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STRICTLY CONVEX RENORMINGS

A. MOLTÓ, J. ORIHUELA, S. TROYANSKI and V. ZIZLER

Abstract

A normed space X is said to be strictly convex if x = y whenever ‖(x + y)/2‖ = ‖x‖ = ‖y‖,
in other words when the unit sphere of X does not contain non trivial segments. Our aim in
this paper is the study of those normed spaces which admit an equivalent strictly convex norm.
We present a characterization in linear topological terms of the normed spaces which are strictly
convex renormable. We consider the class of all solid Banach lattices made up with bounded real
functions on some set Γ. This class contains the Mercourakis space c1(Σ′ × Γ) and all duals of
Banach spaces with unconditional uncountable bases. We characterize the elements of this class
which admit a pointwise strictly convex renorming.

A normed space X is said to be strictly convex if x = y whenever ‖(x + y)/2‖ =
‖x‖ = ‖y‖, in other words when the unit sphere of X does not contain non trivial
segments. There are few results devoted to strictly convex renormings, most of
them are based on the following simple observation: Let Y be a strictly convex
normed space and let T : X → Y a linear one–to–one bounded operator then
‖|x|‖ = ‖x‖+ ‖Tx‖, x ∈ X is an equivalent strictly convex norm. M. Day (see e.g.
[4, pp. 94–100]) constructed in c0(Γ) an equivalent strictly convex norm introducing
in c0(Γ) a norm of Lorentz sequence space type. Another strictly convex norm in
c0(Γ) can be found in [3, p. 282]. Using the fact that c0(Γ) admits a strictly convex
norm and the norm ‖| · |‖ defined above it was obtained that every weakly compact
generated space and its dual (in particular every separable space and its dual)
admits a strictly convex renorming. F. Dashiell and J. Lindenstrauss [2] defined a
class of subspaces X of `∞([0, 1]) which are strictly convex renormable and do not
admit a one-to-one linear bounded operator into c0(Γ) for any Γ. S. Mercourakis
see e.g. [3, pp. 248, 286] introduced the space c1(Σ′ × Γ) which is strictly convex
renormable but does not admit a one–to–one linear bounded operator to c0(Γ)
for any Γ. However the strictly convex norm in the class defined in [2, p. 337]
and in c1(Σ′ × Γ) is based on the Day’s strictly convex norm in c0(Γ). In [1] it
is introduced a quite wide class of dual strictly convex renormable Banach spaces
which are conjugate of Banach spaces with unconditional basis. A characterization
of strictly convex renormable spaces C(K), when K is a tree, or totally ordered is
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obtained in [6] and [8] respectively. Quite recently R. Smith [11] has characterized
those trees K for which C∗(K) admits a dual strictly convex norm.

M. Day (see e.g. [4, p. 123]) proved that the space `∞c (Γ) of all bounded func-
tions with countable support does not admit a strictly convex renorming if Γ is
uncountable. Other examples of subspaces of `∞c (Γ) which are not strictly con-
vex renormable can be found in [2] and [1]. R. Haydon [7] using Baire category
arguments found some classes of spaces K for which C(K) does not admit strictly
convex renormings.

Our aim in this paper is the study of those normed spaces which admit an
equivalent strictly convex norm.

In Section 1 we present a characterization in linear topological terms of the
normed spaces which are strictly convex renormable.

In Section 2 we consider the class of all solid Banach lattices made up with
bounded real functions on some set Γ. This class contains the Mercourakis space
c1(Σ′ × Γ) and all dual Banach spaces with unconditional uncountable bases. We
characterize the elements of this class which admit a pointwise strictly convex
renorming.

The authors wish to thank the referee for his helpful comments and for pointing
out a gap in the previous version of this paper.

1. A characterization of strictly convex renormable spaces

For a set A by ∆2(A) we denote the diagonal of A2, i.e. ∆2(A) = {(x, x) : x ∈ A}.
Throughout the paper given a linear space X we denote by D : X2 → X the map
defined by the formula

D(x, y) =
x+ y

2
(1.1)

Definition 1. Let X be a linear topological space. A subset M of X2 is said
to be quasi diagonal if it is symmetric (i.e. if (x, y) ∈ M then (y, x) ∈ M) and if
x = y whenever (x, y) ∈ M and x, y ∈ conv(DM). We say that M is sigma quasi
diagonal if M is a countable union of quasi diagonal sets.

Theorem 1.1. Let X be a normed space and F a subspace of X∗ which is
1–norming for X. The following are equivalent
(i) S2

X is a sigma quasi diagonal set with respect to (X,σ(X,F ));
(ii) X2 is a sigma quasi diagonal set with respect to (X,σ(X,F ));

(iii) X admits an equivalent σ(X,F ) lower semicontinuous strictly convex norm.
In particular X admits an equivalent σ(X,F ) lower semicontinuous strictly convex
norm if, and only if, X2 is sigma quasi diagonal with respect to (X,σ(X,F )).

