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1 Introduction

Let (X, ‖ · ‖) be a normed space. The norm ‖ · ‖ in X is said to be locally
uniformly rotund ( LUR for short) if

[lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0] ⇒ lim
n
‖x− xn‖ = 0

for any sequence (xn) and x in X. The construction of this kind of norms in
separable Banach spaces lead Kadec to the proof of the existence of home-
omorphism between all separable Banach spaces, [1]. For a non separable
Banach space is not always possible to have such an equivalent norm, for
instance the space l∞ does not have it. When such a norm exists its con-
struction is usually based on a good system of coordinates that we must have
on the normed space X from the very beginning, for instance in a biorthog-
onal system

{(xi, fi) ∈ X ×X∗ : i ∈ I}
with some additional properties such as being a strong Markusevich basis,
[16]. Sometimes there is not such a system and the norm is constructed
modelling enough convex functions on the given space X to add all of them
up with the powerful lemma of Deville, see lemma VII 1.1 in [2].

We are going to present here a lemma connecting Deville’s master lemma
with our approach for locally uniformly rotund renormings as developped in
[12]. We have been extensively using Stone’s theorem on the paracompact-
ness of a metric space to play with discreteness when looking for equivalent
locally uniformly rotund norms on a given Banach space X. We shall see
in this paper that our condition of being slicely isolated corresponds with
the so called rigidity condition inside Deville’s lemma. Our free-coordinate
approach to LUR renormings is explained here with the construction of con-
vex functions describing slicely relatively discrete families of sets in a normed
space X.
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2 Lower semicontinuous convex functions and

LUR renormings.

We are going to study the interplay between convex functions and LUR
renormings. The method to construct LUR norms based on Deville’s master
lemma is developped in chapter VII of [2], where it is called the decomposition
method. Deville’s lemma has been extensively used by R. Haydon in his
seminal papers [4], [5], as well as in [6]. Deville’s lemma needs the existence
of suitable convex functions (φi)i∈I and (ψi)i∈I on the Banach space X, it
provides an equivalent norm ‖| · ‖| on X such that the LUR condition on a
given point x gives up a maximazing sequence of convex functions φin at x
that interplays with a LUR condition on ψin , see lemma 1.1 in chapter VII
of [2]. Let us precisely recall it here:

Lemma 1 (Deville, Godefroy and Zizler decomposition method).
Let (X, ‖ · ‖) be a normed space, let I be a set and let (ϕ)i∈I and (ψ)i∈I be
families of non-negative convex functions on X which are uniformly bounded
on bounded subsets of X. For every x ∈ X, m ∈ N and i ∈ I define

ϕ(x) = sup {ϕi(x) : i ∈ I} , (1)

θi,m(x) = ϕi(x)
2 + 2−mψi(x)

2, (2)

θm(x) = sup {θi,m(x) : i ∈ I} , (3)

θ(x) = ‖x‖2 +
∞∑

m=1

2−m(θm(x) + θm(−x)). (4)

Then the Minkowski functional of B = {x ∈ X : θ(x) ≤ 1} is an equiva-
lent norm ‖ · ‖B on X such that if xn, x ∈ X satisfy the LUR condition:

lim
n

[2‖xn‖2
B + 2‖x‖2

B − ‖xn + x‖2
B] = 0,

then there is a sequence (in) in I such that:

1. limnϕin(x) = limnϕin(xn) = limnϕin((x+ xn)/2) = sup {ϕi(x) : i ∈ I}

2. limn[1
2
(ψ2

in(xn) + ψ2
in(x))− ψ2

in(1
2
(xn + x))] = 0.

