
Arch. Math., Vol. 46, 447-452 (1986) 0003-889 X/86/4605-0447 $ 2.70/0 
�9 1986 Birkh/iuser Verlag, Basel 

On the equivalence of weak and Schauder bases 

By 

Jos~ ORmUELA 

McArthur  asks in [14] about the relation between the closed graph theorem and the 
continuity theorem for the linear coefficients of a basis in a locally convex space. The 
purpose of this paper is to give a result which shows the linking between the weak basis 
theorem and the closed graph theorem. We shall apply it to the closed graph theorems 
of Pt/tk, Saxon, De Wilde and Valdivia obtaining many of the known cases of validity for 
the weak basis theorem as well as new applications. The same result holds for bases of 
complete subspaces. 

I. Introduction and notations. The linear spaces we shall use here are defined over the 
field K of real or complex numbers. The word "space" means separated locally convex 
space (1. c.s.). For  a space E [~] we put/~ [~] for the completion of E [~] and/~ [~] for the 
local completion./~ is the intersection of all locally complete subspaces of/~ containing 
E and ~ is the restriction of ~ in/~. Standard references for notation and concepts are, 
[11], and [12]. 

A sequence {e,: n = 1, 2 . . . .  } in a 1. c. s. E is said to be a basis of E if every x ~ E has a 

unique representation x = ~ c n(x) e,, c, (x) s K n = 1, 2 . . .  Let E' be the topological 
n = l  

dual of E. When {c,: n = 1, 2 . . . .  } c E' the basis is called a Schauder basis. A weak basis 
is a basis for the weak topology, that means a basis of E [a (E, E')]. For  every positive 

integer m, we denote by T m the linear mapping Tin: E ~ E defined by T m (x) = ~ c, (x) e,. 
n = l  

A basis is said to be equicontinuous if the sequence {Tin: m = 1, 2 . . . .  } is equicontinuous. 
Every equicontinuous basis is a Schauder basis and the converse is true for barrelled 
spaces. An equicontinuous basis of E is an equicontinuous basis of its completion because 
the operators T m can be uniquely extended to /~  forming an equicontinuous sequence 
which converges to the identity on the dense subspace E and hence on/~. 

Banach, [2], proved that a basis of a (B)-space is always a Schauder basis. This result 
was generalized to (F)-spaces by Newns, [15]. Banach proved, further, that  a weak basis 
of a (B)-space is always a basis. Bessaga and Petczynsky, [4], extended this result to 
(F)-spaces. We known then that every weak basis in a Fr~chet space is a Schauder basis. 
This result is known as the weak basis theorem. Bennet and Cooper, [3], proved it for 
strict (LF)-spaces and Floret, [10], for sequentially retractive (LF)-spaces. M. De Wilde 
[5], obtained a rather general result for bornological, sequentially complete and webbed 
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spaces. Efimova, [9], has recently proved the weak basis theorem for regular inductive 
limits of a sequence of normed barrelled spaces. M. Valdivia has showed to us the result 
for metrizable barrelled spaces. 

The purpose of this paper is to give a result which shows the linking between the weak 
basis theorem and the closed graph theorem. We shall apply it to the closed graph 
theorems of Pt~k, Saxon, De Wilde, and Valdivia obtaining all the aforesaid results 
as a particular case and we shall give new cases of application. The idea behind the 
results given here is that the projective equicontinuous topology of McArthur,  [14], 
can be endowed with a good structure for the closed graph theorem. That  is usually 
done embedding the space with McArthur 's  topology in a sequence space with the 
range enlarged and endowing it with a finer good structure for the closed graph 
theorem. 

II.  T h e  w e a k  b a s i s  t h e o r e m .  F o r  a 1. c. s. F we denote by l ~ (F)  the space of bounded 
sequences in F endowed with the topology of uniform convergence. 

Theorem 1. Let E be a subspace of the l.c.s. F[3;] such that every linear mapping from 
E into l~ with closed graph in E x l~(F) is continuous. I f  E has a weak basis 
{%: n = 1, 2,.. .}, it is a Schauder and equicontinuous basis of E [3;] and consequently of its 
completion E [3;]. 

P r o o f. Let Z* be the locally convex topology on E with a fundamental system of 

neighbourhoods of the origin given by the subsets V * =  (~ T,,~I(V), where V is 
m = l  

any neighbourhood of the origin in E, [14]. V* is contained in the weak closure of 
V and so 3;* is finer than 3; and a Hausdorff topology. The sequence 
{Tin: E [3;*] ~ E [3;]: m = 1, 2 . . . .  } is clearly equicontinuous. We shall prove that 3;* = 3; 
and this equality gives us the result. Indeed, in such a case {Tin: m = 1, 2, ...} is an 
equicontinuous sequence of mappings on E [3;] that converges to the identity on the 
dense subspace generated by the vectors of the basis, hence the convergence is on all 
the space E [3;]. Let us remark that a net {x~,, ~ E D, > } converges to the origin in 
E[3;*] if and only if the net {Tm(x~): ~ ~D, >}.converges to the origin in E[% ~] uni- 
formly in m = 1 , 2 . . .  We define the mapping T: E [Z] --* l~ (F) by Tx={Tm(x):  
m = 1, 2 . . . .  }. T induces on E the topology 3;*, if we prove the continuity of T the con- 
clusion follows immediately. According to the hypothesis of the theorem, it will be 
enough to show that T has its graph closed in E x l ~ (F). Let {x~: ct s D, >}  be a 
net in E which converges to x and such that the net {T(x~):~eD,  >} converges 

to y in 1 ~(F). Tm is an operator of finite rank and so Tm(x~)= ~ cn(x~)% 
n = l  

lim { T m (x~): cr e D, > } = ~ % en m = 1, 2 . . .  and the limit is uniform in m = 1, 2 . . . . .  
n= 1 

