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Strictly convex norms and topology

José Orihuela, Richard J. Smith and Stanimir Troyanski

Abstract

We introduce a new topological property called (∗) and the corresponding class of topological
spaces, which includes spaces with Gδ-diagonals and Gruenhage spaces. Using (∗), we charac-
terize those Banach spaces which admit equivalent strictly convex norms, and give an internal
topological characterization of those scattered compact spaces K, for which the dual Banach
space C(K)∗ admits an equivalent strictly convex dual norm. We establish some relationships
between (∗) and other topological concepts, and the position of several well-known examples in
this context. For instance, we show that C(K)∗ admits an equivalent strictly convex dual norm,
where K is Kunen’s compact S-space. Also, under additional axioms, we provide examples of
compact scattered non-Gruenhage spaces of cardinality ℵ1 having (∗).

1. Introduction

All Banach spaces considered in this paper are real and, unless explicitly stated otherwise,
all topological spaces are Hausdorff. Throughout this paper, we shall be defining new norms
on existing Banach spaces. These new norms will always be equivalent to the given canonical
norms. Banach space notation and terminology is standard throughout.

A norm ‖ · ‖ on a Banach space X is said to be strictly convex (or rotund) if, given x, y ∈ X
satisfying ‖x‖ = ‖y‖ = ‖ 1

2 (x+ y)‖, we have x = y (see [5, p. 404]). Geometrically, this means
that the unit sphere SX of X in this norm has no non-trivial line segments, or, equivalently,
every element of SX is an extreme point of the unit ball BX .

Clearly, there are many Banach spaces whose natural norms are not strictly convex. However,
by appealing to the linear and topological properties of a given space, it is often possible to
define a new norm that is strictly convex. Changing the norm in this way is often called
renorming. In certain cases, we would like the new norm to possess, in addition, some form of
lower semicontinuity. For instance, we may wish for a norm on a dual space X∗ to be w∗-lower
semicontinuous, so that it is the dual of some norm onX. Alternatively, we may like a norm on a
C(K)-space to be lower semicontinuous with respect to the topology of pointwise convergence.
Such additional requirements can make norms much more difficult to construct, but they do
bestow certain benefits. For example, if X∗ can be endowed with a strictly convex dual norm,
then the predual norm on X is automatically Gâteaux smooth, by virtue of Šmulyan’s Lemma;
cf. [8, Theorem I.1.4].

Despite the natural and intuitive nature of strict convexity, the question of whether a Banach
space may be given such a norm turns out to be rather difficult to answer in general. A number
of mathematicians have sought to establish more easily verifiable sufficient conditions and
necessary conditions for a space to admit a strictly convex norm. Before outlining this paper,
we mention some of the contributions to this collective endeavour. Specialists will realize that
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it is possible to endow many (but not all) of the spaces below with norms sporting stronger
properties than strict convexity, but we prefer not to dwell on such properties here. For a fuller
discussion, we refer the reader to [8, 37].

In [5, Theorem 9], it is shown that every separable Banach space admits a strictly convex
norm. By following Clarkson’s proof, Day showed that if a Banach space X is separable, then
X∗ admits a strictly convex dual norm [6, Theorem 4]. If Γ is a set, then c0(Γ) admits a
strictly convex norm [6, Theorem 10] (see also [8, Definition II.7.2]). On the other hand, if Γ
is uncountable, then the space �c∞(Γ) of countably supported bounded functions x : Γ −→ R
with the supremum norm is simply too big to admit a strictly convex norm [6, Theorem 8]
(see [8, Theorem II.7.12]).

Amir and Lindenstrauss showed that if X is weakly compactly generated (WCG), then
both X and X∗ admit a strictly convex norm and a strictly convex dual norm, respectively
[2, Theorem 3]. These results rely on the fact that if a bounded linear map T : X −→ Y is
injective and Y admits a strictly convex norm, then so does X. If X is WCG, then we can
find such maps on both X and X∗, where Y = c0(Γ) for some Γ. Then [6, Theorem 10] can be
applied.

At the time, such a ‘linear transfer’ into some c0(Γ) was the only way of showing that
spaces admitted strictly convex norms. Moreover, �c∞(Γ), Γ uncountable, was the ‘smallest’
space known not to admit a strictly convex norm. In [7], the authors construct an increasing
transfinite sequence (Xα)1�α<ω1 of spaces of Baire-1 functions on [0, 1], all admitting strictly
convex norms, and none admitting a bounded linear injective map into any c0(Γ), provided
α � 2. Moreover, by refining Day’s argument [6, Theorem 8], they showed that the union
Y =

⋃
α<ω1

Xα does not admit a strictly convex norm, and that there is no bounded linear
injective map from �c∞([0, 1]) into Y .

The fact that the dual of every WCG space admits strictly convex dual norm, with a
necessarily Gâteaux smooth predual norm, prompted Lindenstrauss to conjecture that if X
admits a Gâteaux smooth norm, then it must embed as a subspace of some WCG space
[20]. Mercourakis provided a negative answer to this conjecture by showing that if X is a
weakly countably determined (WCD) space, then both X and X∗ admit strictly convex norms
[21, Theorems 4.6 and 4.8], by virtue of linear transfers (although not into c0(Γ) in general).

Papers such as [7, 21] suggest that there is no simple way of determining whether or
not a general Banach space may be equipped with a strictly convex norm, in terms of its
linear topological structure. Since then, the problem of classifying Banach spaces admitting
strictly convex norms has been approached from a more topological perspective, and particular
attention has been paid to strictly convex dual norms and C(K)-spaces. Any Banach space X
embeds isometrically into C(BX∗ , w∗), and this fact enables certain results about C(K)-spaces
to be generalized to all Banach spaces, by phrasing them in terms of the topological structure
of (BX∗ , w∗).

For example, if X∗ admits a strictly convex dual norm, then (BX∗ , w∗) is fragmentable
[30, Theorem 1.1]. We can say that a topological space is fragmentable if it admits, for each
n ∈ N, an increasing well-ordered family of open subsets (Uξ)ξ<λn

, with the property that given
distinct points x and y, we can find some n0 and ξ < λn0 such that {x, y} ∩ Uξ is a singleton
[29, Theorem 1.9]. The idea of point separation features throughout this paper. Indeed, the
notion of strict convexity can be viewed as a form of point separation.

The necessity condition above is far from sufficient however. The class of fragmentable spaces
is very large and includes, for instance, all scattered spaces. Recall that a topological space is
scattered if every non-empty subspace admits a relatively isolated point. In the year before [21]
appeared, Talagrand showed that the space C(ω1 + 1)∗ does not admit a strictly convex dual
norm [39, Théorème 3], where ω1 is the first uncountable ordinal considered in its (scattered)
order topology. On the other hand, the dual unit ball (BC(ω1+1)∗ , w

∗) is fragmentable
[29, Theorem 3.1].



STRICTLY CONVEX NORMS AND TOPOLOGY 199

The next significant sufficiency condition we mention requires a definition.

Definition 1.1. A compact space K is descriptive if it admits a σ-isolated network, that
is to say, a family N =

⋃∞
n=1 Nn of subsets of K, satisfying the following conditions:

(i) N ∩⋃Nn \ {N} is empty whenever N ∈ Nn and n ∈ N;
(ii) if x ∈ U ⊆ K, where U is open, then there exists n ∈ N and N ∈ Nn such that

x ∈ N ⊆ U .

This topological covering property arose out of the theory of ‘generalized metric spaces’ [11].
The class of descriptive compact spaces is large. For example, if X is WCD, then (BX∗ , w∗) is
descriptive [28, Corollary 2.4; 38, Théorème 3.6]. In [28, Theorem 3.3], Raja showed that if K
is descriptive, then C(K)∗ admits a strictly convex dual norm. This result can be adapted to
give a sufficient condition which applies to a wide class of dual Banach spaces [24, Theorem 1.3],
including duals of WCD spaces. We remark that a compact scattered space K is descriptive
if and only if it is σ-discrete, that is, K =

⋃
n=1Dn, where each Dn is discrete in its relative

topology. This fact follows from [28, Lemma 2.2].
Despite these advances, there is a very large gap between the class of descriptive spaces and

ω1 + 1 and the more general class of fragmentable spaces. Some years prior to the publication of
Raja [28], Haydon constructed some strictly convex dual norms on spaces of the form C(K)∗,
where the K are 1-point compactifications of certain trees in their interval topologies [15,
Theorem 7.1]. It turns out that some of these spaces are not descriptive, so Haydon’s sufficient
condition is not covered by Raja’s umbrella.

In [33, Theorem 6], the second author generalized Haydon’s result by characterizing those
trees for which the associated spaces C(K)∗ admit strictly convex dual norms. Later, in [34],
this order-theoretic characterization was reproved in internal, topological terms. To state this
result, we need another definition.

Definition 1.2. A compact spaceK is called Gruenhage if there exists a sequence (Un)∞n=1

of families of open subsets of K, and sets Rn, n � 1, with the property that
(i) if x, y ∈ K are distinct, then there exist n ∈ N and U ∈ Un, such that {x, y} ∩ U is a

singleton and
(ii) U ∩ V = Rn whenever U, V ∈ Un are distinct.

This definition is equivalent to the original [12, p. 372] (see [34, Proposition 2]). Every
descriptive compact space is Gruenhage [34, Corollary 4].

Theorem 1.3 [34, Theorems 7 and 16]. Let K be compact. Then the following statements
hold.

(i) If K is Gruenhage, then C(K)∗ admits a strictly convex dual lattice norm.
(ii) If K is the 1-point compactification of a tree and C(K)∗ admits a strictly convex dual

norm, then K is Gruenhage.

Theorem 1.3(i) can be adapted to give a sufficient condition [34, Corollary 10] which
applies to a class of dual Banach spaces even wider than that covered by Oncina and Raja
[24, Theorem 1.3]. There are other instances of necessity besides Theorem 1.3(ii). For instance,
if the Banach space X has an (uncountable) unconditional basis, then X∗ admits a strictly con-
vex dual norm if and only if (BX∗ , w∗) is Gruenhage (equivalently, if (BX∗ , w∗) is descriptive)
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[36, Theorem 6]. Despite some courageous attempts, it was not possible to prove the converse
implication of Theorem 1.3(i). Many of the results of this paper are the product of efforts to
resolve this difficulty.