Deville’s lemma is based on the construction of an equivalent LUR norm
on a weakly compactly generated Banach space by the second named author
in [15], where the convex functions are measuring distances to suitable finite
dimensional subspaces as well as evaluations on some coordinate functionals
in tha dual space X∗; see [16], theorem 7.3. The method we have developped
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in [12] is mainly based on Stone’s theorem about paracompactness of metric
spaces. The σ-discrete base for the norm topology of a normed space X can
be refined to obtain a σ-slicely isolated network if, and only if, the normed
space X admits an equivalent LUR norm, [12]. Recent contributions show
an interplay between both methods, [5, 8, 9]. It is our intention here to show
the connection between both approaches. The linking property will be the
notion of slicely relatively discretness, or slicely isolatedness, that glues the
discretness of Stone’s theorem with the linear topological structure of the
dual pair associated to X. Let us recall precise definitions and results:

Definition 1. Let X be a normed space and F be a norming subspace in the
dual X∗. A family B := {Bi : i ∈ I} of subsets in X is called σ(X,F )-slicely
isolated (or σ(X,F )-slicely relatively discrete) if it is a disjoint family of sets
such that for every

x ∈ ∪{Bi : i ∈ I}
there are a σ(X,F )-open half space H and i0 ∈ I such that

H ∩ ∪{Bi : i ∈ I, i 6= i0} = ∅ and x ∈ Bi0 ∩H.

Our approach for LUR renormings is based on the topological concept
of network. Let us recall that a family of subsets N in a topological space
(T, T ) is a network for the topology T when for every open set W ∈ T and
every x ∈ W there is some N ∈ N such that x ∈ N ⊂ W . A main result
with our approach is the following:

Theorem 1 ([12], chapter III). Let X be a normed space and F a norming
subspace in the dual X∗. X admits a σ(X,F )-lower semicontinuous and
equivalent locally uniformly rotund norm if, and only if, the norm topology
has a network N that can be written as N = ∪∞n=1Nn where every one of the
families Nn is σ(X,F )- isolated.

A first result we shall prove here is that we can replace the network with
a basis of the norm topology in the former theorem, see theorem ??.

We shall begin with the construction of convex and lower semicontinuous
functions related to the norm-distance function to a fixed convex set. Such
a norm distance is a convex function, however to control the lower semicon-
tinuity too we need a small modification given in the next result:

Proposition 1. Let X be a normed space and F a norming subspace in the
dual space X∗. If C is a bounded and convex subset of X and we define

ϕ(x) := inf
{
sup {| < x− c∗∗, f > | : f ∈ BX∗ ∩ F} : c∗∗ ∈ Cσ(X∗∗,X∗)

}
Then ϕ is a convex σ(X,F )-lower semicontinuous map from X to R+.
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Proof.- The fact that C is convex implies that C
σ(X∗∗,X∗)

is convex too
and ϕ is a convex function. Indeed, let us take x and y in X and fix 0 ≤ σ ≤ 1
and ε > 0. If we choose c∗∗x and c∗∗y such that

sup {| < x− c∗∗x , f > | : f ∈ BX∗ ∩ F} ≤ ϕ(x) + ε,

and
sup

{
| < y − c∗∗y , f > | : f ∈ BX∗ ∩ F

}
≤ ϕ(y) + ε,

then

sup
{
< σx+ (1− σ)y − (σc∗∗x + (1− σ)c∗∗y ), f >: f ∈ BX∗ ∩ F

}
≤

sup {< σx− σc∗∗x , f >: f ∈ BX∗ ∩ F}+

sup
{
< (1− σ)y − (1− σ)c∗∗y ), f >: f ∈ BX∗ ∩ F

}
≤

σ(ϕ(x) + ε) + (1− σ)(ϕ(y) + ε) ≤ σϕ(x) + (1− σ)ϕ(y) + ε

(5)

and so we have that

ϕ(σx+ (1− σ)y) ≤ σϕ(x) + (1− σ)ϕ(y) + ε

for every ε > 0 from where the convexity follows. Let us see the lower
semicontinuity now, so let us fix r ≥ 0 and take a net {xα : α ∈ A} in X
with ϕ(xα) ≤ r for every α ∈ A and let x ∈ X be the σ(X,F )-limit of the
net {xα : α ∈ A}. We will see that ϕ(x) ≤ r too. Let us fix an ε > 0 and

choose c∗∗α ∈ Cσ(X∗∗,X∗)
such that

sup {| < xα − c∗∗α , f > | : f ∈ BX∗ ∩ F} ≤ r + ε

for every α ∈ A. Since C is bounded we can find a cluster (x∗∗, c∗∗) point of
the net {(xα, c