Let Ym -- :t, e~, showing that the sequence {ym: m = 1, 2,. . .} converges to x in the 
n = l  

weak topology, the unicity of the representation gives us that Tm x = Ym m = 1, 2 . . . ,  
which means that Tx = y and the graph of T will be closed. Let 
f e  E', lim {f(T,,(x~)): c~ e D, >=} = f(y,~) uniformly in m = 1, 2 .. . .  According to 
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the Moore-Smith theorem about permutability of limits we have that: 

lirn f (Ym) = ,,limo~ lim f = lim~D mlim~ 0o f (Tm(x,) ) = limD f (x,) = f (x). 

Therefore, ~ c~. e. = x in the weak topology and the proof is finished. 
n = l  

[] 

If a space E fulfills the condition of Theorem 1 we shall say that E holds the weak basis 
theorem. For  the applications coming it is interesting to remark that given a finer 
topology on l ~~ (F) that works for the closed graph theorem the conclusion shall be 
obtained. 

IlL Some applications. 

Theorem 2. The weak basis theorem holds on every barelled and metrizabte space. 

P r o o f. We take F the completion of the barelled and metrizable space E. l ~ (F) is a 
Frbchet space and Pt~tk's closed graph theorem, [12], together with Theorem 1 gives us 
the conclusion. [] 

Theorem 2 has been proved by Valdivia in a different way. 
A space E is Baire-like, [16], if given an increasing sequence of dosed, absolutely convex 

subsets of E covering E there is one of them which is a neighbourhood of the origin in 
E. Amemiya and K6mura  theorem, [1], says that a metrizable and barrelled space is 
Baire-like. Saxon's closed graph theorem, [16], works between Baire-like spaces and 
(LB)-spaces. Applying it together with Theorem 1 we can obtain the following result: 

Theorem 3. The weak basis theorem holds on every locally convex hull E of Baire-like 
spaces with E having a sequence of bounded subsets covering E. In particular on every 
inductive limit of an increasing sequence of  Baire-like spaces with bounded linking maps. 

P r o o f. Let F be the completion of E. There is an increasing sequence of absolutely 
convex bounded subsets {D,: n = 1, 2.. .} covering E. A theorem of De Wilde and Houet, 
[8], and Valdivia, [17], says that F = w {/),: = 1, 2,.. .}, and that {nO,: n = I, 2 . . . .  } is a 
fundamental sequence of bounded subsets of F which are Banach discs, where we are 
denoting by/ ) ,  the closure of/9, in F. Let us denote by B, the subset n/),,  n = 1, 2 . . .  and 
by FB. the linear hull of/3, endowed with the norm of the gauge of B,, [11]. Therefore 
l ~ (F) = u {l ~ (FB.): n = 1, 2 . . . .  } and we have a topology of (LB)-space on l ~ (F) finer 
than the original one. Saxon's dosed graph theorem applys for mappings from E into 
l ~ (F) and we obtain the result having in mind Theorem 1. [] 

Now we have the following improvement of Efimova's weak basis theorem, [9], remov- 
ing the regularity condition: 

Corollary 3.1. The weak basis theorem holds on every inductive limit of  a sequence of 
normed barrelled spaces. In particular on arbitrary (LB)-spaces. 
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P r o o f. It  follows immediately from Theorem 3 because of the Amemiya -K6mura  
theorem, [1]. [] 

As far as we know the result for (LB)-spaces was only known with the addi t ional  
condit ion of local completeness as a consequence of De Wilde's  weak basis theorem, 

[51. 
A space E is suprabarrelled,  [18], if given an increasing sequence of subspaces of E 

covering E there is one of them which is barrelled and dense in E. Valdivia 's  closed graph 
theorem, [181, works between suprabarrel led and (LF)-spaces. 

Theorem 4. T h e  w e a k  bas i s  t h e o r e m  ho lds  on e v e r y  s t r i c t  i nduc t i ve  l imit  o f  a s e q u e n c e  

o f  s u p r a b a r r e l l e d  and  m e t r i z a b l e  spaces .  