This paper is organized as follows. In Section 2, we introduce a generalization of Gruenhage’s
property, labelled (∗) (Definition 2.6), and use it to give a characterization of Banach spaces
that admit a strictly convex norm satisfying some additional lower semicontinuity property
(Theorem 2.7). This characterization attempts to topologize as much as possible the geometric
condition of strict convexity. In Section 3, we use (∗) to find an analogue of Theorem 1.3 that
applies to all scattered compact spaces (Theorem 3.1). This class is significant in Banach space
theory because C(K) is an Asplund space if and only if K is scattered. In doing so, we show
that (∗) comes close to providing a complete topological characterization of those K, for which
C(K)∗ admits a strictly convex dual norm. In Section 4, we establish some of the topological
properties of (∗) and its position in the wider context of covering properties, and provide some
examples of scattered compact spaces, some of which having (∗) and others not. In particular,
we give examples of scattered non-Gruenhage compact spaces having (∗) (Example 2). Thus,
Theorem 3.1 does not follow from previous results such as Theorem 1.3. Along the way, we
answer an open question concerning Kunen’s compact S-space K: specifically, we show that K
is Gruenhage (Proposition 4.7). In several cases, including Example 2, we shall assume extra
principles independent of the usual axioms of set theory. Finally, in Section 5, we present some
open problems stemming from this study.

2. A characterization of strict convexity in Banach spaces

In this section, we provide a general characterization of strictly convex renormings in Banach
spaces. Throughout this section, X will be a Banach space (and occasionally a general
topological space) and F ⊆ X∗ a norming subspace. Recall that σ(X,F ) denotes the coarsest
topology on X with respect to which every element of F is continuous. We begin by presenting
a useful folklore result, together with a brief sketch proof.

Proposition 2.1. Let F ⊆ X∗ be a norming subspace. Suppose that there exists a
sequence of σ(X,F )-lower semicontinuous convex functions ϕn : X −→ [0,∞) such that given
distinct x, y ∈ X, we can find n ∈ N satisfying

ϕn( 1
2 (x+ y)) < max{ϕ(x), ϕ(y)}. (2.1)

Then X admits a σ(X,F )-lower semicontinuous strictly convex norm ||| · |||. Instead, if X is a
Banach lattice, (2.1) holds whenever x, y ∈ X+ are distinct, and

ϕn(x) � ϕn(y),

whenever |x| � |y| and n ∈ N, then ||| · ||| is a σ(X,F )-lower semicontinuous strictly convex
lattice norm.

Proof. Let ‖ · ‖ denote the original norm on X. We define a new norm by

|||x|||2 =
∑
n,q

cn,q‖x‖2
n,q,

where ‖ · ‖n,q is the Minkowski functional of

Cn,q = {x ∈ X : ϕn(x)2 + ϕn(−x)2 � q},
whenever q is a rational number satisfying q > 2ϕn(0)2, and where the constants cn,q > 0
are chosen to ensure the uniform convergence of the sum on bounded sets. By a standard
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convexity argument (cf. [8, Fact II.2.3]), it can be shown that if |||x||| = |||y||| = 1
2 |||x+ y|||, then

ϕn(x) = ϕn(y) = ϕn( 1
2 (x+ y)) for all n, whence x = y by hypothesis. If we adopt the lattice

hypotheses instead, then clearly ||| · ||| is also a lattice norm, and strictly convex on X+. To
see that the strict convexity extends to all of X, let x, y ∈ X and suppose that |||x||| = |||y||| =
1
2 |||x+ y|||. Then 1

2 ||||x| + |y|||| = |||x||| as well, so strict convexity on X+ yields |x| = |y|. If we
set w = 1

2 (x+ y), then repeating the above gives us |x| = |w|. A simple lattice argument (for
example, [34, p. 749]) leads us to conclude that x = y.

Our characterization adopts several ideas from [25, 26]. Recall that if A is a subset of a
locally convex space, then an open slice U of A is the intersection of A with an open half-space
of X. The following proposition will be our main tool.

Proposition 2.2. Let A be a bounded subset of X and U be a family of non-empty
σ(X,F )-open slices of A. Then there exists a σ(X,F )-lower semicontinuous 1-Lipschitz convex
function ϕ with the property that whenever x, y ∈ A, {x, y} ∩⋃U is non-empty and

ϕ(x) = ϕ(y) = ϕ(1
2 (x+ y)),

we have x, y ∈ U for some U ∈ U .

Proposition 2.2 is an immediate corollary of the next result, dubbed the ‘Slice Localization
Theorem’.

Theorem 2.3 [26, Theorem 3]. Let A be a bounded subset of X and U be a family of
non-empty σ(X,F )-open slices of A. Then there is an equivalent σ(X,F )-lower semicontinuous
norm ‖ · ‖ such that, for every sequence (xn)∞n=1 ⊆ X and x ∈ A ∩⋃U , if

2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2 −→ 0,

then there is a sequence of slices (Un)∞n=1 ⊆ U and n0 ∈ N such that the following conditions
are satisfied:

(i) x, xn ∈ Un whenever n � n0 and xn ∈ A;
(ii) for every δ > 0 there is some nδ ∈ N such that

x, xn ∈ (conv(A ∩ Un) + δBX)
σ(X,F )

,

for all n � nδ.

The Slice Localization Theorem can be used to simplify the proofs of network characteriza-
tions of Banach spaces that admit locally uniformly rotund norms. To prove Proposition 2.2, all
we need to do is apply Theorem 2.3 with xn = y for all n. However, there is a more transparent
proof of this proposition which we provide for completeness.

Of key importance to the proof is the concept of F -distance, introduced in [25]. Let D ⊆ X
be a non-empty, convex bounded subset. Given ξ ∈ X∗∗, define

‖ξ‖F = sup{ξ(f) : f ∈ BX∗ ∩ F}. (2.2)

It is clear that ‖ · ‖F is σ(X∗∗, F )-lower semicontinuous (σ(X∗∗, F ) being the only generally
non-Hausdorff topology mentioned in this paper). Now set

ϕ(x) = inf{‖x− d‖F : d ∈ D
σ(X∗∗,X∗)}.
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Definition 2.4. Given a non-empty, convex bounded subset D ⊆ X, we call ϕ(x) the
F -distance from x ∈ X to D.

We pass to the bidual of X in order to control the lower semicontinuity properties of ϕ. The
notion of F -distance has a number of useful properties which we list in the next lemma.

Lemma 2.5. Let ϕ(x) be the F -distance from x ∈ X to D. Then the following conditions
are satisfied:

(i) ϕ is convex and 1-Lipschitz;
(ii) ϕ is σ(X,F )-lower semicontinuous;
(iii) D

σ(X,F )
= ϕ−1(0).

Properties (i) and (ii) are proved in [25, Proposition 2.1] and the third is a straightforward
exercise involving the Hahn–Banach separation theorem. Now we can give our alternative proof
of Proposition 2.2.

Proof of Proposition 2.2. For each U ∈ U and x ∈ X, define ϕU (x) to be the F -distance
from x to (convA) \ U . Since A is bounded, we can define another convex, σ(X,F )-lower
semicontinuous, 1-Lipschitz function by

ϕ(x) = sup{ϕU (x) : U ∈ U }.
Let x, y ∈ A with {x, y} ∩⋃U non-empty and suppose that

ϕ(x) = ϕ(y) = ϕ(1
2 (x+ y)).

Without loss of generality, we can assume that x ∈ U for some U ∈ U . Since U ∩
(convA) \ Uσ(X,F )

is empty, we have ϕ(x) � ϕU (x) > 0 by Lemma 2.5, part (iii). Pick ε > 0
such that ϕ(x) > 5ε2 and choose V ∈ U with the property that

ϕ(1
2 (x+ y))2 < ϕV ( 1

2 (x+ y))2 + ε2.

We have

0 = 1
2 (ϕ(x)2 + ϕ(y)2) − ϕ( 1

2 (x+ y))2

> 1
2 (ϕV (x)2 + ϕV (y)2) − ϕV ( 1

2 (x+ y))2 − ε2

� 1
2 (ϕV (x)2 + ϕV (y)2) − 1

4 (ϕV (x) + ϕV (y))2 − ε2

= 1
4 (ϕV (x) − ϕV (y))2 − ε2,

thus

|ϕV (x) − ϕV (y)| < 2ε. (2.3)

Since ϕV is convex, we have max{ϕV (x), ϕV (y)} � ϕV ( 1
2 (x+ y)). Together with (2.3), this

implies

min{ϕV (x), ϕV (y)} � max{ϕV (x), ϕV (y)} − 2ε
� ϕV ( 1

2 (x+ y)) − 2ε

� (ϕ(1
2 (x+ y)) − ε2)1/2 − 2ε

> 0.

Therefore, ϕV (x), ϕV (y) > 0. Since x, y ∈ A, we get x, y ∈ V .
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Proposition 2.2 motivates the introduction of the central topological concept featuring in
this paper.

Definition 2.6. We say that a topological space X has (∗) if there exists a sequence
(Un)∞n=1 of families of open subsets of X, with the property that, given any x, y ∈ X, there
exists n ∈ N such that the following properties are satisfied:

(i) {x, y} ∩⋃Un is non-empty;
(ii) {x, y} ∩ U is at most a singleton for all U ∈ Un.

Any sequence (Un)∞n=1 satisfying the conditions of Definition 2.6 will be called a (∗)-sequence
for X. In addition, if X is locally convex and A ⊆ X, then we say A has (∗) with slices if A
admits a (∗)-sequence (Un)∞n=1, with the property that every element of

⋃∞
n=1 Un is an open

slice of A.

Remark 1. It will be convenient to note that if A ⊆ X, then to say that (A, σ(X,F )) has
(∗) with slices is equivalent to there being a family of subsets Gn ⊆ (SX∗ ∩ F ) × R, n ∈ N such
that, given distinct x, y ∈ A, we have n ∈ N satisfying

(a) max{f(x), f(y)} > λ for some (f, λ) ∈ Gn and
(b) min{g(x), g(y)} � μ for every (g, μ) ∈ Gn.

