family {Aa: aeE} of subsets of X such that, if we denote by

for every a = (am) in Z and n in N, the following two conditions are satisfied:

(i) U^«:«6Z} = X;
(ii) ifa = (a n )e£and; t n eC O i i O 2 o ,n = 1,2,..., then the sequence (jtn) has an

adherent point in X.

This notion, that at a first glance seems to be very technical, contains some of the
topological spaces described through the descriptive theory of sets, at least those that
usually appear in functional analysis. First we describe these spaces in terms of their
RNK subsets. In what follows NN will be considered to be endowed with its usual
topology, making it a Polish space.

PROPOSITION 2. For a topological space X the following statements are equivalent :

(i) X is web-compact;

(ii) there is a metrizable and separable space P together with a mapping T from P
into ^{X), the set of all the subsets of X such that

(a) {J{Tx:xeP} = X,

(b) if(xn) converges in P, then \J {Txn: n = 1,2,...} is RNK in X.

Proof, (i) => (ii) We can take P = Z with the topology induced by the Polish
space NN, and the mapping T defined by 7a = Aa. Indeed, conditions (a) and (b) are
easily followed by conditions (i) and (ii) within the definition of web-compact space.

(ii)=>(i) Every Polish space is a continuous image of N*1 and so there is a
continuous mapping q> from a subset Zl of N1^ onto P. Given a e Z w e put Aa = Tq((x)
and the family {Aa: cce'L} obtained in this way gives us the representation of Xas a
web-compact space.

EXAMPLES. (A) Let X be a topological space and {Aa: a e NN} a family of RNK
subsets of X such that

(a)

(b) for a = (an) and /? = (bn) with an ^ bn, n = 1,2,... (a ^ /? for short), we
would have Aa c ^4 .̂

Then Z is a web-compact space.
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Indeed, let (an) be a sequence in Nw that converges to <xeNN. It easily follows
that there is/?eN such that fi^ <xn,n = 1,2,..., and so (J {/lan: n = 1,2,...} c /fyand
Proposition 2(ii)(b) holds.

In particular, every topological space with a sequence {Kn: n = 1,2,...} of RNK
subsets such that (J {tfn: w = 1,2,...} = X is a web-compact space.

(B) Any countably determined topological space X [17] is a web-compact space.

For such a space X there is a mapping T from a subset S of NN into the family
of compact subsets of X such that

(a) \J{Tx:xel} = X;

(b) given a neighbourhood V of Tx there is a neighbourhood U of x in I such
that T(U) c K.

It is easily seen that the continuity condition (b) implies condition (b) of Proposition
2(ii) and so A' is a web-compact space.
In particular, every K-analytic space, in the sense of Choquet, is a web-compact

space [17]; and every K-Suslin space, in the sense of Martineau (see [18, p. 59]), is
also a web-compact space. As C. A. Rogers has shown [15] K-analytic and K-Suslin
spaces coincide in the category of completely regular spaces.

(C) Any quasi-Suslin space, in the sense of Valdivia [18, p. 52], is a web-compact
space.

A quasi-Suslin space is a topological space X for which there is a mapping T from
a Polish space P into 0>(X) such that

(a) \J{Tx:xeP} = X;

(b) if (xn) converges to x in P and zn e Txn, n = 1,2,..., then the sequence (zn)
has an adherent point in Tx.

It is quite obvious that T gives us the web-compact structure of X after Propo-
sition 2.

A countably compact subset of a topological space is compact if and only if it is
Lindelof. Spaces which are K-Suslin and countably determined are Lindelof [18, 20].
Therefore a countably compact and non-compact space is a quasi-Suslin and not
K-Suslin or countably determined space. In any case, for a regular topological space
X it is easy to realize that X is K-Suslin if and only if it is quasi-Suslin and Lindelof.
M. Valdivia has shown in [18, p. 67] an example of a Frechet space E such that
E"[a(E", E')] is a quasi-Suslin and not a K-Suslin space. Of course such an example
is neither countably determined nor a Lindelof space.

