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Spaces of functions with countably
many discontinuities

R. Haydon, A. Moltó, J. Orihuela

1 Introduction

It is known that, for a wide range of classes of “well-behaved” compact spaces K, the
space C(K) of all continuous real-valued functions onK admits a norm, equivalent to the
supremum norm, that is locally uniformly rotund. One approach to this sort of problem,
using projectional resolutions of the identity, reached its most general result with the
proof in [4] that such a renorming exists when K is a continuous image of a Valdivia
compact. One of the present authors [6] recently established LUR renormability for
C(K) when K is a Namioka–Phelps compact. Novel techniques developed in [9] led to
a proof of LUR renormability for the space C(H), where H is the Helly space. The
main result of this paper can be seen as a generalization of this last result. We use
techniques from both [9] and [6], as well as borrowing a key idea from the recent paper
[1] of Argyros et al.

The Helly space is an example of a class of compacta about which there are still
a number of open questions. We say that a compact space K is a Rosenthal compact if
there exists a Polish space Γ and a homeomorphism from K onto a subset of the space
B1(Γ) of Baire–1 functions on Γ equipped with the pointwise topology. Important (and
now classical) results of Rosenthal [11] and Bourgain, Fremlin and Talagrand [2] show
that such compact spaces have certain properties which place them close to metrizable
compacta and to weakly compact subsets of Banach spaces. It is natural therefore to
hope for good results when we look at these compact spaces in the context of renorming
theory. In fact, however, as Todorcevic [13] has recently observed, there is a scattered
Rosenthal compactification K of a tree space such that C(K) has no LUR renorming,
[5]. Now that space K is non-separable and, as other recent work of Todorcevic [14]
has shown, it is only from separable Rosenthal compacta that we should expect really
good behaviour. We are therefore led to make the conjecture.

Conjecture. If K is a separable Rosenthal compact then C(K) admits a locally uni-
formly convex renorming.
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A proof of this conjecture would yield as an immediate corollary that X∗ is LUR
renormable whenever X is a separable Banach space with no subspace isomorphic to
`1. Indeed, in this case, we may take Γ to be the unit ball of the dual space X∗, which
is compact and metrizable (so certainly Polish) under the weak* topology σ(X∗, X)
and K to be the unit ball of X∗∗ under the weak* topology σ(X∗∗, X∗). By the results
of [10], the elements of K are then of the first Baire class when we regard them as
functions on Γ. Moreover, K is separable, since the unit ball of X (which we are
assuming to be separable) is dense in K by Goldstine’s theorem. Finally, of course, X∗

embeds as a closed subspace of C(K). The main theorem of this paper establishes LUR
renormability of C(K) only for a subclass of separable Rosenthal compacta K, namely
those representable as spaces of functions with only countably many discontinuities in
the Polish space Γ.

Theorem 1 (Main Theorem). Let Γ be a Polish space and let K be a separable and
pointwise compact set of functions on Γ. Assume further that each function in K has
only countably many discontinuities. Then C(K) admits a Tp-lower semicontinuous and
locally uniformly rotund norm, equivalent to the supremum norm.

When K is not assumed to be separable and each element of K has only count-
ably many discontinuities we prove that C(K) is a σ–fragmentable space for the point-
wise convergence topology Tp.

2 Preliminaries

Our notation and terminology are standard: we write ω for the set {0, 1, 2, . . . } of all
natural numbers and N for the set of all positive integers. When A is a set, we write
#A for the cardinality of A and [A]<ω for the set of all finite subsets of A. We recall
that a topological space is said to be Polish if it separable, metrizable and complete
for some metric compatible with the topology. A space is analytic if it is a continuous
image of some Polish space.

We shall be considering real-valued functions on a Polish space Γ which have only
countably many discontinuities. For such a function s we may introduce the following
subsets of Γ, which consist of the “big” discontinuities:

J(s, δ) = {γ ∈ Γ : osc s � U > δ whenever U is open and γ ∈ U},

the above being defined for all positive real δ. Each of these sets is a countable closed
subset of the Polish space Γ and hence a scattered topological space. We recall the
Cantor-Bendixon derivation for such spaces: as usual, for a topological space J , we
write J ′ for the derived set, consisting of those points of J which are not isolated; by
transfinite recursion, we define successive derived sets J (ξ) for ordinals ξ by

J (0) = J, J (η) =
⋂
ξ<η

(J (ξ))′ (η > 0).
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The space J is scattered if and only if J (λ) = ∅ for some λ; if this is so, then the smallest
such λ is called the derived length, or Cantor-Bendixon index of J . Of course, if J is
countable, this index will automatically be a countable ordinal.

The proof of our main theorem divides into two parts. First we establish LUR-
renormability of C(K) without making a separability assumption about K, assuming
instead that there is some countable ordinal Ω such that J(s, δ)(Ω) = ∅ for all δ > 0
and all s ∈ K. Then we show that separability of K implies such a uniform bound on
derived length. It is in the second of these steps that we use ideas from [1], involving the
rank of a well-founded relation, and the so-called Rank Theorem for analytic relations.