Our characterization follows.

Theorem 2.7. Let F ⊆ X∗ be a 1-norming subspace. Then the following are equivalent:
(i) X admits a σ(X,F )-lower semicontinuous strictly convex norm;
(ii) (X,σ(X,F )) has (∗) with slices;
(iii) (SX , σ(X,F )) has (∗) with slices;
(iv) there is a sequence of subsets (Xn)∞n=1 of X, such that

{(x, y) ∈ X2 : x 	= y} ⊆
∞⋃

n=1

X2
n,

and where each (Xn, σ(X,F )) has (∗) with slices.

Proof. (i) ⇒ (ii): let ‖ · ‖ be a σ(X,F )-lower semicontinuous strictly convex norm on X.
Then F is also 1-norming for ‖ · ‖. Let

Gq = (S(X,‖·‖)∗ ∩ F ) × {q},
for each rational number q > 0. We verify that (X,σ(X,F )) has (∗) by showing that the Gq

satisfy (a) and (b) of Remark 1. Given distinct x, y ∈ X, assume that ‖x‖ � ‖y‖. The strict
convexity of ‖ · ‖ tells us that ‖ 1

2 (x+ y)‖ < ‖y‖. Let rational q satisfy ‖1
2 (x+ y)‖ < q < ‖y‖.

Since F is 1-norming for ‖ · ‖, we know that f(y) > q for a pair (f, q) ∈ Gq, giving (a). Now
suppose g(y) > q for some (g, q) ∈ Gq. Then certainly g(x) � q; else we would have

q < 1
2g(x+ y) � 1

2‖x+ y‖,
which does not make any sense. This shows that (b) is also satisfied.

Condition (ii) ⇒ (iii) is trivial because (∗) with slices is inherited by subsets. Condition (iii)
⇒ (ii): if (SX , σ(X,F )) has (∗) with slices, then we take sets Gn, n ∈ N that satisfy (a) and
(b) of Remark 1. We can assume that Gn ⊆ (SX∗ ∩ F ) × (−1, 1) for every n. Given rational
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q, r > 0, set

Hq = (SX∗ ∩ F ) × {q} and Ln,q,r = {(f, q(λ+ r)) : (f, λ) ∈ Gn}.
We claim that the Hq and Ln,q,r verify that (X,σ(X,F )) has (∗), using Remark 1.

Let x, y ∈ X be distinct, with ‖x‖ � ‖y‖. If ‖x‖ < ‖y‖, then we choose rational q to satisfy
‖x‖ < q < ‖y‖. Since F is 1-norming, it is easy to check that (a) and (b) are fulfilled by Hq.
Now suppose ‖x‖ = ‖y‖. We know that, with respect to x/‖x‖ and y/‖y‖, (a) and (b) are
satisfied by some Gn. Without loss of generality, assume f(x) > ‖x‖λ, where (f, λ) ∈ Gn. Our
argument depends on the sign of λ. If λ � 0, then choose rational q, r > 0 satisfying

f(x) > ‖x‖(λ+ r) and
‖x‖
1 + r

< q < ‖x‖.
The constants have been arranged to ensure

μ(‖x‖ − q) < ‖x‖ − q < qr whenever |μ| < 1. (2.4)

We have f(x) > ‖x‖(λ+ r) > q(λ+ r). Now suppose that g(x) > q(μ+ r), where (g, μ) ∈ Gn.
Then

g(x) > q(μ+ r) > ‖x‖μ
by equation (2.4). This means g(x/‖x‖)>μ, whence g(y/‖y‖)�μ by (b), giving g(y)<q(μ+ r).
In summary, we have shown that (a) and (b) of Remark 1 are fulfilled by Ln,q,r. If instead
λ < 0, then we choose r < −λ as above and ensure that q satisfies

‖x‖ < q <
‖x‖
1 − r

.

By arguing similarly, we get what we want.
Condition (ii) ⇒ (iv) follows easily by setting Xn = X. We finish by proving (iv) ⇒ (i). By

taking intersections with mBX , m ∈ N, and re-indexing if necessary, we can assume that each
Xn is bounded. Let eachXn have a (∗)-sequence (Un,m)∞m=1, where each element of

⋃∞
m=1 Un,m

is a (non-empty) σ(X,F )-open slice of Xn. Let ϕn,m denote the convex function constructed
by applying Proposition 2.2 to Xn and the family Un,m. We have ensured that if x, y ∈ X are
distinct, then we can find n and m such that ϕn,m( 1

2 (x+ y)) < max{ϕn,m(x), ϕn,m(y)}. The
rest follows from Proposition 2.1.

Note that Theorem 2.7(i), (ii) and (iv) are also equivalent when F is simply a norming
subspace, rather than a 1-norming subspace. The reliance on slices in the statement of
Theorem 2.7 is necessary in general.

Example 1. Let K be the product {0, 1}ω1 endowed with the lexicographic order topology.
According to [16, Example 1], C(K) admits a Kadec norm ‖ · ‖ but no strictly convex norm.
By the definition of Kadec norms, the weak topology agrees with the norm topology on
S(C(K),‖·‖). In particular, (S(C(K),‖·‖), w) is metrizable, meaning that it has a σ-discrete base
and thus has (∗) as well. However, since ‖ · ‖ cannot be strictly convex, Theorem 2.7 implies
that (S(C(K),‖·‖), w) does not have (∗) with slices.

Another characterization of strictly convex renormings, given in terms of certain linear
topological decompositions of the squares X2 or S2

X , can be found in [22, Theorem 1.2]. The
advantage of Theorem 2.7 is that there is not such an explicit dependence on squares, which
are generally harder to manage.

We conclude this section by giving a sufficient condition for constructing strictly convex
norms. Theorem 2.9 can be applied to many spaces of significance to the theory, such as the
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Mercourakis spaces c1(Σ′ × Γ) (see [8, Section VI.6]), Dashiell–Lindenstrauss spaces and spaces
of the form C(K)∗, where K is Gruenhage. The idea, which goes back to the classical norm
of Day for c0(Γ) (see [6, Theorem 10]), is to ‘glue together’ strictly convex norms on finite-
dimensional spaces (which are readily available) to obtain strictly convex norms on larger
spaces. Elements of Theorem 2.9 can be found in [10, Theorem 5]. Before giving the theorem,
we state a simple fact.

Fact 2.8. Let ξ : [0, 1] −→ R be a continuous function satisfying ξ(0)ξ(1) < 0, and suppose
that ξ+ and ξ− are convex. Then, for every λ ∈ (0, 1), we have

ξ±(λ) < λξ±(1) + (1 − λ)ξ±(0).

Proof. Take a ∈ (0, 1) satisfying ξ(a) = 0, by the continuity of ξ. Assume without loss of
generality that ξ(0) > 0, and let λ ∈ (0, 1). If λ � a, then setting μ = λ/a gives

ξ+(λ) � (1 − μ)ξ+(0) + μξ+(a) = (1 − μ)ξ+(0) < (1 − λ)ξ+(0)

and

ξ−(λ) � (1 − μ)ξ−(0) + μξ−(a) = 0 < λξ−(1).

We get similar inequalities if λ > a.

Clearly, if ξ is linear, then ξ± are convex. The same is true if ξ is positive and convex.

Theorem 2.9. Let Θn : X −→ �∞(Γn) be a sequence of maps such that both functions
x �→ Θn,±(x)(γ) are σ(X,F )-lower semicontinuous and convex for every γ ∈ Γn and n ∈ N.

Let us assume in addition that, for all distinct x, y ∈ X, there are λ ∈ (0, 1), n ∈ N and a
finite set A ⊆ Γn, such that

Θn(x)�A 	= Θn(y)�A (2.5)

and

|Θn(z)(α)| > |Θn(z)(γ)| whenever α ∈ A and γ ∈ Γ \A, (2.6)

where z = λx+ (1 − λ)y. Then X admits a σ(X,F )-lower semicontinuous strictly convex norm
||| · |||.

Instead, if X is a Banach lattice, Θn,±(x) � Θn,±(y) whenever |x| � |y| and equations (2.5)
and (2.6) apply to distinct x, y ∈ X+, then ||| · ||| is a σ(X,F )-lower semicontinuous strictly
convex lattice norm.

Proof. Since Θn,±(·)(γ) are both convex and σ(X,F )-lower semicontinuous, the same is
true of |Θn(·)(γ)|. Define

Θn,0(x)(γ) = Θ2
n(x)(γ) and Θn,±1(x)(γ) = Θn,±(x)(γ).

If Γ =
⋃∞

n=1 Γn, u ∈ �∞(Γ) and A ⊆ Γ is finite, set

ϕA(u) =
∑
γ∈A

u(γ),

and put ϕA,n,i = ϕA ◦ Θn,i for every n ∈ N and i ∈ {−1, 0, 1}. Certainly, each ϕA,n,i is σ(X,F )-
lower semicontinuous, non-negative and convex. Finally, let

ψm,n,i(x) = sup{ϕA,n,i(x) : A ⊆ Γn has cardinality m}.
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To complete the proof, we shall show that, for every distinct pair x, y ∈ X, there are m,n ∈ N
and i ∈ {−1, 0, 1} such that

ψm,n,i( 1
2 (x+ y)) < max{ψm,n,i(x), ψm,n,i(y)} (2.7)

holds. Then we can appeal to Proposition 2.1.
Take λ ∈ (0, 1), n ∈ N and A ⊆ Γn satisfying (2.5) and (2.6). We consider two cases. First

suppose that Θn(x)(β)Θn(y)(β) < 0 for some β ∈ A. From (2.6) we know that Θn(z)(β) 	= 0.
Assume for now that Θn(z)(β) > 0 and define the non-empty set

B = {α ∈ A : Θn,+(z)(α) > 0},
so that

Θn,+(z)(α) > Θn,+(z)(γ),

for every α ∈ B and γ ∈ Γ \B. Therefore, ψn,m,1(z) =
∑

α∈B Θn,+(z)(α), where m is the
cardinality of B. Set ξ(t) = Θn(tx+ (1 − t)y)(β) for t ∈ R. As ξ± are convex on R, by
hypothesis, they are also continuous. After applying Fact 2.8, we get

Θn,+(z)(β) < λΘn,+(x)(β) + (1 − λ)Θn,+(y)(β),

whence
ψn,m,1(z) < λψn,m,1(x) + (1 − λ)ψn,m,1(y)

from which (2.7) quickly follows for i = 1, by convexity. If Θn(z)(β) < 0, then we argue similarly
with i = −1.

