JOURNAL OF FUNCTIONAL ANALYSIS 117, 243-273 (1993) @

o-Fragmentability of Multivalued Maps
and Selection Theorems*

J.E. JAYNE

Department of Mathematics, University College London,
Gower Street, London WCIE 6BT, England

AND

J. ORIHUELA, A.J. PALLARES, AND G. VERA

Departamento de Matematicas, Universidad de Murcia,
Campus de Espinardo, 30100 Espinardo, Murcia, Spain

Communicated by A. Connes

Received April 28, 1991; revised April 14, 1992

We answer the question as to when a weak-star upper semi-continuous map F
with arbitrary non-empty values from a metric space 7 to the dual X* of an
Asplund Banach space X has a selector of the first Baire class to the norm. @ 1993

Academic Press, Inc.

INTRODUCTION

A map F from a topological space T to the power set of a topological
space E is said to be upper semi-continuous {(us.c.) if the set {reT:
F(tyn H# &} is closed in T, whenever H is a closed subset of E. Jayne
and Rogers [25] studied the structure of such maps in considerable depth,
when T and E are both metric spaces. A map f from T into E is said to
be a selector for Fif f(¢t)e F(¢) for all t in T. Jayne and Rogers proved that
if F has non-empty arbitrary values, then F always has a selector f of the
second Borel class; further, if F(t) is complete for every ¢ in T, they proved
that F has a selector f of the first Borel class. Hansell showed in [18] that
the proof in [25] can be modified to yield a selector of the first Borel class
when F(¢) is only supposed to be non-empty for every ¢ in T. Srivatsa in
[38] obtained the same result, independently and at about the same time
as Hansell, by a different approach.
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Some of the more interesting u.s.c. set-valued maps are defined on a sub-
set T of a Banach space and take their values in a Banach space X with
its weak topology, or in a dual Banach space X* with its weak-star
topology. Jayne and Rogers proved in [26] that, if Fis a weak (or weak-
star) u.s.c. set-valued map from a metric space T to a Banach space X with
the Point of Continuity Property (or a dual X* of an Asplund Banach
space X) and F takes only non-empty weakly compact (or weak-star
compact) values, then F has a selector f of the first Baire class to the norm;
i€, f is the norm pointwise limit of a sequence of norm continuous
functions from T into X (or X*). The existence of these selectors has been
successfully applied to several questions in the theory of Banach spaces
[10, 12, 347, and adds a new facet to the theories of maximal monotone
maps, of subdifferential maps, of attainment maps, and of metric
projections [267. Hansell et al. proved in [20] that it is also possible to
obtain the former result when X is an arbitrary Banach space and T is a
complete metric space. Srivatsa later (in 1985, [38]) showed that, if Fis a
weak u.s.c. set-valued map from a metric space T to a Banach space X, and
F takes only non-empty values, then F has a selector f of the first Baire
class to norm.

During 1989 the first named author visited Murcia University and gave
seminar talks explaining the ideas underlying the former results, together
with the unpublished work of Srivatsa. We then began to develop a unified
approach to the known selection theorems and to examine the extent to
which Srivatsa’s result holds for dual Banach spaces with their weak-star
topology. Namely, if F is a weak-star u.s.c. set-valued map from a metric
space T into the dual X* of an Asplund Banach space X and F(¢) is
assumed to be non-empty for every ¢ in T, is it possible to get a selector
S for F of the first Baire class to the norm? Our main aim in this paper is
to give a rather complete solution to this problem. Note that if X is not an
Asplund space, then there exist weak-star u.s.c. maps with weak-star com-
pact convex values without selectors in the first Baire class [28,
Theorem 10] (Theorem 26 in this paper gives another proof).

Our main results are:

THEOREM 21. Let (M, d) be a metric space and X* a weakly compactly
generated dual Banach space. Then every weak-star upper semi-continuous
set-valued map F: M — 2%" with arbitrary non-empty values, has a selector f
of the first Baire class to the norm.

THEOREM 23. Let (M, d) be a metric space and X* the dual space of an
Asplund space X such that the unit ball B, in X* is angelic for the weak-
star topology (i.e., if y is a point in the weak-star closure of A< B,., then
there is sequence in A weak-star convergent to y). Then every weak-star
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upper semi-continuous set valued map F: M — 2%" with arbitrary non-empty
values has a selector f of the first Baire class to the norm.

We also observe the following counterexample: Let w, be the first
uncountable ordinal, and [0, w,] the ordinal interval with the order topol-
ogy. X=%[0, ®,] is an Asplund space, and F: X — 2*" defined by

F(f)={d,:0e [0, @), [/ =1/()l}

is a weak-star u.s.c. map without a selector in the first Baire class to the
norm (Example 28 below). This example was inciuded in a previous paper
[33] and can be considered as a particular case of the next theorem.

THEOREM 31. Let X be an Asplund space. Then the following are equiv-
alent:

(1) X has the property C of Corson;

(1) if M is a metric space and F is a weak-star upper semi-continuous
multivalued map from M into X* for which F(m) is a non-empty convex
weak-star countably compact subset of X* for each me M, then F has a
selector of the first Baire class to the norm.

Note that if X is a representable Banach space, then property C of
Corson in X is equivalent to the weak-star angelicity of the unit dual ball
B,. [15].

In order to organize some common ideas underlying the previous work
on selections, we study, in the first part of this paper, which kind of multi-
valued maps F, from a metric space into a topological space (E, 1)
with a lower semi-continuous metric p defined on E, can be uniformly
approximated by functions in the first Baire class to the metric p. A version
for set-valued maps of the notion of s-fragmentability considered by Jayne
et al. (22,23, 24] plays a central role here. Using this notion, and basing
our treatment in part on Srivatsa’s proof of this theorem for weak-u.s.c.
maps, we give selection theorems (Theorems 12 and 13) that include the
known cases (Theorems 16 and 19), and, introducing new ideas, we obtain
some new applications (Theorems 21 and 23) for weak-star u.s.c. maps.
Finally, using the Choquet boundary set studied in [21], we are able to
prove Theorem 23 stated above. This boundary set may be empty, but in
the proof of Theorem 23 we can construct a selector in such a way that the
points where the boundary set is empty can be fixed in advance. In order
to obtain a selector with the suitable properties, another application of our
selection results is required.
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SOME DEFINITIONS AND NOTATION

Throughout the paper we denote by T a Hausdorff topological space.

We start by recalling some definitions and facts that have been used in
previous selection work [20, 25,28]. The following definition of a
discretely o-decomposable family of sets has been successfully used in this
context.

An indexed family {H: ie I} of subsets of T is said 10 be
discretely o-decomposable (d.a.d) if for each iel we have
H;=U {H,; ,:ne N}, where the family {H, ,: i€ I} is discrete
Sfor every positive integer n (note that I will usually be an
uncountable index set).

If in the above definition we assume that the sets H,; are Z,-sets
(countable unions of closed sets), then all the sets H,, can be assumed to
be closed sets. Indeed, given a sequence of closed sets {F; ,:meN} such
that H,={) {F, .- me N}, then

H=\J{H ,nF , nmeN}

and the family {H,,nF, ,:iel} is discrete for each pair of positive
integers a, m.

DErFINITION.  We shall say that {H,;:ie I} is a good partition of T if it
is a d.o.d family of #,-subsets of T such that H,n H,=¢ if i#j and
T={ {H:iel}.

Remark 1. If {H;:iel} is a good partition of 7, and for each ie/
{M,.ae A,} is a good partition relative to the subspace H;, where the
index sets A, are assumed to be pairwise disjoint, and A ={) {4;:iel},
then it is easy to check that {M,:ae A} is a good partition of T (see
[20, Lemma 51]).

If {H:iel} and {M,:jeJ} are two good partitions of 7, then the
family {H,nM,:(i,j)eIxJ} is also a good partition of T. Just observe
that {H,nM,:jeJ} is a good partition of each set H,.

Let {T,:ne N} be a countable cover of T by closed sets and suppose
that each open subset of T is an £, set. If H, =T, and H,=T,\
U{T,.:1<m<n} for n>1, then {H,:neN} is a good partition of T.
Note that every countable family of sets is o-discrete, so it is d.o.d.