In our case, the relation will be the ordering on a certain tree. We now set out
some notation and terminology. Recall that a tree is a partially ordered set (Υ,≺) with
the property that for each v ∈ Υ the set {u ∈ Υ : u ≺ v} is well-ordered by ≺. Any
tree Υ may be partitioned into levels Υξ, with Υ0 consisting of the ≺-minimal elements.
More generally, for v ∈ Υ we define the height ht(v) to be the order-type of {u ∈ Υ :
u ≺ v}, and define the ξth level Υξ to be {v ∈ Υ : ht(v) = ξ}. Following Todorcevic [12],
when Υ and Ψ are trees, we write Υ⊗ Ψ for the set {(u, v) ∈ Υ× Ψ : ht(u) = ht(v)},
which is itself a tree when equipped with the order (u, v) 4 (u′, v′) if and only if u 4 u′

and v 4 v′. (The restriction that ht(u) = ht(v) is important to ensure that we have a
total order on the predecessors of (u′, v′).)

The trees with which we shall be concerned are well-founded, that is to say that
they contain no strictly (≺)-increasing sequence. Of course this implies that it is only
the levels Υn (n ∈ ω) which are non-empty, but it also enables to introduce a second
ordinal index, which we call the rank. An element of a well-founded tree is of rank 0 if it
is ≺-maximal. More generally, we define a derivation on Υ, by setting A′ = A \maxA,
where maxA is the set of all maximal elements of the subset A of Υ; we then define

Υ[0] = Υ; Υ[η] =
⋂
ξ<η

Υ[ξ]′ (η ≥ 1).

An element u of Υ is defined to be of rank ξ if u ∈ Υ[ξ] \Υ[ξ+1]. It is straightforward to
check that the rank r(u) satisfies the following identity

r(u) = sup{r(v) + 1 : v ∈ u+},

where u+ is the set of immediate successors of u in the tree-order ≺ (and where we are
of course taking the supremum of the empty set of ordinals to be 0). It will be useful
to record here an easy result about ranks in the tree Υ⊗Υ.

Lemma 1. Let Υ and Ψ be a well-founded tree. Then Υ ⊗ Ψ is well-founded and the
rank of (u, v) in Υ⊗Ψ is given by

r(u, v) = min{r(u), r(v)}.

Proof. The immediate successors of (u, v) in Υ ⊗ Ψ are the pairs (u′, v′) with u′ ∈ u+

and v′ ∈ v+. So the result follows from the identity we noted above.
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The important theorem that we shall use is the Rank Theorem. We refer the
reader to [8] for a full account of and state here the special case which concerns us.

The Rank Theorem. Let Υ be a well-founded tree and assume that the tree order
4 (considered as a subset of Υ × Υ) is an analytic topological space. Then there is a
countable ordinal Ω such that Υ[Ω] = ∅.

Finally we recall the definition of locally uniform convexity and some (probably
familiar) convexity arguments. If ν is a non-negative real-valued convex function on a
real vector space X and x, xn ∈ X (n ∈ N), we say that the LUR hypothesis holds for
ν (and x and the sequence xn) if ν(xn) and ν(1

2
(x+ xn)) both tend to the limit ν(x) as

n → ∞. If ν is a norm and the LUR hypothesis implies that ν(x − xn) → 0, then we
say that ν is locally uniformly rotund.

It is worth noting that the LUR hypothesis holds if and only if

1
2
ν(x)2 + 1

2
ν(xn)2 − ν(1

2
(x+ xn))2 → 0

as n→∞. If ν2 = µ2 +λ2, where µ and λ are themselves non-negative and convex, and
if the LUR hypothesis holds for ν, then it holds for λ and µ also. This is an observation
that we shall use a number of times, justifying each such application by the phrase “by
convexity”.

3 Construction of a LUR norm

In this section we shall prove the following theorem.

Theorem 2. Let Γ be a Polish space and let K be a pointwise compact set of Baire-1
functions on Γ. Assume that there exists a countable ordinal Ω such that for all s ∈ K
and all δ > 0 the Ωth derived set J(s, δ)(Ω) is empty. Then the Banach space C(K)
admits an equivalent Tp-lower semicontinuous and locally uniformly rotund norm.

As in [5] and [6] we shall employ a method of recursive definitions, combined
with the following result, which we refer to as Deville’s Lemma. Let us mention that an
approach based on countably decomposition in the spirit of [9] is also possible. Notice
that, using the language introduced in the previous section, the key assumption in this
lemma can be expressed by saying that the LUR hypothesis holds for θ, x and (xn).

Lemma 2 ([3], p.279). Let (φi)i∈I and (ψi)i∈I be two pointwise-bounded families of
non-negative, real-valued, convex functions on a real vector space Z. For i ∈ I and
positive integers p define functions θi,p, θp and θ by setting

2θi,p(x)
2 = φi(x)

2 + p−1ψi(x)
2

θp(x) = sup
i∈I

θi,p(x)

θ(x)2 =
∞∑

p=1

2−pθp(x)
2.
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Let x and xr (r ∈ N) be elements of Z and assume that

1
2
θ(x)2 + 1

2
θ(xr)

2 − θ(1
2
(x+ xr))

2 → 0

as r →∞. Then there is a sequence (ir) of elements of I such that

φir(x) → sup
i∈I

φi(x) and

1
2
ψir(x)

2 + 1
2
ψir(xr)

2 − ψir(
1
2
(x+ xr))

2 → 0

as r →∞.