Let us now consider the case

Θn(x)(α)Θn(y)(α) � 0, (2.8)

for all α ∈ A. Let m ∈ N be the cardinality of A. Since t �→ t2 is strictly convex, from condition
(2.5) we have∑

α∈A

(λΘn(x)(α) + (1 − λ)Θn(y)(α))2 <
∑
α∈A

λ(Θn(x)(α))2 + (1 − λ)(Θn(y)(α))2

= λϕA,n,0(x) + (1 − λ)ϕA,n,0(y)
� λψm,n,0(x) + (1 − λ)ψm,n,0(y)
� max{ψm,n,0(x), ψm,n,0(y)}.

Given the convexity of |Θn(·)(α)| and equation (2.8), we obtain

|Θn(z)(α)| = |Θn(λx+ (1 − λ)y)(α)| � |λΘn(x)(α) + (1 − λ)Θn(y)(α)|.
This and condition (2.6) imply

ψm,n,0(z) = ϕA,n,0(z) �
∑
α∈A

(λΘn(x)(α) + (1 − λ)Θn(y)(α))2.

Combining these inequalities, we see that

ψm,n,0(z) < max{ψm,n,0(x), ψm,n,0(y)}
from which (2.7) follows for i = 0, again by convexity. If we adopt the lattice assumptions
instead, then each ψn,m,i satisfies the lattice assumptions in Proposition 2.1.

In the first corollary below is a sufficient condition of ‘Mercourakis type’, which is formally
more general than similar conditions given in the literature (for example, [22, Corollary 2.7]).

Corollary 2.10. Let X be a subspace or sublattice of �∞(Γ) and suppose that there are
subsets Γn ⊆ Γ, n ∈ N, with the property that, given x ∈ X and α ∈ suppx, we can find n
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such that α ∈ Γn and

{γ ∈ Γn : |x(γ)| � |x(α)|}
is finite. Then X admits a pointwise lower semicontinuous strictly convex norm or lattice norm,
respectively.

Proof. Let Pn(x)(γ) = |x(γ)| whenever γ ∈ Γn and n ∈ N. The coordinate maps are positive
and convex. We show that Pn satisfies conditions (2.5) and (2.6) of Theorem 2.9. Given distinct
x, y ∈ X, take n ∈ N and β ∈ Γn such that x(β) 	= y(β). Then there is λ ∈ (0, 1) such that
λx(β) + (1 − λ)y(β) is non-zero. Set z = λx+ (1 − λ)y and take n ∈ N such that

A = {α ∈ Γn : |z(α)| � |z(β)|}
is finite. Evidently β ∈ A, so Pn(x)�A 	= Pn(y)�A, and

|Pn(z)(α)| � |z(β)| > |Pn(z)(γ)|,
whenever α ∈ A and γ ∈ Γn \A.

Corollary 2.11 [34, Theorem 7]. IfK is Gruenhage, then C(K)∗ admits a strictly convex
dual lattice norm.

Proof. If K is Gruenhage, then (cf. [34, Lemma 6]) we can find sequences (Un)∞n=1 and
(Rn)∞n=1 as in Definition 1.2, with the further property that if μ ∈ C(K)∗ and μ(U) = 0 for all
U ∈ Un, n ∈ N, then μ = 0. Let Γn = Un and define

Θn(μ)(U) = |μ|(U), U ∈ Un.

Since |λμ+ (1 − λ)ν| � λ|μ| + (1 − λ)|ν| whenever λ ∈ [0, 1], the coordinate maps Θn(·)(U)
are positive and convex. If μ, ν ∈ C(K)∗ are positive and distinct, then there exist n ∈ N
and U ∈ Un such that μ(U) 	= ν(U). If we set τ = 1

2 (μ+ ν), then we have τ(U) > τ(Rn). By
considering Definition 1.2(ii), we see that for any r > τ(Rn), there are only finitely many
V ∈ Un satisfying τ(V ) � r. Therefore, conditions (2.5) and (2.6) of Theorem 2.9 apply to
positive elements of C(K)∗. Now we are able to apply Theorem 2.9.

Dashiell–Lindenstrauss spaces can be shown to have strictly convex lattice norms in a similar
way.

3. Strictly convex dual norms on C(K)∗

Evidently, Theorem 2.7 relies on geometric assumptions, in the sense that only sets having
(∗) with slices are considered. According to Example 1, it is not always possible to remove
the reliance on slices and deal instead with open sets having no special geometric properties.
However, we can live without slices in an important special case. We devote this section to
proving the next result.

Theorem 3.1. Let K be a scattered compact space. Then C(K)∗ admits a strictly convex
dual (lattice) norm if and only if K has (∗).

Recall that any compact space K embeds naturally into (C(K)∗, w∗) by identifying points
t ∈ K with their Dirac measures δt. It follows therefore from Theorem 3.1 that if K is scattered
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and (C(K)∗, w∗) has (∗) (without slices), then (C(K)∗, w∗) has (∗) with slices. One implication
of Theorem 3.1 may be proved easily.

Proposition 3.2. If C(K)∗ admits a strictly convex dual norm, then K has (∗).

Proof. By Theorem 2.7, if C(K)∗ admits a strictly convex dual norm, then (C(K)∗, w∗)
has (∗), whence K has (∗) by the natural embedding.

To prove the converse implication, we need to refine our (∗)-sequences so that they satisfy
some additional properties. Assume that a topological space X admits a (∗)-sequence (Un)∞n=1.
Given any finite sequence of natural numbers σ = (n1, . . . , nk), we define the family

Uσ =

{
k⋂

i=1

Ui : Ui ∈ Uni
for all i � k

}
.

Let us also set Cn =
⋃

Un and Cσ =
⋃

Uσ.

Lemma 3.3. Assume that F ⊆ X is a finite subset such that, for all n, either F ∩ Cn = ∅
or F ⊆ Cn. Then there exists σ = (n1, . . . , nk) such that F ⊆ Cσ and, moreover, F ∩ V is at
most a singleton for all V ∈ Uσ.

Proof. Enumerate the set of doubletons {x, y} ⊆ F as {x1, y1}, . . . , {xk, yk}. For every i
there exists ni such that {xi, yi} ∩ Cni

is non-empty and {xi, yi} ∩ V is at most a singleton
for all V ∈ Uni

. By hypothesis, we have F ⊆ Cni
for all i. Put σ = (n1, . . . , nk). If x ∈ F ,

since F ⊆ Cni
for all i, let Ui ∈ Uni

so that x ∈ ⋂k
i=1 Ui ∈ Uσ. Therefore, F ⊆ Cσ. Given

V =
⋂k

i=1 Vi ∈ Uσ and distinct x, y ∈ F , we have some i such that {x, y} ∩W is at most a
singleton for all W ∈ Uni

. In particular, {x, y} ∩ V ⊆ {x, y} ∩ Vi is at most a singleton. This
proves that F ∩ V is at most a singleton for any V ∈ Uσ.

Bearing in mind the Uσ and Lemma 3.3, and by adding new singleton families if necessary,
if X has (∗) then we can assume that there exists a (∗)-sequence with additional properties,
which we list in the next lemma.

Lemma 3.4. If X has (∗), then it admits a (∗)-sequence (Un)∞n=1 with the following
properties.

(i) We have X = C1.
(ii) Given n1, . . . , nk ∈ N, there exists m ∈ N such that

Um =

{
k⋂

i=1

Ui : Ui ∈ Uni
for all i � k

}
.

(iii) If F is a finite subset of X such that, for each n ∈ N, either F ⊆ Cn or F ∩ Cn is empty,
then there exists m ∈ N with the following two properties:

(a) F ⊆ Cm;
(b) F ∩ V is at most a singleton for all V ∈ Um.

Armed with these enhanced (∗)-sequences, we can deliver the proof of Theorem 3.1. We
ask that our compact spaces be scattered because the proof relies on the assumption that all
measures in C(K)∗ are atomic.
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Proof of Theorem 3.1. One implication was proved in Proposition 3.2. Now assume that K
is scattered and let (Un)∞n=1 be a (∗)-sequence for K satisfying the properties of Lemma 3.4.
Given n � 1, k � 0 and finite L ⊆ N, define the seminorm

‖μ‖n,k,L = sup

{
|μ|
(⋃

i∈L

Ci ∪
⋃

F

)
: F ⊆ Un and cardF = k

}
.

We show that these seminorms satisfy the requirements of Proposition 2.1. To this end, suppose
that μ and ν are positive, and that

‖μ‖n,k,L = ‖ν‖n,k,L = 1
2‖μ+ ν‖n,k,L, (3.1)

for all n, k and L. For a contradiction, we shall suppose also that μ 	= ν. Since

‖μ‖1,0,{n} = μ(Cn),

we have μ(Cn) = ν(Cn) = 1
2 (μ+ ν)(Cn) for all n, by (3.1). By Lemma 3.4(i) and (ii), and the

inclusion–exclusion principle, if I ⊆ N, then we know that

μ(CI,n) = ν(CI,n) = 1
2 (μ+ ν)(CI,n),

where
CI,n =

⋂
i�n,i∈I

Ci \
⋃

i�n,i/∈I

Ci.

By monotone convergence, it follows that

μ(CI) = ν(CI) = 1
2 (μ+ ν)(CI),

where
CI =

⋂
i∈I

Ci \
⋃

i∈N\I

Ci.