We shall say that a topological space T is perfectly para-
compact if T is a paracompact space such that each open
subset is an F, -set.
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The following result is one of the tools for the proof of selection
theorems and has been used in [20, Lemma 4].

PROPOSITION 2. Let T be a perfectly paracompact space and {G.,:y < T}
a transfinite sequence of open sets covering T. If M, =G\ {G:: &<y},
then {M,.y< I} is a good partition of T.

Throughout, (E, p) denotes a metric space with the distance p. In
particular, £ can be a normed space and p the metric associated to the
norm.

Very often, we are concerned with maps f: T— F that are constant on
the sets of a good partition; ie., there exists a good partition {H;:iel} of
T such that every restriction f|, is constant. We call them piecewise
constant functions (note that piecewise is used in a somewhat non-standard
way).

We recall that a function f from the topological space T into the metric
space E is said to be in the first Baire class if there exists a sequence of
continuous functions f,;: T— E such that for each point t€ T the sequence
[fa(1) converges to f(t). We denote by B (T, E) the space of all functions
f: T — F in the first Baire class.

The following proposition relates the piecewise constant functions to the
functions in the first Baire class.

ProprosiTION 3. Let T be a topological space such that each open set is
an Z,-set. If [+ T— E is constant on the sets of a good partition (ie., [ is
piecewise constant), then there exists an increasing sequence D, of closed
subsets of T that covers T and such that each restriction f| [, is continuous.

Moreover, when E is a convex subset of a Banach space and T is a
perfectly paracompact space, then f is in the first Baire class, and there exists
a sequence of continuous functions f,: T — E such that

Vie T 3n(t)eN such that  f,(t)=f(t)if n=n(t). (1)

Proof. Let {H,:iel} be a good partition of T such that each restric-
tion f|, is constant. Each H, can be expressed as a countable union
H,=,.n H; . where each {H, ,:iel} is a discrete familie of closed
sets. Then T,=J {H, ,:iel} is a sequence of closed sets such that each
restriction f1 . is continuous.

If we consider the sequence of #-sets: C,=T,, C,=T\J {T;: 1 <i<n}
(n>1), we can obtain increasing sequences of closed sets {C, ,,:meN}
such that C,={J {C, ,,;meN}. Thus D,=C, ,vC, 0 - VC, , is
an increasing sequence of closed sets such that T=\J {D,,:me N} and all
restrictions f1, are continuous.



248 JAYNE ET AL.

When E is a convex subset of a Banach space and 7T is a paracompact
space, then E has the extension property with respect to T (ie., every
continuous function f: C — E defined on a closed subset C of T has a
continuous extension to 7') {1]. We can consider f,.: T— E as a con-
tinuous extension of f|, and so (1) holds. |

0-FRAGMENTED MAPS

Lebesgue [30] proved that a real function f: / —» R, defined on an inter-
val 7 of the real line, is in the first Baire class if, and only if, for each ¢ >0,
I can be expressed as the union of a sequence (/) of closed subsets such
that diam( f(I,)) <e.

Throughout, we use the following notion that is based on the condition
used by Lebesgue and on the notion of a o-fragmented space given in [22].

Given a class # of subsets of 7, we say that a function f/: T— E is
a-fragmented by sets of #, if for each ¢>0 there is a sequence T, in #
such that T={) {T,:ne N} and each T, has the property

(P,): For each non-empty subset C of T, there exists an
open subset V of T such that VnC# ¥ and
p-diam(f(VnC))<e¢, where “p-diam”™ denotes the
diameter of the set for the distance p.

For a multivalued map F: T— 2%, i.e, a map with values in the power
set 28 ={A: A= E}, we extend the above definition, replacing (P,) by

(PF¥): For each non-empty subset C of T, there exists an
open subset ¥ of 7 and a subset D of E with
p-diam(D) < ¢ such that VnC# J and F(¢)n D #
& for each te Vn C.

If 5 is the family of all subsets (resp., closed subsets) of T, we shall say
that the function f, or the multivalued map F, is o-fragmented (resp.,
a-fragmented by closed sets).

Note that if a multivalued map F from T into F has a selector f, i€, a
function f: T — E such that f(¢) € F(t) for every t € T, which is o-fragmented
by closed sets, then F is also o-fragmented by closed sets. A particular case
is when the selector is in the first Baire class, as the following proposition
shows.

ProposiTioN 4. Let T be a Hausdorff topological space and E a metric
space. Every map in B\(T, E) is o-fragmented by closed sets. If E is a
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separable metric space, then for every &> 0 there exists a sequence of closed
sets I, such that E=\), I, and p-diam f(I,) < e.

Proof. We assume that f is the pointwise limit of a sequence of
continuous functions f,: T— E. Given ¢ > 0, the sequence of closed sets

T,=) {fe T:p(fn(t),f_,(z))gg}

Jjzn

covers T. Since p(f,(1),f(¢))<¢/3 for every te T,, and f, is continuous,
each closed set T, has property (P,).

If E is separable, then each one of the above sets T, can be expressed as
a countable union of closed sets H, , such that p-diam f(H, ,) <e. Just
take H, ,=T,nf,'(B,), where B, is a countable cover of E by closed
balls with p-diam <¢/3. |

The following theorem gives a characterization of o-fragmentability in
terms of uniform approximations by piecewise constant functions.

THEOREM 5. Let F be a multivalued map from the perfectly paracompact
space T into the subsets of a metric space (E,p). The following are
equivalent :

(a) F is o-fragmented by closed sets;

(b) for each £ > 0 there exists a function constant on the sets of a good
partition f.: T — E such that, for every te T, p-dist{f(t), F{t))<e.

Proof. (a)=>(b). Given ¢>0, let {T,:ne N} be a countable cover of
T such that each T, verifies (P}), and let {Y,: ne N} be the good partition
of T defined by Y, = Ty, and for n>1, Y, = TNU{T::1 €i < n}
(Remark 1). We prove that, for each ne N, there exists a piecewise constant
map f,:Y,—E such that p-dist(f,(¢), F(t))<e¢ for every teY,. By
Remark 1 the map f,: T — E defined by f,|, =/f,. neN, is a piecewise
constant function satisfying (b).

Each Y, with the induced topology is paracompact, because it is an
F,-subset of T [9, p. 383].

By property (P¥) applied to C=7Y (< T,) there exists a non-empty
(relatively) open subset G, of Y and a set Dyc E, with p-diam(D,) <g,
such that F(t)n Dy # ¢ for every te G,. Now we proceed by transfinite
induction. If the closed set Y\G, is non-empty, we apply (P}*) another time
and obtain a (relatively) open subset G, of Y and a set D, < E such
that M, =G, n(Y\G,) # J, p-diam(D,)<e, and F(t1)n D, # & for each
teM,.
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Let y be an ordinal number such that for every ordinal u <7y a relatively
open subset G, of ¥ and a subset D, of E have been defined so that
p-diam(D,)<e¢ and F(t)nD,# & for each reM,, where M,=G,n
(N\U {G;: & <p)).

The construction continues by applying (P¥) to Y\ {G.: ¢ <y} until
we have some ordinal /" such that Y={) {G,:y <[}

By Proposition 2, the family {M.:yeI'} is a good partition of Y.
Choosing a fixed point y, in each D, we can define a piecewise constant
function f, on Y (=Y,) by f,(t)=y, if te M. It is clear that p-dist(f,(¢),
F(1)) <& for each 1€ Y, as required.

(b)=(a). Given £>0, let f, be a piecewise constant function such
that

p-dist( f.(¢), F(1)) <§ foreach teT.

By Proposition 3, there is a countable cover {7,:ne N} of T such that
for each ne N the set T, is closed and f, |, is continuous. If F#Cc T,,
then there is an open subset V of T such that VnC# and
p-diam(f(V n C))<e/3.