∗∗
α ) : α ∈ A} inX∗∗×X∗∗ for the topology σ(X∗∗, X∗). Then we

have that x∗∗ does coincide with x when both linear functionals are restricted
to F and thus

< x∗∗ − c∗∗, f >=< x− c∗∗, f >≤ (r + ε) for all f ∈ BX∗ ∩ F

and so ϕ(x) ≤ r + ε. Since the reasoning is valid for every ε > 0 we have
ϕ(x) ≤ r as required .

Definition 2. For a map ϕ defined as in the former proposition we will say

that it is the F -distance to the set C
σ(X∗∗,X∗)

.
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We now arrive to the following interplay result:

Theorem 2. Let (X, ‖ · ‖) be a normed space and F be a norming subspace
in X∗. Let B := {Bi : i ∈ I} be a uniformly bounded family of subsets of X.
The following are equivelent:

1. The family B is σ(X,F )-slicely isolated

2. There is a family L := {ϕi : X → R+, i ∈ I} of convex σ(X,F )-lower
semicontinuous functions such that

{x ∈ X : ϕi(x) > 0}
⋂

(
⋃
{Bj : j ∈ I}) = Bi

for every i ∈ I.

3. There is a family L := {ψi : X → R+, i ∈ I} of convex σ(X,F )-lower
semicontinuous functions and numbers 0 ≤ α ≤ β such that

ψi(Bi) > β ≥ α ≥ ψi(Bj)

for every i, j ∈ I.

Proof.-Let us assume that the family B is σ(X,F )-slicely isolated. Ap-
plying proposition 1 we may consider ϕi to be the F - distance to the convex
bounded set:

co{Bj : j 6= i, j ∈ I}
σ(X∗∗,X∗)

for every i ∈ I. Our hypothesis on the slicely isolated character of the family
B tells us that when the point x belongs to the set Bi0 of the family B, then
there is a σ(X,F )-open half space H in X with x ∈ H and H ∩ Bi = ∅
for all i ∈ I with i 6= i0. Let us write H = {y ∈ X : f(y) > µ} where
f ∈ BX∗ ∩ F , and then we have ϕi0(y) ≥ f(y) − µ > 0 for every y ∈ H,
and so ϕi0(x) > 0, and ϕi(x) = 0 for all i ∈ I with i 6= i0. The condi-
tion 2 clearly implies 3 with α = β = 0. Finally, if we assume 3, given a
family L := {ψi : X → R+, i ∈ I} of convex and σ(X,F )-lower semicontin-
uous functions such that the conditions in 3 are satisfied we will have that
ψi(y) ≤ α for every y ∈ co {Bj : j 6= i, j ∈ I} by convexity of the function ψi,

so for every y ∈ co {Bj : j 6= i, j ∈ I}
σ(X,F )

too by the lower semicontinuity

of ψi. Consequently we have x /∈ co {Bj : j 6= i, j ∈ I}
σ(X,F )

for every x ∈ Bi

and every i ∈ I. An straightforward application of Hahn Banach’s theo-
rem finishes the proof of the σ(X,F )-slicely isolated property for the family
B.
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A normed space X with a locally uniformly rotund norm decomposes the
σ-discrete basis of the norm topology in a σ-slicely isolated (or relatively
discrete) network. We are going to prove now it is always posible to recover
a basis of the norm topology with both properties: it is going to be σ-discrete
and slicely isolated at the same time.

Proposition 2. Let X be a normed space with a norming subspace F ⊂ X∗

and ‖ · ‖F the equivalent norm associated with it; i.e.