Modifying a little our earlier notation for discontinuity sets, when s, t ∈ K and
m ∈ N, we shall write J(s, t,m) for the union J(s, 1/4m)∪ J(t, 1/4m). Our hypothesis
implies that J(s, t,m)(Ω) = ∅ for all s, t ∈ K. Let B be a countable base for the topology
in Γ. Let Q be a dense countable subset of Γ, and write P = Γ \ Q. When R ⊂ Q,
F ⊂ P and m ∈ N, we define

I(R,F,m) = {(s, t) ∈ K ×K : ‖(s− t) �R ‖∞ ≤ 1/4m, ‖(s− t) �F ‖∞ ≤ 1/m} .

When R,F,m are as above, ξ < Ω is an ordinal and M is a finite subset of B, we define

I(R,F,m, ξ,M) = {(s, t) ∈ I(R,F,m) : #J(s, t,m)(ξ) ∩ U ≤ 1 for all U ∈M}.

These sets I(R,F,m, ξ,M) will play the role of the index set I in applications of
Deville’s Lemma. In order to make clear our applications of this lemma we make
the (otherwise redundant) definition, which defines the functions φi(x) = ϕ(x, s, t) for
i = (s, t) ∈ I,

ϕ(x, s, t) = (1/2)|x(s)− x(t)|, s, t ∈ K, x ∈ C(K),

and introduce the suprema

ϕ(x,R, F,m) = sup{ϕ(x, s, t) : (s, t) ∈ I(R,F,m)}

and
ϕ(x,R, F,m, ξ,M) = sup{ϕ(x, s, t) : (s, t) ∈ I(R,F,m, ξ,M)}.

The definition of the convex functions ψi is more complicated and some more
notation is needed. Without loss of generality we can assume that K ⊂ [0, 1]Γ. For
finite R ⊂ Q and F ⊂ P we choose a finite subset K(R,F,m) of K (of cardinality at
most m#F (4m)#R) such that for all s ∈ K there exists t ∈ K(R,F,m) with (s, t) ∈
I(R,F,m). To construct the functions ψi and the promised equivalent norm, we make
recursive definitions as set out in the following lemma.

Lemma 3. There are functions ν, θ, ψ, defined for x ∈ C(K), R ⊂ Q, F ⊂ P , m ∈ N,
ξ < Ω, M∈ [B]<ω, k ∈ N, s, t ∈ I(R,F,m,M), and satisfying the following:
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3ν(x,R, F,m)2 =ϕ(x,R, F,m)2 +
1

#K(R,F,m)

∑
t∈K(R,F,m)

x(t)2

+
∑
ξ,M

a(ξ,M)θ(x,R, F,m, ξ,M)2

θ(x,R, F,m, ξ,M)2 =
∞∑

k=1

2−k θ(x,R, F,m, ξ,M, k)2;

2θ(x,R, F,m, ξ,M, k)2 = sup
(s,t)∈I(Q,F,m,ξ,M)

[
ϕ(x, s, t)2 + k−1ψ(x, s, t, R, F,m, ξ,M)2

]
;

ψ(x, s, t, R, F,m, ξ,M)2 =
1

#M
∑
U∈M

ν(x,R, F ∪ (U ∩ J(s, t,m)(ξ)),m)2.

where the positive constants a(ξ,M) are chosen so that∑
ξ<Ω, M∈[B]<ω

a(ξ,M) = 1.

Proof. As in [5] and [6], this follows from Banach’s Contraction Mapping Theorem
applied in a suitable function space.

Notice that, because of the definition of I(Q,F,m, ξ,M), each of the sets F ∪
(U ∩ J(s, t,m)(ξ)) which occur in the definition of ψ is either just F , or else F with
one extra element appended. Notice also that ν, θ and ψ, when considered as functions
of x, are non-negative, positively homogeneous and bounded (by 1) on the unit ball of
C(K).

We define a pointwise lower semicontinuous norm in C(K) by

2‖x‖2 = ‖x‖2
∞ +

∑
m,R

c(R,m)ν(x,R, ∅,m)2

where c(R,m) are further positive constants such that
∑

m,R c(R,m) = 1. Our aim is
to show that this norm is LUR.

So we consider x ∈ C(K) and a sequence xn such that the LUR hypothesis is
satisfied for this norm. Notice that, by convexity and the definition of the norm as an
`2 sum, the LUR hypothesis holds for each of the functions ν(·, R, ∅,m).

Now let ε > 0 be given. It will be enough to show that there exists a subsequence
(xnk

) such that ‖x− xnk
‖∞ < 5ε for all k.

Our compact space K is a closed subset of [0, 1]Γ equipped with the product
topology and our given function x is continuous on K. Hence, there exist m ∈ N and
a finite subset T of Γ such that |x(s)− x(t)| ≤ ε whenever supγ∈T |s(γ)− t(γ)| ≤ 1/m.
If we set S = T ∩ P we obviously have |x(s) − x(t)| ≤ ε whenever (s, t) ∈ I(Q,S,m).
Rather than working with this set S, we choose a finite subset S of P of minimal
cardinality subject to the above condition, that is

(s, t) ∈ I(Q,S,m) =⇒ |x(s)− x(t)| ≤ ε.
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Now, by an easy compactness argument, we may also choose a finite subset R of Q such
that |x(s) − x(t)| < 2ε whenever (s, t) ∈ I(R,S,m). Recalling the definitions given
earlier, we see that

ϕ(x,R, S,m) < ε.