Taking D= {ye E: p-dist(y, f(V " C))<&/3}, we have p-diam(D)<e
and F(t)nD£Z ifteVnC |

Remark 6. Theorem 5 and Remark 1 show that a multivalued map
F: T 2% defined on a perfectly paracompact space 7, is o-fragmented
by closed sets if, and only if, the restrictions F|, to the pieces of a good
partition {H,:iel} of T are o-fragmented by closed sets.

In order to relate the notion of a function o-fragmented by closed sets
with those that have been used in previous papers [16-18, 20] we recall
the notion of a g-discrete function in the first Borel class.

A function f from the topological space T into the metric space E is said
to be in the first Borel class if f (V) is an %, set for each open subset
VcE.

A collection & of subsets of T is said to be a base for f: T— E if for each
open set G < E the set /~'(G) is the union of sets in #. The function f is
called o-discrete if there exists a sequence of discrete families of sets (4,)
in 7 such that #=) {#,:neN} is a base for £ The class of g-discrete
functions contains the continuous functions, all the functions with a
separable range, and each Borel measurable function whose domain is a
Borel subset of a complete metric space (see [16]).

CorROLLARY 7. Let T be a perfectly paracompact space, E a metric
space, and - T — E. Then the following are equivalent:
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(i) [ is o-fragmented by closed sets;

(i) fis a uniform limit of a sequence of functions which are constant
on the sets of good partitions (i.e., of piecewise constant functions);

(iii} [ is o-discrete and of the first Borel class.

Moreover, if E is a convex subset of a Banach space, they are equivalent
to:

(iv) fis in the first Baire class B|(T, E).

Proof. (i)<> (ii) is Theorem S.

(ii) = (iii). It follows from Proposition3 that every piecewise
constant function is in the first Borel class. It is clear that each piecewise
constant map is o-discrete. Since the uniform limit of a sequence of
o-discrete functions is o-discrete [19, Theorem 3.3], and the uniform limit
of a sequence of functions in the first Borel class is also in the first Borel
class [29, p. 386], we have (i) = (iii).

(1i)=>(1). Given ¢>0 we consider the open cover of E consisting of
all (¢/2)-balls. By reason of Stone’s Theorem [9, p. 349] we can obtain a
o-discrete open cover {B,: a€ A} of E where p-diam B, <¢ for every o€ 4.
Let {A4,:neN} be a countable partition of 4 such that every family
{B,:x€ A,} is discrete, and let Z=) {#B,:ne N} be a base of f where
each &, is a discrete family. For a fixed natural number k we denote by 2%
the subfamily of #, composed of sets Ue 4, such that there exists an ele-
ment o€ A, with f(U)c B,. We observe that given Ue %%, the element
ae A, with f(U)< B, is unique; we denote it by a(k, U). Since f is
in the first Borel class, all the sets in the discrete family Qﬁ =
{Unf "(Bax,vy: Ue B%} are Z,-set, so the union DX=) {C: Ce 2%} is
a F,-set in T. One readily sees that T={J {D*:n,keN}. Given a
non-empty subset Cc D¥ there exists Ue®* such that CnUn
S (B, vy) # . If we fix a point a in this non-empty set, we can obtain
an open neighbourhood G of a such that U is the only member of #*
which intersects G. Now we have that CNnGcCnUnf (B, ) and
so p-diam(f(C n G)) <& We have shown that f is o-fragmentable by the
countable family of #-sets {D*:n, keN}, and it follows that f is
o-fragmented by closed sets.

If £ is a Banach space, the uniform limit of a sequence in B,(7, E)
belongs to B,(T, E) (see [ 18, p. 391]). By Proposition 3, B,(7, E) contains
the piecewise constant functions, and so (ii) = (iv). And Proposition 4 gives
the implication (vi)=(i). ||

In the case of a metric space T, Hansell [ 18, Lemma 7] has shown that
(iv) and (iii) are equivalent above.
The equivalence between (iii) and (iv) is not true if £ is allowed to be
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an arbitrary metric space. Indeed, recently Fosgerau [11] has shown that
if T is a metric space and E is an arcwise connected and locally connected
metric space, then (iii) and (iv) are equivalent; and, if T contains a copy
of the interval [0, 1], E is a complete metric space, and (iii) <> (iv), then
E must be arcwise connected and locally connected.

Now we are going to give sufficient conditions for the o-fragmentability
by closed sets of multivalued maps.

We shall denote by 1 a Hausdorff topology on a metric space (E, p) such
that p is t-lower semi-continuous. A standard example is obtained when
E= X is a Banach space (resp., £=X* is a dual Banach space) with the
metric associated to the norm of E and 1 is the weak (resp., weak-star)
topology on E. Another example is obtained when = a(X, ext(By.)) is the
extremal topology on the Banach space X (the coarsest topology on X such
that each extreme point of the unit ball of the dual space X* is
continuous). It is well known that if X=C(K) is the space of the
continuous function defined on the compact space K, then the extremal
topology coincides with the topology of the pointwise convergence.

A multivalued map F:T—2% is said to be t-upper semi-continuous
(t-us.c.) if {teT: F(t)n Cs# &} is a closed subset of T for each t-closed
subset C of E. If T=(M,d) is a metric space, then the t-upper semi-
continuity of F has the following characterization: if ¢, is a sequence in T
convergent to a point reT and x,€F(¢,), then the z-closure of {x,}
intersects F(r). In particular, if x, ¢ F(t) for every ne N, then the sequence
x, has a 7-cluster point x e F(z).

We call a multivalued map piecewise upper semi-continuous (piecewise
us.c.) if its restrictions to the pieces of a good partition are upper semi-
continuous.

The following two results (Lemma 8 and Proposition 9) are based upon
Srivatsa’s proof of his selection theorem [38].

LEMMA 8. Let 1 be a Hausdorff topology on the metric space (E, p) such
that p is t-lower semi-continuous, T is a perfectly paracompact space, and
F: T — 2% is a piecewise t-upper semi-continuous map. Assume that for every
e>0 there exists a sequence of piecewise constant functions g,.: T — E such
that the sequence of subsets B, = {teT: p-dist(g,(t), F{t))<e} covers T.
Then F is o-fragmented by closed sets.

Proof. Because of Remark 6 we can suppose that F is us.c. Let ¢>0.
By Proposition 3, for each ne N there exists a sequence of closed subsets
{D, n:meN} such that T={J {D, ,. me N} and every restriction g, |,
is continuous. We check that the subsets '

B, = 1{1€D, ,: p-distig,(1), F(1)) ¢}
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are closed. If se D, ,,\B, ,,, then there exists a>¢ such that the closed
ball B(g,(s), 2} does not intersect F(s). By the continuity of g, there
exists a neighbourhood U of s such that B(g,(t), &)< B(g,(s), «) for
every teUn D, ,. By the t-upper semi-continuity of F there exists a
neighbourhood V'« U of s such that

F(t)n B(g,(1), e) = F(t) n B(g,(s), ) = &

for every re Vn D, ,,. This proves that B, ,, is a closed subset of D, ,,,
and so a closed subset of 7. By hypothesis T=) {B,, ,.:n,meN}.

Let C be a non-empty subset of some B, ,,. If we fix a point ae C, there
is an open neighbourhood V of a such that p-dist(g,(¢), g,(a)) <¢ for each
teVn C. If D= B(g,(a),2¢), then p-diam(D)<4c and F(t)n D # ¥ for
every 1€ Vn C. This completes the proof. ||

The lemma above is useful in checking that a given multivalued map is
o-fragmented by closed sets.

PrOPOSITION 9. Let (M, d) and (E, p} be metric spaces and F: M — 2%
a multivalued map with arbitrary non-empty values which is assumed to be
piecewise upper semi-continuous. Then F is o-fragmented by closed sets.

If E is a Banach space and F is assumed to be piecewise upper semi-
continuous for the weak topology, then F is g-fragmented by closed sets.

Proof. We can suppose that F is us.c. (Remark 6). Let {G,:y <I'(n)}
be an open cover of M such that d-diam(G,) < 1/n for each y < I'(n). By
Proposition 2 the family {M,:y <I"} defined by

M.,,:G,,\U (Gt <y)

is a good partition of M. If M # (&, we fix a point t,€ M, and a point
y,€ F(1,). Then we define a piecewise constant function f,: M — X by
SAty=y, ifteM,.

