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STRICTLY CONVEX RENORMINGS

A. MOLTO, J. ORIHUELA, S. TROYANSKI AND V. ZIZLER

ABSTRACT

A normed space X is said to be strictly convex if x = y whenever |[(z + v)/2| = ||z|| = ||yl
in other words when the unit sphere of X does not contain non trivial segments. Our aim in
this paper is the study of those normed spaces which admit an equivalent strictly convex norm.
‘We present a characterization in linear topological terms of the normed spaces which are strictly
convex renormable. We consider the class of all solid Banach lattices made up with bounded real
functions on some set I'. This class contains the Mercourakis space c1 (X’ x I') and all duals of
Banach spaces with unconditional uncountable bases. We characterize the elements of this class
which admit a pointwise strictly convex renorming.

A normed space X is said to be strictly convex if z = y whenever ||(z + y)/2| =
lz]] = |ly|, in other words when the unit sphere of X does not contain non trivial
segments. There are few results devoted to strictly convex renormings, most of
them are based on the following simple observation: Let Y be a strictly convex
normed space and let T : X — Y a linear one-to—one bounded operator then
Nzll| = [|z|| + |Tz||, « € X is an equivalent strictly convex norm. M. Day (see e.g.
[4, pp. 94-100]) constructed in ¢o(I") an equivalent strictly convex norm introducing
in ¢o(T") a norm of Lorentz sequence space type. Another strictly convex norm in
¢o(T") can be found in [3, p. 282]. Using the fact that co(T") admits a strictly convex
norm and the norm ||| -||| defined above it was obtained that every weakly compact
generated space and its dual (in particular every separable space and its dual)
admits a strictly convex renorming. F. Dashiell and J. Lindenstrauss [2] defined a
class of subspaces X of £°°([0, 1]) which are strictly convex renormable and do not
admit a one-to-one linear bounded operator into ¢g(I") for any T'. S. Mercourakis
see e.g. [3, pp. 248, 286] introduced the space ¢ (X' x I') which is strictly convex
renormable but does not admit a one-to—one linear bounded operator to ¢o(T")
for any I'. However the strictly convex norm in the class defined in [2, p. 337]
and in ¢ (X' x T') is based on the Day’s strictly convex norm in ¢o(T'). In [1] it
is introduced a quite wide class of dual strictly convex renormable Banach spaces
which are conjugate of Banach spaces with unconditional basis. A characterization
of strictly convex renormable spaces C(K), when K is a tree, or totally ordered is
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obtained in [6] and [8] respectively. Quite recently R. Smith [11] has characterized
those trees K for which C*(K) admits a dual strictly convex norm.

M. Day (see e.g. [4, p. 123]) proved that the space £5°(T") of all bounded func-
tions with countable support does not admit a strictly convex renorming if I' is
uncountable. Other examples of subspaces of £5°(T") which are not strictly con-
vex renormable can be found in [2] and [1]. R. Haydon [7] using Baire category
arguments found some classes of spaces K for which C'(K) does not admit strictly
convex renormings.

Our aim in this paper is the study of those normed spaces which admit an
equivalent strictly convex norm.

In Section 1 we present a characterization in linear topological terms of the
normed spaces which are strictly convex renormable.

In Section 2 we consider the class of all solid Banach lattices made up with
bounded real functions on some set I'. This class contains the Mercourakis space
¢1(X' x T') and all dual Banach spaces with unconditional uncountable bases. We
characterize the elements of this class which admit a pointwise strictly convex
renorming.

The authors wish to thank the referee for his helpful comments and for pointing
out a gap in the previous version of this paper.

1. A characterization of strictly convex renormable spaces

For a set A by Ay(A) we denote the diagonal of A2, i.e. Ay(A) = {(x,7) : = € A}.
Throughout the paper given a linear space X we denote by D : X? — X the map
defined by the formula
z+y

2

D(z,y) = (1.1)

DEFINITION 1. Let X be a linear topological space. A subset M of X? is said
to be quasi diagonal if it is symmetric (i.e. if (x,y) € M then (y,z) € M) and if
x =y whenever (z,y) € M and x, y € conv(DM). We say that M is sigma quasi
diagonal if M is a countable union of quasi diagonal sets.