‖ · ‖F := sup{| < ·, f > | : f ∈ BX∗ ∩ F}.

Given a uniformly bounded and σ(X,F )-slicely isolated family A := {Ai : i ∈
I} of subsets in X there exist decompositions Ai = ∪∞n=1A

n
i with

A1
i ⊂ A2

i ⊂ ...An
i ⊂ An+1

i ⊂ ... ⊂ Ai

for every i ∈ I and such that the families

{An
i +B‖·‖F

(0, 1/4n) : i ∈ I}

are σ(X,F )-slicely isolated and norm discrete for every n ∈ N.

Proof.- Let us denote with ϕi de F -distance to co(Aj : j 6= i)
σ(X∗∗.X∗)

. The
former proposition gives us the scalpel to split up the sets of the family using
this convex functions. Indeed, let us define An

i := {x ∈ Ai : ϕi(x) > 1/n}
and we have that Ai = ∪∞n=1A

n
i . Moreover, if x ∈ An

i + B‖·‖F
(0, 1/4n) then

we have
ϕi(x) > 3/4n

Indeed, let us write x = y + z, y ∈ An
i , ‖z‖F < 1/4n, since ϕi(y) > 1/n we

can select a number ρ with ϕi(y) > ρ > 1/n and we will have for every fixed

c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)

that ‖y − c∗∗‖F > ρ. So we can find some f ∈
BX∗∩F with f(y−c∗∗) > ρ. Now we see that f((y+z)−c∗∗) > ρ−1/4n and

so ‖x−c∗∗‖F > ρ−1/4n for every c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)

. Consequently
we see that ϕi(x) ≥ ρ− 1/4n > 3/4n.
On the other hand for y ∈ Aj with j 6= i, we know that ϕi(y) = 0, then for
x ∈ An

j +B‖·‖F
(0, 1/4n) if we write x = y+ z, with y ∈ An

j and ‖z‖F < 1/4n

we have, for fixed c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)

, that:

‖x− c∗∗‖F < ‖y − c∗∗‖F + 1/4n

from where it follows that

ϕi(x) = inf{‖x− c∗∗‖F : c∗∗ ∈ co(Aj : j 6= i)
σ(X∗∗.X∗)

} ≤ 1/4n
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since ϕi(y) = 0. All together means that the family

{An
i +B‖·‖F

(0, 1/4n) : i ∈ I}

verifies the conditions in 3 of the former proposition with the functions (ϕi)i∈I

and constants α = 1/4n, β = 3/4n. Thus it is σ(X,F )-slicely isolated as we
wanted to prove. Moreover, if we fix δ > 0 and such that

1/4n+ δ < 3/4n− δ

the former family is discrete for the norm topology. Indeed for any z ∈ X
we have that

B‖·‖F
(z, δ) ∩ ∪{An

i +B‖·‖F
(0, 1/4n) : i ∈ I}

has non empty intersection with at most one member of the family because
every time the intersection is non empty we can see that ϕi(z) > 3/4n− δ if

B‖·‖F
(z, δ) ∩ {An

i +B‖·‖F
(0, 1/4n)} 6= ∅

but ϕi(z) < 1/4n+ δ when

B‖·‖F
(z, δ) ∩ {An

j +B‖·‖F
(0, 1/4n)} 6= ∅

for any j 6= i and j ∈ I. This fact can be seen as above writing now z = x+y
with x ∈ B‖·‖F

(z, δ) ∩ {An
i + B‖·‖F

(0, 1/4n)} and ‖y‖F < δ in the first case
and x ∈ B‖·‖F

(z, δ) ∩ {An
j + B‖·‖F

(0, 1/4n)} with ‖y‖F < δ for the second
one.

We now arrive to the main result for this section:

Theorem 3. Let X be a normed space with a norming subspace F ⊂ X∗.
Then X admits an equivalent σ(X,F )-lower semicontinuous and LUR norm
if, and only if, the norm topology admits a σ-discrete basis B = ∪Bn such that
every one of the families Bn is σ(X,F )-slicely isolated and norm discrete.