Now K is the disjoint union of the CI , where I ranges over non-empty subsets of N, and since
μ 	= ν are atomic, we can find non-empty I ⊆ N such that μ �CI

	= ν �CI
. We fix this I from

now on. Take a countable set A ⊆ CI such that we can write

μ�CI
=
∑
t∈A

atδt and ν�CI
=
∑
t∈A

btδt,

for some numbers at, bt � 0. Let

p = max{max{at, bt} : t ∈ A, at 	= bt},
q = max({at : at < p} ∪ {bt : bt < p}),

and define the finite, possibly empty, set

F = {t ∈ A : at = bt � p},
and let k = cardF . Take finite G ⊆ A such that∑

t∈A\G

at,
∑

t∈A\G

bt <
1
4
(p− q), (3.2)

and n large enough so that

μ(CI,n \ CI), ν(CI,n \ CI) < 1
4 (p− q). (3.3)

Let H = {1, . . . , n} ∩ I and L = {1, . . . , n} \ I. By Lemma 3.4(iii), we can find m ∈ N such that
G ⊆ Cm and G ∩ V is at most a singleton for all V ∈ Um. Since CI ⊆ ⋂i∈H Ci, we can and do
assume that Cm ⊆ ⋂i∈H Ci, by Lemma 3.4(ii).
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It is by considering the seminorm ‖ · ‖m,k+1,L that we reach our contradiction. Let u ∈ A such
that au 	= bu and max{au, bu} = p. Clearly, u /∈ F . Also, F ∪ {u} ⊆ G. Indeed, if t ∈ A \G, then
at, bt <

1
4 (p− q) < p. Without loss of generality, assume that au < bu = p. Since F ∪ {u} ⊆ Cm,

it is possible to find G ⊆ Um of cardinality k + 1, such that F ∪ {u} ⊆ ⋃G .
By considering ‖ · ‖1,0,L and (3.1), we know that μ(

⋃
i∈L Ci) = ν(

⋃
i∈L Ci). We shall denote

this common quantity by c. We estimate

‖ν‖m,k+1,L � ν

(⋃
i∈L

Ci ∪
⋃

G

)

� ν

(⋃
i∈L

Ci

)
+

∑
t∈F∪{u}

bt as (F ∪ {u}) ∩
⋃
i∈L

Ci = ∅

� c+ p+
∑
t∈F

bt = c+ p+
∑
t∈F

at. (3.4)

By (3.1) and the definition of the seminorms, let H ⊆ Um of cardinality k + 1 be chosen in
such a way that

1
2
(μ+ ν)

(⋃
i∈L

Ci ∪
⋃

H

)
> ‖ν‖m,k+1,L − 1

4
(p− q).

We claim that at � p whenever t ∈ ⋃H ∩G. In order to see this, first of all we claim that
if J ⊆ A has cardinality at most k, then∑

t∈J

at �
∑
t∈F

at. (3.5)

Indeed, we have cardF \ J � cardJ \ F , since card J � k = cardF . If t ∈ J \ F , then either
at < p or at 	= bt, which means at � p by maximality of p. Therefore,∑

t∈F

at −
∑
t∈J

at =
∑

t∈F\J

at −
∑

t∈J\F

at

� p(cardF \ J) − p(cardJ \ F ) � 0.

This completes the proof of the claim.
Now we can show that at � p whenever t ∈ ⋃H ∩G. If not, then as < p for some s ∈⋃
H ∩G, meaning as � q. Observe that⋃

i∈L

Ci ∪
⋃

H ⊆
(⋃

H ∩G
)
∪
(⋃

H ∩ CI \G
)
∪ (CI,n \ CI) ∪

⋃
i∈L

Ci. (3.6)

To see this, it helps to note that⋃
H \

⋃
i∈L

Ci ⊆ Cm \
⋃
i∈L

Ci ⊆
⋂
i∈H

Ci \
⋃
i∈L

Ci = CI,n.

By the choice of m, card
⋃

H ∩G � k + 1. Hence,

μ

(⋃
i∈L

Ci ∪
⋃

H

)
�
∑
t∈F

at + as +
1
4
(p− q) +

1
4
(p− q) + c by (3.2), (3.3), (3.5) and (3.6)

�
∑
t∈F

at + q +
1
2
(p− q) + c since as � q

� ‖ν‖m,k+1,L − 1
2
(p− q) by (3.4).
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However, this means

1
2
(μ+ ν)

(⋃
i∈L

Ci ∪
⋃

H

)
� 1

2
‖ν‖m,k+1,L − 1

4
(p− q) +

1
2
‖ν‖m,k+1,L,

which contradicts the choice of H . Therefore, at � p whenever t ∈ ⋃H ∩G. By a similar
argument applied to the bt, we have bt � p whenever t ∈ ⋃H ∩G. Hence, we know that
at = bt for t ∈ ⋃H ∩G, lest we contradict the maximality of p. It follows that

⋃
H ∩G ⊆ F .

However, this forces

μ

(⋃
i∈L

Ci ∪
⋃

H

)
�
∑
t∈F

at +
1
4
(p− q) +

1
4
(p− q) + c by (3.2), (3.3) and (3.6)

< ‖ν‖m,k+1,L − 1
2
(p− q).

Just as above, this contradicts the choice of H .

Remark 2. Most of Theorem 3.1 follows from Theorem 2.7. Starting with a (∗)-sequence
from Lemma 3.4, we can show directly that (C(K)∗, w∗) has (∗) with slices. For n, k ∈ N, finite
L ⊆ N and rational q > 0, define Vn,k,L,q,+ to be the family of all w∗-open sets{

μ ∈ C(K)∗ : μ+

(⋃
i∈L

Ci ∪
⋃

F

)
> q

}
,

where F ⊆ Un has cardinality k. Define Vn,k,L,q,− accordingly. By using essentially the same
method as that presented above, it can be shown that the Vn,k,L,q,± form a (∗)-sequence.
Moreover, if V ∈ Vn,k,L,q,±, then C(K)∗ \ V is convex. By the Hahn–Banach Theorem, each
such V can be written as a union of w∗-open half-spaces. Therefore, we can write down a
(∗)-sequence for (C(K)∗, w∗), the elements of which being families of half-spaces. What we
lose here is the fact that the norm in Theorem 3.1 is a lattice norm, which is why we give the
proof as is.

4. Topological properties of (∗) and examples

In this section, we explore the properties of (∗) and see how it compares with related concepts
in the literature. In particular, under the continuum hypothesis (CH) or the axiom b = ℵ1,
we provide examples of compact scattered non-Gruenhage spaces having (∗). This means that
Theorem 3.1 does not follow from existing results such as Theorem 1.3.

A topological space X is said to have a Gδ-diagonal if its diagonal

{(x, x) : x ∈ X}
is a Gδ set in X2. This concept has been studied extensively in general metrization theory;
see, for example, [11, Section 2]. It is easy to show that X has a Gδ-diagonal if and only if
there is a sequence (Gn)∞n=1 of open covers of X such that, given x, y ∈ X, there exists n with
the property that {x, y} ∩ U is at most a singleton for all U ∈ Gn (see [11, Theorem 2.2]).
Equivalently, if we consider the ‘stars’

st(x, n) =
⋃

{U ∈ Gn : x ∈ U},
then

⋂∞
n=1 st(x, n) = {x} for every x ∈ X. In keeping with previous notation, we call such a

sequence a Gδ-diagonal sequence. Compact spaces with Gδ-diagonals are metrizable (cf. [11,
Theorem 2.13]), so (∗) is evidently a strict generalization of the Gδ-diagonal property. In some
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cases, it is possible to reduce problems about (∗) to the Gδ-diagonal case; see Theorem 4.3 and
Proposition 4.12, and also the partitioning of K into the CI in the proof of Theorem 3.1.

Next, we compare (∗) with Gruenhage’s property.

Proposition 4.1. If X is Gruenhage, then it has (∗).

Proof. If X is Gruenhage, then let (Un)∞n=1 and Rn be as in Definition 1.2. Let Vn =
{Rn} for each n. Given distinct x, y ∈ X, there exist n and U ∈ Un, such that {x, y} ∩ U is a
singleton. If x ∈ Rn, then y /∈ Rn and it is true that {x, y} ∩ U = {x} for every U ∈ Vn, because
Vn is a singleton; likewise if y ∈ Rn. So we assume now that x, y /∈ Rn. Now it is true that
{x, y} ∩ V is at most a singleton for every V ∈ Un, since if y ∈ V , then V 	= U , and if x ∈ V ,
then x ∈ U ∩ V = Rn.

There are an abundance of compact spaces that are Gruenhage, but non-descriptive and
so quite far from being metrizable; see [34, Corollary 17] or Theorem 4.6 and subsequent
remarks, below. In Example 2, we show that under additional axioms there exist compact,
scattered non-Gruenhage spaces of cardinality ℵ1 having (∗). Now we see that (∗) implies
fragmentability.

Proposition 4.2. If X has (∗), then X is fragmentable.

Proof. Let X have a (∗)-sequence (Un)∞n=1. We well order each Un as (Un
ξ )ξ<λn

. Now
define V n

α =
⋃

ξ�α U
n
ξ for α < λn. We claim that, given distinct x, y ∈ X, there exist n and

α < λn such that {x, y} ∩ V n
α is a singleton. As explained in Section 1, this is enough to give

fragmentability. Indeed, take n ∈ N with the properties given in Definition 2.6, and pick the
least α < λn such that {x, y} ∩ Un

α is a singleton. Then {x, y} ∩ Un
ξ must be empty for all

ξ < α, thus

{x, y} ∩ V n
α = {x, y} ∩ Un

α

is a singleton.

Theorem 4.3 is a generalization of a result of Chaber (cf. [11, Theorem 2.14]), which states
that countably compact spaces with Gδ-diagonals are compact (and thus metrizable). It allows
us to glean a few more topological consequences of the (∗) property. As preparation, fix an
open cover V of a countably compact (non-empty) space X. Suppose that X has a (∗)-sequence
(Un)∞n=1, with Cn =

⋃
Un for each n. Define

AX =

{
I ⊆ N : X \

⋃
n∈I

Cn 	= ∅

}
.

Clearly, AX is a hereditary family of subsets of N. Moreover, it is compact in the pointwise
topology. Indeed, if J /∈ AX , then by the countable compactness of X, we can find finite G ⊆ J
such that G /∈ AX . It follows that P(N) \ AX is open. Furthermore, ∅ ∈ AX because X is
non-empty, so AX is also non-empty. From these facts, we deduce that AX admits an element
that is maximal with respect to inclusion.

