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1 Abstract

Liinear topological characterizations of Banach spaces E ⊂ `∞(Γ) which admit pointwise locally

uniformly rotund norms are obtained. We introduce a new way to construct the norm with fami-

lies of sliced sets. The topological properties described are related with the theory of generalized

metric spaces, in particular with Moore spaces and σ-spaces. A non liner transfer is obtained,

Question 6.16 in [28] is answered and some connections with Kenderov’s School of Optimization

is presented in this paper.

2 Introduction

Renorming theory tries to find isomorphisms for Banach spaces that improve their norms. That

means to make the geometrical and topological properties of the unit ball of a given Banach

space as close as possible to those of the unit ball of a Hilbert space. The existence of equivalent

good norms on a particular Banach space depends on its structure and has in turn a deep impact

on its geometrical properties. Questions concerning renormings in Banach spaces have been

of particular importance to provide smooth functions and tools for optimization theory. An

excellent monograph of renorming theory up to 1993 is [5]. In order to have an up-to-date

account of the theory we should add [21, 11, 39, 28, 38, 1].

If (E, ‖ · ‖) is a normed space, the norm ‖ · ‖ is said to be locally uniformly rotund (LUR

for short) if [
lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0
]
⇒ lim

n
‖x− xn‖ = 0

1This research was partially supported by MEC and FEDER project MTM2011-25377.
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for any sequence (xn) and any x in E. The construction of this kind of norms can be done if

we provide enough convex functions on the given space E and we are able to add all of them up

with the powerful lemma of Deville, Godefroy and Zizler, see [5, Lemma VII.1.1],[39]. It reads

as follows:

Lemma 1 (Deville, Godefroy and Zizler decomposition method). Let (E, ‖ · ‖) be a

normed space, let I be a set and let (ϕi)i∈I and (ψi)i∈I be families of non-negative convex func-

tions on E which are uniformly bounded on bounded subsets of E. For every x ∈ E, m ∈ N and

i ∈ I define

ϕ(x) = sup {ϕi(x) : i ∈ I} , (1)

θi,m(x) = ϕi(x)2 + 2−mψi(x)2, (2)

θm(x) = sup {θi,m(x) : i ∈ I} , (3)

θ(x) = ‖x‖2 +

∞∑
m=1

2−m(θm(x) + θm(−x)). (4)

Then the Minkowski functional of B = {x ∈ E : θ(x) ≤ 1} is an equivalent norm ‖ · ‖B on

E such that if xn, x ∈ E satisfy the LUR condition:

lim
n

[2‖xn‖2B + 2‖x‖2B − ‖xn + x‖2B] = 0,

then there is a sequence (in) in I with the properties:

1. limn ϕin(x) = limn ϕin(xn) = limn ϕin((x+ xn)/2) = sup {ϕi(x) : i ∈ I}

2. limn

[
1
2ψ

2
in

(xn) + 1
2ψ

2
in

(x)− ψ2
in

(
1
2(xn + x)

)]
= 0.

The previous Lemma is the core of the decomposition method for renormings of non sepa-

rable Banach spaces as described in [5, Chapter VII]. It has been extensively used by R. Haydon

in his seminal papers [21, 22] as well as in [23]. Lemma 1 was first introduced by R. Deville

and it is based on the construction of an equivalent LUR norm on Banach spaces with strong

M-basis, [13, Theorem 3.48]. Let us note that if we add lower semicontinuity properties on the

involved functions (ϕi)i∈I and (ψi)i∈I we obtain lower semicontinuity for the new norm ‖ · ‖B.

In order to deal with renorming results valid for the very different weak topologies that

appear in the Banach space context we fix, from now on, (E, ‖ · ‖) ⊂ `∞(Γ) a normed space

and we shall deal with the pointwise convergence topology Tp induced on it; i.e. the product

topology of RΓ induced on E. In order to have Tp-lower semicontinuous renormings we shall

work with the linear subspace F ⊂ E∗ generated by the evaluation functionals πγ(x) := x(γ) for

every x ∈ E and γ ∈ Γ.

Our approaches for LUR renormings are strongly based on the topological concept of

network. A family of subsets N in a topological space (T, T ) is a network for the topology T
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if for every W ∈ T and every x ∈ W , there is some N ∈ N such that x ∈ N ⊂ W . A central

result for the theory is the following one, see [26, 35, 28]:

Theorem 1 (Slicely Network). Let E be a normed subspace of `∞(Γ) and H the family of Tp-
open half spaces in E. Then E admits a Tp-lower semicontinuous equivalent LUR norm if, and

only if, there is a sequence (An) of subsets of E such that the family of sets

{An ∩H : H ∈ H, n ∈ N}

is a network for the norm topology in E

The first proof of this result used martingale constructions, [26]. Without martingales a

delicate process of convexification of the sets An is needed to construct a countable family of

seminorms which controls the claim, [35]. Stone’s theorem is required if additional information

on the structure of the sets An is needed, see [26, Chapter 3]. After the slice localization Theorem

3 of [32] the convexification process is not necessary any more. The main construction can be

done with the use of Lemma 1 together with Theorem 3 of [32] which seems to be a main tool

for the matter. It says that given any family of slices of a bounded set A of a normed space E, it

is always possible to construct an equivalent norm such that the LUR condition for a sequence

(xn), and a fixed point x in A, implies that the sequence eventually belongs to slices containing

the point x. When the slices involved have small diameter, then the sequence is eventually close

to x. If the diameter can be made small enough, then the sequence (xn) converges to x and the

new norm is going to be locally uniformly rotund at the point x. In this paper we present an

extension of this result to deal with countably many sliced sets which reads as follows:

