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Abstract

We show that every normed space E with a weakly locally uniformly rotund norm has

an equivalent locally uniformly rotund norm. After obtaining a σ–discrete network of

the unit sphere SE for the weak topology we deduce that the space E must have a

countable cover by sets of small local diameter which in turn implies the renorming

conclusion. This solves a question posed by Deville, Godefroy, Haydon and Zizler. For

a weakly uniformly rotund norm we prove that the unit sphere is always metrizable for

the weak topology despite it may not have Kadec property. Moreover, Banach spaces

having a countable cover by sets of small local diameter coincide with the descriptive

Banach spaces studied by Hansell, so we present here some new characterizations of

them.

Key words: weakly locally uniformly rotund, locally uniformly rotund, renorming, de-

scriptive Banach spaces.
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1 Introduction.

Throughout this paper E will denote a normed space and ‖ · ‖ its norm. BE will stand

for the closed unit ball and SE the unit sphere.

The norm ‖·‖ on a normed space E is said to be uniformly rotund (UR for short)

if lim
n
‖xn − yn‖ = 0 whenever xn, yn ∈ SE, n ∈ N, are such that lim

n
‖xn + yn‖ = 2, and

it is said to be locally uniformly rotund (LUR for short) if lim
n
‖xn − x‖ = 0 whenever

xn, x ∈ SE, n ∈ N, are such that lim
n
‖xn + x‖ = 2.

The corresponding notions for the weak topology are obtained replacing ‖ · ‖–

convergence by weak convergence:

A norm ‖ · ‖ on E is said to be weakly uniformly rotund (WUR for short) if

weak–lim
n

(xn − yn) = 0 whenever xn, yn ∈ SE, n ∈ N, are such that lim
n
‖xn + yn‖ = 2,

and it is said to be weakly locally uniformly rotund (WLUR for short) if weak–

lim
n

(xn − x) = 0 whenever xn, x ∈ SE, n ∈ N, are such that lim
n
‖xn + x‖ = 2.

Clearly the following diagram holds for a given norm ‖ · ‖ on E:

UR =⇒ WUR

⇓ ⇓

LUR =⇒ WLUR

From the point of view of renorming theory we are interested in characterizing

the normed spaces E that have an equivalent norm with some of the above properties

in terms of geometrical or topological conditions of the space E itself. As an example

let us mention James, Enflo and Pisier’s theorem asserting that a Banach space E is

superreflexive if and only if it has an equivalent UR norm. An account of renorming

theory appears in the authoritative text of Deville, Godefroy and Zizler [4], we refer to

it for any undefined notion mentioned here.

About WUR renormings there has been an important progress lately. Hájek

has shown that a Banach space E must be an Asplund space whenever it has a WUR

4



norm, [13]. Based on that result and using the projectional resolution of the identity on

the dual space [6], Fabian, Hájek and Zizler [7] have proved that a Banach space E has

a WUR equivalent norm if and only if the bidual unit ball BE∗∗ is uniform Eberlein

compact with the weak∗–topology. Consequently E has an equivalent LUR norm too

since the dual space E∗ is a subspace of a weakly compactly generated Banach space

[11], [8]. A direct proof of the weak–K–analyticity of the dual space E∗ when E has a

WUR norm can be found in [25].

For the notion of WLUR normed spaces only partial results have so far been

obtained. In the book of Deville, Godefroy and Zizler it is shown that a Banach space

with a WLUR and Fréchet differentiable norm must be LUR renormable [4, Chapter

VII, Proposition 2.6.] and some consequences for the transfer technique are deduced.

In problem VII.1.(i), [4, p. 333], they asked whether an Asplund space that admits a

WLUR norm must have an equivalent LUR norm. If T is a tree, then the existence

of a WLUR norm on C(T ) implies the existence of an equivalent LUR norm on C(T )

as Haydon showed [16]. He also asks if this is true for C(K) when K is an arbitrary

scattered compact space [16, Problem 11.3] (see also [17]). It is mentioned in [4, Chapter

VII, p 333] that it is not known if Haydon’s result holds for a general Banach space.

We give a positive answer to that question in the general case:

MAIN THEOREM. Let E be a normed space with a WLUR norm. Then E has an

equivalent LUR norm.

It is well known that in the above diagram the converse implications, of course

with the exception of the one stated in our main theorem, are not true even for equiv-

alent norms. A previous result in the same spirit is due to the third named author

[33] since he proved that a Banach space with Kadec property and a rotund norm has

an equivalent LUR norm. Let us point out that the Kadec property on a given norm

is not comparable with WLUR. In fact neither Kadec property implies WLUR nor

even WUR implies Kadec property. Let us recall that a norm is said to have Kadec

property if the weak and the norm topologies coincide on the unit sphere.
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The techniques to prove our main theorem are based on [26] where a charac-

terization for the LUR renormability of a normed space is obtained that fits in the

framework of σ–fragmentable Banach spaces, the theory introduced and developed by

Jayne, Namioka and Rogers and related from its beginning with renorming properties

of non separable Banach spaces [19]. In [10], [22] using topological games it was actu-

ally proved that every WLUR Banach space is σ–fragmentable. The following notion

introduced and studied in [19] is in the core of our arguments:

Definition 1 Let (Y, T ) be a Hausdorff topological space and ρ a metric on Y . The

topological space (Y, T ) is said to have a countable cover by sets of small local ρ–

diameter (ρ-SLD for short) if for each ε > 0, it is possible to write Y =
⋃
n≥1 Yn,ε,in

such a way that for every n and x ∈ Yn,ε there exists a T –neighbourhood V of x such

that the ρ-diam(V ∩ Yn,ε) < ε.