The proof of Theorem 2 depends on two lemmas. It is perhaps worth emphasizing that
from now on x, xn, ε, m, R and S are all fixed

Lemma 4. If the LUR hypothesis holds for the function ν(·, R, S,m) and a subsequence
(xnk

) then ‖x− xnk
‖∞ < 5ε for all large enough k.

Proof. By convexity and the expression for ν as an `2-sum, we get

1

2
ϕ(x,R, S,m)2 +

1

2
ϕ (xn, R, S,m)2 − ϕ

(
1

2
(x+ xn) , R, S,m

)2

→ 0 as n→∞.

Since ϕ(x,R, S,m) < ε, it follows that

ϕ (xn, R, S,m) < ε for all large enough n.

Looking at the second term in the definition of ν and applying convexity again we see
that

1

2
x(t)2 +

1

2
xn(t)2 −

(
1

2
(x(t) + xn(t))

)2

→ 0 as n→∞ for any t ∈ K(R,S,m),

which implies that

max
t∈K(R,S,m)

|x(t)− xn(t)| < ε for all large enough n.

For any s ∈ K there exists t ∈ K(R,S,m) with (s, t) ∈ I(R,S,m) and so

|x(s)− xn(s)| ≤ 2ϕ(x,R, S,m) + 2ϕ (xn, R, S,m) + max
t∈K(R,S,m)

|x(t)− xn(t)| < 5ε

for all large enough n.

Lemma 5. Let F be a proper subset of S, let (xnk
) be a subsequence of (xn) and assume

that the LUR hypothesis holds for the subsequence (xnk
) and the function ν(·, R, F,m).

Then there exists γ ∈ S \ F and a further subsequence (xnkj
) such that the LUR hy-

pothesis holds for (xnkj
) and the function ν(·, R, F ∪ {γ},m).

Proof. To simplify notation, avoiding double subscripts, let us assume that the initial
subsequence (xnk

) is actually the sequence (xn) itself. Since #F < #S we may use the
minimality in the choice of S to see that there is some

(s, t) ∈ I(Q,F,m) with |x(s)− x(t)| > ε.

By the choice of S, there exists γ ∈ S with |s(γ) − t(γ)| > (1/m) . We claim that
any such γ must be in J(s, t,m), so that S ∩ J(s, t,m) 6= ∅. Indeed, otherwise, γ /∈
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J(s, t,m) and there exists an open set U 3 γ such that |s(δ) − s(γ)| ≤ 1/4m and
|t(δ)− t(γ)| ≤ 1/4m for all δ ∈ U . By density of Q, there is some δ ∈ Q∩U and, since
(s, t) ∈ I(Q,F,m) we have |s(δ)− t(δ)| ≤ 1/4m. Combining the above inequalities, we
obtain |s(γ)− t(γ)| ≤ 3/4m, a contradiction.

Since S is finite there is some maximum ordinal ξ(s, t,m) with

S ∩ J(s, t,m)(ξ(s,t,m)) 6= ∅.
We now assume that we have chosen (s, t) ∈ I(R,F,m) in such a way that

ξ(s, t,m) = min {ξ (s′, t′,m) : (s′, t′) ∈ I(Q,F,m) and |x(s′)− x(t′)| > ε} .
Let M be a finite subset of B, chosen in such a way that S ⊆

⋃
M and #U ∩

J(s, t,m)(ξ) ≤ 1 for all U ∈M.
We have (s, t) ∈ I(Q,F,m, ξ,M) and ϕ(x, s, t) > ε/2, so

ϕ(x,Q, F,m, ξ,M) > ε/2.

If we now look at the third term in the definition of ν and apply the familiar convexity
argument we see that the function θ(·, R, F,m, ξ,M) and the sequence (xn) satisfy the
LUR hypothesis. So by Deville’s Lemma there is a sequence (sn, tn) ∈ I(Q,F,m, ξ,M)
such that

1

2
ψ (x, sn, tn, R, F,m)2 +

1

2
ψ (xn, sn, tn, R, F,m)2−ψ

(
1

2
(x+ xn) , sn, tn, R, F,m

)2

→ 0

and ϕ (x, sn, tn) → ϕ(x,Q, F,m, ξ,M) > ε/2.

So ϕ (x, sn, tn) > ε/2, i.e.|x(sn)−x(tn)| > ε for all large enough n. Reasoning as before,
we get that S ∩ J (sn, tn,m) 6= ∅ for such n. From the minimality of ξ it follows that

S ∩ J (sn, tn,m)(ξ) 6= ∅. Now

S ∩ J (sn, tn,m)(ξ) ⊆
⋃

U∈M

U ∩ J (sn, tn,m)(ξ)

and each of the sets U ∩ J (sn, tn,m)(ξ) contains at most one element because (sn, tn) ∈
I(Q,F,m, ξ,M). Thus, for some U(n) ∈ M the intersection U(n) ∩ J (sn, tn,m)(ξ)

contains exactly one point γn which is in S. If we proceed to a subsequence (nk), we
may assume that Unk

and γnk
are the same set U in M and the same element γ of S,

for all k. Finally, by looking at the definition of ψ and applying convexity yet again,
we see that

1

2
ν(x,R, F ∪ {γ},m)2 +

1

2
ν (xnk

, R, F ∪ {γ},m)2 − ν

(
1

2
(x+ xnk

) , R, F ∪ {γ},m
)2

≤ #M
(

1

2
ψ(x, snk

, tnk
, R, F,m)2 +

1

2
ψ (xnk

, snk
, tnk

, R, F,m)2

−ψ
(

1

2
(x+ xnk

) , snk
, tnk

, R, F,m

)2
)
→ 0 as k →∞.