Theorem 2 (Multiple-slice localization theorem). Let E be a normed subspace of `∞(Γ). Given

sequences (Ap)
∞
p=1 and (Hn)∞n=1 of bounded subsets Ap of E and families Hn of Tp-open half spaces

respectively, there is an equivalent Tp-lower semicontinuous norm ‖ ·‖0 such that, for every finite

selection of pairs of positive integers (m1, p1), (m2, p2), · · · , (mr, pr), every x ∈ ∩rj=1Apj ∩
⋃
Hmj ,

and any sequence (xn) in E with

lim
n

(
2‖xn‖20 + 2‖x‖20 − ‖x+ xn‖20

)
= 0,

it follows that there are sequences of Tp-open half spaces

{(H1
n, . . . ,H

r
n) ∈ Hm1 × · · · × Hmr , n = 1, 2 . . . }

such that

1. There is n0 ∈ N with x ∈ ∩rj=1H
j
n and xn ∈ Hj

n if xn ∈ Apj for any j = 1, . . . , r whenever

n ≥ n0 and

2. For every δ > 0 there is some nδ such that

x, xn ∈
(
co(∩rj=1Apj ∩H

j
n) +B(0, δ)

)Tp
for all n ≥ nδ.
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The main concept we are going to deal with in this paper is the following one:

Definition 1. If E ⊂ `∞(Γ) is a normed space we say that its norm ‖·‖∞ is Tp-locally uniformly

rotund ( Tp − LUR) if[
lim
n

(2‖x‖2∞ + 2‖xn‖2∞ − ‖x+ xn‖2∞) = 0
]
⇒ Tp − lim

n
xn = x

for any sequence (xn) and any x in E.

If Γ is a countably determined topological space and the normed space E consists of

continuous functions on Γ, a result of Mercourakis asserts that E admits an equivalent Tp-lower

semicontinuous and Tp − LUR norm, [24]. Another situation where these happens has been

described by Raja for dual spaces E∗ ⊂ `∞(BE) when the dual unit ball BE∗ is a descriptive

compact space with the w∗-topology, [37]. It is possible to show that the strictly convex norms

constructed by Dashiell and Lindenstrauss in [4] are pontwise LUR subspaces of `∞([0, 1]), see

[10]. Section 3.3 of [28] gives information of covering properties implied by this kind of norms. A

main result was obtained in [27] where it is proved that a normed space E wit a σ(E,E∗)−LUR

norm has an equivalent LUR norm. In this paper we give an answer to Question 6.16 in [28]

presenting a nonlinear transfer result for this kind of norms. As it is said there a good linear

topological characterization of the property to have a pointwise-LUR renorming is needed to

challenge on the problem. Let us summarize in a single theorem the different characterizations we

have obtained. Any of them is a main contribution of the present paper. We need to remember

the following:

Definition 2. A family B := {Bi : i ∈ I} of subsets of E ⊂ `∞(Γ) is called Tp-slicely isolated

(or Tp-slicely relatively discrete) if it is a disjoint family of sets such that for every

x ∈
⋃
{Bi : i ∈ I}

there exist a Tp-open half space H and i0 ∈ I such that

H
⋂⋃

{Bi : i ∈ I, i 6= i0} = ∅ and x ∈ Bi0 ∩H.

Let us formulate our characterization result for Tp − LUR renormings:

Theorem 3 (Main Theorem). Let Γ be a non void set and E be a subspace of the Banach space

l∞(Γ). The following are equivalent:

1. E admits an equivalent Tp-lower semicontinuous and Tp-locally uniformly rotund norm.

2. There is a metric ρ on E generating a topology finer then Tp and a sequence of subsets

(An) in E such that the family of sets

{An ∩H : H ∈ H, n ∈ N},

where H is the family of all Tp-open half spaces in E, is a network for the metric topology

associated with ρ on E
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3. The pointwise convergence topology Tp on E has a σ-slicely isolated network.

4. There is a metric d on E generating a topology finer than Tp and coarser than the norm

topology, with a basis S for the metric topology which also is a network for Tp that admits

a decomposition as

S =

∞⋃
n=1

Sn

where every Sn is Tp-slicely isolated and norm discrete family of norm open sets.

5. There are sequences of sets (An) in E and of families of Tp-open half spaces (Hm) such that

for every Tp-open half space L and every x ∈ L there are n,m ∈ N such that x ∈ An ∩H0

for some H0 ∈ Hm and

x ∈ An ∩
⋃
{H : x ∈ H ∈ Hm} ⊂ L

Let us stress the interaction between metrics and norms in the former theorem and its

connection with previous studies by P. Kenderov and W. Moors,[17], when dealing with frag-

mentable Banach space. Indeed every normed space E ⊂ `∞(Γ) with an equivalent Tp-lower

semicontinuous and Tp − LUR norm is going to be fragmentable. Moreover, for every metric ρ

satisfying 2 above the Borel subsets for ρ and Tp are the same.

As a consequence we obtain non-linear transfer results in the last section of the paper.

Hopefully they could be applied to solve some of the important questions that remain open in

the area.

2.1 Notations

Most of our notation and terminology are standard, otherwise it is either explained here or

when needed: unexplained concepts and terminology can be found in our standard references for

Banach spaces and renorming [5, 8, 28] and topology [6].

All vector spaces E that we consider in this paper are assumed to be real. Given a

subset S of a vector space, we write co(S) to denote the convex hull of S. If (E, ‖ ·‖) is a normed

space then E∗ denotes its topological dual. If S is a subset of E∗, then σ(E,S) denotes the

weakest topology for E that makes each member of S continuous, or equivalently, the topology

of pointwise convergence on S. Dually, if S is a subset of E, then σ(E∗, S) is the topology for

E∗ of pointwise convergence on S. In particular σ(E,E∗) and σ(E∗, E) are the weak (w)and

weak∗ (w∗) topologies respectively. Given x∗ ∈ E∗ and x ∈ E, we write 〈x∗, x〉 and x∗(x) for

the evaluation of x∗ at x. If x ∈ E and δ > 0 we denote by B(x, δ) (or B[x, δ]) the open (resp.

closed) ball centred at x of radius δ: for x = 0 and δ = 1 we will simplify our notation and just

write BE := B[0, 1]; the unit sphere {x ∈ E : ‖x‖ = 1} will be denoted by SE .
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3 The tool

Theorem 2 is the tool we use here for the construction of norms. Its origin goes back to the so

called slice localization theorem ( Theorem 3 in [32]). Here we extend the localization property

to countably many sliced sets.