THEOREM 1.1. Let X be a normed space and F a subspace of X* which is
1-norming for X. The following are equivalent
(i) S% is a sigma quasi diagonal set with respect to (X, o (X, F));
(ii) X? is a sigma quasi diagonal set with respect to (X, o (X, F));
(iii) X admits an equivalent o(X, F') lower semicontinuous strictly convex norm.
In particular X admits an equivalent o(X, F') lower semicontinuous strictly convex
norm if, and only if, X? is sigma quasi diagonal with respect to (X,o (X, F)).

Before proving Theorem 1.1 we need some assertions.

LEMMA 1.2. Let X be a normed space and F' a subspace of X* which is 1—
norming for X. For ¢ > 0 and n € N the set

L ={e) € X+ Jal ol € [aa (L4070 |55 :

‘x+yH <(1=nY) ]l + IIyI}
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is a quasi diagonal set with respect to (X, (X, F)).

Proof. Given (z,y) € L, 4, we find f € F, || f|| = 1, such that
fl@) = ||l = q/2n.

Since ||z|| > q we get

f@)>q (1 - 1) | (1.2)

2n?
On the other hand for (u,v) € L, , we have
f u+v < u+v
2 2
Then using (1.2) we get

< (1 _ n—l) [[u ‘g [[v]] < (1 _ n—l) q (1 —|—n_1) _ (1 _ n—z) q.

_ q
su <(1=-n"2¢< f(z)— —
Dquff( Ja<f@) =55
where D is the map defined in (1.1). So

o(X,F)

x ¢ conv (DL, q) O

LEMMA 1.3. Let X be a normed space and F a subspace of X* which is 1—
norming for X. Let 0 < g < r and M, N C X such that
N cgBx, McC(2r—qBx, MnrBx=10.
Then the set L = (M x N)U(N x M) is quasi diagonal with respect to (X, o (X, F)).

Proof. Pick (z,y) € L. Assume that x € M, y € N. Since ||z|| > r there exists
feF,|fll =1, such that f(z) > r. For (u,v) € L we have

< <=(qg+2r—q)=r.
f( 2 ) - 2 - 2((] roa) =

So suppy, f <r < f(x) where D is the map defined by (1.1). Hence

o(X,F)

x ¢ conv (DL) O

COROLLARY 1.4. Let X be a normed space and F a subspace of X* which is
1-norming for X. Then the set P = {(z,y) € X?: ||lz[| # |ly|} is sigma o(X,F)
quasi diagonal.

Proof. For q,r € Q,0< g <r, we set
P,,=(gBx x ((2r —q) Bx \rBx)) U (((2r —¢) Bx \rBx) x ¢Bx).

From Lemma 1.3 we get that P, , are quasi diagonal sets. We show that

P=JP-
q,r

Pick (z,y) € P. We can find ¢, r € Q such that

min([|z, [yl) < ¢ <r <max([lz], [yl) < 2r —q.
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Then we have (z,y) € P, ,. O

We say that a set M C X is positively homogeneous if Az € M whenever A > 0
and x € M.

PROPOSITION 1.5. Let L C X? be a positively homogeneous sigma o(X, F)
quasi diagonal set, where F' is a norming subspace for X. Then X admits an
equivalent (X, F)—lower semicontinuous norm || - ||, such that x = y whenever

(z,y) € L, |zl = llylle = (= +y)/2ll -

Proof. Let L,, n =1, 2, ..., be quasi diagonal sets covering L. Without loss
of generality we may assume that {Ln}ff=1 are bounded. Otherwise we can replace
{Ln}nzy by {Ln NpBx2}, ;. Pick 2, € Ly, and denote by || -||;n,» the Minkowski

o(X? F?
(x?,F2)

functional of —z;,, + My, », , where

My = conv (L) + m~!Bxe.