On the other hand there are separable spaces and therefore web-compact spaces
that are not quasi-Suslin. For instance the topological product UR is separable but
it is not quasi-Suslin, otherwise it would be a K-Suslin and Baire space, thus metrizable
through a result of De Wilde and Sunyach (see [18, p. 64]).
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Note 1. In the special case where a web-compact space allows a representation
with I = NN, then it also allows a representation satisfying property (b) of example
(A) above. For if {Aa: ae NN} is a representation of web-compact space on X, we set
Ba = \J{Ap: fieNN,fi< a} for every a in N*1 and Proposition 2 obviously implies
that Ba is RNK.

IV. Angelic spaces of continuous functions

The following main result contains, as a particular case, the theorems of
A. Grothendieck [9] for X a compact space; J. D. Pryce [14] for X having a dense
(T-compact subspace; K. Floret [8] for X having a dense a-RNK subset; and
M. Talagrand [17, Theorem 6.4] who shows that for a Gul'ko compact space K, the
points of the closure of a subset of K are limit points of sequences in this subset. It
must be pointed out here that Talagrand's proof makes extensive use of the Lindelof
character of countably determined spaces.

THEOREM 3. Let X be a web-compact space. The space Cp(X) is angelic.

Proof. Let W be the compactification of U with the two points +00 and —00.

The inclusion mapping from CV(X, U) into CP(JT,1) is continuous and injective. The
angelic lemma ensures that it is sufficient to prove the theorem for the space Cp(X, Z),
where Z is a compact metric space. Let {Aa: oceE} the family of subsets of X giving
it a web-compact structure. Let Y be equal to the union of the sets of the family
{Aa: aeS}. We consider the mapping

<f>:Cp(X,Z) >ZY[Tp]

defined by restriction on Y, <f>(f):=f\Y, that is continuous and injective because of
the density of Y in X. Let A be an RNK subset of CP(X, Z). Every sequence in A
has the interchangeable double limit property with every sequence in X having
adherent point in X [8, p. 11]. Therefore <f>(A) is a set of functions that satisfies the
conditions of Theorem 1 in ZY. Thus for any B contained in <j>(A) we have that

~B = {feZY: there is a sequence (/„) in B with lim/n = / i n Tp}.
n

A resort to the angelic lemma informs us that <f>(A) is closed in ZY and so compact,
and that the restriction of <j> on ~A is a homeomorphism. After all the closure of A
in Cp(X,Z) is compact and every point in this closure is accessible by sequences
in A.

COROLLARY 1.3. If X is a web-compact space and Z is a metric space, the space
Cp(X, Z) of continuous functions from X into Z endowed with the pointwise convergence
topology is an angelic space.

Proof This follows from Theorem 3 and Fremlin's theorem [8, p. 32].

Let X be an arbitrary topological space and let {Xt: iel} be the family of all the
subspaces of X which are web-compact. We shall say that A' is a iT-space if any
function from X into U is continuous if and only if its restriction on every Xt is
continuous. For instance, a regular space with a K-analytic neighbourhood of every
point is a TF-space.
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Following ideas of J. D. Pryce [14] and as a straightforward consequence of
Theorem 3 we have the following.

THEOREM 4. Let X be a if-space. Then every RNK subset of Cp{X) is RK.

Proof. Let A be an RNK subset of Cp(X). Then the closure B of A in Ux is
compact and Theorem 3, together with the fact of being X a 1^-space, ensures that
B is contained in C(X), and so A is RK in Cp(X).

Note 2. Theorem 4 can be looked at as an extension to spaces of continuous
functions of the theorem of Grothendieck that gives the equivalence of weakly RNK
and weakly RK subsets of a locally convex space quasi-complete for its Mackey
topology.