Let E be a normed space, w its weak topology and ρ(x, y) :=‖ x − y ‖, x,

y ∈ E, the norm metric. Given A a subset of E, f ∈ E∗ and λ ∈ R, we denote by

S(A, f, λ) = {u ∈ A : f(u) > λ} the open slice of A. If (A,w) is ρ–SLD then we

shall say that A has the JNR property. When it is possible to replace the relative

neighbourhoods in A by slices we will say that A has the property sJNR. Explicitly, A

has the property sJNR whenever for each ε > 0 it is possible to write A =
⋃
n≥1An,ε in

such a way that for every n ∈ N and x ∈ An,ε, there exists a slice S(An,ε, f, λ) containing

x and diam S(An,ε, f, λ) < ε.

We can state now the Main Theorem in [26, §4]:

Theorem 1 Let E be a normed space. The following conditions are equivalent:

a) the unit sphere SE of E has sJNR;

b) E has sJNR;

c) E has an equivalent LUR norm;
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d) E has JNR and an equivalent WMLUR norm.

The construction of the above LUR norm is based on some probabilistic arguments

mainly margingales. Let us remark that very recently M. Raja has obtained a new

proof of this theorem which is more geometrical and dispenses with martingales which

makes it quite simpler [29]. Let us recall that a norm in a space E is said to be (weakly)

midpoint locally uniformly rotund ((W)MLUR for short) if given sequences (yk), (zk)

and x in E we have (w–lim
k

(yk − zk) = 0 ) lim
k
‖ yk − zk ‖ = 0 whenever ‖ yk ‖,

‖ zk ‖≤‖ x ‖ and lim
k
‖ yk + zk − 2x ‖= 0. Let us point out that MLUR does not

implies LUR renormability [16].

Since WLUR implies WMLUR, according to condition d) of Theorem 1 our

main theorem will be proved as soon as we show that any normed space with a WLUR

norm has the JNR property.

Despite of the proof of our main theorem relies mainly on linear topological

arguments, to get a better understanding of the phenomenon involved it seems to us

that some topological concepts play an essential role in it. The second part is devoted

to study them and to indicate which is their relation with the main theorem, with

concepts previously studied in descriptive topology and with M. Raja’s approach to

renorming [29], [30]. Actually we characterize JNR property in terms of a discrete way

of approximation. Hopefully this study could shed some light for the open problems

stated at the end. As an application see the example in Section 3.

Lately the link of renorming theory with non linear theory is attracting some at-

tention. In this direction Namioka and Pol obtained in [27] topological characterizations

of the σ–fragmentability of a subset A of a Banach space in terms of the weak–topology

only (without referring to the norm). An earlier characterization is due to Hansell in

[14]. Consequently σ–fragmentability is a stable property under weak homeomorphisms.

Recently M. Raja [29] has shown that the presence of the JNR property in a normed

space (E, ‖ · ‖) is equivalent to the existence of a symmetric homogeneous weakly lower
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semicontinuous function F : E → [0,+∞[ with ‖ · ‖ ≤ F (·) ≤ 3‖ · ‖ and such that

the norm and the weak topology coincide on the “sphere” S = {x ∈ E : F (x) = 1}.

Therefore the JNR property is, roughly speaking, “Kadec property without convex-

ity”. L. Oncina showed in [28] that the JNR property is a stable property under weak

homeomorphisms too. We shall describe here several characterizations of the JNR

property that become more relevant after the proof we present for our main theorem.

Indeed they are related to properties studied by Hansell [14] for descriptive topological

spaces that fit in the framework of “generalized metric spaces”[12].

The first topological notion relevant to our discussion is a condition of discrete-

ness of a family of sets with respect to its union. It goes back to people studying some

covering properties related with paracompactness [2].

Definition 2 A family H of subsets of a topological space (Y, T ) is said to be isolated

(resp. discrete) whenever for any x ∈ ⋃ {H : H ∈ H} (resp. x ∈ Y ) there exists V ∈ T

such that x ∈ V and the set {H : H ∈ H, H ∩ V 6= ∅} contains exactly one element.

(resp. at most one element.)

A family F of subsets of a topological space (Y, T ) is said to be σ–isolated (resp.

σ–discrete) whenever it can be decomposed F =
⋃
n≥1Fn in such a way that every Fn

is isolated (resp. discrete).

A family A of subsets of a topological space (Y, T ) is said to be σ–isolatedly

decomposable (resp.σ–discretely decomposable) if for every A ∈ A we have a sequence

{An : n ≥ 1} such that A =
⋃
n≥1An and for every n ∈ N the family

An = {An : A ∈ A}

is isolated (resp. discrete).