Before proving Theorem 1.1 we need some assertions.

Lemma 1.2. Let X be a normed space and F a subspace of X∗ which is 1–
norming for X. For q > 0 and n ∈ N the set

Ln,q =

{
(x, y) ∈ X2 : ‖x‖, ‖y‖ ∈

[
q, q
(
1 + n−1

)]
,

∥∥∥∥x+ y

2

∥∥∥∥ ≤ (1− n−1
) ‖x‖+ ‖y‖

2

}
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is a quasi diagonal set with respect to (X,σ(X,F )).

Proof. Given (x, y) ∈ Ln,q we find f ∈ F , ‖f‖ = 1, such that

f(x) ≥ ‖x‖ − q/2n2.

Since ‖x‖ ≥ q we get

f(x) ≥ q
(

1− 1

2n2

)
. (1.2)

On the other hand for (u, v) ∈ Ln,q we have

f

(
u+ v

2

)
≤
∥∥∥∥u+ v

2

∥∥∥∥ ≤ (1− n−1
) ‖u‖+ ‖v‖

2
≤
(
1− n−1

)
q
(
1 + n−1

)
=
(
1− n−2

)
q.

Then using (1.2) we get

sup
DLn,q

f ≤
(
1− n−2

)
q ≤ f(x)− q

2n2

where D is the map defined in (1.1). So

x /∈ conv (DLn,q)
σ(X,F )

.

Lemma 1.3. Let X be a normed space and F a subspace of X∗ which is 1–
norming for X. Let 0 < q < r and M , N ⊂ X such that

N ⊂ qBX , M ⊂ (2r − q)BX , M ∩ rBX = ∅.

Then the set L = (M×N)∪(N×M) is quasi diagonal with respect to (X,σ(X,F )).

Proof. Pick (x, y) ∈ L. Assume that x ∈ M , y ∈ N . Since ‖x‖ > r there exists
f ∈ F , ‖f‖ = 1, such that f(x) > r. For (u, v) ∈ L we have

f

(
u+ v

2

)
≤ ‖u‖+ ‖v‖

2
≤ 1

2
(q + 2r − q) = r.

So supDL f ≤ r < f(x) where D is the map defined by (1.1). Hence

x /∈ conv (DL)
σ(X,F )

.

Corollary 1.4. Let X be a normed space and F a subspace of X∗ which is
1–norming for X. Then the set P =

{
(x, y) ∈ X2 : ‖x‖ 6= ‖y‖

}
is sigma σ(X,F )

quasi diagonal.

Proof. For q, r ∈ Q, 0 < q < r, we set

Pr,q = (qBX × ((2r − q)BX \ rBX)) ∪ (((2r − q)BX \ rBX)× qBX) .

From Lemma 1.3 we get that Pr,q are quasi diagonal sets. We show that

P =
⋃
q,r

Pq,r.

Pick (x, y) ∈ P . We can find q, r ∈ Q such that

min(‖x‖, ‖y‖) < q < r < max(‖x‖, ‖y‖) < 2r − q.
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Then we have (x, y) ∈ Pq,r.

We say that a set M ⊂ X is positively homogeneous if λx ∈ M whenever λ > 0
and x ∈M .

Proposition 1.5. Let L ⊂ X2 be a positively homogeneous sigma σ(X,F )
quasi diagonal set, where F is a norming subspace for X. Then X admits an
equivalent σ(X,F )–lower semicontinuous norm ‖ · ‖L such that x = y whenever
(x, y) ∈ L, ‖x‖L = ‖y‖L = ‖(x+ y)/2‖L.

Proof. Let Ln, n = 1, 2, . . . , be quasi diagonal sets covering L. Without loss
of generality we may assume that {Ln}∞n=1 are bounded. Otherwise we can replace
{Ln}∞n=1 by {Ln ∩ pBX2}∞n,p=1. Pick zn ∈ Ln and denote by ‖ · ‖m,n the Minkowski

functional of −zn +Mm,n
σ(X2,F 2)

, where

Mm,n = conv (Ln) +m−1BX2 .