Proof of Theorem 2 For every fixed finite sequence of pairs of positive integers σ =

((m1, p1), (m2, p2), · · · , (mr, pr)) we have the following:

CLAIM.- There is an equivalent Tp-lower semicontinuous norm

‖ · ‖σ ≤ dσ‖ · ‖∞ (5)

such that

lim
n

(
2 ‖xn‖2σ + 2 ‖x‖2σ − ‖xn + x‖2σ

)
= 0

for x in E with x ∈ ∩rj=1Apj ∩H
j
0 for some Hj

0 ∈ Hmj , j = 1, 2, · · · , r and any sequence (xn) in E

implies that there are sequences of open half spaces
{
Hj
n ∈ Hmj : n = 1, 2, ...

}
, for j = 1, 2, · · · , r

such that

1. There is n0 ∈ N with x ∈ ∩rj=1H
j
n and xn ∈ Hj

n if xn ∈ Apj for any j = 1, . . . , r whenever

n ≥ n0, and

2. For every δ > 0 there is some nδ such that

x, xn ∈
(
co(∩rj=1Apj ∩H

j
n) +B(0, δ)

)Tp
for all n ≥ nδ.

Once our CLAIM is proved the required norm is obtained with the formula:

‖x‖20 :=
∑
σ∈F

cσ‖x‖2σ, (6)

where F denotes the countable family of finite subsets of N×N, and constants cσ are chosen for

the uniform sumability of the countable family (6) on bounded sets, which is always possible by

(5), then standard convexity arguments (see Fact 2.3, p.45 [5]) and previous explanation finishes

the proof . Let us prove our CLAIM and consider Tp-lower semicontinuous and convex functions

ϕH1,··· ,Hr and ψH1,··· ,Hr for H1 ∈ Hm1 , . . . ,H
r ∈ Hmr defined as follows: for H a Tp-open half

space and A a bounded subset of E we set

ϕH,A := F − dist(x, (E \H) ∩ co(A)
w∗

),

where F , as we have said before, denotes the linear span in E∗ of the evaluation functionals

πγ(x) := x(γ) for every γ ∈ Γ, and F − dist denotes the F -distance function as defined in

definition 2.2 in [31]; i.e.

ϕH,A(x) = inf{sup{〈x− z∗∗, h〉 : h ∈ BE∗ ∩ F}, z∗∗ ∈ (E \H) ∩ co(A)
w∗

)}
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and define

ϕH1,···Hr :=

r∑
j=1

ϕHj ,Apj
.

Let us choose a point aH1,···Hr ∈ ∩rj=1H
j ∩Apj if this set is non empty and the origin otherwise.

We set DH1,...,Hr = co(∩rj=1H
j ∩ Apj ) in the non empty case and DH1,...,Hr = {0} otherwise for

every H1 ∈ Hm1 , . . . ,H
r ∈ Hmr . We define Dδ

H1,...,Hr := DH1,...,JHr +B(0, δ) for every δ > 0 and

every H1 ∈ Hm1 , . . . ,H
r ∈ Hmr . We are going to denote by pδH1,...,Hr the Minkowski functional

of the convex body Dδ
H1,...Hr

Tp − aH1,...,Hr . Then we define the Tp-lower semicontinuous norm

pH1,...,Hr by the formula

pH1,...,Hr(x)2 =

∞∑
n=1

1

n22n
(p

1/n
H1,...,Hr(x))2

for every x ∈ E. Finally we define the non negative, convex, and Tp-lower semicontinuous

function ψH1,...,Hr as ψH1,...,Hr(x)2 := pH1,...,Hr(x − aH1,...,Hr)2 for every x ∈ E. We are now in

position to apply Lemma 1 to get an equivalent norm ‖ · ‖σ on E such that the condition

lim
n

(
2 ‖xn‖2σ + 2 ‖x‖2σ − ‖xn + x‖2σ

)
= 0

for a sequence {xn : n ∈ N} and x in E implies that there exists a sequence of indexes

{(H1
n, . . . ,H

r
n) ∈ Hm1 × · · · × Hmr : n = 1, 2, . . . }

such that

lim
n

r∑
j=1

ϕ
Hj

n,Apj
(x) = lim

n

r∑
j=1

ϕ
Hj

n,Apj
(xn) = lim

n

r∑
j=1

ϕ
Hj

n,Apj
((x+ xn)/2) = (7)

= sup


r∑
j=1

ϕHj ,Apj
(x) : (H1, . . . ,Hr) ∈ Hm1 × · · · × Hmr

 (8)

and

lim
n

[(1/2)ψ2
H1

n,...,H
r
n
(xn) + (1/2)ψ2

H1
n,...,H

r
n
(x)− ψ2

H1
n,...,H

r
n
((xn + x)/2)] = 0 (9)

If the given point x ∈
⋂r
j=1Apj ∩H

j
0 for some Hj

0 ∈ Hmj , j = 1, 2, . . . , r we have a non-void

set
⋂r
j=1H

j
0 ∩Apj and ϕ

Hj
0 ,Apj

(x) > 0 for every j = 1, . . . , r. So we have that:

sup
{
ϕH,Apj

(x) : H ∈ Hmj

}
> 0,

for every j = 1, . . . , r. Since

sup


r∑
j=1

ϕHj ,Apj
(x) : (H1, . . . ,Hr) ∈ Hm1 × · · · × Hmr

 =

r∑
j=1

sup
{
ϕH,Apj

(x) : H ∈ Hmj

}
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(7) provide us with an integer n0 such that

ϕ
Hj

n,Apj
(x) > 0, ϕ

Hj
n,Apj

(xn) > 0, ϕ
Hj

n,Apj
((x+ xn)/2) > 0

whenever n ≥ n0, for j = 1, . . . , r, from where our conclusion 1 in the theorem follows. Moreover,

by (9) and standard convexity arguments (see Fact 2.3, p.45 [5]) it now follows that for every

positive integer q we have that

lim
n

[2(p
1/q
H1

n,...,H
r
n
(xn − aH1

n,...,H
r
n
))2 + 2(p

1/q
H1

n,...,H
r
n
(x− aHn))2 − (p

1/q
H1

n,...,H
r
n
((xn + x)− 2aHn))2] = 0,

consequently we arrive to

lim
n

[p
1/q
H1

n,...,H
r
n
(xn − aHn)− p1/q

H1
n,...,H

r
n
(x− aHn)] = 0,∀q ∈ N.