Let £>0 and assume that re M. By the construction of f,, there exists
a point t, e M such that d(¢,, 1)< 1/n and f,(r)e F(1,). The upper semi-
continuity of F gives the existence of a point ae F(¢) in the p-closure of
{f.(1):ne N}. The subsets

B,={te M: p-dist(g, (1), F(1))<e}

cover M. And Lemma 8 shows the o-fragmentability of F.

With the above notation, if E= X is a Banach space and F is upper semi-
continuous for the weak topology, then for each re M there exists a point
ae F(t) in the weak closure of {f,(7):neN}, and thus there exists a
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sequence of rational convex combinations of {f,(1)} that converges to a in
the norm of X.

If we denote by {g,} the sequence of all the rational convex combina-
tions of functions from the sequence {f,}, then the above argument shows
that the subsets

B,={tre M:| |I-dist(g,(1), F(1)) <¢&}
cover M. And Lemma 8 shows again the g-fragmentability of F. |

PROPOSITION 10. Let M be a metric space, X a convex subset of a
Banach space and F: M —2* a multivalued map with non-empty values
which is assumed to be piecewise u.s.c. for the topology o(X, ext(By.)) of
pointwise convergence on the extreme points of the dual unit ball By.. Then
F is a-fragmented by closed sets.

Proof. As in the above cases, we can assume that F is us.c. for the
extremal topology.

We show that if F takes its values in a bounded subset Bc X, then F is
us.c. for the weak topology. If not, we could fine a sequence f,e M
convergent to a point ¢ and a sequence y, € F(¢,)\F(¢) such that {y,} does
not have weak cluster points in F(¢). But by the a(X, ext(8y.))-us.c. of F
we have that each subsequence of { y,} has a(X, ext(By.)) cluster points in
F(r). This implies that {y,:ne N} is a relatively (X, ext(B,.)) countably
compact set and so is relatively weakly compact [3]. Then (y,) has a weak
convergent subsequence whose limit must be in (¢}, and that contradicts
the choice of (y,).

If F does not take its values in a bounded set, we take the sequence of
closed set T,,={re M: F(t)n B(0, n) # & }, which covers M. The sequence
H,=T, H,=T\T,_, (if n22) is a good partition of M, and F'(1)=
F(:)yn B(0, n) if 1€ H, defines a piecewise o(X, ext(By.))-u.s.c. map. This
map is piecewise weak u.s.c. by the above paragraph. The last proposition
and Remark 6 show that F’' is o-fragmented by closed sets, and
consequently so is F. |

A t-upper semi-continuous map F:T 2% with t-compact values
(denoted t-usco) is said to be minimal, if given another t-usco map

Fy: T—2%  suchthat Fy(t)< F(1),

for every teT, and Fy(t)# & if F(1)# &, then F=F,. If F: T—2% is
1-usco with non-empty values, the axiom of choice implies that there exists
a minimal t-usco F,: T — 2% with non-empty values such that F,(r) < (1)
for every teT.
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Let E be a weak-star compact subset of a dual Banach space X*. E is
said to be fragmented by the norm of X* if for every £¢>0 and every non-
empty subset Dc E there exists a weak-star open set W such that
WnD#@ and || {-diam(WnD)<e In [32] Namioka and Phelps
proved that X is an Asplund space if, and only if, the unit ball of X™* is
fragmented by the norm; they also proved that X* has the Radon-
Nikodym property when X is an Asplund space. In [31] it is proved that
the weak-star compact subsets of dual Banach spaces fragmented by the
norm can be embedded into dual spaces of Asplund spaces.

We say that a multivalued map F from T into E is fragmented if for each
£> 0 the property (P¥) holds with T, = T. This notion is different from the
one used in [20, p. 2197 for muitivalued usco maps, where such a map was
called “fragmented” by the metric p of E if the following property holds:

(FP) For each ¢>0 and each open subset U of T with
F(U)# & there is an open subset V of U such that
F(V)# & and p-diam(F(V)) <e.

We remark that if F is a fragmented usco minimal map, then F has the
property (FP) (just apply (P}*) to the set C=U and note that every
fragmented map has non-empty values). The same conclusion can be
obtained if F is o-fragmented by closed sets and 7 is a Baire space.
Working as in [20, Lemma 6], we get the foliowing proposition.

PrROPOSITION 11. Let E be a weak-star compact subset of a dual Banach
space X* such that E is fragmented by the norm (e.g., E is a subset of the
dual X* of an Asplund Banach space X) and T is a Hausdorff topological
space. If F:T— 2% is a weak-star (piecewise) upper semi-continuous
map with non-empty weak-star compact values, then F is fragmented
(o-fragmented by closed sets).

Proof. We assume that Fis weak-star usco. We begin with E weak-star
compact and fragmented by the norm. Let ¢>0, and C be a non-empty
subset of 7. We consider a minimal map F,: C — 2% with Fy(t) < F(t) for
all teT.

Since Fy(C)c E and E is fragmented by the norm, there exists a weak-
star open set W < X* such that D= Wn Fy(C) is non-empty and

I |-diam(D) < e.
By the minimality of F, there is an open subset ¥ of T such that

CnV#d and Fy(CnV)Yc WnFy(C)=D. This implies that F is
fragmented.
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In the case £= X*, the dual of an Asplund space, the closed balls B, =
B(0, n)={xe X*: |ix*| <n} are weak-star compact sets fragmented by the
norm.

Let 7,={treT: F(t)n B,# & }. The sets T, are closed subsets of 7 by
the upper semi-continuity of F, and they cover T.

We consider the weak-star usco maps F,: T, — 25" defined by F,(t)=
F(1)n B,,. The first part of the proof applied to these maps shows that F
verifies the property (P¥) with these T,, and thus F is og-fragmented. |

SELECTION THEOREMS FOR MULTIVALUED MAPS

A selector f of a multivalued map F: T—2% is a single valued map
S+ T— E such that f(t)e F(¢) for each te T. If F has a o-discrete first Borel
class selector f, then f is g-fragmented by closed sets, and it follows from
the definition that F is o-fragmented by closed sets.

On the other hand, looking at the proofs of the known selection
theorems, and in particular, at that of Srivatsa’s theorem, we see that a
kind of hereditary o-fragmentability of F (by closed sets) is enough to
obtain this kind of selector. More precisely, the condition is the following:
For every closed ball B< E and every M < T which is an &, and %;-subset,
such that F(t)n B# S for all te M, the multivalued map F': M — 2
defined by F'(1)= F(t) n B is o-fragmented by closed sets.

In order to simplify our exposition, we introduce the following concept.

Let F: T— 2* be a multivalued map with non-empty values.
We say that F': T— 2% is a reduction of F if there exists a
good partition {H,:iel} of 7, and indexed families
{x;1iel}cE, {r;20:iel} <R such that

F(hy=Ft)nB,#, forecach re H,,

where B,= {xe E: p(x, x;)<r;}. We say that F, is an nth
order reduction of F if, writing F = F,,, there exist multivalued
maps F,, F, .., F,_, such that F, | is a reduction of F, for
i=0,1,2,..,n—1.

We consider multivalued maps whose reductions are o-fragmented by
closed sets, and show that they are the maps with the above hereditary
o-fragmentability property.

This condition holds for u.s.c. maps in the context of Propositions 9-11,
because the reduction of u.s.c. maps are piecewise u.s.c.

The next Theorems 12 and 13 closely follow the ideas from Srivatsa’s
unpublished work. Nevertheless, in order to obtain a unified approach to
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his result and the Jayne—-Rogers Theorem (Theorem 16), we use as a main
condition the hereditary o-fragmentability of the multivalued map, instead
of working with additional properties for the spaces T and E. We see in the
next section how to apply these theorems to obtain new selection results.

THEOREM 12. Let T be a perfectly paracompact space, let (E, p) be a
metric space, and let F:T—2% be a multivalued map with non-empty
complete values, such that every finite order reduction of F is o-fragmented
by closed sets. Then F has a o-discrete first Borel class selector f.