Proof.- If the normed space X admits an equivalent σ(X,F )-lower semi-
continuos and LUR norm it has a network for the norm topology N such
that N = ∪∞n=1Nn where every one of the families Nn is σ(X,F )-slicely iso-
lated. It is not a restriction to assume that every one of the families Nn is
uniformly bounded since intersections with a fixed ball of a σ(X,F )-slicely
isolated family continues being σ(X,F )-slicely isolated. If we apply the for-
mer proposition to everyNn we obtain the families we are looking for. Indeed,

7



let us write Np = {Np
i : i ∈ Ip} and Np

i = ∪∞n=1N
p,n
i for the decomposition

made up with the former proposition. It now follows that

∞⋃
n,m=1

{Np,n
i +B‖·‖F

(0, 1/4n) : i ∈ In}

is the basis of the norm topology we are looking for. Indeed, for a given
x ∈ X and ε > 0 we find some p ∈ N and i ∈ Ip with x ∈ Np

i ⊂ B(x, ε/2).
There is m0 ∈ N such that x ∈ Np,m

i whenever m ≥ m0. It now follows that
for integers big enough m we have Np,m

i + B‖·‖F
(0, 1/4m) ⊂ B(x, ε) since

x ∈ Np
i ⊂ B(x, ε/2).

3 The connection lemma

Now we are in position to present our main result here. For a slicely isolated
family of sets it is always possible to construct an equivalent norm, such that,
the LUR condition on the new norm for a sequence and a point x implies
that the sequence is eventually in the same set of the family to which the
limit point x belongs.

Lemma 2 (Connection lemma). Let (X, ‖ · ‖) be a normed space and F be a
norming subspace in X∗. Let B := {Bi : i ∈ I} be an uniformly bounded and
slicely isolated family of subsets of X for the σ(X,F )-topology. Then there
is an equivalent and σ(X,F )-lower semicontinuous norm ‖ · ‖B on X such
that for every sequence {xn : n ∈ N}, and x in X with x ∈ Bi0 for io ∈ I, the
condition

lim
n

(
2 ‖xn‖2

B + 2 ‖x‖2
B − ‖xn + x‖2

B
)

= 0

implies that:

1. There is n0 such that

xn, (xn + x)/2 /∈ co {Bi : i 6= i0, i ∈ I}
σ(X,F )

for all n ≥ n0

2. For every positive δ there is nδ ∈ N such that

xn ∈ (co(Bi0) + δBX)
σ(X,F )

whenever n ≥ nδ.
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Proof: Let us fix the index i ∈ I and define the nonnegative, convex and
σ(X,F )-lower semicontinuous function ϕi as the F - distance to

co{Bj : j 6= i, j ∈ I}
σ(X∗∗,X∗)

.

Let us choose a point ai ∈ Bi and set Di = co(Bi) for every i ∈ I, and
Dδ

i := Di + B(0, δ), where we denote by B(0, δ) the open ball of radious δ
for the equivalent norm given by

‖ · ‖F := sup {| < ·, f > | : f ∈ F ∩BX∗},

i.e., B(0, δ) := {x ∈ X : ‖x‖F < δ}, for every δ > 0 and i ∈ I. We denote

by pi,δ the Minkowski functional of the convex body Dδ
i

σ(X,F )
− ai. Then we

can define the σ(X,F )-lower semicontinuous norm pi by the formula

p2
i (x) =

∞∑
q=1

1

q22q
pi,1/q(x)