If we fix a positive number δ, open half spaces Hj ∈ Hmj and y ∈ ∩rj=1Apj ∩Hj we have

that

y−aH1,...,Hr +(y−aH1,...,Hr)δ‖y−aH1,...,Hr‖−1 ∈ B(0, δ)+(y−aH1,...,Hr) ⊂ Dδ
H1,...,Hr−aH1,...,Hr ,

thus

[(1 + δ)‖y − aH1,...,Hr‖−1](y − aH1,...,Hr) ∈ (Dδ
H1,...,Hr − aH1,...,Hr)

and therefore

pδH1,...,Hr(y − aH1,...,Hr) < [(1 + δ‖y − aH1,...,Hr‖−1]−1

since Dδ
H1,...,Hr − aH1,...,Hr is a norm open set.

Let us choose now the integer q such that 1/q < δ and take an integer n ≥ n0 fixed above.

We know that x ∈ ∩rj=1Apj ∩H
j
n since ϕ

Hj
n,Apj

(x) > 0, j = 1, . . . , r and the given point x belongs

to ∩rj=1Apj . Therefore

p
1/q
H1

n,...,H
r
n
(x− aH1

n,...,H
r
n
) < [(1 + (1/q)‖x− aH1

n,...,H
r
n
‖−1]−1,

and we can find a number 0 < ξ < 1 such that

p
1/q
H1

n....,H
r
n
(x− aH1

n,...,H
r
n
) < 1− ξ,

for all n ≥ n0, by the boundness of sets (An). If we now take the integer n big enough to have

p
1/q
H1

n,...,H
r
n
(xn − aH1

n,...,H
r
n
) < 1− ξ,

we arrive to the fact that xn − aH1
n,...,H

r
n
∈ Dδ

H1
n,...,H

r
n
− aH1

n,...,H
r
n
, and indeed

xn ∈ (co(∩rj=1Apj ∩H
j
n) +B(0, δ))

Tp
,

so the proof is over.
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4 Linear topological characterization of Tp-LUR renormings

The first result we present is a characterization in terms of networks, the central topological

concept for LUR renormings as explained in Section 3.1 of [28]. Our result here corresponds

with the equivalence i) ⇔ vi) of Theorem 3.1, [28], for the locally uniformly rotund case, and

with 1 ⇔ 3 of Theorem 3 in the Introduction. It was announced in the frame explanation to

Question 6.16 of [28]:

Theorem 4 (Network characterization theorem). A subspace E of the Banach space l∞(Γ)

admits an equivalent Tp-lower semicontinuous and Tp-locally uniformly rotund norm if, and only

if, the topology Tp on E has a σ-slicely isolated network; i.e a network N that can be written as

N =
⋃∞
n=1Nn where every family Nn is Tp-slicely isolated.

Proof. Let us assume we have a σ- slicely isolated network

N =
⋃
{Nn : n = 1, 2, ...}

for the pointwise convergence topology on E. For every n ∈ N we consider the family Hn of

Tp-open half spaces H such that H meets just one element of the family of sets Nn together

with the union set An :=
⋃
Nn. If we apply to the families (Hn) and the bounded sets (An) the

Theorem 2 we get the equivalent norm ‖ · ‖0. We claim that

lim
n

(
2‖xn‖20 + 2| x‖20 − ‖xn + x‖20

)
= 0 (10)

for a given sequence (xn) and x in E implies that the sequence (xn) is pointwise convergent to

x. Indeed, for every convex and Tp-closed neighbourhood of the origin W we select δ > 0 such

that B(0, δ) ⊂ 1
2W , moreover by the network condition of N we may choose the family Np such

that x ∈ N ∈ Np and N ⊂ x+ 1
2W . Then we have

co(N) +B(0, δ) ⊂ x+
1

2
W +

1

2
W = x+W. (11)

By the thesis of Theorem 2, for σ = (p, p), we have a sequence (Hn) of Tp-open half spaces in

Hp, with x ∈ Ap ∩Hn ⊂ N for n ≥ n0, and a positive integer nδ such that

x, xn ∈ (co(Ap ∩Hn) +B(0, δ))
Tp ⊂ (co(N) +B(0, δ))

Tp
(12)

for every n ≥ nδ. Indeed, since the family of half spaces Hp meets only one element of Np, every

one of the half spaces Hn meets only the set N inside Ap since x ∈ N , thus Hn ∩ Ap ⊂ N and

(12) follows. Thus xn ∈ x+W for n ≥ nδ , our claim is proved and the proof for this implication

is over.

The reverse implication follows the construction already done in [27] for the weak topology

of a Banach space with a weakly LUR norm. Indeed the Main Lemma 3.19, p.59 of [28] gives

the proof as it is showed in the first part of Theorem 3.21, p.61 in [28].
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Remark 1. Direct construction of σ-isolated network in Mercourakis space can be found in

[9], for linear topological spaces with a metric d such that the identity is σ-slicely continuous

in Theorem 2.2 of [30], and for Tp − LUR norms in [38]. For LUR and Tp − LUR-norms a

geometric approach can be found in [32] and [1].