Proof. We proceed by induction to construct a sequence of piccewise
constant functions that uniformly converges to a selector of F.

Let Fo=F. Since F, is o-fragmented by closed sets, given ¢£=1/2,
Theorem 5 gives us a piecewise constant function f,: T— E such that
p-dist(f,(¢), Fo(t))<1/2 for each e T.

Let F,(1)=Fy(t)n B(f,(1), 1/2), where B(f,(z).1/2) denotes the closed
ball in E with centre f,(¢) and radius 1. Since f, is piecewise constant, F,
is a reduction of F,.

Suppose we have constructed piecewise constant functions

fl ,va '"’fn

and multivalued maps F,, F,, ..., F, such that F, is the reduction of F, _,
given by

F.()=F,_,({)yn B(f.(1),1/2¥)  forevery teTandk=12,.,n

Since the intersection of the good partitions associated with f,, 15, ..., f,
defines a good partition by Remark 1, F, is a reduction of F.

By hypothesis F, is o-fragmented by closed sets, and using Theorem 5
again, with £=1/2"*', we obtain a piecewise constant function f, , , such
that

p'diSt(fn-+— ](t)’ Fn(t)) < 1/2n+1'

To continue with the induction we define F, . ,(t)=F,(t)nB(f, (1),
1/27+*) for every teT.
By the construction we have
1. p-dist(f,(2), F(t)) < 1/2", and
2. p(fl0), S (1)) <1/2" "1 for every te T and ne N.
By Property 1, for every te T, we can choose a sequence x,€ F(t) such

that p(f,(1), x,) <1/2". By Property 2 the sequence (x,) is a Cauchy
sequence, and the completeness of F(r) gives us a limit f(t)e F(¢).

580/117:2-2
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Property 2 also gives the uniform convergence of £, to f, and we have found
a selector f of F, which is o-fragmented by closed sets. ||

If the values of the map are not known to be complete, there is a similar
result when the domain is a metric space.

THEOREM 13. Let (E, p) be a metric space, T a Hausdorff topology on E
such that p is t-lower semi-continuous, and let (M, d) be a metric space. If
F: M —2% s a t-upper semi-continuous multivalued map with non-empty
values such that every finite order reduction of F is o-fragmented by closed
sets, then F has a o-discrete first Borel class selector f.

Proof. We proceed by induction to construct a sequence of piecewise
constant functions {f,} which is uniformly convergent to a function f, and
such that for each te M we have the two exclusive possibilities:

(a) There exists some k € N such thatf,,(t) =fk(r)eF(1) forall n>=k,
and thus f(r) e F(r), or

(b) f.(1) ¢ F(1) for all ne N, but there is a sequence ¢,, € M converging
to 1 such that f,(r)e F(1,), and by the t-upper_semi-continuity of F the
p-limit f(r), which is the only z-cluster point of f,(t), is in F(z).

The function f is the selector of F for which we are looking.

To construct f, we start with ¢ =1 and the piecewise constant function
f1: M — E such that p-dist(f,(2), F(t)) <3 for each t e M, which is given by
Theorem 5.

Let {H,:iel} be the good partition associated to f;. For each H, we
take a good partition {K,:je 4,} associated to a cover of H, by open sets
with diameter less than &= 3 (Proposition 2), and we denote by {K;:je
U {4,:ieI}] the good partition of M given by Remark 1. Now, we choose
a point t;e K; and a point y;e F(¢;) n B(f,(¢)), 1), and we define a new
piecewise constant function

Flny=y, if tek,

By the upper semi-continuity of F the sets Y,= {te K;:f(t)e F(1)} are
closed subsets relative to the K’s, so K; has a good partition given by Y,
and N;=K\Y,. Taking these good partitions together we have that the
following multivalued map is a reduction of F:

F(h={fi()} il filtheF(r) (ie.,ifte Y, for some ),
and

F,()=F(t)n B(f,(1),1)  otherwise.
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Suppose that we have defined piecewise constant functions f;, Tos oS
and reductions F,, F,, ..., F, of Fin such a way that foreach k=2,3, .., n
we have:

(1) Fu(t) = {fu)} if fu(t) € F(1), and F(t) = F_ (1) 0 B(fulo),
1/2% 1) otherwise,

(2) for each 7e M there exists ¢, € M such that d(t,t,) < 1/2* and
Sy e F(1,),

(3) p(fult), fi (1)) < 1/2%3 for every 1€ M, and

(4) flty=f;(1)if k>j and f;(r)€ F(¢).

Take ¢=1/2"*". By the o-fragmentability of F, we can find a piecewise
constant function f,,, such that p-dist(f,, (1), F,(t))<1/2"*! for every
te T. Now, we define a good partition {H,:iel,} of M by taking the
pieces of the good partition associated to F, where F,(t)= {f,,(t)}, and
intersecting the other pieces with the good partition associated to f,,, . We
take a good partition {K;:je A4,} of each H, associated with a cover of
open sets with diameter less than e =1/2"*" (Proposition 2), and we take
{K;:je {A;:iel,}} to be the good partition of M given by Remark 1.
We fix a point ;€ K; and a point y, € F,(1;) 0 B(f,, (1,), 1/2"*") and we
define the piecewise constant function f,, , in the following way:

furi)=FA) if FAn={F.0},

and
o=y, if 1eK, and  F(n#{f(N)}.

With the same arguments as in the definition of F, we have that the
multivalued map defined by

Fn+1(t)={7n+l(t)} lf _7,,+,(I)EF(t),
and
Fo ()=F (1) B(f,.,(1), 1/2"),  otherwise

is a reduction of F. It is clear that f,,H and F, , verify Conditions 1-4.

The sequence of piecewise constant functions { f,,} defined above is
uniformly convergent by Condition 3 and, by the t-upper semi-continuity of
F, verifies the Conditions a and b at the beginning, and so we have finished
the construction of the selector for F. |

Note that if t is the topology associated to the metric p, then
Proposition 9 and this last theorem give the following corollary.
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CorOLLARY 14 (Jayne—Rogers [25], Hansell [ 18], Srivatsa [38]). Let
(M, d) and (E, p) be metric spaces. If F— 2% is upper semi-continuous with
non-empty values, then F has a a-discrete first Borel class selector f.

Remark 15. Suppose that (E, p) and 7 are as in Theorem 13 and that
they satisfy the following property: Every t-u.s.c. multivalued map from
any domain in arbitrary metric spaces and values in £ has a selector, which
lies in the p-pointwise closure of some sequence of piecewise constant
functions (for instance, is in some Baire class). Then each of these
multivalued maps has a selector which is o-fragmented by closed sets (e.g.,
in the first Baire class to the norm if £ is a Banach space and t is the weak
or the weak-star topology). Indeed, the reductions of u.s.c. maps are
o-fragmented by closed sets by Remark 6 and Lemma 8, so the hypothesis
of the last theorem holds.

As a consequence of these general selections theorems, we obtain the
following results (Theorems 16 and 19).

The first one is a theorem by Jayne and Rogers [28], extended to
perfectly paracompact domain space as in [20].

THEOREM 16 (Jayne-Rogers). Let T be a perfectly paracompact space
and E a convex subset of the dual X* of an Asplund Banach space X. If
F: T— 2% is a weak-star upper semi-continuous map with weak-star compact
non-empty values, then F has a selector f in the first Baire class B,(T, E).

Proof. It is a consequence of Proposition 11 and Theorem 12. |

Remark 17. 1If in the last theorem we take Ec X* to be a weak-star
compact subset of a dual Banach space such that E is fragmented by the
norm instead of X* being the dual of an Asplund space, then we can find
a selector f of F that is o-fragmented by closed sets. This function f is in
the first Baire class B,(7T, D), where D is the weak-star closed convex hull
of E in X*. This is because the weak-star closed convex hull of £ is also
fragmented by the norm metric [31, Theorem 2.57.