2

for every x ∈ X. Indeed, since B(0, δ) + ai ⊂ Dδ
i

σ(X,F )
we have for every x ∈

X, and δ > 0, that pi,δ(δx/‖x‖F ) ≤ 1, thus δpi,δ(x) ≤ ‖x‖F and the above
series converges. Finally we define the nonnegative, convex and σ(X,F )-
lower semicontinuous function ψi(x) := pi(x − ai) for every x ∈ X. We are
now in position to apply Deville’s master lemma, see lemma 1 above, to get
an equivalent and σ(X,F )-lower semicontinuous norm ‖ · ‖B on X such that
the condition

lim
n

(
2 ‖xn‖2

B + 2 ‖x‖2
B − ‖xn + x‖2

B
)

= 0

for a sequence {xn : n ∈ N} and x in X implies the existence of a sequence
of indexes (in) in I such that:

1. limnϕin(x) = limnϕin(xn) = limnϕin((x+ xn)/2) = sup {ϕi(x) : i ∈ I}

2. limn[1
2
(ψ2

in(xn) + ψ2
in(x))− ψ2

in(1
2
(xn + x))] = 0

Our hypothesis on the slicely isolated character of the family B tell us after
theorem 2 that when the point x belongs to the set Bi0 of the family B, we
have ϕi0(x) > 0, but ϕi(x) = 0 for all i ∈ I with i 6= i0. From the condition 1
above it now follows that there exists a postive integer n0 such that in = i0,
ϕio(xn) > 0 and ϕi0(

1
2
(x+xn)) > 0 for all n ≥ n0, from where the conclusion

1 of the lemma follows. Moreover, the condition 2 above now implies that

lim
n

[2−1(ψ2
i0
(xn) + ψ2

i0
(x))− ψ2

i0
(2−1(xn + x))] = 0,
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and so by the convex arguments, and for every positive integer q, we have
that

lim
n

[2−1((pi0,1/q(xn−ai0))
2+(pi0,1/q(x−ai0))

2)−(pi0,1/q(2
−1(xn+x)−ai0))

2] = 0,

and consequently

lim
n
pi0,1/q(xn − ai0) = pi0,1/q(x− ai0).

If we fix a positive number δ and we set the integer q such that 1/q < δ, since

x − ai0 ∈ D
1/q
i0
− ai0 we have that pi0,1/q(x − ai0) < 1 because D

1/q
i0
− ai0 is

norm open and therefore, there is a positive integer nδ such that for n ≥ nδ

we have that pi0,1/q(xn − ai0) < 1 and thus xn − ai0 ∈ Dδ
i0

σ(X,F )
− ai0 , and

indeed xn ∈ (co(Bi0) +B(0, δ))
σ(X,F )

, so the proof is over.
A direct consequence of the connection lemma is a straightforward proof

of the renorming implication in theorem 1

Corollary 1. In a normed space X with a norming subspace F in X∗ we
have an equivalent σ(X,F )-lower semicontinuous and locally uniformly ro-
tund norm whenever there are slicely isolated families for the σ(X,F ) topol-
ogy

{Bn : n = 1, 2, ...}

such that for every x in X and every ε > 0 there is some positive integer n
with the property that x ∈ B ∈ Bn and that ‖ · ‖ − diam(B) < ε.

Proof.- It is not a restriction to assume that every one of the families Bn

is uniformly bounded since we can make intersections with countably many
balls centered in the origin and covering X without losing the character of
slicely isolatedness and the network condition of the whole family. So we can
consider the norms ‖ · ‖Bn constructed using the connection lemma for each
one of the families Bn and to define the new norm by the formula:

‖x‖2
B :=

∞∑
n=1

cn‖x‖2
Bn

for every x ∈ X, where the sequence (cn) is chosen accordingly for the con-
vergence of the series. This is possible because all the norms ‖ · ‖Bn are
equivalent to the original one and there are numbers dn such that

‖ · ‖Bn ≤ dn‖ · ‖,
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so it is enough to take cn := 1
d2

n2n . If we cosider a sequence {xn : n ∈ N} and
x in X such that

lim
n

(
2 ‖xn‖2

B + 2 ‖x‖2
B − ‖xn + x‖2

B
)