A general class of “descriptive spaces” based on this notion goes back to Froĺık

[9] and Hansell [14], (see [15] too), where the term “relatively discrete” is used for

isolated families [15, Definition 6.1.].
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Definition 3 A network for a topological space Y is a collection F of subsets of Y

such that whenever x ∈ U with U open, there exists F ∈ F with x ∈ F ⊂ U .

(Let us point out that x is not assumed to be an interior point of F .) This concept of

network, introduced by Arhangel’skii in [1], has been one of the most useful tools for

generalized metric spaces [12]. It turns out now that it is a very helpful notion to deal

with the topological problems arising with renorming.

The following definition appears in [14] where several of its properties are studied

and its connection with σ–fragmentability and renorming well established:

Definition 4 A Banach space E is said to be descriptive whenever it has a network

for its norm–topology which is σ–isolated in the weak topology.

The following result explains its relevance in our discussion:

Theorem 2 A Banach space E is descriptive if and only if it has the JNR property.

The topological covering property known as “weak θ–refinability” can be characterized

by the condition that every open cover of the space has a σ–isolated refinement ([2,

Theorem 3.7.]). As Hansell showed in [14] any descriptive Banach space has this prop-

erty hereditarily for its weak topology, and any σ–fragmentable Banach space which

is hereditarily weakly θ–refinable for the weak topology is descriptive. Only recently

Dow, Junila and Pelant [5] found examples of Banach spaces C(K) without this cov-

ering property. Nevertheless their examples are not σ–fragmentable and it is an open

problem to decide whether σ–fragmentability and JNR property are the same for a

Banach space.

The authors are very grateful to the referee who helped them to improve the

presentation of the paper and to state the open problem related with it.

2 Weakly locally uniformly rotund norms.

In this section our main theorem is proved.
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Proposition 1 Let (E, ‖ · ‖) be a normed space with a WLUR norm and x a point of

its unit sphere SE. The family

{S (SE, f, 1− ε) : x ∈ S (SE, f, 1− ε) , f ∈ SE∗ , 0 < ε < 1}

is a base of neighbourhoods at x for the weak topology.

Proof. Indeed if yε ∈ S (SE, fε, 1− ε) then ‖(x+ yε) /2‖ ≥ (1/2)fε (x+ yε) > 1 −

ε, hence limε→0 ‖(x+ yε) /2‖ = 1, and finally weak–limε→0 yε = x which proves the

proposition. �

We are going to state a property for the unit sphere of a WLUR Banach space

with the weak topology close to the well known Montgomery’s lemma in metric spaces

(see e.g. [24, §30.X])

Key Lemma Let {S (BE, fγ, λγ) : γ < Γ} be a family of slices of the unit ball of

a normed space (E, ‖ · ‖) covering the unit sphere SE. Let Mγ := S (BE, fγ, λγ) \

(
⋃ {S (BE : fβ, λβ) : β < γ}) for every γ < Γ. If the norm ‖ · ‖ of E is WLUR then

the family of disjoint sets {Mγ ∩ SE : γ < Γ} is σ–discretely decomposable in the unit

sphere (SE, w).

Proof. Set Dγ := S (BE : fγ, λγ) and for any n ∈ N and γ < Γ let us consider the set

Dn
γ :=

{
x ∈ Dγ : fγ(x) ≥ λγ +

1

n

}
.

We have Dγ =
⋃+∞
n=1D

n
γ . Now let

Mn
γ := Dn

γ \
(⋃
{Dβ : β < γ}

)
,

we have again Mγ =
⋃+∞
n=1M

n
γ for every γ < Γ. Moreover if x ∈ Mn

γ and y ∈ Mn
β for

γ 6= β then we have either

|fγ(x− y)| ≥ 1

n
or |fβ(x− y)| ≥ 1

n
.

Indeed, assume for instance β < γ. Since x /∈ Dβ and y ∈ Mn
β it follows fβ(x) ≤ λβ

and fβ(y) ≥ λβ + (1/n). So fβ(y)− fβ(x) ≥ (1/n).
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To obtain an isolated decomposition we will use now the WLUR condition.

Indeed, for every x ∈ SE let γ(x) be the ordinal for which x ∈ Mγ(x). Since ‖·‖ is

WLUR for each x ∈ SE and each η > 0 there is a δ(x, η) > 0 such that

∣∣∣fγ(x)(x− y)
∣∣∣ < η whenever y ∈ SE and

∥∥∥∥x+ y

2

∥∥∥∥ > 1− δ(x, η).

Let us define the sets

Sp(η) :=

{
x ∈ SE : δ(x, η) >

1

p

}
where p = 1, 2, . . . , η > 0.