We choose a, , > 0 in such a way that the function ¢ : X? — R defined by the

formula
oo

2
w(z) = Z amn 12 = 20l » ze X?
m,n=1
is bounded on Bx:. Evidently ¢ is a convex, uniformly norm continuous function
on bounded sets. Set for w € X2

[lwll = nf{A >0 @(w/A) + p(-w/A) < 2c}

where ¢ = supg _, . It is easy to see that [||-||| is an equivalent norm on X?. Clearly
| lm,n are o (X2, F?)~lower semicontinuous. Hence ¢ and ||||| are o (X2, F?)-
lower semicontinuous too. For z € X we set ||z||r = |||(z, z)]|||- Pick z, y € X such
that (z,y) € L and ||z, = |lyl|;, = ||1‘2"y |L. Since L is positively homogeneous
without loss of generality we can assume that ||z||, = 1. Set uv = (z,2), v = (y,y).
We have

(1) + p(—u) = p(0) + p(—v) = ¢ (“‘;) Tt (_“ - ) “ o

By convexity of ¢ we get

el els) (180

So
u—+v
-z,
2

2 2
> ||U - Z”LHm,n + ||'U - Zn”nz,n
Z @m,n 9 o

2
>:o.

Again by convex arguments, see e.g. [3, p. 45] we get for m, n =1,2,...
U+ v

m,n=1

Ju— Zn”m,n = [jv— Zn”mm = 5 Zn (1.3)
Pick n € N such that (z,y) € L,,. Since L,, is symmetric we get that (y,z) € L, too.
So 1Y _ (@.9) + (v.2) € conv (L,). Hence utv_ Zn <1 for all m =

2 2

m,n
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1,2,... From (1.3) we get that ||u — 2,]|,,.,, = [[v = 2nll,p., < 1forallm=1,2,...

m,n

So
e 2 2
U — Zp,V — 2Zp € ﬂ (zn + Mm,na(X a ))
m=1
i.e.
s o 2 2
u,v € ﬂ My p, (x*F ) (1.4)
m=1
‘We show that
— (X%, F?
u,v € conv (Ly,) ( ) (1.5)

o(X? F?
(x?,F2)

Assume now that v ¢ conv (L) . According to the Hahn—Banach theorem

there exists f € F? and b € R such that
f(u) >b>supf. (1.6)
Ly,

Set H = {w € X?: f(w) < b}. We can find m € N such that M,,, C H. Since
o 2 2
H is o (X2, F?) closed we get that M, , (¥*.F%) C H. From (1.6) we obtain that
o 2 2
u ¢ H. Hence u ¢ My, p, (¥*.F%) which contradicts (1.4). So (1.5) is proved. From

(1.5) we get that z, y € conv (DLn)U(X7F)7 where D is the map defined in (1.1).
Since L,, is quasi diagonal we get = = y. |

Proof of Theorem 1.1 (i)=>(ii) We have S% = |J,—, L,, where each L,, is quasi
diagonal with respect to (X,0(X,F)). Given n € N and ¢, r € QT, let L, 4, be
the set of all (z,y) € X? such that x # v, (z,y) € ||z||Ln, ||z]| = ||yl €]g,r[ and,
either (z,z) € X2\ [g,r] conv L,, or (y,y) € X?\[g,r] conv L,,. Clearly each Ly, 4,

is symmetric and it is easy to prove that
{(r,y) e X*: 2 #y, |l =y} = J{Lngr: nEN, ¢reQ’}.

Moreover since conv Ly, 4, C [q, r]conv L,, the sets L, 4 are quasi diagonal so X2
is sigma quasi diagonal. (ii)==-(iii) It follows from Proposition 1.5. (iii)=-(ii) It is
a consequence of Lemma 1.2 and Corollary 1.4. (ii)==(i) It is obvious. O

As a consequence of Theorem 1.1 we get the following

PRrOPOSITION 1.6 (Talagrand see e.g. [3, p. 313]). There is no equivalent strictly
convex dual norm in C ([0,w1])".

Proof. Indeed otherwise according to Theorem 1.1 we have C ([0, w1])* xC ([0, w1])" =
U,—, M,, where every M, is quasi diagonal. For n € N, let S, be the set of all
(s,t) € [0,w1] x [0,wq[ such that (6s,0;) € M,. Then [0,w1] x [0,wi[ = U, Sn.
Moreover since (s,s) € S, implies 6 € {D(z,y): (z,y) € M, } we conclude that
the set S, has the following property

(s,t) € Sp, (s,9),(t,t) €S, => s =t for all s5,t € [0,w]. (1.7)

Set m; : [0, w1 X [0,w1] = [0,w1[, i (1, 2) = ay, @ = 1,2. Let A be the (possibly
empty) set made up by all n € N for which there exists «, € [0,w;[ such that
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Sp C ([0, ] X [0,w1]) U ([0,w1] X [0, ]). If A # 0 and « := sup, a,, we have
a < wi and