This is the LUR hypothesis for ν(·, R, F ∪ {γ},m) and the subsequence (xnk
).
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To complete the proof, we have already noted that the LUR hypothesis holds for
(xn) and the function ν(·, R, ∅,m). A finite number of applications of Lemma 5 yield
a subsequence satisfying the LUR hypothesis for the function ν(·, R, S,m). Lemma 4
now does what we need to complete the proof of Theorem 2.

4 Boundedness of the Cantor–Bendixon index

We devote this section to a proof of the following result, which, together with Theorem 2
clearly yields Theorem 1. Our proof is closely modeled on a recent theorem of Argyros
et al [1].

Theorem 3. Let Γ be a Polish space and let K be a pointwise compact set of functions
on Γ. Assume that each function s ∈ K has only countably many discontinuities and
that the set K is separable. Then there exists a countable ordinal Ω such that for all
s ∈ K and all δ > 0 the Ωth derived set J(s, δ)(Ω) is empty.

We first establish a little notation: when k is a natural number we write Dk

for the set of all finite sequences of 0’s and 1’s, of length at most k. Thus Dk =⋃
0≤j≤k{0, 1}j. The set D0 has just one element, the sequence () of length 0. If σ =∈

{0, 1}j the length j of σ will be denoted |σ| and we shall write σ.0 (resp. σ.1) for the
element of {0, 1}j+1 which extends σ and has 0 (resp. 1) in its last place. We define
0.σ and 1.σ analogously.

We fix a metric d on Γ, compatible with the given topology, under which Γ is
complete, as well as a countable base B for the topology of Γ and a sequence (sm) which
is dense in K. We now introduce, for all infinite subsets M of N, all natural numbers p,
all nonempty open subsets X of Γ, and all positive real numbers δ, a set Υ(X,M, p, δ).
Elements of this set are tuples

(M,k, (Uσ)σ∈Dk
, (ασ)σ∈Dk

, (βσ)σ∈Dk
),

where k ∈ ω, Uσ ∈ B, ασ ∈ Γ and βσ ∈ Γ satisfy the following conditions:

1. Uσ ⊆ X and diamUσ ≤ 2−p−|σ| for all σ ∈ Dk;

2. Uσ.0 ∩ Uσ.1 = ∅ and Uσ.0 ∪ Uσ.1 ⊆ Uσ whenever σ ∈ Dk−1;

3. ασ , βσ ∈ Uσ;

4. |sm(ασ)− sm(βσ)| > δ for all large enough m ∈M .

The union
⋃

M∈[N]ω Υ(X,M, p, δ) will be denoted Υ(X, p, δ). This is a tree under the
following ordering:

(M,k, (Uσ)σ∈Dk
, (ασ)σ∈Dk

, (βσ)σ∈Dk
) ≺ (M ′, k′, (U ′σ)σ∈Dk′ , (α

′
σ)σ∈Dk′ , (β

′
σ)σ∈Dk′ )

if and only if

M = M ′ , k < k′ , Uσ = U ′σ , ασ = α′σ and βσ = β′σ for all σ ∈ Dk.
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Notice that the coordinate k equals the height of the element (M,k, (Uσ), (ασ), (βσ)) in
the tree.

Lemma 6. For each δ > 0 and each non-empty open subset X of Γ, the tree Υ(X, p, δ)
is well founded.

Proof. The reader will probably have realized that elements of the tree Υ(X, p, δ) can
be regarded as finite attempts at constructing a Cantor set of discontinuities for some
element of K. The proof of the present lemma makes this idea more explicit.

We have to show that our tree has no infinite branch. So suppose, if possible,
such a branch exists. It would consist of a sequence of elements

(M,k, (Uσ), (ασ), (βσ)) (k ≥ 1)

satisfying (1) to (4).
It follows from completeness of Γ and the conditions (1) and (2) that, for each

infinite sequence z ∈ {0, 1}ω, the intersection
⋂

l∈ω Uz�l contains just one point γz. If s
is any element of K which is a cluster point of (sm)m∈M then we have

|s(βσ)− s(ασ)| ≥ δ

for all σ ∈ {0, 1}<ω. Since each of the sequences (αz�l) and (βz�l) converges to γz, we
see that each γz is a discontinuity point of s, contrary to our hypothesis that there are
only countably many such discontinuities.

Lemma 7. For each non-empty open subset X of Γ, each p ∈ ω and each δ > 0, the
relation ≺ on Υ(X, p, δ) is analytic.

Proof. Here we follow [1] quite closely. We note that X is open in the Polish space Γ
and hence itself Polish, and that [ω]ω is also a Polish space. The countable sets ω and
B will be equipped with the discrete topology. So if we define

H =
⋃
k∈ω

(
[ω]ω × {k} × BDk ×XDk ×XDk

)
,

H is a disjoint union of Polish spaces and hence a Polish space. It follows from our
description of the elements of Υ(X, p, δ) that Υ(X, p, δ) ⊆ H. We shall show that the
relation ≺ is an analytic subset of H×H. Now it is very easy to see that ≺ is closed in
Υ(X, p, δ)×Υ(X, p, δ), so it will be enough for us to show that Υ(X, p, δ) is analytic.