Thus SE =
⋃+∞
p=1 Sp(η) for every η > 0, and for any p ∈ N we have

∣∣∣fγ(x)(x− y)
∣∣∣ < η and

∣∣∣fγ(y)(x− y)
∣∣∣ < η

whenever
∥∥∥∥x+ y

2

∥∥∥∥ > 1− 1

p
, x, y ∈ Sp(η).(1)

We claim that for each n, p ∈ N the family

{
Mn

γ ∩ Sp(1/n) : γ < Γ
}

(2)

is discrete for the weak topology. Indeed, according to the choice of the sets Sp(1/n) it

follows

γ(x) = γ(y) whenever
∥∥∥∥x+ y

2

∥∥∥∥ > 1− 1

p
, x, y ∈

⋃{
Mn

γ ∩ Sp(1/n) : γ < Γ
}

since otherwise we would have
∣∣∣fγ(x)(x− y)

∣∣∣ ≥ (1/n) or
∣∣∣fγ(y)(x− y)

∣∣∣ ≥ (1/n) which

contradicts (1) above. Let us choose for any x ∈ SE a fx ∈ SE∗ such that 〈x, fx〉 = 1.

If S (SE, fx, 1− (1/p)) intersects two sets of the family (2) then we must have

y ∈ S (SE, fx, 1− (1/p)) ∩Mn
α ∩ Sp(1/n)

for some α < Γ and

z ∈ S (SE, fx, 1− (1/p)) ∩Mn
β ∩ Sp(1/n)

for some β < Γ. Then ‖(y + z)/2‖ > 1− (1/p) and so β = γ(z) = γ(y) = α. Therefore

the family (2) is discrete in the weak topology.
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Now to finish the proof it is enough to observe that

Mγ =
+∞⋃
n=1

+∞⋃
p=1

(
Mn

γ ∩ Sp(1/n)
)
, ∀γ < Γ.

�

Corollary 1 Let (E, ‖ · ‖) be a normed space with a WLUR norm then (SE, w) has a

σ–discrete network.

Proof. Fix ε, 0 < ε < 1. Let Dε be a family of slices of the unit ball covering the unit

sphere, Dε = {S (BE, fγ, 1− ε) : γ < Γε}, with fγ ∈ SE∗ and the same width 1 − ε.

If M ε
γ := S (BE, fγ, 1− ε) \ (

⋃ {S (BE : fβ, 1− ε) : β < γ}), γ < Γε, then according to

the main lemma the family Mε :=
{
M ε

γ ∩ SE : γ < Γε
}

is σ–discretely decomposable

on (SE, w). Then M :=
⋃+∞
n=1M1/n must be σ–discretely decomposable since it is a

countable union of families with this property.

Since for every ε > 0 the family Mε is a covering of SE, Proposition 1 shows

that M is a network in (SE, w). �

For the proof of our main theorem we will need two more lemmas that are

straightforward adaptations of Lemmas 11 and 12 of [26].

Lemma 1 (see Lemma 12 in [26]) Let Y be a non–void set with a metric ρ and a

topology T defined on it such that (Y, T ) has a σ–discrete network. Assume that for

every x ∈ Y there is a ρ–separable subset Zx of Y such that x ∈ ⋃ {Zxn : n ∈ N}ρ

whenever x ∈ {xn : n ∈ N}T . Then (Y, T ) is ρ–SLD.

Proof. We can proceed in the same way as in Lemma 12 of [26] where now C =
⋃+∞
n=1 Cn

is a σ–discrete network for the topology T . Indeed, with the same notation as there,

given t ∈ Y there exist nk ∈ N and γk ∈ Γnk
such that

{
V nk
γk

}+∞
k=1

are the sets of the

network containing t. The previously chosen points
{
vnk
γk

}+∞
k=1

clearly verifies that

t ∈ {vnk
γk : k ∈ N}T .

Now the statement follows in the same manner as in [26]. �
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Lemma 2 (see Lemma 11 in [26]) Let E be a normed space, (F, T ) a topological space

with a σ–discrete network and A a subset of E. Let ϕ : A → F be a map such

that for every x ∈ A there is a separable subspace Zx of E in such a way that x ∈

span {Zxn : n ∈ N}‖·‖ whenever {xn}+∞n=1 is a bounded sequence with

ϕ(x) ∈ {ϕ (xn) : n ∈ N}T .

Then the topological space (A,ϕ−1 (T )) is ‖ · ‖–SLD (where ϕ−1 (T ) is the topology

{ϕ−1 (V ) : V ∈ T } that is the coarser topology for which ϕ is continuous).

Proof. It follows from Lemma 1 above by the same method of linearization as Lemma 11

follows from Lemma 12 in [26]. �

Remark. In the next section we study topological characterizations of ρ–SLD property

from where self–contained proofs of Corollary 2 below follow.

Corollary 2 If E is a normed space and A a subset of it such that (A,w) has a σ–

discrete network then A has the JNR property.

Proof. It follows from Lemma 2 applied to the identity map from A into (A,w). �

Remark 1 In particular if A is a subset of a normed space such that (A,w) is metriz-

able then A must have the JNR property.

Proof of the Main Theorem. According to Theorem 1 it suffices to show that SE

has the sJNR property. Moreover from Proposition 1 it follows that there is a base of

weak neighbourhoods made up by slices, then we only need to show that SE has the

JNR property. Now it suffices to apply Corollaries 1 and 2 . �

3 Descriptive Banach spaces and the JNR property.

Definition 5 Let (Y, T ) be a topological space and X a subset of Y , a covering C of

X is said to be approximating to X in (Y, T ) whenever for every U ∈ C we can select

a separable subset WU , WU ⊂ Y such that

x ∈
⋃
{WU : x ∈ U, U ∈ C}

T
, ∀x ∈ X.
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When Y = X we say that the topological space (Y, T ) has an approximating covering.