We need to remember the following:

Definition 3. A map Φ : A→ (Y, ρ), from a subset A ⊂ E to a metric space (Y, ρ), is σ-slicely

continuous if there is a sequence of subsets (An) in A such that, for every x ∈ A and every ε > 0,

there is some Tp-open half space H in E and q ∈ N such that x ∈ Aq ∩H and Φ(Aq ∩H) has

ρ-diameter less than ε

In Section 3.3 of [28] it is explained the construction of a metric ρ on E, which induce a

topology finer that Tp and makes the identity Id : E :→ (E, ρ) σ-slicely continuous, whenever

we have a pointwise-LUR norm on the normed space E ⊂ `∞(Γ). Our aim in the next result

is to prove the converse result even when hypothesis are restricted to a radial set only. Let us

remember that a set A in a vector space E is said to be radial if for every x ∈ E, x 6= 0 there is

a number λ > 0 such that λx ∈ A. A first consequence of the former theorem is the following:

Theorem 5 (Slicely-continuous characterization theorem). A subspace E of the normed space

l∞(Γ) admits an equivalent Tp-locally uniformly rotund norm if, and only if, there is a radial

set A ⊂ E, a metric ρ on A generating a topology finer than Tp and such that the identity map

Id : (A, Tp)→ (A, ρ) is σ-slicely continuous.

Proof. One direction is nothing else that our Theorem 3.21 in [28] which gives a metric ρ defined

on the whole E . In case we have the metric ρ on a radial set A such that the identity map is

σ-slicely isolated, we have a function base of Φ, as described in Proposition 2.24 in [28], which is

a σ-slicely isolated family of sets B =
⋃∞
n=1 Bn in A that is a network for the pointwise topology

on A. Let us observe that constructions based on Theorem 2, as the one of Theorem 4, are local

ones and it follows that there is an equivalent Tp-lower semicontinuous norm ‖ · ‖0 on E which

is Tp − LUR at every point of A. Thus a Tp − LUR norm at every point x ∈ E \ {0}. Indeed,

let us take a scalar r(x) such that r(x)x ∈ A and assume that

lim
m

(2‖xm‖20 + 2‖x‖20 − ‖x+ xm‖20) = 0.

Then

lim
m

(2‖r(x)xm‖20 + 2‖r(x)x‖20 − ‖r(x)(x+ xm)‖20) = 0,

thus Tp − limn r(x)xn = r(x)x since r(x)x ∈ A and finally Tp − limn xn = x, so the proof is

over.

The former theorem corresponds with the equivalence (i) ⇔ (ii) of Theorem 3.1 in [28]

in the locally uniformly rotund case, and 1 ⇔ 2 in Theorem 3 in the Introduction. Kenderov
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and Moors’s studied in deep fragmentability by metrics in arbitrary Bananch spaces [16], the

following result

Corollary 1. A subspace E of the normed space l∞(Γ) which admits an equivalent Tp-locally

uniformly rotund norm is fragmentable by a metric d generating a topology finer than Tp

Proof. Since the identity map for E to (E, ρ) is σ-slicely continuous, for every ε > 0 we can

write E = ∪∞n=1En,ε to have, for every n ∈ N and every x ∈ En,ε, some Tp-open half space H

with x ∈ H ∩En,ε and ρ− diam(H ∩En,ε) < ε, see Proposition 2.39 in[28]. The conclusion now

follows applying Proposition 3.2 of Kenderov and Moors, [17].

For Borel subsets we have the following:

Corollary 2. The σ-algebras of Borel sets for the pointwise topology Tp and the metric ρ on the

radial subset A of Theorem 5 are the same.

Proof. It follows from (iii) Theorem 2.2 in [30].

Next characterization shows an strong linking with metrization theory, in particular with

the Bing-Nagata metrization theorem saying that a topological space is metrizable if, and only if,

its topology has a σ-discrete basis. In order to do it we need more properties of the network we

have on every normed space E ⊂ `∞(Γ) with a Tp-lower semicontinuous and Tp-locally uniformly

rotund equivalent norm. The following result corresponds with Theorem 2.5 in [31], where we

studied the LUR case:

Proposition 1. Let E be a normed subspace of `∞(Γ) which admits a Tp-lower semicontinuous

and Tp − LUR norm. Then the pointwise topology Tp on E admits a network

N =
∞⋃
n=1

Nn

where each one of the families Nn is Tp-slicely isolated and consists of sets which are the difference

of Tp-closed and convex subsets of E. Moreover, there is δn > 0 such that Nn +B(0, δn) is norm

discrete as well as Tp-slicely isolated for every n ∈ N and the family⋃
{Nn +B(0, δn) : n = 1, 2, . . . }

continues being a network of the topology Tp.

Proof. After Theorem 4 there is a network in E for the pointwise topology that can be written

as M =
⋃∞
n=1Mn where every one of the families Mr := {Mr,i : i ∈ Ir} is Tp-slicely isolated.

Let us now follow our proof of Theorem 2.5 in [31] but adapting it to the new situation here.

We follow the same notation and write ϕr,i to denote the F -distance (see Proposition 2.1 in

11



[31]) to co {Mr,j : j 6= i}σ(E∗∗,E∗)
, where F is as above the linear span in E∗ of the set of Dirac

evaluations πγ(x) := x(γ) for γ ∈ Γ. We take

Nn
r,i := {x ∈ co (Mr,i)

Tp
: ϕr,i(x) > 3/4n},

and each one of the families N n
r := {Nn

r,i : i ∈ Ir} is Tp-slicely isolated by Theorem 2.3 in [31].