This last theorem was proved in [20] as a consequence of the
main theorem [20, Theorem l']. The following lemma, together with
Theorem 12, gives a proof of their main result under the additional
hypothesis of lower semi-continuity for the metric involved.

LeMMa 18. Let T be a perfectly paracompact space, (E, p) a metric
space, and 1 a topology on E such that p is t-lower semi-continuous. If all the
minimal t-usco maps from T into E have property (FP) (are “fragmented”
by the metric p, in terms of [201), then every reduction of a given t-usco
multivalued map with non-empty values F from T into E is o-fragmented by
closed sets.
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Proof. Let F' be a reduction of F and M one of the pieces of the good
partition of T associated to F', so that F'(¢t)=F(t)n B for each te M,
where B is a closed ball in E. We shall show that F’|,, is fragmented, and
so F' will be o-fragmented by closed sets (Remark 6).

Let C be a non-empty subset of M and C its closure in T. The
multivalued map G from C into E defined by G(tr)=F(t)n B (# by
definition) for all te C is t-usco, because B is 7-closed and F is u.s.c.

We consider a minimal 1-usco map G, contained in G, and we extend it
to a minimal usco map F, from T into E defining Fy(t)= if t¢ C. By
hypothesis F, has the property (FP).

Let ¢>0. If U is an open subset of 7T such that Un C# ¢J, then
Fo(U)+# &, and we can find an open subset ¥V of U such that Fy(V)# &
(so VnC#F) and p-diam Fy(V)<e We have that VnC# @ and
F'()NnFy(V)oFy(t)£ @ foreachteCn V. |

Next is the theorem by Srivatsa [38]. We formulate it for the extremal
topology.

THEOREM 19 (Srivatsa). Let M be a metric space, X a Banach space,
and F from M into X a multivalued map which is upper semi-continuous for
the weak topology, or for the topology o(X,ext(By.}), with non-empty
values. Then F has a selector f in the first Baire class B{(M, X).

Proof. Just apply Theorem 13 and Proposition 9 or Proposition 10. |}

A particular case is the following corollary.

CoROLLARY 20. Let M be a metric space, K a compact Hausdorff
topological space, and F: M — 2%’ an upper semi-continuous map for the
topology of the pointwise convergence, with non-empty values. Then F has a
selector [ in the first Baire class B\(M, C(K)).

SELECTORS OF U.S.C. MAPS WITH VALUES IN DUAL BANACH SPACES

In this section we obtain a first Baire class selector for arbitrary weak-
star u.s.c. maps with non-empty values in dual spaces X * of Asplund spaces
X in the following cases:

() X* is weakly compactly generated (WCG); i.e., there is a weakly
compact subset whose linear span is dense in X*;

(I1) the unit ball B,. of X*is angelic for the weak-star topology; i.e.,
the weak-star closure of every subset 4 < B,. is the set of the weak-star
limits of sequences from A.
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These two cases are distinguished by the following examples:

The dual of the space X given by Johnson and Lindenstrauss (see [8,
Example 5.61) is WCG, so X is Asplund 32, Corollary 71, but its unit ball
is not angelic for the weak-star topology. This is an example of one space
which satisfies Case I but not IL

The space considered by Pol in [35] is a space of continuous functions
C(K) on an uncountable scattered compact space K. This C(K) is Asplund,
weakly Lindelof, but not WCG, and its dual /'(K) is not Lindelsf for the
weak topology (and so not WCG), because the set {d,:xe K} </'(K) is
an uncountable discrete weak-closed subset. On the other hand, Valdivia
[40] has proved that the unit ball of this /'(K)= C(K)* is angelic for the
weak-star topology, so this dual space satisfies Case 11, but not 1.

THEOREM 21. Let (M, d) be a metric space and X* a WCG dual
Banach space. Then every weak-star upper semi-continuous map F. M —2%°
with arbitrary non-empty values has a selector f in the first Baire class
B(M, X*).

Proof. We shall use the X -analytic structure of the WCG dual Banach
spaces given by a family of sets indexed by the set of the finite sequences
of natural numbers to prove that every (piecewise) weak-star upper semi-
continuous set-valued map is g-fragmented by closed sets. The proof of this
is obtained by constructing a sequence of piecewise constant function that
verifies the hypothesis of Lemma 8. Once this has been established,
Theorem 13 will provide a selector which is o-fragmented by closed sets,
and so is in B,(M, X*), for each weak-star us.c. map with non-empty
values.

We denote by NI™I the set of all finite sequences (m,, m,, .., m;) of
natural numbers, and by N™ the set of all infinite sequences of natural
numbers.

Ifo=(m,,.,m, . eN™ we write 0 | k= (m,, m,, ..., m;).

If X* is a WCG dual Banach space, then we construct a family

{K S(my, my, ., m)e NINDY

(my. mo. o mg) e
of weak-star compact subsets of X* such that

(1) X*=U {Kpm:meN}
(2) for each (my, m,, .., m;)e NN,

K(ml""sz- m) = U {K(mn.mz, g, my- ME N };

(3) ifeeNMand y, ek, 1« for each ke N, then the sequence (y,) has
a subsequence which is weak convergent to a point of K,=(\{K, :
keN}.
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If X* is generated by an absolutely convex weak compact subset K and
we write B(0,e)={ve X*: |yl <e} and mK= {my: ye K}, then we take
Ky =mK+ B(0, }) for all me N, and

K(ml‘ =K1m|,4...mk)m(mK+B(Oﬁ l/2k+l))

vy Mg, m)

for all meN and k> 1.

Denote by B*(0, 1/2%) the closed (1/2%)-ball with centre at 0 in X ***,
Then the sets mK + B*(0, 1/2%) are weak-star compact in X*** for each
pair of positive integers m, k, because they are sums of weak-star compact
sets. In order to prove (3), observe that for each o = (m,, m,, ..je N™ and
each sequence y,€ K, , the weak-star cluster points in X*** of the
sequence lie in

K, =) {m.K+B*0,1/2*):keN}c X*

where B*(0, 1/2*) denotes the weak-star closure of B(0, 1/2%) in X***,
Then we have that the set {y,:keN} is relatively compact in X* for the
weak topology, and by the Eberlein-Smulian Theorem the sequence has a
subsequence which is weak convergent to a point that must be in K.

Using the weak-star upper semi-continuity of F, for each me N we
consider the countable cover of M given by the closed sets T, =
{te M: F(t)n K,,,,# J}. We take consecutive differences of the elements
of the sequence of closed sets T,, and we obtain a good partition
{H.. meN} of M such that H,,,cT,,.

Suppose that for each £ =1, .., n we have obtained a good partition

{H(MJ,M‘_’,.“,M/‘): (ml’ m2’ ey mk)e Nk}

of M that verifies
(a) H(’"I-'"L-uvmk—l): U {H[ml.-mmkq-m):mEN}’

if k>1 and (m,, m,, .., m,_,)eN*"! and

(b)) Hmy

........

for all (m,, m,, .., m,)e N*,
For each (m,,m,, .., m,)e N" we consider the countable cover of

H given by its closed subsets

(my,mz. ...mp)}

Ty iz, gy = L€ Hip g ) OO K i gy D}

Then its consecutive differences give a good partition {Hm, . ;o)
meN} of Hip my . mysuchthat H,, . c T . m. m fOr each

meN. By Remark 1 the family {H ., . . ;m.n: (M, My, am,, )€
N”*'} is a good partition that satisfies Conditions a and b.
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This induction procedure gives us a sequence of good partitions verifying
a and b.

For each ne N and each (m,,m,, .., m,)eN", Proposition2 gives a
good partition of H,,, ... . m.., associated with a cover by open sets with
d-diameter less than 1/2" that we denote by {M;: je J(m,, ..,m, )} For
each jeJ(m,, m,, .., m,) such that M,# (J, we fix t;,e M; and y; e F(1;) n
K(ml.mz. ss PIR)

Now we define the piecewise constant function f, by f.(t)=y;, if te M,
for some (m,, m,, .., m,)€ N”" and some je JJ(m,, m,, .., m,).