Every network N of a topology T on a set Y provides an approximating covering.

Indeed choose PU in U for every U ∈ N and we have

x ∈ {PU : U ∈ N , x ∈ U}T .

We introduce here the concept of approximating covering as a tool for gluing “separable

pieces” which could be understood as the “topological analog” for the projectional

resolutions of the identity in a Banach space.

The following proposition and its corollary contains Lemma 1 in Section 2 with

all details for a complete proof:

Proposition 2 Let Y be a set with a metric ρ and a topology T defined on it. Let X

be a non–void subset of Y . Then the following conditions are equivalent:

a) (X, T ) is ρ–SLD;

b) Every discrete family of sets in (X, ρ) is σ–isolatedly decomposable in T ;

c) (X, ρ) has a network which is σ–isolated for the topology T ;

d) There is a covering approximating to X in (Y, ρ) which is σ–isolated for

the topology T ;

e) There exists a sequence of subsets Dn ⊂ X and a sequence of T to ρ

continuous functions gn : Dn → Y such that

t ∈ {gn(t) : t ∈ Dn}
ρ
, ∀t ∈ X.

Proof a)=⇒b) Let A be a discrete family of sets in (X, ρ). Set X(m) the set of points

x in X for which the cardinal of the set {A ∈ A : Bρ(x, 1/m) ∩ A 6= ∅} is not greater
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than one. From the discreteness of the family A we get X =
⋃
m≥1X

(m). Moreover

according to a) it follows that for any m ≥ 1 we can write

X =
⋃
n≥1

Xm,n,

where for any x ∈ Xm,n there exists V ∈ T such that x ∈ V and ρ–diam(V ∩Xm,n) <

1/m. Then if for any A ∈ A we write Am,n := A ∩Xm,n ∩X(m) we get

A =
⋃

m,n≥1
Am,n

and from the choice of the sets Am,n’s it is easy to see that for any m, n ≥ 1, the family

{Am,n : A ∈ A} is isolated for the topology T .

b)=⇒c) Since every metric space has a σ–discrete basis [21], we can fix a basis B =⋃
n≥1 Bn for the ρ–topology such that every Bn is a discrete family in (X, ρ). For every

B ∈ Bn we have

B =
⋃
p≥1

Bp

where {Bp : B ∈ Bn} is T –isolated. Then the family
⋃
n≥1

⋃
p≥1 {Bp : B ∈ Bn} is a net-

work for the ρ–topology which is T –σ–isolated.

c)=⇒d) Let C =
⋃
n≥1 Cn be a network for the ρ–topology on X where every Cn is

isolated for T . For every U ∈ Cn chose an element zn,U ∈ U and set Zn,U := {zn,U}.

Then C is clearly a σ–isolated covering of (X, T ) that is approximating to X in (Y, ρ) .

d)=⇒e) Let C be a covering approximating to X in (Y, ρ) such that C =
⋃
n≥1 Cn

and every Cn is a T –isolated family. Let {WU : U ∈ C} be the family of ρ–separable

subspaces fulfilling the requirement of Definition 5. Let us fix for every U ∈ C a sequence

{x(U, k) : k ∈ N} such that

WU ⊂ {x(U, k) : k ∈ N}ρ.

Then

x ∈ {x(U, k) : k ∈ N, x ∈ U, U ∈ C}ρ, ∀x ∈ X(3)
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Set Dn :=
⋃ {C : C ∈ Cn}, since Cn is T –isolated it makes sense to define the functions

gn,k : Dn → Y by the equality gn,k(x) = x(U, k) if x ∈ U , U ∈ Cn. Every gn,k is

T –locally constant and so T –to–ρ continuous. Moreover from (3) it follows

x ∈
⋃
{gn,k(x) : k ≥ 1, x ∈ Dn}

ρ
.

e)=⇒a). Given ε > 0, we define the sets

Xn,ε := {t ∈ Dn : ρ (gn(t), t) < ε/6} .

The condition e) gives that X =
⋃
n≥1Xn,ε. Moreover if we fix t ∈ Xn,ε from the

continuity of gn from (Dn, T ) into (Y, ρ) we get a T –neighbourhood W of t such that for

any t′ ∈ Dn∩W we must have ρ (gn(t), gn(t′)) < ε/6. Consequently for any t′ ∈ Xn,ε∩W

we have

ρ(t, t′) ≤ ρ(t, gn(t)) + ρ(gn(t), gn(t′)) + ρ(gn(t′), t′) < ε/6 + ε/6 + ε/6 = ε/2

so ρ–diameter(Xn,ε ∩W ) ≤ ε . �

As we have seen before, natural situations to apply the former proposition is

when T is coarser than the ρ–topology. Moreover if we assume the linking condition

stated in our Lemma 1 above we have the following

Corollary 3 Let Y be a set with a metric ρ and a coarser topology T defined on

it. If for every x ∈ Y it has been associated a ρ–separable subset Zx of Y such that

x ∈ ⋃ {Zxn : n ∈ N}ρ whenever x ∈ {xn : n ∈ N}T for x, xn ∈ Y , then the following

conditions are equivalent for a given subset X of Y :

a) (X, T ) is ρ–SLD;

b) (X, T ) has a σ–isolated network;

c) There is a σ–isolated approximating covering of X in (Y, T );
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d) There exists a sequence of subsets, Dn ⊂ X and a sequence of T –locally

constant functions gn : Dn → Y , such that

t ∈ {gn(t) : t ∈ Dn}
T ∀t ∈ X.