Indeed, the lower semicontinuity and convexity of the functions ϕr,i tell us that ϕr,j(y) = 0 for

every y ∈ co (Mr,i)
Tp

and j 6= i, j ∈ Ir. Moreover, it is easily checked that ϕr,i(z) > 3/4n − µ
if z ∈ Nn

r,i + B(z, µ) but ϕr,i(z) < µ whenever z ∈ Nn
r,j + B(z, µ). Let us choose δn such that

0 < 2δn < 3/4n − δn, then the norm open sets {Nn
r,i + B(0, δn) : i ∈ Ir} are disjoint and they

form a norm discrete family. The fact that it is Tp-slicely isolated family follows from the former

computations and statement (3) in Theorem 2.3 of [31]. Moreover, each one of the sets Nn
r,i is

the difference of convex and Tp-closed subsets of E. The union of all these families:⋃
{N n

r : r, n = 1, 2, ...}

is the network we are looking for. Indeed, given x ∈ E and W0 a Tp-neighbourhood of the origin,

we fix a convex and closed Tp-neighbourhood of 0 such that W1 +B(0, µ) ⊂W0 for some 0 < µ.

The network property says that there is r ∈ N and i ∈ Ir such that x ∈Mr,i ⊂ x+W1, thus by

convexity we have x ∈ co(Mr,i)
Tp ⊂ x+W1. Moreover, there is n0 such that for n ≥ n0 we have

x ∈ Nn
r,i from where it follows that, for n big enough we will have δn < µ and thus

x ∈ Nn
r,i +B(0, δn) ⊂ x+W1 +B(0, µ) ⊂ x+W0,

since (δn) goes to 0 when n goes to infinity.

We also need the following technical lemma:

Lemma 2. Let {Mi : i = 1, 2, . . . n} a finite set of uniformly bounded and Tp-slicely isolated

families in the normed space E ⊂ `∞(Γ). The family of non void finite intersections sets, i.e.

{∅ 6= ∩ni=1Mi : Mi ∈Mi, i = 1, 2, . . . n},

is a Tp-slicely isolated family.

Proof. By induction it is enough to prove the result for two families only. Let us fix

D := {Di : i ∈ I} and B := {Bj : j ∈ J}

two Tp-slicely isolated families. Let us choose x0 ∈ Di0 ∩ Bj0 and select by hypothesis Tp-open

half spaces H = {y ∈ E : h(y) > h(x0)− δ} and L = {y ∈ E : g(y) > g(x0)− δ} so that

H ∩Di = ∅ and L ∩Bj = ∅ for every i 6= i0, j 6= j0. (13)

Let us reduce the sets Di0 , B0 accordingly to be able to apply Lemma 3.1 in [25] as follows:

D′ := {y ∈ Di0 : h(y) ≤ h(x0) +
δ

2
}

12



and

B′ = {y ∈ Bj0 : g(y) ≤ g(x0) +
δ

2
}.

If we denote by

A0 = ∪{Di : i ∈ I, i 6= i0} ∪D′
⋃
∪{Bj : j ∈ J, j 6= j0} ∪B′

then

A1 := {y ∈ A0 : h(y) > h(x0)− δ} = H ∩ (D′)
⋃
H ∩ (∪{Bj : j ∈ J})

and

A2 := {y ∈ A1 : g(y) > g(x0)− δ} = H ∩ L ∩D′
⋃
H ∩ L ∩B′

having in mind (13). If we take θ and δ small enough to have

{y ∈ A1 : δ ≤ g(x0)− g(y) ≤ θ} = ∅

an application of Lemma 3.1 in [25] finishes the proof. Indeed we will have a Tp-open half space

S such that x0 ∈ S ∩A0 ⊂ A2 and therefore S ∩Di ∩Bj = ∅ whenever either i 6= i0 or j 6= j0.

Next result corresponds with Theorem 1.3 in [31], for the locally uniformly rotund case,

and equivalence 1⇔ 4 of Theorem 3:

Theorem 6 (Basis characterization theorem). Let E be a normed subspace of `∞(Γ). The

normed space E has an equivalent Tp-lower semicontinuous and Tp−LUR norm if, and only if,

there is a metric d on E generating a topology finer than Tp and coarser than the norm topology,

with a basis for the metric topology S that admits a decomposition as

S =

∞⋃
n=1

Sn

where every Sn is Tp-slicely isolated and norm discrete family of norm open sets.

Proof. If we observe that sets in the family {Nn
r,i + B(0, δn) : Nn

r,i ∈ N n
r }, which has been

constructed in Proposition 4, are norm open sets of E we arrive to the conclusion that we can

change the metric ρ constructed in Theorem 3.21 of [28] by another one d, coarser than the norm

metric of E and finer than Tp, with the required properties. Indeed, let us define dn,r(x, y) = 0

if both x and y belong to the same set in the family

{Nn
r,i +B(0, δn) : Nn

r,i ∈ N n
r },

and dn,r(x, y) = 1 otherwise for every n, r ∈ N. Now we set

d(x, y) :=
∞∑
n=1

∞∑
r=1

1

2n+r
dn,r(x, y)

13



for every x, y ∈ E, and d is the metric we are looking for by Lemma 2. Indeed a basis of the

topology generated by d is obtained making finite intersections of sets taken from

∞⋃
n,r=1

{Nn
r,i +B(0, δn) : Nn

r,i ∈ N n
r }.

The reverse implication follows from Theorem 4 since a basis for d is a network for any coarser

topology and so for Tp.

Next result stress on a different property related with developable topological spaces, also

called Moore spaces in metrization theory, see [12]. It corresponds with equivalence 1 ⇔ 5 in

Theorem 3 in the Introduction and it completes its proof. For a family of subsets V of a fixed

set X and given point x ∈ X we write

st(x,V) = ∪{V : x ∈ V, V ∈ V}

Theorem 7 (Developable-network theorem). Let E be a normed subspace of l∞(Γ). Then E

admits an equivalent Tp-lower semicontinuous and Tp − LUR norm if, and only if, there are

families Hn of Tp-open half spaces and non void subsets Ap ⊂ E such that for every Tp-open half

space L in E and every x ∈ L there are integers n, p ∈ N such that x ∈ Ap and

st(x,Hn) ∩Ap ⊂ L.