= 0,

and we fix an ε > 0, we know that there is q and B0 ∈ Bq with x ∈ B0 ⊂
B(x, ε). The condition

lim
n

(
2 ‖xn‖2

B + 2 ‖x‖2
B − ‖xn + x‖2

B
)

= 0

implies that

lim
n

(
2 ‖xn‖2

Bq
+ 2 ‖x‖2

Bq
− ‖xn + x‖2

Bq

)
= 0

by convex arguments. The connection lemma now says that for every positive
δ there is nδ ∈ N such that

xn ∈ (co(B0) + δBX)
σ(X,F )

whenever n ≥ nδ. Thus ‖xn − x‖ ≤ ε + δ for n ≥ nδ and limn xn = x in
(X, ‖ · ‖) as we wanted to prove.

Remark.- A normed space X with a norming subspace F admits an
equivalent σ(X,F )-lower semicontinuous and LUR norm if, and only, for
every ε > 0 we have that X = ∪∞n=1X

ε
n and for every n ∈ N and every x ∈ Xε

n

there is a σ(X,F )-open half space H with x ∈ H and ‖·‖-diam(H∩Xε
n) ≤ ε,

in other words if, and only if, the identity map from the σ(X,F ) to the ‖ · ‖-
topology is σ-slicely continuous, see [12].

The fact that we are in the conditions of the former corollary when the
identity map from the σ(X,F ) to the ‖ · ‖-topology is σ-slicely continuous
follows from Stone’s theorem about the paracompactnes of metric spaces,
[10]. Indeed, if we have a discrete family of sets {Di : i ∈ I} in X with
‖x − y‖ > δ for every x ∈ Di and y ∈ Dj with i 6= j, and ‖ · ‖-diamDi ≤ ε
for every i ∈ I, we can define the refinement

Dn
i := Di ∩Xδ

n

for all i ∈ I, so that the family {Dn
i : i ∈ I} is going to be σ(X,F )-isolated

with Di = ∪∞n=1D
n
i . Given an open cover of the normed space X with sets of

diameter less than or equal to ε it has a σ-discrete refinement with families
{Di : i ∈ I} as above. Collecting all families for all ε = 1/m we are in the
conditions of the former corollary and so we have an equivalent σ(X,F )-lower
semicontinuous and LUR norm on X

With the same proof we have the following:
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Corollary 2. If X and Y ar normed spaces, F and G are norming subspaces
in X∗ and Y ∗ respectively, and T : X −→ Y is a continuous linear map which
is σ(X,F ) to σ(Y,G) continuous too, then we have an equivalent σ(X,F )-
lower semicontinuous norm on X ‖ · ‖T such that

lim
n

(
2‖xn‖2

T + 2‖x‖2
T − ‖xn + x‖2

T

)
= 0

implies that
lim

n
Txn = Tx

whenever T is σ(X,F )-slicely continuous to the norm; for instance when
Y admits an equivalent σ(Y,G)- lower semicontinuous and LUR norm. In
particular if Y has a LUR norm and T ∗(Y ∗) is norme dense in X∗, then the
normed space X admits an equivalent LUR norm.

Remark.- Our approach here do not need any convexification argument
as the ones based in Bourgain Namioka supperlemma, [14, 3], or those de-
velopped in [12]. Indeed the convex structure here is inside the proof of the
connection lemma, it is in the fact that the functions used are already con-
vex, it is the convexity of the functions ϕi and ψi, as they have been defined,
which gives free of charge the construction of the equivalent norm using now
Deville’s master lemma. In our approach here the convexification is done on
the elements of the σ-slicely isolated network only. In all previous approaches
it was done on the sets Xε

n from the decomposition X = ∪∞n=1X
ε
n above.