Proof. a)=⇒b) It follows from Proposition 2 since a network for the ρ–topology will

be a network for the coarser topology T too.

b)=⇒c)=⇒d). The proof is the same as in Proposition 2 replacing the ρ–topology by

the topology T .

d)=⇒a) It is a consequence of our hypothesis linking the T and ρ–approximation.

Indeed let us fix the positive integer n and the T –locally constant function gn : Dn → Y ,

for t ∈ Dn choose points t(n, k) such that

Zgn(t) ⊂ {t(n, k) : k ∈ N}ρ.

We can define T –locally constant functions

gn,k : Dn → Y

by gn,k(t) = t(n, k), t ∈ Dn. Now according to our hypothesis

t ∈ {gn(t) : t ∈ Dn}
T

=⇒ t ∈
⋃{

Zgn(t) : t ∈ Dn

}ρ
and consequently t ∈ ⋃ {gn,k(t) : t ∈ Dn, k ∈ N}ρ. To finish the proof it is enough to

apply Proposition 2. �

Remark 2 1. The equivalence a)⇐⇒b) in Proposition 2 is due to L. Oncina [28].

We are very grateful to him for his permission to include the proof here.

2. Topological spaces having a σ–isolated network have been studied by Hansell [14],

[15]. They are characterized as continuous images of a metric space through maps

sending discrete families to σ–isolatedly decomposable families. If in addition the
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metric space is complete the spaces are called descriptive in [14] and isolated–

analytic in [15]. In any case they form a general class for extending classical

analytic spaces to the non–separable case and they go all the way back to a

previous work of Froĺık [9]. Proposition 2 shows that the ρ–SLD property due

to Jayne, Namioka and Rogers, is equivalent to the σ–isolated network condition

studied by Hansell.

3. A class of generalized metric spaces is a class of spaces defined by a property

possessed by all metric spaces which are close to metrizability in some sense

[12]. Proposition 2 above provides some characterizations of one of these classes,

namely the topological spaces with a countable cover by sets of small local diam-

eter introduced by Jayne, Namioka and Rogers in [19]. The σ–spaces are defined

by replacing the base by network in the Bing–Nagata–Smirnov metrization the-

orem, i.e. a topological space is a σ–space if it has a σ–discrete network. Here

we are dealing with a further refinement replacing discrete by isolated. Closely

related is the class of semi–metrizable spaces which fits between Moore spaces

and semi–stratifiable spaces. Our conditions d) of Proposition 2 and c) of Corol-

lary 3 will help us later since every semi–stratifiable space is going to have a

σ–discrete approximating covering despite they are not σ–spaces in general [12,

Example 9.10.].

4. The implications d)=⇒e)=⇒ a) in Proposition 2 are based upon Srivatsa’s proof

of his selection theorem [32] and [20]. The idea of approximating by points that

can be taken outside of X comes from Srivatsa approach for the well known

Jayne–Rogers selection theorem [32].

If we apply Proposition 2 and its corollary to normed spaces with the norm–metric and

the weak topology we shall obtain the proof of the Theorem 2 stated in the introduction.

Indeed we can be more precise here and show the following:

Theorem 3 Let E be a normed space and A a non–void subset of it. The following
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assertions are equivalent:

a) A has the JNR property ( i.e. (A,w) is ‖ · ‖E–SLD);

b) A has a network for the ‖ · ‖E–topology which is σ–isolated for the weak

topology;

c) A has a σ–isolated network for the weak topology;

d) A has a σ–isolated approximating covering in (E,w);

e) There is a sequence of subsets Dn ⊂ A and a sequence of continuous

functions gn : (Dn, w)→ (E, ‖ · ‖) such that

t ∈ span {gn(t) : t ∈ Dn}
‖·‖ ∀t ∈ A.(4)

Proof. It is clear from the proof of Proposition 2 and Corollary 3 that the only

implication to prove is e)=⇒a). We will proceed in a standard way.

Let us fix an ε > 0. For any x ∈ A, m ∈ N, p = (pi)
m
1 ∈ Nm and q = (qi)

m
1 ∈ Qm we set

Dp :=
⋂
Dpi , fp,q(x) :=

∑
qigpi(x).