P r o o f. Let {E,: n --- 1, 2 , . . .}  be a sequence of suprabarrel led and metrizable spaces 
and E the inductive limit. Let F be the complet ion of E and E n the closure of E n in F which 
is the complet ion of E n and thus a Fr6chet space. We have that  F = w {E,: n = 1, 2 . . . .  } 
by a theorem of De Wilde and Houet,  [8]. F r o m  the barrellednes of F it follows that  F 
is the strict inductive limit of the sequence of Fr6chet spaces {En: n = 1,2 . . . .  }, 
[17]. Therefore we have a topology of (LF)-space on l ~ ( F )  because l ~ ( F )  

= u{ l  | (E,): n = 1, 2 . . . .  } bearing in mind the localization theorem of bounded sets in 
strict (LF)-spaces. Valdivia 's  closed graph theorem can be applied together with 
Theorem 1 to reach the conclusion. [] 

IV. On De Wilde 's  weak basis theorem. Fol lowing De Wilde, [5], [7], a sequence 
A 1 ~ A 2 ~ . . .  A k ~ . . .  of non void subsets of a space E is said to be a complet ing 
sequence if there is a sequence (2k) of positive numbers such that, if 0 ___ #k ~ 2k and 

x k ~ A k k = 1, 2 . . . .  then the series ~ #k Xk is convergent in E. A web ~U in a space E is 
k = l  

a family of subsets of E, ~ = {C . . . . . . . . . . .  k}, where k, ml ,  m 2 . . . .  m k are positive integers 
and such that  the following relations are satisfied: 

E = u { C n : n  = 1,2 . . . .  }, C,n . . . . . . . . . .  = • {C . . . . . . . . . . . . . .  :m = 1 ,2 . . .}  k = 1,2 . . . . .  
A web ~r is complet ing or  Cg-web if for each sequence (m,) of positive integers the 
sequence {C . . . . . . . . . . . .  :n  = 1, 2 . . . .  } is completing. A space with a complet ing web is 
called a webbed space or Cg-web space. 

De Wilde 's  closed graph theorem is verified for mappings  between Baire spaces and 
webbed spaces. A space E is total ly  barrelled, [21], if given a sequence of subspaces of E 
covering E there is one of them which is barrelled and its closure has finite codimension 
in E. Valdivia shows in [20] an extension of De Wilde 's  theorem for linear mappings  
defined from total ly barrelled spaces into spaces with a completing web of absolutely 
convex subsets. On looking carefully at Valdivia 's  proof  it is clear that  the result remains 
true for spaces with a web "/V = {C . . . . . . . . . . .  } such that  for each sequence (m,) of positive 
integers, if A,.1, m2 .... ,,k is the absolutely convex cover of C,~, . . . . . . . .  , ,  the sequence 
{A . . . .  2 . . . . .  ~: k = 1,2 . . . .  } is completing. F o r  instance, for webbed spaces which are 
locally complete. 
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In his thesis, De Wilde, [5], proved the following result: 

Theorem 5. Let  E be a bornotogicaI, sequentially complete and webbed space. I f  E has 
a weak basis {en: n = 1, 2,.. .}, then it is a Schauder basis on E. 

This result is a consequence of Theorem 1 together with De Wilde's closed graph 
theorem. Indeed, for a sequentially complete and webbed space E, l ~ (E) has a C~-web. 
Moreover if E is bornological it must be ultrabornological and we get a proof working 
with F = E in Theorem 1. 

The important  fact inside the former result is that for a webbed and locally complete 
space E, l ~ (E) has a C~-web too, [7]. Moreover it is locally complete and Valdivia's closed 
graph theorem, [20], can be applied to obtain the following improvement: 

Theorem 6. The weak basis theorem holds on every locally convex hull of  totally barrelled 
spaces which has a local completion with a C~-web. 

O p e n p r o b 1 e m. We do not know if the weak basis theorem holds for ultraborno- 
logical and strictly webbed spaces, [5], [7]. Even in the case of an arbitrary (LF)-space it 
seems to be difficult to find the adequate space F in order to apply Theorem i. Of course 
we have positive answers for (LF)-spaces locally complete (De Wilde, [5]), for metrizable 
(LF)-spaces (Theorem 2) and for (LB)-spaces (Corollary 3.1 and Theorem 6). 

V, On Schauder decomposition. Let E [Z] be a 1.c.s. A sequence of non trivial subspaces 
{Mi: i = 1, 2,. . .} of E is a basis of subspaces for E if and only if to each x ~ E corresponds 

a unique sequence (Pi (x): i = 1, 2 . . . .  } where P/(x) ~ M i for every i and the series ~ P/(x) 
i = 1  

converges to x in the topology Z. It is clear that P~ are linear projections from E into M i 
and verifies P~ P~ = 0 if i ~ j. A basis of subspaces with the property that each P/ is 
continuous is called a Schauder basis. If the subspaces Mf are closed in E the Schauder 
basis is called a Schauder decomposition of E, [14]. On  looking carefully at the proof of 
Theorem 1 it is clear that it remains true for a weak basis of complete subspaces instead 
of a weak basis obtaining that it must be a Schauder decomposition of E. All the 
applications given are consequently verified in this more general situation. In such a way 
extensions of the known result of McArthur,  [13], for Frbchet spaces are obtained. 

A c k n o w 1 e d g e m e n t s. We gratefully thank Prof. M. Valdivia and Prof. J. Bonet 
for their valuable suggestions and encouragement. 

We also thank the referee for his comments in order to get the final form of this paper. 
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