Now it is a standard result that we may enhance the topology of the Polish space
Γ in such a way that all the sets U ∈ B are both open and closed, and all the functions
sm are continuous, while Γ remains a Polish space. Let us write X̃ for X equipped with
this enhanced topology, and H̃ for H equipped with a similarly enhanced topology.
What we shall show is that Υ(X, p, δ) is a countable union of closed subsets of H̃.

We set

Υn = {(M,k, (Uσ), (ασ)σ∈Dk
, (βσ))σ∈Dk

) ∈ Υ(X, p, δ) :

|sm(ασ)− sm(βσ)| ≥ δ whenever σ ∈ Dk and n ≤ m ∈M}

10



and shall show that each Υn is closed in H̃. Suppose then that

(M l, kl, (U l
σ)σ∈D

kl
, (αl

σ)σ∈D
kl
, (βl

σ)σ∈D
kl

) (l ∈ ω)

is a sequence of elements of Υn which converges in H̃ to the limit

(M,k, (Uσ)σ∈Dk
, (ασ)σ∈Dk

, (βσ)σ∈Dk
).

Since we have equipped ω and B with the discrete topology, kl = k and U l
σ = Uσ for all

large enough l. Since αl
σ and βl

σ converge respectively to ασ and βσ in the topology of
X̃, and since Uσ is closed in that topology, we have ασ, βσ ∈ Uσ. If m ∈M and m ≥ n
then m ∈ M l for all large enough l so that |sm(αl

σ)− sm(βl
σ)| ≥ δ for all large enough

l. Since we have arranged for sm to be continuous in the topology of X̃, we see that
|sm(ασ)− sm(βσ)| ≥ δ. We have finished showing that Υn is closed in H̃.

To finish the proof of our theorem, we need to show that the rank of the tree
Υ(X, p, δ) dominates the derived length of the set J(s, δ) when s ∈ K. We do this
using two final lemmata, the first of which expresses an obvious idea in what is perhaps
over-pedantic notation.

Lemma 8. Let X be a non-empty open subset of Γ, let M be an infinite subset of ω,
let p be a natural number and let δ be a positive real number. Let Y and Z be disjoint
non-empty open subsets of X and assume that there exists U ∈ B with Y ∪Z ⊆ U ⊆ X
and diamU ≤ 2−p. If Υ(Y,M, p + 1, δ)[ξ] and Υ(Z,M, p + 1, δ)[ξ] are both non-empty,
then Υ(X,M, p, δ)[ξ+1] is also non-empty.

Proof. We shall show how to embed the tree Υ(Y,M, p+ 1, δ)⊗Υ(Z,M, p+ 1, δ) into
the set of non-minimal elements of Υ(X,M, p, δ), that is to say, the elements of height
at least 1. Our hypothesis, together with Lemma 1 will then tell us that Υ(X,M, p, δ)[ξ]

contains a non-minimal element, which in turn implies that Υ(X,M, p, δ)[ξ+1] 6= ∅.
Since Y ⊆ U and Υ(Y,M, p + 1, δ) 6= ∅ there certainly exist α, β ∈ U with

|sm(α)− sm(β)| ≥ δ for all large enough m ∈M . We define U() = U , α() = α and β() =
β. Now let (M,k, (Vσ)σ∈Dk

, (κσ)σ∈Dk
, (λσ)σ∈Dk

) and (M,k, (Wσ)σ∈Dk
, (µσ)σ∈Dk

, (νσ)σ∈Dk
)

be height k elements of Υ(Y,M, p+1, δ) and Υ(Z,M, p+1, δ) respectively. If we define

U0.σ = Vσ U1.σ = Wσ

α0.σ = κσ α1.σ = µσ

β0.σ = λσ β1.σ = νσ,

then it is easy to check that (M,k + 1, (Uσ)σ∈Dk+1
, (ασ)σ∈Dk+1

, (βσ)σ∈Dk+1
) is a height

k + 1 element of Υ(X,M, p, δ). This defines the promised embedding.

Lemma 9. Let X be a non-empty open subset of Γ and let δ be a positive real number.
Let s ∈ K be the pointwise limit s = limM3m→∞ sm along the subsequence M , and
assume that X ∩ J(s, δ)(ξ) 6= ∅. Then, for every p ∈ ω, Υ(X,M, p, δ)[ξ] 6= ∅.
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Proof. We proceed by induction on the ordinal ξ, starting with ξ = 0: if J(s, δ)∩X 6= ∅
we choose any γ in this set and then select U ∈ B with γ ∈ U , U ⊆ X, diamU ≤ 2−p.
Since γ ∈ J(s, δ) we have osc(s � U) > δ so we can choose α, β ∈ U with |s(α)−s(β)| >
δ. If we set U() = U, α() = α, β() = β, then (M, 0, (Uσ)σ∈D0 , (ασ)σ∈D0 , (βσ)σ∈D0) ∈
Υ(X,M, p, δ).

Now suppose that X ∩ J(s, δ)(ξ+1) 6= ∅ and that the result is true for ξ. Choose
γ ∈ X ∩ J(s, δ)(ξ+1) and an element U of B with γ ∈ U , diamU ≤ 2−p. Since γ is a
limit point of J(s, δ)(ξ), we may find ζ ∈ U ∩ J(s, δ)(ξ) with ζ 6= γ, and then choose
disjoint open Y and Z containing γ and ζ respectively. By our inductive hypothesis
(which of course applies to all p), Υ(Y,M, p + 1, δ)[ξ] and Υ(Z,M, p + 1, δ)[ξ] are both
non-empty. By Lemma 8 we now have Υ(X,M, p, δ)[ξ+1] 6= ∅.