If we put

Sm,p,q := {x ∈ Dp : ‖x− fp,q(x)‖ < ε}

from (4) we get A =
⋃
Sm,p,q. Since fp,q : Dp → E are weak–norm continuous we

can find a weak neighbourhood W of x such that ‖fp,q(x)− fp,q(y)‖ < ε whenever

y ∈ Dp ∩W . Then for y ∈ W ∩ Sm,p,q we have

‖x− y‖ < ‖x− fp,q(x)‖+ ‖fp,q(x)− fp,q(y)‖+ ‖y − fp,q(y)‖ < 3ε.

So ‖·‖–diam (W ∩ Sm,p,q) ≤ 6ε. �
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Remark 3 The equivalence b)⇐⇒c) is already contained in Hansell’s preprint of 1989

[14]. When A is a Souslin set of E these conditions are equivalent to say that A is

descriptive in the terminology of Hansell [14, Theorem 1.3.]. In particular when A is

the whole space E and E is a Banach space they are equivalent to having the JNR

property or to be isolated–analytic, for the weak topology [15]. Results in the same

spirit for σ–fragmentability appear in [14], [18], [22] and [27]. Since every WCG Banach

space is LUR renormable, every weakly compact subset of a Banach space verifies any

of the equivalent conditions of the corollary above, (see remark 2.7 in [32]). It is an

interesting question to provide of a direct proof of this fact without using, in a way or

another, the projectional resolution of the identity approach.

Remark 4 A Banach space has the property JNR if and only if its unit sphere has it.

A proof of this fact can be obtained by a slight modification of the proof of Theorem

2.8 in [19, p 174].

We are going to show that semi–stratifiable spaces are of importance in those questions.

We begin by giving the precise definition:

Definition 6 ([12], Theorem 5.8.) A topological space (Y, T ) is said to be semi–

stratifiable if there is a function g : N× Y → T such that

i) {x} =
+∞⋂
n=1

g(n, x), for every x ∈ Y , and

ii) y ∈
+∞⋂
n=1

g(n, xn) =⇒ (xn)+∞n=1 converges to y.

It is well known that a topological space Y is semi–metrizable if and only if it is semi–

stratifiable and first countable [12, Theorem 9.8.], and that every semi–stratifiable space

is subparacompact [12, Theorem 5.11.]. Despite that even the semi–metrizable spaces

are not in general σ–spaces the following results show that they always have a σ–discrete

approximating covering which will be of interest for applications.
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Proposition 3 Let (Y, T ) be a semi–stratifiable topological space. Then Y has a σ–

discrete approximating covering.

Proof. Let g : N× Y → T be the mapping of Definition 6. For every positive integer

n we set the open cover

Sn := {g(n, x) : x ∈ Y } .

Since semi–stratifiable spaces are subparacompact we must have a σ–discrete refinement

Fn of Sn. For every F ∈ Fn we select xF ∈ Y such that F ⊂ g (n, xF ) and we set

WF := {xF}. It is clear now by the condition (ii) of Definition 6 that
⋃+∞
n=1Fn is an

approximating covering which is σ–discrete too. �

Example 1 We have seen in Section 2 that the unit sphere of a WLUR norm has a

σ–discrete network for the weak topology from where the LUR renormability follows.

The semi–stratifiable spaces lead us to a more general setting related with ‖·‖ on E such

that the dual ‖ · ‖∗ is Gâteaux differentiable in the norm–attaining linear functionals of

SE∗ . Given a Banach space E equipped with a norm ‖ · ‖ we denote by

NA1(‖ · ‖) := {f ∈ SE∗ : f(x) = ‖f‖, for some x ∈ SE} .

Debs, Godefroy and Saint Raymond show in [3, Lemma 10] that a norm ‖ ·‖ is LUR if,

and only if, there exists a map σ : NA1(‖ · ‖)→ SE w∗–to–norm continuous, such that

< f, σ(f) >= 1, ∀f ∈ NA1(‖ · ‖). Given a rotund norm ‖ · ‖ on E we have for every

f ∈ NA1(‖ · ‖) a unique vector σ(f) ∈ SE with < f, σ(f) >= 1. A simple adaptation

of the arguments given in [3] shows that σ is ‖ · ‖∗–to–weakly continuous if, and only

if, the dual ‖ · ‖∗ is Gâteaux differentiable at every point of NA1(‖ · ‖). When σ is only

w∗–to–weak continuous, (this is the case of a WLUR norm) we can show that (SE, w)

is a semi–stratifiable space. Indeed let us denote by fx any linear functional on SE with

< x, fx >= 1 and x ∈ SE. We define the map

g : N× SE → {W ∩ SE : W weak open set}

g(n, x) := S (SE, fx, 1− (1/n)) .
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Then by rotundity we have

{x} =
∞⋂
n=1

g(n, x) for every x ∈ SE(5)

and by w∗ to weak continuity of σ we have

y ∈
∞⋂
n=1

g (n, xn) , y ∈ SE =⇒ (xn) converges weakly to y.(6)

Indeed, (fxn) has a w∗–cluster point g in BE∗ and g(y) = 1 from where it follows

that g ∈ NA1(‖ · ‖) and σ(g) = y. The w∗–to–weak continuity of σ implies that

(σ(fxn) = xn) weakly converges to y and the proof is done. Consequently SE has the

JNR property and since ‖ · ‖∗ is also Gâteaux–smooth at NA1(‖ · ‖), the given norm

‖ · ‖ is WMLUR and the Banach space E will be LUR renormable too. Summarizing

if a rotund norm ‖ · ‖ on a Banach space E is such that the map σ : NA1(‖ · ‖) → SE

given by < f, σ(f) >= 1, ∀f ∈ NA1(‖ · ‖) is weak∗–to–weak continuous then E is LUR

renormable too. When we renorm the space E we change the set NA1(‖ · ‖) and the

map σ becomes weak∗–to–‖ · ‖ continuous.