Proof. Theorem 4 tell us that a Tp-lower semicontinuous and Tp − LUR norm produces in E a

σ-slicely isolated network N =
⋃∞
n=1Nn for Tp. If we take, for every n ∈ N, An :=

⋃
Nn and Hn

denotes the family of Tp-open half spaces meeting at most one element of Nn, we have that the

family of sets

{st(x,Hn) ∩An : x ∈ An}

is a refinement of the family of sets in Nn, so the conclusion even follows for every Tp-open set

L which contains the point x. Conversely, let us assume there are families Hn of Tp-open half

spaces and non void subsets Ap ⊂ E such that for every Tp-open half space L in E and every

x ∈ L there are integers n, p ∈ N which verifies

st(x,Hn) ∩Ap ⊂ L.

Without lose of generality we may and do assume that our sets An are bounded, if not we

intersect them with a countable family of balls which cover E. Let us apply the Multiple-slice

Localization Theorem 2 to the sequence of sets (An) and the sequence of Tp-open half spaces

(Hn) to get an equivalent Tp-lower semicontinuous norm ‖ · ‖0. We claim that this new norm is

a Tp − LUR norm on E. Indeed, let us assume that

lim
n

(2‖xn‖20 + 2‖x‖20 − ‖x+ xn‖20) = 0.

14



Let us fix V a Tp-open neighbourhood of x ∈ E, select L1, . . . Lr a finite number of Tp-open half

spaces with x ∈ ∩rj=1Lj ⊂ ∩rj=1Lj
Tp ⊂ V , and choose δ > 0 small enough to have B(x, δ) ⊂

∩rj=1Lj . By hypothesis there are pair of integers (m1p1), . . . , (mr, pr) such that

x ∈ st(x,Hmj ) ∩Apj ⊂ Lj −B(0, δ), j = 1, . . . , r.

If σ = ((m1, p1), (m2, p2), . . . , (mr, pr)) Theorem 2 give a sequences of Tp-open half spaces{
Hj
n ∈ Hmj : n = 1, 2, ...

}
,

for j = 1, 2, . . . , r; such that:

1. There is n0 ∈ N with x ∈ ∩rj=1H
j
n, and xn ∈ Hj

n if xn ∈ Apj for j = 1, . . . , r whenever

n ≥ n0, and

2. There is some nδ such that

x, xn ∈
(
co(∩rj=1Apj ∩H

j
n) +B(0, δ)

)Tp
for all n ≥ nδ.

By convexity we have co(st(x,Hmj ) ∩Apj ) ⊂ Lj −B(0, δ), j = 1, . . . , r, then we have

xn ∈
(
co(∩rj=1Apj ∩H

j
n) +B(0, δ)

)Tp
⊂ ∩rj=1Lj

Tp ⊂ V

whenever n ≥ nδ and the proof is over

Remark 2. If there is a set A ⊂ E, families Hn of Tp-open half spaces and non void subsets

Ap ⊂ A such that for every Tp-open half space L in E and every x ∈ L ∩ A it is assumed that

there are integers n, p ∈ N such that x ∈ Ap and

st(x,Hn) ∩Ap ⊂ L,

the same proof shows that the new norm ‖ · ‖0 is Tp − LUR at every point x ∈ A.

An application for LUR renormings is the following:

Corollary 3. A normed space E admits an equivalent LUR norm if there are families Hn of

σ(E,E∗)-open half spaces such that

∞⋂
n=1

st(x,Hn) ∩ SE
w∗

= {x}

for every x ∈ SE.
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Proof. We claim that

{st(x,Hn) ∩ SE : n = 1, 2, . . . }

is a subbasis of neighbourhood of x ∈ SE for the weak topology induced on SE . Indeed, let us

fix g ∈ SE∗ and µ > 0 such that g(x) > µ. In case we have

yp ∈ ∩pn=1st(x,Hn) ∩ {y ∈ E : g(y) ≤ µ} ∩ SE 6= ∅

for every p ∈ N, the sequence (yp) has a w∗-cluster point

y∗∗ ∈
∞⋂
n=1

st(x,Hn) ∩ SE
w∗
∩BE∗∗

but g(y∗∗) ≤ µ, thus y∗∗ 6= x which is a contradiction proving our claim. Theorem 7 provides

an equivalent norm ‖ · ‖0 with such that ‖ · ‖0 is going to be weakly-LUR at every point of the

unit sphere SE by Remark 2, so a weakly-LUR norm on E. To finish the proof we only need to

apply our main theorem in [27], or Corollary 3.23 in [28] to conclude that E has an equivalent

LUR norm.

5 Some applications

With the former characterizations we are able to deal with Question 6.16, p.122 of [28]. Then our

purpose now is to present results on nonlinear maps transferring the pointwise LUR renorming

property in the flavour of [28]. To begin with we introduce the following result, useful to deal

with metric spaces only. It corresponds with the main Theorem 1.15 in [28] for LUR renormings:

Theorem 8. Let E ⊂ l∞(Γ), (Y, ρ) a metric space and

Φ : E → (Y, ρ)

a σ-slicely continuous map. If there is a sequence of sets (Dn) in Y such that for every Tp-open

half space H and x ∈ H there is some δ > 0, p ∈ N with

Φx ∈ Dp and Φ−1(Dp ∩Bρ(Φx, δ)) ⊂ H,

then X admits an equivalent Tp-LUR norm.