Theorem 4.3. If X is countably compact and has (∗), then X is compact.
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Proof. Fix an open cover V ofX and (∗)-sequence (Un)∞n=1 as above. We define a decreasing
transfinite sequence of countably compact subspaces Xα of X, together with maximal Mα ∈
AXα

and finite Fα ⊆ V , such that the following conditions are satisfied:
(i) Xα = X \⋃ξ<α

⋃
Fξ;

(ii) Mξ /∈ AXα
whenever ξ < α.

To begin, set X0 = X. Given Xα, we take some maximal Mα ∈ AXα
and set Y = Xα \⋃

n∈Mα
Cn. We claim that (Un)n∈N\Mα

is a Gδ-diagonal sequence for Y . Indeed, the maximality
of Mα implies that Y ⊆ Cn whenever n ∈ N \Mα. If x, y ∈ Y , then by (∗), there exists n
such that {x, y} ∩ Cn is non-empty, and {x, y} ∩ U is at most a singleton for all U ∈ Un. By
definition Y ∩ Ck is empty whenever k ∈Mα, so necessarily n ∈ N \Mα. Our claim is proved.

By Chaber’s result, Y is compact. Therefore, there exists a finite set Fα ⊆ V , such that

Xα \
⋃

n∈Mα

Cn = Y ⊆
⋃

Fα.

Define Xα+1 = X ′
α = Xα \⋃Fα. We have (i) immediately and (ii) follows because Mα /∈

AXα+1 and AXα+1 ⊆ AXα
. If Xα+1 is empty, then we stop the recursion. If λ is a countable

limit ordinal and Xα is non-empty for all α < λ, set Xλ =
⋂

α<λXα. Conditions (i) and (ii)
follow. By countable compactness, Xλ is also non-empty.

This process has to stop at a countable (successor) stage, because (AXα
) is a strictly

decreasing family of closed subsets of the separable metric space P(N). Thus, Xα+1 is empty
for some α < ω1. By (i) we get

X ⊆
⋃
ξ�α

⋃
Fξ,

and so X is covered by
⋃

ξ�α Fξ. By a final application of countable compactness, we extract
from this a finite subcover.

The next result generalizes [24, Corollary 4.3] from descriptive spaces to spaces with (∗).

Corollary 4.4. If L is locally compact and has (∗), then L ∪ {∞} is countably tight and
sequentially closed subsets of L ∪ {∞} are closed.

Proof. The first assertion follows directly from Theorem 4.3 and the second follows from
Proposition 4.2 and the fact that compact fragmentable spaces are sequentially compact (see
[9, Lemma 2.1.1; 29, Corollary 2.7]). Note that if L is any locally compact space with (∗),
then its 1-point compactification L ∪ {∞} has (∗) also. All we need to do is adjoin to any
(∗)-sequence for L the singleton family {L}, which separates all points in L from ∞.

Concerning stability properties of (∗) under mappings, we have the next result.

Proposition 4.5. If K is a scattered compact space with (∗) and π : K −→M is a
continuous surjective map, then M has (∗).

Proof. If K has (∗), then by Theorem 3.1, C(K)∗ admits a strictly convex dual norm ‖ · ‖.
If we define T : C(M) −→ C(K) by T (f) = f ◦ π, then it is standard to check that

|||ν||| = inf{‖μ‖ : T ∗(μ) = ν}
defines a strictly convex dual norm on C(M)∗. Therefore, M has (∗), again by Theorem 3.1.
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The proof above is concise and straightforward, but also utterly opaque, as it leaves the
reader with no idea of how to construct a (∗)-sequence on M in terms of a (∗)-sequence on
K. We outline a second approach to proving Proposition 4.5, which we include because we
believe it gives the reader more idea of what is going on. The dual map S = T ∗ above is a
natural extension of π if we identify points in K and M with their Dirac measures in C(K)∗

and C(M)∗, respectively. Set

Σ = {μ ∈ C(K)∗ : μ is positive and ‖μ‖1 = 1}.
If t ∈M and μ ∈ Σ, then S(μ) = t if and only if suppμ ⊆ π−1(t). Given a (∗)-sequence (Un)∞n=1

on K with the properties of Lemma 3.4, together with the unions Cn, define the w∗-compact
and convex sets

Dn,q,L =

{
μ ∈ Σ : μ

(⋃
i∈L

Ci ∪ U
)

� q for all U ∈ Un

}
,

where n ∈ N, q ∈ (0, 1) ∩ Q and L ⊆ N is finite. The Dn,q,L should be compared to the
seminorms ‖ · ‖n,k,L in the proof of Theorem 3.1. Given distinct s, t ∈M and μ, ν ∈ Σ in
S−1(s) and S−1(t), respectively, by following the proof of Theorem 3.1, we can find n, q and L
such that 1

2 (μ+ ν) ∈ Dn,q,L, but {μ, ν} ∩Dn,q,L is at most a singleton. There is less to consider
in this case because as the supports of μ and ν are necessarily disjoint, the set F in the proof
of Theorem 3.1 is empty. This is why we only need to consider individual elements of Un in the
definition of the Dn,q,L, rather than finite subsets of Un as in the definition of the ‖ · ‖n,k,L.

By appealing to compactness and convexity, it is possible to select a finite set G of triples
(n, q, L) with the property that if we consider the intersection DG =

⋃
(n,q,L)∈GDn,q,L, then

DG ∩ S−1( 1
2 (s+ t)) is non-empty, but either DG ∩ S−1(s) is empty or DG ∩ S−1(t) is empty.

Equivalently, 1
2 (s+ t) ∈ S(DG), but {s, t} ∩ S(DG) is at most a singleton. The set S(DG) is

w∗-compact and convex, so the complement C(M)∗ \ S(DG) can be written as the union of a
family VG of w∗-open half-spaces of C(M)∗. From what we know, it can be easily verified that
the families VG, as G ranges over all finite subsets of triples (n, q, L), induce a (∗)-sequence
on M .

Now we move on to examples. We are chiefly interested in exploring (∗), Gruenhage’s
property and the gap between them. Given that descriptive spaces are Gruenhage and spaces
with (∗) are fragmentable, we shall confine our attention to spaces that are fragmentable but
non-descriptive.

The first thing to point out is that (∗) is not equivalent to fragmentability, because ω1 is
scattered (hence fragmentable), but does not have (∗). That ω1 does not have (∗) is clear, either
directly from Corollary 4.4 or from Theorem 3.1 and [39, Théorème 3], which we mentioned
in Section 1. Any locally compact space having (∗) necessarily has a countably tight 1-point
compactification, but this condition is not sufficient. Hereafter, all of our examples of locally
compact spaces without (∗) have countably tight 1-point compactifications.

Next, we consider trees. A tree (T,�) is a partially ordered set with the property that given
any t ∈ T , its set of predecessors {s ∈ T : s � t} is well ordered. The tree order induces a
natural locally compact, scattered interval topology. To render this topology Hausdorff, we
shall only consider trees T with the property that every non-empty totally ordered subset of T
has at most one minimal upper bound. An antichain is a subset of T , no two distinct elements
of which are comparable. For further definitions and discussions about trees, and their role in
renorming theory, we refer the reader to [14, 15, 33, 34, 37, 40].

If P andQ are partially ordered sets, then we say that a map ρ : P −→ Q is strictly increasing
if ρ(x) < ρ(y) whenever x < y. If such a map exists, then we write P � Q. In [33, Definition 5],
the second author introduced a totally ordered set Y to address the problem of when C0(T )∗

admits a strictly convex dual norm. We remark of Y that R � Y , Y α � Y for all α < ω1, where
Y α is ordered lexicographically, and finally Y contains no uncountable, well-ordered subsets
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[33, Section 4]. By combining Theorem 3.1 with [34, Corollary 17], we obtain the next result;
see also [37, Theorem 26].

Theorem 4.6. If T is a tree, then the following are equivalent:
(i) T is Gruenhage;
(ii) T has (∗);
(iii) C0(T )∗ admits a strictly convex dual norm;
(iv) T � Y .

Note that the 1-point compactification T ∪ {∞} of a tree T is countably tight if and only if
T admits no uncountable branches. Indeed, suppose that T admits no uncountable branches.
Since each t ∈ T admits a countable neighbourhood, the only point we need to test is ∞.
If ∞ ∈ Ā for some uncountable A ⊆ T , then by a standard result of Ramsey theory, either
A contains an uncountable totally ordered set or a countably infinite antichain E. Only the
second possibility is valid, whence ∞ ∈ Ē. The converse implication follows immediately from
the fact that ω1 + 1 is not countably tight. Thus, we restrict our attention to trees with no
uncountable branches.

Given a partially ordered set P , we set

σP = {A ⊆ P : A is well-ordered}.
Kurepa introduced this notion and proved the following fact: for all P , we have σP � P . On
the other hand, it is straightforward to show that σRα � Rα × {0, 1} (see [33, Proposition 23]).
Moreover, it is known that T is descriptive if and only if T � Q (see [33, Theorem 4]). Therefore,
we conclude that σQ and σRα, α < ω1, are all Gruenhage, non-descriptive spaces (see [34,
p. 752] or [37, p. 405]). Instead, if we consider any total order W satisfying Y � W , then
σW � Y and so σW does not have (∗). In addition, if W does not contain any uncountable
well-ordered subsets, then σW is free of uncountable branches.

There is another type of tree without uncountable branches and without (∗). A subset E of
a tree is a final part if u ∈ E whenever t ∈ E and t � u. If E is a final part, then we say that E
is dense if every element of T is comparable with some element of E, and T is called Baire if
every countable intersection of dense final parts (which is itself a final part) are again dense. A
subset E is called ever branching if, given any t ∈ E, there exist incomparable elements u, v ∈ E
satisfying t < u, v. If T admits an ever-branching Baire subtree, then C0(T ) does not admit
a Gâteaux norm [14, Theorem 2.1]. Therefore, no such tree can have (∗). An ever-branching
Baire tree without uncountable branches exists; see [14, Proposition 3.1; 40, Lemma 9.12].
Recall that a tree T is called Suslin if it contains no uncountable branches or antichains. The
existence of Suslin trees is independent of ZFC; see, for example, [40, Section 6]. Every Suslin
tree contains an ever-branching Baire subtree [40, p. 246], so we conclude that no Suslin tree
has (∗) either.