Sy N (o, w1] X [, wi[) = 0 for all n € A. (1.8)
Therefore N\ A # (), so it makes sense to take ¢ : N — N\ A which is onto and
@ 1 ({n}) is infinite for all n € N'\ A. (1.9)

Now according to the choice of A we can define by induction two maps A, p: N —
[0, wy [ such that

(A(n), p(n)) € Spmy, n €N; (1.10)
max{A(n), u(n)} <min{A(n+1),u(n+1)}, n € N; (1.11)
a < min{A(1), u(1)}. (1.12)

From (1.11) it follows that
lim A(n) = lim p(n). (1.13)
n n

Let 8 = lim, A\(n) = lim,, u(n). From (1.12) we get 8 > a. Moreover from (1.9),
(1.10) and (1.13)

(8,8) €[ {S: neN\ A} (1.14)

Once more we can define by induction two maps 7, p : N — [0, wy [ for which (1.10)—
(1.12) hold when we replace A, p and « by 1, p and . Then let v = lim,, n(n) =
lim,, p(n), we have

'y>6>aand(7,’y)€ﬂ{57n:nEN\A}. (1.15)
From (1.8) and (1.15) it follows that (5,7) ¢ S,, for any n € A. So let ng € N\ A
such that (8,v) € Sp,. This, (1.14) and (1.15) contradict (1.7). O

2. Strict convexity in a lattice.

In this section (X, || - || x) will be a solid Banach lattice of real functions on some
set I' such that [|y||, < [lyllx < ||lz|lx whenever |y(y)| < |z(y)| for all v € T' for
some = € X. Let || - || be an equivalent pointwise lower semicontinuous norm

2]l < llzll < llzllx < K ||

From now until Lemma 2.5 the symbol || - || will denote this norm.

LEMMA 2.1. Ifsupp z = {y € T': x(y) # 0} is uncountable for some x € X
then X contains a lattice isomorphic copy of £>°(A) for some uncountable set A.

Proof. Set A, = {y €T : |z(y)| >n"'}. We have

o0
supp ¢ = U A,

n=1
So for some n the set A,, is uncountable. If y € £>° (A,,) we have for every v € A,

WO ).

nllyllee ~




STRICTLY CONVEX RENORMINGS 7

So for all v € T we have |z, ()| < n||ly|loo |2(7)] for all v € ', where 2, (y) = y(v) if
v € Ay, and zy(y) = 0if v ¢ A,,. From our assumption it follows that z, € X and

1Ylloo = ll2yllo <llzyllx < nllzllx[[Ylloo-

Hence £*° (A,) is isomorphic to a subspace of X. O

In X we introduce a new norm. Let G = {—1,1}' and let p be the Haar
translation invariant measure on the Abelian group G. For s = {s;} . € G and
x € X we set

() = syx(7).

Clearly for a fixed z € X the function of s, 2° is continuous on G when we consider
in X the pointwise convergence topology. As we have already mentioned we shall
assume that the norm || - || is pointwise lower semicontinuous. So in this case the
function on s ||2®] is pointwise lower semicontinuous on G for a fixed z € X. We

set
1/2
512
lall = (112 aute)) (2.1)
G
Clearly ||| - ||| is an equivalent norm on X. Since p is translation invariant we get
for every x € X and every s € G that
>[I = [l (2.2)
From convex arguments we get that
2
el + Myl |||z +y
- >0 2.3
5 5 (2.3)
if, and only if,
s||2 s||2 s s (12
il sea: [ e 7 s o | RSP O O
2 2
For A CT and z € X we set
z(y) ifyen
Ppa(y) =
0 otherwise.

For a € I" we shall write Pg instead of Pgy.
LEMMA 2.2. For every non-empty A C I' we have |||Pys]|| = 1.