We choose am,n > 0 in such a way that the function ϕ : X2 → R defined by the
formula

ϕ(z) =

∞∑
m,n=1

am,n ‖z − zn‖2m,n , z ∈ X2

is bounded on BX2 . Evidently ϕ is a convex, uniformly norm continuous function
on bounded sets. Set for w ∈ X2

‖|w|‖ = inf{λ > 0 : ϕ(w/λ) + ϕ(−w/λ) ≤ 2c}

where c = supBX2
ϕ. It is easy to see that ‖|·|‖ is an equivalent norm on X2. Clearly

‖ · ‖m,n are σ
(
X2, F 2

)
–lower semicontinuous. Hence ϕ and ‖|·|‖ are σ

(
X2, F 2

)
–

lower semicontinuous too. For x ∈ X we set ‖x‖L = |‖(x, x)‖|. Pick x, y ∈ X such
that (x, y) ∈ L and ‖x‖L = ‖y‖L =

∥∥x+y
2

∥∥
L

. Since L is positively homogeneous
without loss of generality we can assume that ‖x‖L = 1. Set u = (x, x), v = (y, y).
We have

ϕ(u) + ϕ(−u) = ϕ(v) + ϕ(−v) = ϕ

(
u+ v

2

)
+ ϕ

(
−u+ v

2

)
= 2c.

By convexity of ϕ we get

ϕ(u) + ϕ(v)

2
− ϕ

(
u+ v

2

)
= 0.

So
∞∑

m,n=1

am,n

(
‖u− zn‖2m,n + ‖v − zn‖2m,n

2
−
∥∥∥∥u+ v

2
− zn

∥∥∥∥2

m,n

)
= 0.

Again by convex arguments, see e.g. [3, p. 45] we get for m, n = 1, 2, . . .

‖u− zn‖m,n = ‖v − zn‖m,n =

∥∥∥∥u+ v

2
− zn

∥∥∥∥
m,n

. (1.3)

Pick n ∈ N such that (x, y) ∈ Ln. Since Ln is symmetric we get that (y, x) ∈ Ln too.

So
u+ v

2
=

(x, y) + (y, x)

2
∈ conv (Ln). Hence

∥∥∥∥u+ v

2
− zn

∥∥∥∥
m,n

≤ 1 for all m =
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1, 2, . . . From (1.3) we get that ‖u− zn‖m,n = ‖v − zn‖m,n ≤ 1 for all m = 1, 2, . . .
So

u− zn, v − zn ∈
∞⋂
m=1

(
−zn +Mm,n

σ(X2,F 2)
)

i.e.

u, v ∈
∞⋂
m=1

Mm,n
σ(X2,F 2)

. (1.4)

We show that

u, v ∈ conv (Ln)
σ(X2,F 2)

. (1.5)

Assume now that u /∈ conv (Ln)
σ(X2,F 2)

. According to the Hahn–Banach theorem
there exists f ∈ F 2 and b ∈ R such that

f(u) > b > sup
Ln

f. (1.6)

Set H =
{
w ∈ X2 : f(w) ≤ b

}
. We can find m ∈ N such that Mm,n ⊂ H. Since

H is σ
(
X2, F 2

)
closed we get that Mm,n

σ(X2,F 2) ⊂ H. From (1.6) we obtain that

u /∈ H. Hence u /∈ Mm,n
σ(X2,F 2)

which contradicts (1.4). So (1.5) is proved. From

(1.5) we get that x, y ∈ conv (DLn)
σ(X,F )

, where D is the map defined in (1.1).
Since Ln is quasi diagonal we get x = y.

Proof of Theorem 1.1 (i)=⇒(ii) We have S2
X =

⋃∞
n=1 Ln where each Ln is quasi

diagonal with respect to (X,σ(X,F )). Given n ∈ N and q, r ∈ Q+, let Ln,q,r be
the set of all (x, y) ∈ X2 such that x 6= y, (x, y) ∈ ‖x‖Ln, ‖x‖ = ‖y‖ ∈]q, r[ and,
either (x, x) ∈ X2 \ [q, r] conv Ln, or (y, y) ∈ X2 \ [q, r] conv Ln. Clearly each Ln,q,r
is symmetric and it is easy to prove that{

(x, y) ∈ X2 : x 6= y, ‖x‖ = ‖y‖
}

=
⋃{

Ln,q,r : n ∈ N, q, r ∈ Q+
}
.

Moreover since conv Ln,q,r ⊂ [q, r]conv Ln the sets Ln,q,r are quasi diagonal so X2

is sigma quasi diagonal. (ii)=⇒(iii) It follows from Proposition 1.5. (iii)=⇒(ii) It is
a consequence of Lemma 1.2 and Corollary 1.4. (ii)=⇒(i) It is obvious. �

As a consequence of Theorem 1.1 we get the following

Proposition 1.6 (Talagrand see e.g. [3, p. 313]). There is no equivalent strictly
convex dual norm in C ([0, ω1])

∗
.

Proof. Indeed otherwise according to Theorem 1.1 we have C ([0, ω1])
∗×C ([0, ω1])

∗
=⋃∞

n=1Mn where every Mn is quasi diagonal. For n ∈ N, let Sn be the set of all
(s, t) ∈ [0, ω1[ × [0, ω1[ such that (δs, δt) ∈ Mn. Then [0, ω1[ × [0, ω1[ =

⋃∞
n=1 Sn.