By the construction of the sequence f,, for each te M there exist a
sequence o€ N™ and a sequence (s,) in M such that d(¢,s,)<1/2” and
L(eF(s,)nK,,, forall neN.

Thus for each re M we have two possibilities:

(1) f,(t)e F(¢) for some neN and so | ||-dist(f,(¢), F(¢))=0, or
(ii) f.(t)¢ F(z) for all ne N,

In case (ii) we have a sequence e N™ and a sequence (s,) in M that
converges to ¢ such that f,(t) e (F(s,\F())n K, for all ne N. Property 3
of the K, ;. ..m, Says that there exists a weak convergent subsequence
f,{1). The upper semi-continuity of F says that this subsequence has a
weak-star cluster point in F(z), so the weak limit of f,, (¢) is a point of F(¢)
and there exists a sequence of rational convex combinations of f, that
converges in norm to a point of F(t).

If we denote by {g,:neN} the sequence of the rational convex
combinations of elements of the sequence f,, we obtain the sequence of
piecewise constant functions satisfying the hypothesis of Lemma 8. |}

For the proof of the selection thecorem in the angelic case we use
the fragmentability of the usco maps together with Lemma 8 and the
following boundary theorem of Hansell, Jayne, Labuda, and Rogers
[21, Theorem 1].

THEOREM 22 (Hansell, Jayne, Labuda, Rogers). Let (M, d) be a metric
space, te M, and K an angelic compact space; i.e., the closure of every subset
A c K is the set of limits of sequences from A. If U, denotes a neighbourhood
basis of t, and the multivalued map F from M into K is us.c., then

(N FU,NF1) < F(1).

nz1

THEOREM 23. Let (M, d) be a metric space and X* the dual space of an
Asplund space, whose unit ball By. is angelic for the weak-star topology.
Then every weak-star upper semi-continuous map F: M — 2*" with arbitrary
non-empty values has a selector f in the first Baire class B,(M, X*).
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Proof. If we can prove that Fis o-fragmented by closed sets, then every
reduction of F which is piecewise u.s.c. with non-empty values has the same
property, and then Theorem 13 gives a selector which is g-fragmented by
closed sets, and consequently in B;(M, X*).

We can suppose that F takes its values in the unit ball B.. Otherwise
we could work with the pieces M, of the good partition of M associated
to the sequence of closed subsets T,={reM: F(t)n B(0,n)# &} that
covers M, and with the reduction of F defined by F(s})n B{0,n) if te M,,.

Let F: M —2*" be the multivalued map defined by F(¢)= F{¢), where
the closure is taken in the weak-star topology. Then F is a weak-star usco
map. Indeed, let te M and U< B,. be a weak-star open set in the induced
topology such that F(f) = U. By the compactness of F(7) there is a weak-
star open subset V of B,. such that

Fi)eFtyc Ve PcU.

As F is us.c. there is a neighbourhood N of ¢ such that F(s)c V for every
s€ N. Clearly, for each se N we have F(s) = ¥ < U. This proves that Fis an
usco map.

Now, we use the fact that F and F are u.s.c. together with the angelicity
of B,. to find a sequence of piecewise constant functions 7, such that for
every te M the limit f(¢)=lim, _ M:f,,(t) exists in norm, and f(¢)€ F(2).
With this sequence, the hypothesis of Lemma 8 holds and so Fis o-fragmented
by closed sets.

We construct the sequence f, by induction.

We put fo(1) =0 and Fo(r) = F(z) for each re M.

Suppose we have defined piecewise constant functions

anfl’ '"’fnvl

and piecewise usco maps Fy, Fi, .., F,_, which are reductions of F.

By Proposition 11 we know that F,_, is o-fragmented by closed sets.
Thus, if ¢=1/2", there exists a piecewise constant function f such that
F,_,(t)n B(f(1), 1/2")# & for each te M (Theorem 5).

Let {H;: iel} be a good partition of M such that fis constant and F, _,
is usco on each H,.

By Proposition 2 we take a good partition of each H, associated with a
cover by open sets with d-diameter less than 1/2”, and we denote by
{M,:jeJ} the new good partition of M.

For each jeJ we fix a point {,€ M, a point

¥, € F, (1) n B(f(1), 1/2") < (1),

and a sequence {y,, ;:me N} c F(¢;) which is weak-star convergent to y,
(this is possible because By. is angelic with the weak-star topology).
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By the upper semi-continuity of F, the following subsets are closed in the
induced topology of M,

N_/= {IEA’[/:I"(’)h {yj’yl,j,maym,i....} #Q}
Hy,={teM;yeF()}
H, ,={teM;y, eF()} for me N.
If G;=M)\N,, then {N,, G} is a good partition of M; because G, is a %,
subset of M,. On the other hand, the sets M, ,=H,, and M, ,=H, )\
H, ., for meN, define a good partition of N,. Then these sets together

with G; define a good partition of M.
Now we define f, () for each te M, as follows:

~

JA)=y; if teG,uM,;,
and
in(t)=ym,j 1f IEMm.j'

We note that if f,(¢) ¢ F(¢), then te G;. We write 5,(t) = ¢;, the above fixed
point in M, so f,,(t):y,e F(s,(tWF(t) where the closure is taken in the
weak-star topology, and d(z, 5,(1)) < 1/2", because d-diam(M ;) < 1/2".

We define the reduction F, of F by

F()={f(n} if f.t)eF(),

and
F(y=F, (DN B0, /27" if J()¢F(@).
In the last case F,(1) # &5, because B(f(7), 1/2") < B(f,(1), 1/2" ") and
B(f(), 12"y F, (1) # .

The sequence f, that we have constructed has the property that every
t € M satisfies one of the following two possibilities:

1. There exists some me N such that 7, (1) e F(t);
2. forall neN, f,(r)¢ F(1).

In Case 1 /(1)=7,(¢) for all n2m, so f(1)=7,(t)e F(1).
In Case 2 there exists a sequence (s,(7)) in M such that d(s, s,(1)) < 1/2"
and

Fu(2) € F(s, (0)NF().
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On the other hand, by the construction of 7,
Flt)e B(F,_ (1), 1/2772)

for all n>2, so the sequence fn(t)~is a norm Cauchy sequence in X* and
so it is norm convergent to some f(¢).
Write U, = {se M:d(s, t)< 1/2”}. Then we have in this case that

fnye  KUNFQ).

nzt

But by the Boundary Theorem 22 stated above, this last intersection is a
subset of F(t), because F is weak-star upper semi-continuous and B,. is
weak-star angelic. Then we have that f(t)eF(t).

In both cases we have shown that the sequence £.(1) is norm convergent
to a point f(t) € F(1), and the proof is complete. |}

Remark 24. Note that in the last proof we cannot assure that the selec-
tor [ is in the first Baire class, because the construction of the sequence 7
does not give uniform convergence. But the sequence f, verifies the
hypothesis of Lemma 8, so F is o-fragmented by closed sets, and this fact,
together with Theorem 13, allows us to find a selector in the first Baire
class. Also observe that this is one of the cases where Remark 15 applies.

COUNTER EXAMPLES

Let X be a Banach space and K a weak-star compact subset of X*.
A subset B< K is called a boundary of K if for every xe X there exists
b € B such that

(x, b =sup{<x, y>:yeK).

For instance, if K is convex, the set B of all extreme points of X is a
boundary of K by the usual proof of the Krein-Milman Theorem. We shall
be interested here in the following multivalued map:

Fg:X—28

defined by Fg(x)={beB: (x,b>=sup{{(x, y>:yeK}}# . We need
more properties on B to be sure that Fy is norm to weak-star upper semi-
continuous. For instance, this happens when B is weak-star countably
compact.
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PROPOSITION 25. If X is a Banach space, K is a weak-star compact sub-
set of X* and B is a weak-star countably compact boundary of K, then the
multivalued map Fg is norm to weak-star upper semi-continuous.