Proof. Using (2.2) we get for every x € X
1

1Psell = 3 (I} (Pra-+ Prone) + (Pa = Froaa) ) <
1

< 5 ([[Paz + Prva[| + || Paz = Pryazl[]) = lll«]ll. m
LEMMA 2.3. The norm ||| - ||| is pointwise lower semicontinuous whenever || - ||

is pointwise lower semicontinuous, and provided X does not contain isomorphic
copies of £>°(A) for an uncountable set A.
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Proof. Pick x, € X such that lim, z, = x for some x € X in the topology of
pointwise convergence. Set A = supp z. From Lemma 2.1 we get that #A < Ry. So
there exists a sequence {ay },-, such that

lim [[|za, ||| = lim inf |[|za|| (2.4)
and
lilgn Przq, () = z(y) for all y € T
Since | - || is pointwise lower semicontinuous we get that

limkinf | Paz,, || > llz®| for all s € G. (2.5)
Taking into account Fatou’s Lemma we get
. s 112 . s 112
JG hmkmf HPAxak H du(s) < hmklnf JG | Pazl,, ||” dpls).

This (2.5), (2.4) and Lemma 2.2 imply

1/2
lell = (]_llo*Paute) ) < timint 1Pazo I < tyn o || = Ty . ©

LEMMA 2.4. The norm ||| - ||| is a lattice norm provided #supp x < R for every
zeX.

Proof. Let A be the family of all finite subsets A of ' partially ordered by
inclusion. Then for every z € X we have limg P4z = z in the topology of the
pointwise convergence. Since ||| - ||| is pointwise lower semicontinuous we get

lim inf [[[Paz[[| = [[[=]]|-

On the other hand Lemma 2.2 gives us |[|Paz]|| < |||z]]| so

lin [[|Paz][] = [I]=]]]- (2.6)
Pick now z, y € X with |z| < |y|. For every finite set A C I' we can find A\, > 0,
o€ {-1,1}4 x {1}1"\4 such that Y°_ Ay = 1 and Paz = >, Ao Pay”. From (2.2)

we have |||Pay?]|| = |[|Pay]| for all o. Hence |||Paz|| < |||Pay|||- Having in mind
(2.6) we get |[[z[|| < [[[yl- 0

LEMMA 2.5. For every p € (1, 2] there exists a positive number ¢, such that for
every x, y € £, we have

r+y
2

s (lel” + ol
(ol + e (L A

P 2
) > ¢lle — vl

This inequality is a homogeneous version of the uniform convexity inequality for
£y, 1 < p < 2. For the proof see e.g. [9] or [10].

By con{d, : v € '} we denote the positive cone generated by the Dirac measures
0y, veT.

THEOREM 2.6. Let X be a solid Banach lattice of real functions on some set I"
such that ||-||, < ||| x - The following assertions are equivalent:
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(i) X admits a pointwise lower semicontinuous strictly convex norm.
(ii) X admits a lattice pointwise lower semicontinuous strictly convex norm.
(iii) X admits a pointwise lower semicontinuous strictly lattice norm (i.e. |z|| < ||yl
whenever |x| < |y|).
(iv) The set Z of all pairs z = (z,y) € X?,0 <z <y, can be written Z = |J,,cy Zn
in such a way that for every z = (z,y) € Z,, there exists f € con {§,: vy €T}

with
f(y) >sup{f (u—zl—v) : (u,v) € Zn}.

Proof. We use the diagram
(i) = (ii) = (iii) = (iv) = (iii) = (ii)) = (i)
(i) = (ii) Assume that || - || is a pointwise lower semicontinuous strictly convex
norm. Let ||| - ||| be the norm obtained from || - || by (2.1). Since || - || is a strictly
convex norm X does not contain isomorphic copies of ¢°°(A) for an uncountable
set A (see e.g. [4, p. 123]). Then from Lemma 2.3 and Lemma 2.4 we get that ||| -]]|

is a lattice pointwise lower semicontinuous norm. From (2.3) it follows that ||| - |||
is strictly convex.

(i) = (iii) Pick z, y € X, 0 < z < y. Let | - || be a lattice strictly convex
norm. Then ||z|| < ||y||. Assume that ||z|| = ||y||. Since = < Y y we get
lz]| < “”“;y < lly|l. Hence "””;LZ”H = llzll = lyll. Since | - || is strictly convex

we have z = y.
(iii) = (iv) It follows directly from the proof of Corollary 1.4.