Let us mention that Kenderov and Moors have recently shown that a Banach

space is σ–fragmentable if and only if it is fragmented by a metric finer than the weak

topology [23], deducing that if a dual space has a Gâteaux differentiable norm then the

predual space is σ–fragmentable.

4 Concluding remarks

Let us finish with a precise description of the kind of generalized metric space structure

we have on the unit sphere of a WLUR Banach space.

Definition 7 For a subset A of Y and a collection U of subsets of Y we denote

st(A,U) :=
⋃
{U ∈ U : U ∩ A 6= ∅} .

For x ∈ Y we write st(x,U) instead of st({x},U). A sequence (Gn) of open covers of a

topological spaces (Y, T ) is called a development for Y if for each x ∈ Y , the sets

{st(x,Gn) : n ∈ N}
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is a base of neighbourhoods at x. A Moore space is a regular space with a development.

Proposition 4 Let E be a normed space with a WLUR norm. Then the unit sphere

SE with the weak topology is a Moore space.

Proof. For every x ∈ SE we choose fx ∈ SE∗ with < x, fx >= 1. For every n ∈ N we

define Gn := {S (SE, fx, 1− (1/n)) : x ∈ SE}, that is the family of all slices of SE given

by the linear functionals fx, x ∈ SE, with a fixed width 1−(1/n). It is clear now that for

every x ∈ SE, {st (x,Gn) : n ∈ N} is a base of neighbourhoods at x. Indeed if V is weak–

open set with x ∈ V and st (x,Gn)∩SE \V 6= ∅, n ∈ N, we must have for every positive

integer n a point yn ∈ st (x,Gn) with yn /∈ V . Since yn ∈ st (x,Gn) there exists fzn with

fzn(x) > 1− (1/n), and fzn (yn) > 1− (1/n), so we have ‖(x+ yn) /2‖ > 1− (1/n) and

the WLUR of the norm implies that (yn) converges weakly to x which is a contradiction

with the choice yn /∈ V , ∀n ∈ N. Consequently (Gn)∞n=1 is a development of (SE, w)

which is a Moore space. �

For a WUR norm we can prove more

Proposition 5 Let E be a normed space with a WUR norm. Then the unit sphere

SE with the weak topology is metrizable.

Proof. Let (Gn) be the development defined in Proposition 4. It is enough to apply

Moore metrization theorem [12, Theorem 1.4.] and to show in that case that given a

weak–open set V with x ∈ V , x ∈ SE, there exists another weak–open set W , x ∈ W ,

and a positive integer n such that

st (W,Gn) ⊂ V.

Reasoning as in the former proposition, if this is not the case we must have for every

positive integer n

(⋃
{G : G ∩ S (SE, fx, 1− (1/n)) 6= ∅, G ∈ Gn}

)
∩ (SE \ V ) 6= ∅.
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Therefore for every positive integer n we find Gn ∈ Gn with Gn∩S (SE, fx, 1− (1/n)) 6=

∅ and yn ∈ Gn, yn /∈ V . IfGn = S (SE, fzn , 1− (1/n)) and wn ∈ Gn∩S (SE, fx, 1− (1/n))

we have fzn (wn) > 1 − (1/n), fzn (yn) > 1 − (1/n), fx (wn) > 1 − (1/n), and so

‖(yn + wn) /2‖ > 1 − (1/n), ‖(wn + x) /2‖ > 1 − (1/n) and yn /∈ V , ∀n ∈ N. Since

the norm is WUR we have that weak–limn (yn − zn) = 0 and weak–limnwn = x, so

weak–limn yn = x which is a contradiction with the choice yn /∈ V , ∀n ∈ N.

Remark 5 There are WUR norms that have not Kadec property so the metric in the

unit sphere whose associated topology is the weak topology is not the ‖ · ‖–metric.

Open Problems

Problem 1 Is there an example of a σ–fragmentable Banach space which is not de-

scriptive (i.e. has not JNR)? (see [5], [14])

Problem 2 Is the renormability by a Kadec norm, or by a LUR norm an invariant

property under weak or under Lipschitz isomorphism?

Problem 3 If a Banach spaces is descriptive and it has a rotund norm ‖ · ‖, does

it follows that it has an equivalent LUR norm? Even in the particular case when

(SE, w) is metrizable we do not know the answer. A positive answer would be the

natural extension of the third named author result asserting that Kadec property and

rotundity imply LUR renormability.

Problem 4 Does it follow easily, i.e. without using Amir–Lindenstrauss approach,

that any weakly compact set of a Banach space has the JNR property.
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