Proof. Φ has a σ-slicely isolated function base that we denote by N =
⋃∞
n=1Nn by Proposition

2.24 in [28]. If we take finite intersections of the form Φ−1(Dp1 ∩ · · · ∩Dpr)∩Nn1 ∩ · · · ∩Nnr we

obtain Tp-slicely isolated families by Lemma 2, and

∞⋃
n1,...,nr,p1,...,pr,r=1

Φ−1(Dp1 ∩ · · · ∩Dpr) ∩Nn1 ∩ · · · ∩ Nnr
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is a network of the pointwise topology on E. Indeed, given any Tp-open half space H with x ∈ H
there is some δ > 0, p ∈ N with

Φx ∈ Dp and Φ−1(Dp ∩Bρ(Φx, δ)) ⊂ H,

Moreover, since N is a function basis of Φ there is n ∈ N and N ∈ Nn such that x ∈ N ⊂
Φ−1(Bρ(Φx, δ)), thus x ∈ N ∩ Φ−1(Dp) ⊂ Φ−1(Dp ∩Bρ(Φx, δ)) ⊂ H, and the proof is over.

A way to produce the situation of the former theorem is to deal with co-σ-continuous

maps as we have done in [28]. In Section 2.2 of [28] precise definitions and main connections are

described, for instance with the theory of general analytic metric spaces. For instance, we have

the following consequence:

Corollary 4. Let E ⊂ l∞(Γ), (Y, ρ) a metric space and

Φ : E → (Y, ρ)

a σ-slicely continuous map. If there is a metric d on E such that Φ : (E, d) → (Y, ρ) is co-σ-

continuous and there exists a sequence of sets (An) in E such that for every Tp-open half space

H and x ∈ H there is some δ > 0, p ∈ N with

x ∈ Ap and Ap ∩Bd(x, δ) ⊂ H,

then there is an equivalent Tp-lower semicontinuous and Tp − LUR norm on E.

Proof. Proposition 2.30 in [28] says that co-σ-continuity of a map is the same as to have separable

fibers and every selector σ-continuous. Thus we have Φ−1(y) = {y(n) : n ∈ N}d for every y ∈ Y
and the map Ξn(y) := y(n) for every y ∈ Y is σ-continuous to (E, d). Corollary 2.41 in [28] tell

us that the map Ξn ◦ Φ is σ-slicely continuous for every n, and finally we have

x ∈ {Ξn ◦ Φx : n ∈ N}d

for every x ∈ E, thus Proposition 2.23 in [28] says that the identity map on E is σ-slicely

continuous when the metric d is consider on E, so the above Theorem 8 finishes the proof since

the identity map from E to (E, d) verifies its hypothesis.

If a Banach space E has a Gateaux differentiable norm then E is a weak Asplund space,

[33]. Weak Asplund spaces and their related classes of spaces deserved special attention to P.

Kenderov and his School in Optimization ,[2, 3, 14, 15, 19, 18, 34, 29]. For a comprehensible

amount of information on the matter see [7]. Kenderov and Moors observed for a dual space E∗

with Gateaux differentiable norm that the Banach space E is σ-fragmentable by the norm, [16].

Nevertheless the following problem seems to be open:

Question 1. Does a Banach space E admit an equivalent LUR norm if its dual space E∗ has

a Gateaux differentiable norm ?
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Remark 3. If the norm of Banach space E is Fréchet differentiable and the dual norm is

Gateaux smooth at the norm attaining functionals it follows from Theorem 8 that E admits an

equivalent σ(E,E∗)− LUR, and so an equivalent LUR-norm. Details for the proof follows the

same arguments as Proposition 4.4 in [28]

Corollary 5. Let E be a normed space, (Y, ρ) a metric space and

Φ : E → (Y, ρ)

a σ-slicely continuous map. If there is a metric d on E such that Φ : (E, d) → (Y, ρ) is co-σ-

continuous and there exists a sequence of sets (An) in E such that for every open half space H

and x ∈ H there is some δ > 0, p ∈ N with

x ∈ Ap and Ap ∩Bd(x, δ) ⊂ H,

then there is an equivalent LUR norm on E.

Proof. The former corollary provides an equivalent σ(E,E∗)− LUR norm on E, thus the con-

clusion follows from our main theorem in [27], or Corollary 3.23 in [28].

Let us remark that Theorems 1.12, 3.35 and 3.46 in [28] are particular cases of former

corollary since the conditions imposed there implies the co-σ-continuity of the involved maps

Corollary 6. For normed spaces E ⊂ l∞(Γ), Y ⊂ l∞(∆) with a bijection Φ : E → Y which is

σ-slicely continuous in both directions we have that E admits an equivalent Tp − LUR norm if,

and only if, Y does it.

Proof. The implication (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) in Theorem 4.29 of [28] is always true, see

Remark 4.30, p. 96, [28]. Thus conditions in Theorem 8 are satisfied and the proof is over.

For bijective maps we have the following result:

Theorem 9. Let E ⊂ l∞(Γ), Y ⊂ l∞(∆) be normed spaces, Φ : E → Y be a bijection with

sequences of sets (Fn) in E, (Dn) in Y such that:

1. For every Tp-open half space G ⊂ Y and every x ∈ E with Φx ∈ G there is p ∈ N and a

Tp-open half space H ⊂ E with

x ∈ Fp ∩H and Φ(Fp ∩H) ⊂ G

2. For every Tp-open half space H ⊂ E, y ∈ Y with Φ−1y ∈ H there is q ∈ N, a Tp-open half

space G ⊂ Y with

y ∈ Dq ∩G and Φ−1(Dq ∩G) ⊂ H
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Then E admits an equivalent Tp − LUR norm if, and only if, Y does it.

Proof. Let us assume that Y admits an equivalent Tp-lower semicontinuous and Tp−LUR norm.

Theorem 5 provides us with a metric ρ on Y , generating a topology finer than Tp such that the

identity map on Y is σ-slicely continuous. Condition 1 implies that Φ is going to be σ-slicely

continuous from E to (Y, ρ) by Corollary 2.42, [28]. Condition 2 implies that hypothesis of

Theorem 8 are satisfied since the ρ-topology is finer than Tp on Y and the proof is over.

Let us finish with the following open problem:

Question 2. If Φ : E → Y is a Lipschitz homomorphism between Banach spaces E and Y , does

it follows that Φ is σ-slicely continuous, and so that E admits an equivalent LUR norm if, and

only if, Y does it?
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