It is clear from Theorem 4.6 that in order to find examples of non-Gruenhage spaces with (∗),
we must search further afield. A topological space X is said to be hereditarily separable (HS)
if every subspace of X is separable. Clearly, the 1-point compactification of a locally compact
HS space is countably tight. These spaces are interesting for us because if K is compact,
HS and non-metrizable, then it is automatically non-descriptive. This fact is stated in [24,
Proposition 4.2] but no direct proof is given, so an argument is sketched here for completeness.
If H is an isolated family of subsets of K, then H must be countable, because by hereditary
separability there is a countable subset of

⋃
H which meets every member of H . Therefore,

if K is a descriptive compact HS space, then it admits a countable network, whence it is
metrizable.
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Since we want compact, non-metrizable HS spaces that are also fragmentable, it is necessary
to assume extra axioms. A space X is hereditarily Lindelöf (HL) if every subspace of X is
Lindelöf. If K is compact, fragmentable and HL, then it is metrizable (cf. [19, Corollary 9]).
Thus, we want HS spaces that are not HL; such objects are called S-spaces. We refer the
reader to [31] for an introduction to S-spaces and also the related L-spaces. It is known that
under MA + ¬CH (where MA stands for Martin’s axiom), there are no compact S-spaces
(cf. [31, Theorem 6.4.1]), and in fact it is consistent that there are no S-spaces at all (cf. [31,
Theorem 7.2.1]). Therefore, we must assume extra axioms if we are to find any animals in this
particular zoo.

Our treatment of S-spaces proceeds as follows. First, we outline two approaches for
constructing S-spaces by refining existing topologies, and show that these yield Gruenhage
spaces. Second, we take advantage of these two approaches to provide examples of compact
non-Gruenhage spaces of cardinality ℵ1 having (∗) and show, given a further mild assumption,
that no object of this kind can exist under MA + ¬CH. Finally, we present a third method of
constructing S-spaces and show that no space built in this way can have (∗).

The spaces developed using the first approach are sometimes called ‘Kunen lines’, despite the
fact that none of them are linearly ordered. Assuming CH, the authors of [18] develop a machine
that accepts as input a first countable HS space (X, ρ) of cardinality ℵ1, and generates a finer
topology (X, τ), which is locally compact, scattered, HS and non-Lindelöf. In applications, X
is usually a subset of R and ρ is the induced metric topology.

Later, this process was developed to ensure that (X, τ)n is HS for all n ∈ N; see [23,
Section 7]. The resulting 1-point compactification K is known to Banach space theorists as
‘Kunen’s compact S-space’. It is not explicitly stated in [23, Section 7] that the resulting
topology on X refines that of the real line, but the authors believe that it is meant to. If the
topology is such a refinement, then necessarily the Euclidean diameters of the Bα

k (which form
the building blocks of neighbourhoods of points; see [23, (8), p. 1124]) have to tend to 0 as
k → ∞. It can be checked that this condition is also sufficient to produce a refinement. We
note further that an alternative approach to [23, Section 7] is given in [42, Theorem 2.4], and
there, the fact that the original topology is refined is explicitly stated.

Of course, it is clear that any refinement of a Gruenhage space is again Gruenhage, because
we can use exactly the same open sets to separate points. Therefore, assuming the adjustment
to the diameters of the Bα

k above, we have the following result.

Proposition 4.7. The Kunen lines are Gruenhage spaces. In particular, C(K)∗ admits a
strictly convex dual norm, the predual of which is necessarily Gâteaux smooth.

The second approach refines topologies as above, but this time using the axiom b = ℵ1, where
b is the minimal cardinality of a subset of Baire’s space NN, which has no upper bound with
respect to the partial ordering <∗ of eventual dominance (x <∗ y if and only if x(n) < y(n)
for all but finitely many n). Evidently, b � c and CH implies b = ℵ1. More interestingly, the
assertion (b = ℵ1) + ¬CH is relatively consistent.

Under b = ℵ1, it is shown in [41, Theorem 2.5] that the topology of any set of reals of
cardinality ℵ1 may be refined to give a locally compact, scattered, non-Lindelöf topology which
is HS in its finite powers.

Proposition 4.8. The spaces of Todorčević in [41, Theorem 2.5] are Gruenhage.

Before presenting our third approach to construct S-spaces, we give our examples under
additional axioms of compact, scattered non-Gruenhage spaces with (∗). We shall utilize the
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methods of Kunen, Todorčević and others, and adopt an idea from [1]. The spaces could also
be compared, at some distance, to the split interval.

In fact, we construct locally compact, scattered non-Gruenhage spaces with Gδ-diagonals.
The 1-point compactifications of these spaces have (∗). For our examples, we shall make use of
the following observation about Gruenhage spaces of cardinality no larger than the continuum.

Proposition 4.9 [37, Proposition 2]. Let X be a topological space with cardX � c. Then
X is Gruenhage if and only if there is a sequence (Un)∞n=1 of open subsets of X with the
property that if x, y ∈ X, then {x, y} ∩ Un is a singleton for some n.

The hypotheses of the next theorem isolate the ingredients essential to our examples.

Theorem 4.10. Suppose that we have a metric d on ω1 and, for all but countably many
α < ω1, an injective sequence sα = (sα,n) ⊆ α which converges to α with respect to d. Moreover,
suppose that whenever J ⊆ ω1 is uncountable, there exists α ∈ J such that sα ∩ J is infinite.
Then there exists a locally compact, scattered, first countable non-Gruenhage (Hausdorff) space
of cardinality ℵ1 with a Gδ-diagonal.

Proof. Fix α0 such that sα exists as above for α � α0. Set X = ω1 × {±1}, let q : X −→ ω1

be the natural projection and define t : X −→ X by t(α, i) = (α,−i). We obtain our topology on
X by building increasing topologies τα on the sets α× {±1}, α < ω1, by transfinite induction.
Hereafter, diam will denote diameters with respect to d. The points (α, i), i = ±1, will have
a countable base of compact open neighbourhoods U(α, i, n), n ∈ N, such that the following
conditions are satisfied:

(i) if ξ < α, then ξ × {±1} ∈ τα and τξ is the topology on ξ × {±1} induced by τα;
(ii) U(α, i, n) \ {(α, i)} ⊆ α× {±1};
(iii) diam (q(U(α, i, n))) < 2−n;
(iv) U(α,−i, n) = t(U(α, i, n));
(v) q�U(α,i,n) is injective;
(vi) for every n, i and α � α0, the set (sα × {−i}) \ U(α, i, n) is finite.
To take care of limit stages α, we set

τα = {U ⊆ α× {±1} : U ∩ (ξ × {±1}) ∈ τα for all ξ < α}.
Now assume that τα has been found. We define τα+1 by constructing neighbourhoods U(α, i, n),
n ∈ N, of the points (α, i), i = ±1.

If α < α0, then set U(α, i, n) = {(α, i)} for i = ±1 and n ∈ N. Henceforth, we assume that
α � α0. Since sα,n → α, we can select l1 < l2 < l3 < . . . to ensure that

(a) diam ({sα,m : m � ln}) < 2−n for each n.
By considering (iii) applied to ξ < α, and (a) above, for every m we can find km such that

(b) q(U(sα,m,−1, km)) ∩ q(U(sα,m′ ,−1, km′)) = ∅,
whenever m 	= m′ and

(c) diam
(
q
(⋃

m�ln
U(sα,m,−1, km)

))
< 2−n,

for every n. Finally, define

U(α, i, n) = {(α, i)} ∪
⋃

m�ln

U(sα,m,−i, km).

These neighbourhoods are compact and open. Extend τα to τα+1 in the obvious way. It is
clear that we have (i) and (ii), and that τα+1 is locally compact. Property (iii) follows from (c)
above. That τα+1 is Hausdorff is a consequence of the inductive hypothesis, (iii), and the fact
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that U(α, 1, 1) ∩ U(α,−1, 1) = ∅. Properties (iv) and (v) follow from the inductive hypothesis,
the definition of U(α, i, n) and (b). Lastly, (vi) holds because

{(sα,m,−i) : m � ln} ⊆ U(α, i, n).

This completes the induction. The topology on X is given by

{U ⊆ X : U ∩ (α× {±1}) ∈ τα for all α < ω1}.
We show that X is scattered. If E ⊆ X is non-empty, then let α be minimal, subject to
E ∩ {(α,±1)} being non-empty. If (α, i) ∈ E, then by (i) and (ii), U = (α× {±1}) ∪ {(α, i)}
is open, and E ∩ U = {(α, i)}.

Next, we show that X has a Gδ-diagonal. Set

Gn = {U(α, i, n) : (α, i) ∈ X}.
Let (α, i), (β, j) ∈ X. If α 	= β, then pick n such that d(α, β) � 2−n. We cannot have (β, j) ∈
st((α, i), n) because, if so, then (α, i), (β, j) ∈ U(γ, k, n) for some (γ, k), giving

d(α, β) � diam (q(U(γ, k, n))) < 2−n

by (iii). If α = β and i 	= j, then, by (v), we cannot have (α, i), (β, j) ∈ U(γ, k, n) for any (γ, k)
or n. Whatever the case,

∞⋂
n=1

st((α, i), n) = {(α, i)}.

This shows that (Gn)∞n=1 is a Gδ-diagonal sequence.
Finally, we prove that X is not Gruenhage. Bearing in mind Proposition 4.9, we suppose for

a contradiction that there exists a sequence of open subsets (Vn)∞n=1, with the property that,
given α < ω1, we can find an n that forces

{(α, 1), (α,−1)} ∩ Vn

to be a singleton. Define

Jn,i = {α < ω1 : (α, i) ∈ Vn and (α,−i) /∈ Vn}.
By assumption, ω1 =

⋃
n,i Jn,i, so there exist n and i such that J = Jn,i is uncountable. Given

the hypotheses, the intersection sα ∩ J is infinite for some α ∈ J . Since α ∈ J , we have (α, i) ∈
Vn, so take m satisfying U(α, i,m) ⊆ Vn. From (vi) we know that

U(α, i,m) ∩ ((sα ∩ J) × {−i}) ⊆ Vn ∩ (J × {−i})
is non-empty. However, this violates the definition of J . This contradiction establishes that X
is not Gruenhage.