Proof. If xe X and x,, is a sequence in X which converges to x, then for
every positive integer n we take y, € Fg(x,). The sequence (y,) has a weak-
star cluster point y in B. We prove that ye Fg(x), and so Fj is weak-star
upper semi-continuous. We suppose that y¢ Fg(x). Then there is y,e K
and & >0 such that

{x, ¥y <X, p0) — 0.
Choose a positve integer n such that |{x,—x, k>| < J/2 for every k€ K and
X, ¥,0 X, p0) — 6.
Then we have
(X ¥ ) <KX ¥ +0/2K (X, Yo ) —0/2 < X0 Vo s

which is a contradiction, since y,€ Fg(x,). |

With the same notation as above, we let Fy: X — 2% denote the norm to
weak-star usco map given by

Fe(x)=lkeK: (x, k) =sup{{x,y>:yeK}}.

The next result characterizes when F has a selector in the first Baire class
to the norm B,(X, X*).

THEOREM 26. If X is a Banach space and K is a weak-star compact sub-
set of X*, then F, has a selector in the first Baire class B,(X, X*) if, and
only if, K is fragmented by the norm. Moreover, if f: X — K is such a selector
of Fg, then we have

z.m weak-star __ -C—OU—(X_)) Il H‘

Proof. When K is fragmented by the norm, Remark 17 to the Jayne-
Rogers Selection Theorem gives a selector in the first Baire class for Fy.
Conversely, if /1 X — K is a first Baire class selector for Fy and S is a
separable subspace of X, we denote by i the canonical embedding from §
into X and by K the weak-star compact subset of S* equal to i ¥(K).
Let B=iX*(f(S)). Since fis in the first Baire class, f(S) is norm separable
in X* and B is a norm separable boundary of K in $*. It is clear that
B is also a boundary of co(Kg)***=" Now a theorem of Godefroy
[13, Theorem 1.2] applies to give co(K) " = co(B) " 's*, from which it
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follows that K is | ||s.-separable. So we have proved that for any
separable subspace S of X, Ky is | || g»-separable. A theorem of Namioka
[31, Theorem 3.4] says that K is norm fragmented in X*. Moreover, we
have seen that for any separable subspace S < X we have the identity

It is our objective now to prove the same equality when S=X. The
separable reduction argument used by Fabian and Godefroy [10] dealing
with KX = B,., the unit ball of X*, can be translated word by word to finish
the proof. We shall do it for completeness. Let f,: X —» co(f(X))'" be a
sequence of norm-to-norm continuous functions that converges pointwise
in norm to the selector f (see Remark 17). Consider ge co(K)******" and
let ¢>0. Arguing by induction, for each positive integer n, we obtain a
closed subspace Y, of X, a countable dense subset D, of Y,, and a
countable subset F, = {v, ;:j=1,2,..} of By, the unit ball of X, such that

(i) D,eD,,,,
(i) Y, ,2Y,0F,
(iii) if C,={h,,:j=1,2,..} is the countable set of all rational linear
combinations of vectors in | {f(D,): k=1,2,..}, then we have the
inequality

1
<g—hn.}'a Un.j>> “g'_hn,J” —;

for each je N.

The induction process is straightforward when we begin with any separable
subspace Y, < X, Y, {0}. Let S be the separable subspace of X obtained
as the norm closure of {J {Y,:n=1,2,..}. Since co(Kg)> s'ar =
co(i ¥(f(S))" s, there exists a rational convex combination h=3Y"_, b, f(s,),
where 5,€ S, b, Q7*, and Y.7_, b,=1, such that [[i ¥(g — h)| < ¢/4. Because
of the continuity of the functions f,, we can find an integer £ and a finite
subset {1(,1,,..,1,} in some D, such that |h—=3"_, b fi(1)l <&/4 We
have obtained an element 4, ;=37_, b, fi(t;) of C, such that {A—4, ;| <
¢/4. Observe that we can also assume n > 4/¢, because of Condition i. Then
we have

lg—hl<lg—h, 4 8/4< 1/n+g—h,,0,> +/4
<e/2+ ¥ (g—h N <e/2+Mig(g—MI+ i ¥(h—h, )
<¢/2+¢/4+¢e/4=¢

This shows that geco(f(X))!" and the proof is complete. [
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If X is an Asplund space and K is a weak-star compact subset of X'*, the
multivalued map F, has a selector f in the first Baire class and we have
proved that co(K) "< = co(f(X))"!. Now suppose we have a boundary
B of K. If f(X)< B, then we must have co(K) ¥k =co(B)"" and we
arrive at the following:

CoROLLARY 27. Let X be an Asplund space and K a weak-star compact
subset of X* with a weak-star countably compact boundary B such that

m weak-star ?(: ?‘TB—) I M.

Then the multivalued map Fy is norm to weak-star upper semi-continuous,
Fglx) is norm closed and weak-star countably compact for every xe X, and
Fy has no selector in the first Baire class B,(X, X*).

We now describe some concrete examples where the former corollary
applies:

ExaMPLE 28. Let w, be the first uncountable ordinal, and [0, w,] the
ordinal interval with the order topology. Let X be the Banach space
C[0, w,] of continuous real-valued functions on [0, w,]. The dual space is
identified with /'[0, w,]. If K is the dual unit ball, then a boundary B
verifying the hypothesis of the former corollary is

B= {(SIZQG[O,U)I)},

where §, is the Dirac measure at point x. |}

More generally, we have:

ExaMmpLE 29. If S is a scattered Valdivia compact space [6, 397 which
is not angelic, then there is a set I” such that S can be identified with a sub-
space of the cube [0, 1] and

S(I'}y= {x e S:support(x) is countable }

is a dense subset of S. Let X be the Banach space C(S) of continuous real
valued functions on S. The dual space X* is identified with /!(S). If
K is the dual unit ball, then a boundary B verifying the hypothesis of
Corollary 27 is B={d,: xe S(I')}, where §, is the Dirac measure at the
point xe S(I"). Since S is not angelic, there exist xe S with x ¢ S(I).
Consequently (|6, — y|l =1 for all ye co(B) and B is a weak-star countably
compact subset of K with co(B)"'# K. |

Another example of the same nature 1s the following:
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ExaMpLE 30. If X i1s an Asplund space whose weak topology is not
realcompact, we take fe X**\ X such that f is continuous when restricted
to any separable subspace of X* with its weak-star topology [4]. Then
H=ker fis a norm closed hyperplane of X* and H n B,. is not weak-star
closed by the Krein—Smulian Theorem [5, Theorem I1.5.5]. However,
HnN By. is weak-star sequentially closed. If we take K= H B, »eokswar
and B the boundary given by H N B,., we are within the conditions of
Corollary 27 and Fj has no selector in the first Baire class. Moreover, in
this case Fg(x) is convex for every x in X. |

Recall that a Banach space X has the property C of Corson if every
family of closed convex subsets of X with the countably intersection
property (i.c., every countable sub-family of the given family has non-
empty intersection) has non-empty intersection. Every Banach space with
property C of Corson is weakly realcompact [4]. A result of Pol [36] says
that property C is equivalent to the following:

(P) For every subset 4 < B,. and fe A ***% there exists
a countable subset D of A such that f'e co(D) *e**=t,

Thus in a space X with the property C, a weak-star countably compact and
convex subset of X* is weak-star compact and we have the following:

THEOREM 31. Let X be an Asplund space. Then the following conditions
are equivalent ;

(i) X has the property C;

(ii) if M is a metric space and F a weak-star upper semi-continuous
multivalued map from M into X*, for which F(m) is a non-empty, convex
and weak-star countably compact subset of X* for each me M, then F has
a selector in the first Baire class B\(M, X*).

Proof. (i}=>(ii). This is Theorem 16 for upper semi-continuous
compact valued maps. (ii) = (i). Suppose that X does not have property C.
Then there exists 4 in By., fe A% and f¢co(D)Y* for every
countable subset D < A. If X is the compact set co(A)>****" and B is the
boundary defined by

B={geK: there is a countable D c 4 with ge co(D)¥e?ksar},

then B is weak-star countably compact, convex, and B# K. Corollary 27
says that Fy is upper semi-continuous, Fg(x) is a convex and weak-star
countably compact subset of X* for each xe€ X, and it has no selector in
the first Baire class B,(X, X*). }
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