Finally, let η be a limit ordinal, with X ∩ J(s, δ)(η) 6= ∅, and assume that the
result is true for all ξ < η. As before, we choose γ ∈ X ∩ J(s, δ)(η), U ∈ B with
γ ∈ U , diamU ≤ 2−p and α, β ∈ U with |sm(α) − sm(β)| ≥ δ for all large enough
m ∈M . We use these to define a height 0 element (M, 0, U, α, β) of Υ(X,M, p, δ). For
any ξ < η, γ is a limit point of X ∩ J(s, δ)(ξ), so we can find disjoint open subsets
Y, Z of U such that Y ∩ J(s, δ)(ξ) and Z ∩ J(s, δ)(ξ) are both nonempty. By inductive
hypothesis, both Υ(Y,M, p + 1, δ)[ξ] and Υ(Z,M, p + 1, δ)[ξ] are both non-empty. The
proof of Lemma 8 shows that our already constructed height 0 element (M, 0, U, α, β)
is in Υ(X,M, p, δ)[ξ+1]. Since this is true for all ξ < η we have Υ(X,M, p, δ)[η] 6= ∅ as
claimed.

The proof of Theorem 3 is now complete.

5 σ–Fragmentability of C(K) for the non–separable

case

Let us recall that space C(K) with the pointwise topology Tp is said to be σ–fragmentable
by its norm if for every ε > 0 we can decompose C(K) =

⋃∞
n=1Cn,ε in such a way that

for every n ∈ N and every non–empty subset T ⊂ Cn,ε there exists a Tp–open set V
such that V ∩ T is non–empty and has norm diameter less than ε. This notion was
introduced and studied in [7] where among other things it is proved that C(K) is σ–
fragmentable if for every ε > 0 we can decompose C(K) =

⋃∞
n=1Cn,ε in such a way that

for every n ∈ N and every non–empty subset T ⊂ Cn,ε there exists a Tp–open V such
that V ∩ T is non–empty and covered by countably many sets of diameter less than ε,
see [7, Theorem 4.1.].

In our last section we shall prove the following

Theorem 4. Let Γ be a Polish space and let K be a pointwise compact set of functions
on Γ such that each function s ∈ K has only countably many discontinuities. Then
(C(K),Tp) is σ–fragmentable by its norm.

We first establish a little notation: For s ∈ K let J(s) =
⋃

δ>0 J(s, δ), i.e. the
set of all the discontinuity points of s. A finite sequence {(si, ti)}n

i=1, (si, ti) ∈ K ×K,

12



1 ≤ i ≤ n, is said to be fitted whenever for every i, 1 ≤ i ≤ n, we have

(1) si(γ) = ti(γ) for all γ ∈ Q ∪

(⋃
j<i

(J (sj) ∪ J (tj))

)
,

and the fitted sequence {(si, ti)}n
i=1 is said to have length n.

Given ε > 0 we say that x ∈ C(K) ε–jumps a fitted sequence {(si, ti)}n
i=1

whenever

(2) |x (si)− x (ti)| > ε for every 1 ≤ i ≤ n.

Theorem 4 will follow from some lemmata.

Lemma 10. Given x ∈ C(K) and ε > 0 there exists n ∈ N such that x does not ε–jump
any fitted sequence in K ×K which has length strictly bigger than n.

Proof. Since K is compact x is uniformly continuous and there exists δ > 0 and a finite
subset F of Γ such that

(3)

(
sup
γ∈F

|s(γ)− t(γ)| < δ =⇒ |x(s)− x(t)| < ε

)
for all s, t ∈ K.

Let n := #F , we claim that if {(si, ti)}m
i=1 is a fitted sequence which is ε–jumped by x

then we have m ≤ n. Indeed since Q is dense in Γ from (1) it follows that s1(γ) = t1(γ)
for every point of continuity γ of s1 and t1. Then from (1), (2) and (3) it follows

F ∩ (J (s1) ∪ J (t1)) \Q 6= ∅.

An obvious induction argument gives that

(4) F ∩ (J (si) ∪ J (ti)) \

(
Q ∪

(⋃
j<i

(J (sj) ∪ J (tj))

))
6= ∅, 1 ≤ i ≤ m.

Now the statement follows from (4).

It might be worth remarking that (4) shows that if a fitted sequence {(si, ti)}n
i=1

is ε–jumped by some x ∈ C(K) then (si, ti) 6= (sj, tj) for 1 ≤ i 6= j ≤ n.

Given x ∈ C(K) and ε > 0 let j(x, ε) the minimum of the natural numbers for
which the thesis of Lemma 10 holds for ε and x. Thus for any j > j(x, ε) the function
x cannot ε–jump any fitted sequence of length j, and there exists a fitted sequence
ε–jumped by x of length equal to j(x, ε) whenever j(x, ε) > 0.

Given x ∈ C(K) and ε > 0, a subset S ⊂ Γ is said to ε–control x whenever there
exist a finite subset F ⊂ S and δ > 0 for which (3) holds.