(iv) = (iii) Denote by Z (respectively Z,) the set of all z = (z,y) € X2 such
that either (||, |y|) or (Jyl, |z|) belongs to Z (respectively Z,,). Let us see that Z, is
quasi diagonal with respect to (X, pointwise). Indeed let (|z|, [y|) € Z,, f = a6,

a, > 0 and
o > {7 (52 @z

Set g = > a,sign y(v)dy. Then g(y) = f(ly]) and g(u + v) < f(lu| + [v]) for
any (u,v) € X2. Hence Z, is pointwise quasi diagonal and Z is sigma pointwise
quasi diagonal. According to Proposition 1.5 there exists on X a pointwise lower
semicontinuous equivalent norm || - || such that * = y whenever (z,y) € Z and
Izl = lly|l = ||(x +v)/2||. Let us show that #supp u < X, for every v € X. Indeed
otherwise from Lemma 2.1 it follows that there exists A C I', #A > N, such that
every bounded function v on A with supp v C A belongs to X. Then from a slight
adaptation of Day’s proof that £>°(A) does not admit a strictly convex norm it
follows that there exist z, y € X, 0 < x <y with ||z|| = |ly|| = [(z +v)/2| (see e.g.
[4, p. 123]). For the sake of completeness we include a proof of this assertion.

Let £2°(T) be the subspace of £>°(I") made up by all z € ¢*°(T") with countable
support. Let S be the unit sphere of £5°(T") (for the supremum norm). For each = €
S,z>0,let Fr :={y€S: U laupp 2= T loupp 2 ¥ >0}, my :=inf {|ly||: v € F.}
and M, := sup{|ly|]| : vy € Fy}. The assertion will be proved as soon as we find
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x € S with £ > 0 such that

M, = mg. (2.7)
This will follow from two observations. First for any z € S with > 0 we have
My +mg
lzf <« ——— (2.8)

Indeed given € > 0 take y € F,, such that |y|| — & < m,. Then for any 3’ € F,, we
have 2z < y + 4/, therefore 2||z|| < ||yl + ||¥/]]| < My + M, + € and (2.8) follows.

On the other hand let us observe that for any sequence {z,,},> |, z, € S, z, > 0,

such that z,,41 € F,, for n € N we have that the bounded sequences {M, } >,
and {m,, } -, are monotone, therefore convergent. Then (2.7) will be proved if we
show that they converge to the same limit. For this purpose we take {:cn}zo:l in
such a way that M, — ||zp11] <2771 then from (2.8) we get that

M:v — My M:v + my
n n n n —n—1
e ST M, = S M — <27
2 2
Thus
M$n+1 - min,+1 < 27”3

which implies that lim,,_, o my, = lim, . M, and (2.7) is proved.

Now we introduce ||| - [[| by (2.1). According to Lemma 2.4 ||| ||| is a lattice norm.
We show that ||| ||| is a strictly lattice norm. Indeed let |x| < |y|. Then (z°,y°) € Z
for all s € G, therefore

[ 7 [ 50
2 2 '
From (2.3) we get that |||z]|| < |||y]]|-
(ili) = (ii) We set d,(z) = z(v) for x € X and v € T'. Since the norm || - || is

pointwise lower semicontinuous, span {57}7 e € X* must be 1-norming for X. For
p>1set
1/p

Iz, = sup § D layz (NI e | <1

yerl’ yel’
Having in mind that span {67}761, is 1-norming for X we get
Izl = llzlls = fl=]lp- (2.9)

From the choice of || - ||, it follows that it is pointwise lower semicontinuous for
every p > 1. It is easy to see that

Limy lzflp = [l (2.10)
Claim For every z € X and every € > 0 there exists p, . > 1 such that
lapz(B)P > e (2.11)
whenever

1<p<p., llz|| — ||z — Psz|| > 3e, (2.12)
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Yoady <L Y layzIP > Izl -

yel’ yel’

Proof. For 7 > 0 and p > 0 we set u,(7) = max{7P,7}. It is easy to see that
for o € [0, 7] and p > 1 the inequality

pp(T)>17—0+0" (2.13)
holds. Pick z € X and € > 0. From (2.9) and (2.10) it follows that there exists
Dz > 1 such that for all p € [1,p, ]

1215 = wp(ll21) — e (2.14)

We have ||z|| — ||y|| > 3¢ where y = z — Pgz. Since ||y|| < ||z|| we can apply (2.13)
for 7 = ||z|| and o = ||y||. Taking into account that [|y||, < ||y|| from (2.14) we get
that for all p € [1,p, (]