4 Compactness and renormings

For a bounded set B in a normed space X, the Kuratowski index of non-
compactness of B is defined by

α(B) := inf{ε > 0 : B ⊆ Z +B(0, ε) for some norm compact subset Z}

The main results in the work [3] provides extensions of corollary 1 when the
Kuratowski index of non-compactness is used instead of the diameter. We
are going to extend the corollary 1 for spaces of the kind C(K), where K is a
separable compact space, as an application of our connection lemma above,
but using a more general measure of non-compactness:

Definition 3. For a bounded subset A of the normed space X with norming
subspace F ⊆ X∗ we define the index of non σ(X,F )-compactness by

χF (A) := inf {ε > 0 : A ⊆ Z +B(0, ε) for some Z ∈ W}

where we denote by W the family of all σ(X,F )-relatively compact subsets of
X.

12



The theorem reads as follows:

Theorem 4. Let K be a separable compact space such that there are slicely
isolated families for the pointwise topology

{Bn : n = 1, 2, ...}

such that for every x in C(K) and every ε > 0 there is some positive integer n,
with the property that x ∈ B ∈ Bn and χTp(B) < ε. Then the Banach space
C(K) admits an equivalent and Tp-lower semicontinuous locally uniformly
rotund norm.

Proof.- Without any lost of generality we can, and we do assume, that
every one of the families Bn is uniformly bounded since the intersection of
a slicely isolated family of sets with a fixed ball is slicely isolated too. Let
us construct, with the use of the connection lemma, equivalent pointwise
lower semicontinuous norms ‖ · ‖Bn for every positive integer n that verify
the conclusion of the lemma for the family Bn. If we choose a countable set
T =: {tn : n = 1, 2, ...} in the separable compact K, we can now define a new
norm with the formula:

‖|x|‖2 :=
∞∑
n

cn(‖x‖2
Bn

+ x(tn)2)

for every x ∈ C(K), where the sequence (cn) is chosen accordingly for the
convergence of the series. Now the condition

lim
n

(
2 ‖|xn|‖2 + 2 |‖x| ‖2 − ‖|xn + x|‖2) = 0

for a given sequence (xn) and x in C(K) implies that the sequence itself
is a pointwise relatively compact subset of C(K). Indeed, for every ε > 0,
choosing the family Bn such that x ∈ B ∈ Bn and the index of pointwise
compactness χTp(B) < ε, the connection lemma tells us that there is a posi-
tive integer n0 such that χTp({xn : n = n0, n0 + 1, ...}) < ε and so for all the
sequence χTp({xn : n = 1, 2, ...}) < ε. So the sequence (xn) forms a relatively
pointwise compact subset of C(K). Moreover, and again by the convex argu-
ments we have that limn xn(t) = x(t) for every t ∈ T . Thus for any pointwise
limit point y of a subsequence {xnk

: k = 1, 2, ...} and every s ∈ K we choose
a net {uα : α ∈ (A,�)} in the dense subset T with s = limα uα in the com-
pact K, and the interchange limit property of relatively pointwise compact
subsets of C(K) studied by Grothendieck tells us that the following happens:

lim
α

lim
k
xnk

(uα) = lim
α
x(uα) = x(s) = lim

k
lim

α
xnk

(uα) = lim
k
xnk

(s) = y(s).

13



Consequently any cluster point y of the sequence (xn) coincides with the
given x and so the pointwise limit of the sequence (xn) is the continuous
function x, thus the space C(K) is pointwise locally uniformly rotund with
the new norm ‖| · |‖, and it has an equivalent pointwise lower semicontinuous
and locally uniformly rotund norm by our results in [10].

Let us finish with an open problem:
Question.-
Given an scattered compact space K, is there any characterization of the
LUR renormability of C(K) by means of any σ-discreteness property for the
family of all clopen subsets of K? Indeed, we know that if A is the familly
of all clopen subsets of the scattered compact spaces K and C(K) admits an
equivalent pointwise lower semicontinuous and LUR norm, then the family
of clopen sets is a countable union A =

⋃
n∈NAn of families such that every

one of them provides a set of characteristic functions {1A : A ∈ An} which
is pointwise slicely discrete, but it is unknown what else is needed to have a
reverse implication true.
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