Lemma 11. Given x ∈ C(K) and ε > 0 if {(si, ti)}j(x,ε/2)
i=1 is a fitted sequence which is

(ε/2)–jumped by x then Q ∪
(⋃

i≤j(x,ε/2) (J (si) ∪ J (ti))
)
ε–controls x.
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Proof. Otherwise for any finite set F , F ⊂ Q ∪
(⋃

i≤j(x,ε/2) (J (si) ∪ J (ti))
)
, and any

n ∈ N we can choose s(F, n), t(F, n) ∈ K such that

|s(F, n)(γ)− t(F, n)(γ)| < 1/n for all γ ∈ F whereas |x(s(F, n))− x(t(F, n))| ≥ ε.

Since K is compact there must exist an adherent point
(
s̃, t̃
)

to the net (s(F, n), t(F, n)).
Now we have

∣∣x (s̃)− x
(
t̃
)∣∣ ≥ ε > ε/2 and s̃(γ) = t̃(γ) for all γ ∈ Q ∪

 ⋃
i≤j(x,ε/2)

(J (si) ∪ J (ti))

 .

Then (s1, t1), . . . ,
(
sj(x,ε/2), tj(x,ε/2)

)
,
(
s̃, t̃
)

is a fitted sequence of length 1 + j(x, ε/2)
which x (ε/2)–jumps, a contradiction.

Lemma 12. For every ε > 0 there exists a decomposition C(K) =
⋃

n∈NCn,ε such that
for every n ∈ N and any x ∈ Cn,ε there exist a weak open set W and a countable set
N ⊂ Γ such that x ∈ W ∩ Cn,ε and N ε–controls every y ∈ W ∩ Cn,ε.

Proof. Let ε > 0. Let Cn,ε := {x ∈ C(K) : j(x, ε/2) = n}. According to the proof of
Lemma 11 if n = 0 then the set Q ε–controls every function y ∈ C0,ε. Suppose n > 0,
and let us fix a fitted sequence {(si, ti)}n

i=1 which is ε/2–jumped by x. Let δ > 0 such
that

|x (si)− x (ti)| >
ε

2
+ δ, 1 ≤ i ≤ n.

Then every element y in the weak open set

W := {y ∈ C(K) : |x (si)− y (si)| < δ/2 & |x (ti)− y (ti)| < δ/2, 1 ≤ i ≤ n}

ε/2–jumps the above fitted sequence. Then from Lemma 11 we conclude that the set

Q ∪

 ⋃
i≤j(x,ε/2)

(J (si) ∪ J (ti))


ε–controls every y ∈ Cn,ε ∩W .

The proof of Theorem 4 now follows from the remarks in the beginning of this
section together with the above lemma and the next proposition which is nothing else
than a quantitative version of Ascoli’s theorem.

Proposition 5. Let K be a compact space embedded in a cube [0, 1]Γ and let F be a
bounded subset of C(K). If F is ε–equicontinuous, i.e. there is a finite set F ⊂ Γ and
δ > 0 such that |x(s)− x(t)| < ε whenever |s(γ)− t(γ)| < δ for all γ ∈ F and x in F ,
then F can be covered by finitely many sets of norm diameter less than 3ε.
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Proof. Let us assume that F is bounded by m and let us split up the interval [−m,m]
into a finite number of sets of diameter less than ε,

(5) [−m,m] =
⋃̀
i=1

Ii; diam (Ii) < ε, 1 ≤ i ≤ `.

Given a subset S ⊂ Γ the symbol πS : [0, 1]Γ → [0, 1]S will stand for the canonical
projection. For the finite set F we can split πF (K) up into finitely many sets which are
included into a cartesian product of intervals of length strictly less than δ, i.e.

πF (K) =

p⋃
j=1

(Lj ∩ πF (K))

where Lj∩πF (K) 6= ∅ and each Lj is a cube whose factor intervals have a length strictly
less than δ. Choose s1,. . . ,sp ∈ K such that πF (sj) ∈ Lj, 1 ≤ j ≤ p. Then we can
cover

F =
N⋃

h=1

Th

in such a way that each Th has the property that y (sj) belongs to the same interval Ii
from (5) for all y ∈ Th and all j, 1 ≤ j ≤ p.

We claim that the diameter of every Th is less or equal than 3ε. Indeed, given
y1, y2 ∈ Th and s ∈ K there exists j, 1 ≤ j ≤ p, such that πF (s) ∈ Lj. From the choice
of Lj we get

|s(γ)− sj(γ)| < δ for all γ ∈ F.
Now from our condition of ε–equicontinuity it follows that

(6) |yi(s)− yi (sj)| < ε, i = 1, 2.

From the choice of Th we have that y1 (sj) and y2 (sj) belong to the same interval Ii
from (5) so

(7) |y1 (sj)− y2 (sj)| < ε.

From (6) and (7) we conclude that

|y1 (s)− y2 (s)| < 3ε,

being the reasoning valid for every s ∈ K the norm–diameter of Th is not bigger than
3ε.

To complete the proof of Theorem 4 let us observe that the decomposition from
lemma 12 give us sets Cn,ε such that for every x ∈ Cn,ε the weak open set W containing
x give us the set W ∩ Cn,ε which is going to be a countable union of ε- equicontinuous
sets, so it can be covered by countably many sets of norm diameter less than 3ε by the
former proposition. The conclusion now follows from [7, Theorem 4.1.]
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