1215 =yl = we(llz1) —& = Mlyll” = [zl = llyll — & = 2. (2.15)
Pick 3 a6y and p satisfying (2.12). Then we have
lyllp = > lay (NI = lagz(B8)[" > |Iz]l5 — & — lag=z(B)]" -
el
This together with (2.15) implies (2.11). O
Pick p, > 1, n=1,2,... such that p, — 1 and set
O(z) =) 27"|lp
n=0
where pg = 1. Let ||| - ||| be the Minkowski functional of ®. Let us prove that ||| - |||
is strictly convex. Indeed suppose that |||z]|| = |||y|l] = |||(z + v)/2|||- By convexity
arguments we have that
x||Pn + Pn Pn
el + lylzz ||z +y -0, n=0,1,2,... (2.16)
2 2 .,
Assume that z(8) # y(B) for some § € T'. We consider two cases. First let
z(B)y(B) < 0. Then since |z(8) + y(B)| < |z(B)| + |y(B)| and || - || is a strictly

lattice norm we get
e +yll = llz+yll <Illz]+ [yl < [zl + [yl = =]l + lyllx
which contradicts (2.16) for py = 1.

Assume now that z(8)y(8) > 0. Since z(8) # y(8) we get |z(8) + y(8)| > 0. Set
z=(x+Yy)/2, 3e = ||z|| — ||z — Psz||. Since | - || is a strictly lattice norm we have
that € > 0. According to the claim we can find p, . > 1 such that (2.12) implies
(2.11). Fix n € N such that 1 < p,, < min{2,p, . }. Set

-— 4, g2/Pn M ’ zl|en Yot
= ey, 22 (VG (Lol + ) 217

where ¢;,, is from Lemma 2.5. We can find f =} a,d,, [[f| <1 and

> layz()P" > |zl — min{e, ). (2.18)
Y



12 A. MOLTO, J. ORIHUELA, S. TROYANSKI AND V. ZIZLER

From (2.16) it follows

lz (lay eI + lasy(NIP) =D larz (NI < (|2

2
5

Pn +n =1.

o T lly o

Pn

p:,) /2—|l2|

From Lemma 2.5 we get

2

2/pn E71
Cpn (Z lay (z(7) - y(v))”") <n (Z layz (NP + > layy(7) p) <
v ¥ ¥
2 1
< n (ll=lp; + yllp) ™
Hence
2
(aglz(8) — y(B))* < n (lelbr + llylEz) ™~ /ep-
From (2.18) and the claim we deduce
Pn
a5 ((8) +yB) " _ _
2
Then
e 2 P o)~
25t w(8) —y(8)\"_ n (el + loll) ™
lz(8) +y(B)l Cpn
which contradicts (2.17).
The implication (ii) = (i) is trivial. O

If X has an unconditional basis {e,} . then X* can be identified with a lattice
which fulfils the lattice conditions at the beginning of this section. In [12] a Gateaux
smooth norm ||| - ||| is obtained on ¢; with unconditional constant 1, whose dual
norm is not strictly lattice.

From Theorem 2.6 it follows that in a Banach space X with unconditional basis
the existence of a dual strictly convex norm in X* implies the existence of a dual
strictly lattice norm.

COROLLARY 2.7. Let X and I' be the Banach lattice and the set considered at
the beginning of this section. Let {I',}{° be a sequence of subsets of T such that for
every € X and « € supp x there exists a € (0, |z(«)|) and m € N with o € T,
#{yeTly: |z(y)] >a} < co. Then X admits a pointwise lower semicontinuous
strictly convex norm.

Proof. For m, n € N set

|2l =sup 4 D le(y)|: ACTwm, #A<
yeA

and

o0
lzlll = llzll + > 27" " [z

m,n=1
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Pick z, y € X, |z| > |y|. We have |z(y)| > |y(y)| for all v € T and |z(a)] >
ly(cr)| for some o € T'. We can find a € (0,|z(«)|) and m € N such that a €
Ipand #{y el : [z(y)|>a} < o0. Set A ={yel,,: |z(y)|>a} and n =
#A. Clearly sup {|ly(v)| : v €T, \ A} <sup{lz(y)|: v €T \ A} < |z()|. This
itaplies [[2mn > 9l 0 211 > Il 0

Mercourakis space ¢; (X x T') satisfies the conditions of corollary above, see [3,
Remark 6.3, p. 249.].
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