Note 3. R. Haydon extends in [11] the results of Pryce about the angelic character
of CP(X) to spaces X which are completely regular and have a dense ^-bounding
subset. De Wilde also obtains results of this kind. In [2, 3] he shows that a subset A
of a completely regular space X is bounding if and only if it has the interchangeable
double limit property in W with all the RNK subsets of Cp(X). As a consequence,
the Haydon theorem can be derived from our Theorem 1 in the same way as we have
proved Theorem 3. Furthermore, we can say that a completely regular space X is
web-bounding when there is a dense family {Aa: aeE} of subsets of X, where I c N N ,
and for every a = (am)eS, and every sequence (xn) with

n i = aiJ= 1,2,...,«}, n= 1,2,...,

we have {xn: n = 1,2,...} as a bounding subset of X. We have a similar charac-
terization to that of Proposition 2 and of course for every web-bounding space X the
space Cp(X) is angelic too. Also a result similar to Theorem 4 holds.

V. Applications to weak compactness in locally convex spaces

Let E\$£\ be a locally convex space on the field IK of real or complex
numbers, and let E' be its topological dual. Clearly E[o(E,E')] is a subspace of
Cp(E'[a{E\ E)], IK). Theorem 3 provides us with the following extension of the
Eberlein and Smulian theorem [8, p. 38].

THEOREM 5. Let E be a locally convex space such that E'[a(E',E)] is web-
compact. Then E[a{E, £")] is an angelic space.

We remark on the following important particular case.

COROLLARY 1.5. Let E be a locally convex space with a family {Ka\ oceNN} of
a(£ ' ,£) -RNK subsets of E' such that

(i)

(ii) for a and0 in MN with a </? we have Ka

Then E[<T(E, E')] is angelic.
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Proof. Example (A) in Section III shows that E'[o(E\ E)] is web-compact.

Now we shall obtain important classes of locally convex spaces for which, as far
as the author knows, the angelic character of the weak topology was not previously
known.

(A) Let E[S£] = lim En\S£ J be an inductive limit of a sequence of metrizable
spaces {En[l?n]: n = 1,2,...}. Then E[a(E,£")] is an angelic space.

Proof. Let C/f => U% =>... :=> Uf =>... be a fundamental system of neigh-
bourhoods of the origin in En[3?„]. Given a = (an) in NN we write

where we denote by ° the polars in the duality (E, E'}. Every Ka is an equicontinuous
subset of E' and therefore a compact subset of E'[a(E',E)]. Certainly

and for a and fi in N^ with a ^ /? we have that Ka cz Kp.

Note 4. This example answers a question posed by Floret [9, question 7.6] in
which it was asked what (Z,/)-spaces are weakly angelic.

(B) Let E\S£\ be a dual metric space, that means a locally convex space with a
fundamental sequence {Bn: n = 1,2,...} of bounded subsets and such that every sequence
(xn) in E' which is strongly bounded is also equicontinuous. Then E [a(E, E')] is an angelic
space.

Proof. Given a = (an) in NN we write

Ka = f]{anB°n-n=h2,...}.

Obviously E' = \J {Ka: a e NN} and every Ka is strongly bounded and consequently
o{E', £)-RNK. Of course Ka c Kfi for a and p in N^1 with a *zp.

In particular, every (DF)-space of Grothendieck is weakly angelic.
Another interesting consequence of Theorem 5 is the following.

THEOREM 6. Let E be a locally convex space that is a{E, E')-web-compact. Then
E'[o(E', E)] is angelic.

Finally, let us remark now that a locally convex space with a #-web [13, §35], in
the sense of De Wilde, has a bidual E"[o(E", E')] which is web-compact. Indeed every
bounded subset of E is o(E", £")-RK and E is a{E", £")-clense in E". Therefore we
have the following.

THEOREM 7. Let E be a ^-webbed space. Then E'[o(E', E")] is angelic.

Note added in proof. After the preparation of this paper we have shown the
following (with B. Cascales). If X is a web-compact space where the RNK subsets
are RK, then X contains a dense and countably determined subspace. As a
consequence, for every web-compact space X, the compact subsets of CP(X) are
Gul'ko compact spaces. These results will appear elsewhere.
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