Now we use axioms to obtain the hypotheses of Theorem 4.10 in two different ways.

Example 2 (CH or b = ℵ1). There exist locally compact, scattered, first countable
Hausdorff, non-Gruenhage spaces of cardinality ℵ1 with Gδ-diagonals.

Proof. Assuming CH, we follow Kunen. Let (xα)α<ω1 be a family of distinct real numbers,
set d(α, β) = |xα − xβ | and let (Aξ)ξ<ω1 be an enumeration of all countable subsets of ω1.
Since (ω1, d) is separable, there exists α0 < ω1 such that α ∈ α0

d whenever α � α0. Given such
α, define Fα = {ξ � α : Aξ ⊆ α and α ∈ Aξ

d}. Since Fα is at most countable, we can find an
injective sequence sα ⊆ α converging to α, such that sα ∩Aξ is infinite whenever ξ ∈ Fα. Let
J ⊆ ω1 be uncountable. As (J, d) is separable, Aξ ⊆ J ⊆ Aξ

d
for some ξ < ω1. Because J is

uncountable, we can take α ∈ J large enough to ensure that ξ ∈ Fα, thus sα ∩ J is infinite.
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Now assume b = ℵ1. With this axiom, we can find a transfinite sequence (xα)α<ω1 of
increasing sequences in NN that is strictly increasing and unbounded in NN, with respect
to <∗. Given α 	= β, define d(α, β) = 2−n, where n is the least natural number satisfying
xα(n) 	= xβ(n), that is, d is induced by the natural metric on NN. The sequences sα are
obtained by considering the sets H(b) defined in [41, Chapter 2]. Given b = xα, the set
H(b) ⊆ {xξ : ξ < α}, whenever infinite, converges to b in the natural topology of NN (with
respect to any enumeration). Moreover, whenever J ⊆ ω1 is uncountable, H(b) ∩ {xξ : ξ ∈ J}
is infinite for some α ∈ J (see [41, Lemma 2.1]). Clearly, H(b) is finite for at most countably
many b.

Together with Theorem 3.1, these examples show that if C(K)∗ admits a strictly convex
dual norm, then K is not necessarily Gruenhage. This gives a consistent negative solution to
[34, Problem 14; 37, Problem 4].

It is possible to make X of Theorem 4.10 HS. Suppose that each sα above can be partitioned
into two sequences sj

α, j = ±1, with the property that given an uncountable set J ⊆ ω1, both
intersections sj

α ∩ J , j = ±1, are infinite for some α ∈ J . Define

U(α, i, n) = {(α, i)} ∪
⋃

m�ln

U(sα,m, jα,mi, km),

where jα,m ∈ {1,−1} is chosen so that sα,m ∈ s
jα,m
α . Then (vi) becomes

(vi)′ for every n, i, j and α � α0, the set (sj
α × {ji}) \ U(α, i, n) is finite.

The proof that X is non-Gruenhage follows just as above, by considering j = −1. To see that
X is HS, suppose that E ⊆ X is non-separable. By transfinite induction, we can find i and an
uncountable relatively discrete subspace F ⊆ E ∩ (ω1 × {i}). Now consider j = 1.

Assuming CH, we can find these sj
α by choosing sα in such a way that {n ∈ N :

sα,2n, sα,2n+1 ∈ Aξ} is infinite whenever ξ ∈ Fα, where Fα is as in the proof of Example 2. Then
set sj

α,n = sα,2n+(j+1)/2. The authors suspect that the sets H(b) of Todorčević [41, Chapter 2]
can be partitioned to obtain the sj

α when b = ℵ1.
There is no hope of constructing spaces like those in Example 2 in ZFC. A space X is

called locally countable if every point of X admits a countable neighbourhood. For example,
trees of height at most ω1 and ‘thin-tall’ locally compact spaces are locally countable. It is
straightforward to see that a locally compact, locally countable space must be scattered.

Proposition 4.11 (MA + ¬CH). Suppose that L is a locally compact, locally countable
space with (∗) and cardL < c. Then L is σ-discrete.

Proof. This follows immediately from Corollary 4.4 and [3, Theorem 2.1].

We end this section by presenting our third class of S-spaces. We shall call a regular,
uncountable topological space X an O-space if every open subset of X is either countable
or co-countable. Ostaszewski constructed a locally compact, scattered O-space using the
clubsuit axiom ♣ [27, p. 506]. It is known that ♣ is independent of CH and that ♣ + CH
is equivalent to Jensen’s axiom ♦ (see [27, p. 506; 32], respectively). It is possible to obtain
O-spaces by assuming principles strictly weaker than ♣ [17, Theorem 2.1]. Unlike the previous
constructions, these spaces are built from scratch, rather than by refining an initial space.

Every O-space contains an S-subspace. Indeed, if X is an O-space, then note that at most
one point of X can fail to have a countable open neighbourhood. Thus, we can construct by
induction an uncountable subspace Y = {xα : α < ω1} such that {xξ : ξ < α} is open in Y
for every α < ω1. Thus, Y is not Lindelöf. If, for a contradiction, we suppose that Z ⊆ Y is not
separable, then, as above, we can construct an uncountable, relatively discrete subspace of Y
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by induction. However, this cannot exist by the O-space property. Therefore, Y is an S-space.
We can argue similarly to establish that every locally compact O-space has a countably tight
1-point compactification.

Proposition 4.12. If X is an O-space, then it does not have (∗).

Proof. Suppose that (Un)∞n=1 is a (∗)-sequence for X, with Cn =
⋃

Un for each n. Set

J = {n ∈ I : Cn is uncountable}.
If n ∈ J , then X \ Cn is countable, so

E =
⋃
n∈J

(X \ Cn) ∪
⋃

n∈N\J

Cn

is also countable. If we let A = X \ E, then we see that A ⊆ Cn for all n ∈ J , and A ∩ Cn is
empty whenever n /∈ J . For x ∈ A and n ∈ J , define

st(x, n) =
⋃

{U ∈ Un : x ∈ U}.
Since (Un)∞n=1 is assumed to be a (∗)-sequence for X, we have

{x} = A ∩
⋂
n∈J

st(x, n),

for all x ∈ A, that is, (Un)∞n=1 induces a Gδ-diagonal sequence on A. Given this, it follows that,
for each x ∈ A, there exists some nx ∈ J such that st(x, nx) is countable. Indeed, otherwise,

E ∪
⋃
n∈J

(X \ st(x, n))

is countable, rendering

{x} = A ∩
⋂
n∈J

st(x, n)

uncountable. Since A is uncountable, there exists n, which we fix from now on, such that
B = {x ∈ A : nx = n} is uncountable. Take an enumeration (xα)α<ω1 of distinct points in B.
We find α0 < α1 < α2 < . . . < ω1 such that

xαη
/∈
⋃
ξ<η

st(xαξ
, n),

for all η < ω1. Observe that by the symmetry of the sets st(x, n), we have xαξ
/∈ st(xαη

, n)
whenever ξ 	= η. Therefore, C = {xαξ

: ξ < ω1} is a relatively discrete subspace, which is not
permitted by the O-space property.

Example 3. Ostaszewski’s space [27, p. 506] is a locally compact, scattered HS O-space.
Therefore, it does not have (∗).

By refining Ostaszewski’s construction, it is possible to use ♣ to build a compact, scattered
non-metrizable space K, such that Kn is HS for all n (see [13, Theorem 4.36]). Moreover, it
can be checked that this K is, in addition, an O-space. Therefore, unlike C(K)∗, the space
C(K)∗ admits no strictly convex dual norm.

We make a remark about this C(K): the authors do not know if it admits a Gâteaux norm.
Since K is separable, C(K) admits a bounded linear, injective map into c0. The authors do
not know of any example of an Asplund space with an injective map into a c0(Γ), which does
not admit a Gâteaux norm.
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5. Problems

To finish, we present a number of related, unresolved problems. The first problem stems from
Theorem 3.1.

Problem 1. If K has (∗) and is not scattered, then does C(K)∗ admit a strictly convex
dual norm?

In fact, we do not even know if C(L ∪ {∞})∗ admits a strictly convex dual norm whenever
L is a locally compact space having a Gδ-diagonal. Proposition 4.5 suggests the next problem.

Problem 2. If K has (∗) and is not scattered, and π : K −→M is a continuous, surjective
map, then does M have (∗)? More generally, if a topological space X has (∗) and f : X −→ Y
is a perfect, surjective map, does Y have (∗)?

It is known that the answer to Problem 2 is positive in the Gruenhage case, including the
more general perfect map assertion [34, Theorem 23]. It is also known that Gδ-diagonals are
not preserved under perfect images. In [4, Example 2], an example is given of a locally compact
scattered space L having a Gδ-diagonal, and a perfect surjective map f : L −→M , where the
diagonal of M is not a Gδ. However, L(2) is empty, and the same will apply to any perfect
image of L, so all such images are σ-discrete and therefore have (∗). If Problem 1 has a positive
solution, then so will the first part of Problem 2, simply by copying the proof of Proposition 4.5.

For our last problem, we refer the reader to the end of Section 4.

Problem 3. Does C(K) admit a Gâteaux norm, where K is the O-space of Ostaszewski
[27, p. 506] or Hájek, Montesinos, Vanderwerff and Zizler [13, Theorem 4.36]?

Remark 3. Recently, the second-named author gave an example of a scattered, non-
Gruenhage compact space having (∗), without using extra axioms [35].
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Universidad de Murcia
Campus de Espinardo
30100 Murcia
Spain

joseori@um·es
stroya@um·es

Richard J. Smith
School of Mathematical Sciences
University College Dublin
Belfield
Dublin 4
Ireland

richard·smith@ucd·ie


	1. Introduction
	2. A characterization of strict convexity in Banach spaces
	3. Strictly convex dual norms on C(K)*
	4. Topological properties of (*) and examples
	5. Problems
	References