Moreover since (s, s) ∈ Sn implies δs ∈ {D(x, y) : (x, y) ∈Mn} we conclude that
the set Sn has the following property

(s, t) ∈ Sn, (s, s), (t, t) ∈ Sn =⇒ s = t for all s, t ∈ [0, ω1[ . (1.7)

Set πi : [0, ω1[ × [0, ω1[ → [0, ω1[, πi (α1, α2) = αi, i = 1, 2. Let A be the (possibly
empty) set made up by all n ∈ N for which there exists αn ∈ [0, ω1[ such that
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Sn ⊂ ([0, αn]× [0, ω1[) ∪ ([0, ω1[× [0, αn]). If A 6= ∅ and α := supA αn we have
α < ω1 and

Sn ∩ ([α, ω1[× [α, ω1[) = ∅ for all n ∈ A. (1.8)

Therefore N \A 6= ∅, so it makes sense to take ϕ : N→ N \A which is onto and

ϕ−1({n}) is infinite for all n ∈ N \A. (1.9)

Now according to the choice of A we can define by induction two maps λ, µ : N→
[0, ω1[ such that

(λ(n), µ(n)) ∈ Sϕ(n), n ∈ N; (1.10)

max{λ(n), µ(n)} < min{λ(n+ 1), µ(n+ 1)}, n ∈ N; (1.11)

α < min{λ(1), µ(1)}. (1.12)

From (1.11) it follows that

lim
n
λ(n) = lim

n
µ(n). (1.13)

Let β = limn λ(n) = limn µ(n). From (1.12) we get β > α. Moreover from (1.9),
(1.10) and (1.13)

(β, β) ∈
⋂{

Sn : n ∈ N \A
}
. (1.14)

Once more we can define by induction two maps η, ρ : N→ [0, ω1[ for which (1.10)–
(1.12) hold when we replace λ, µ and α by η, ρ and β. Then let γ = limn η(n) =
limn ρ(n), we have

γ > β > α and (γ, γ) ∈
⋂{

Sn : n ∈ N \A
}
. (1.15)

From (1.8) and (1.15) it follows that (β, γ) /∈ Sn for any n ∈ A. So let n0 ∈ N \ A
such that (β, γ) ∈ Sn0

. This, (1.14) and (1.15) contradict (1.7).

2. Strict convexity in a lattice.

In this section (X, ‖ · ‖X) will be a solid Banach lattice of real functions on some
set Γ such that ‖y‖∞ ≤ ‖y‖X ≤ ‖x‖X whenever |y(γ)| ≤ |x(γ)| for all γ ∈ Γ for
some x ∈ X. Let ‖ · ‖ be an equivalent pointwise lower semicontinuous norm

‖x‖∞ ≤ ‖x‖ ≤ ‖x‖X ≤ K ‖x‖ .

From now until Lemma 2.5 the symbol ‖ · ‖ will denote this norm.

Lemma 2.1. If supp x = {γ ∈ Γ : x(γ) 6= 0} is uncountable for some x ∈ X
then X contains a lattice isomorphic copy of `∞(Λ) for some uncountable set Λ.

Proof. Set Λn =
{
γ ∈ Γ : |x(γ)| ≥ n−1

}
. We have

supp x =

∞⋃
n=1

Λn.

So for some n the set Λn is uncountable. If y ∈ `∞ (Λn) we have for every γ ∈ Λn

|y(γ)|
n‖y‖∞

≤ |x(γ)|.
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So for all γ ∈ Γ we have |zy(γ)| ≤ n‖y‖∞ |x(γ)| for all γ ∈ Γ, where zy(γ) = y(γ) if
γ ∈ Λn and zy(γ) = 0 if γ /∈ Λn. From our assumption it follows that zy ∈ X and

‖y‖∞ = ‖zy‖∞ ≤ ‖zy‖X ≤ n‖x‖X‖y‖∞.

Hence `∞ (Λn) is isomorphic to a subspace of X.

In X we introduce a new norm. Let G = {−1, 1}Γ and let µ be the Haar
translation invariant measure on the Abelian group G. For s = {sγ}γ∈Γ ∈ G and
x ∈ X we set

xs(γ) = sγx(γ).

Clearly for a fixed x ∈ X the function of s, xs is continuous on G when we consider
in X the pointwise convergence topology. As we have already mentioned we shall
assume that the norm ‖ · ‖ is pointwise lower semicontinuous. So in this case the
function on s ‖xs‖ is pointwise lower semicontinuous on G for a fixed x ∈ X. We
set

‖|x|‖ =

(∫
G

‖xs‖2 dµ(s)

)1/2

. (2.1)

Clearly ‖| · |‖ is an equivalent norm on X. Since µ is translation invariant we get
for every x ∈ X and every s ∈ G that

‖|xs|‖ = ‖|x|‖. (2.2)

From convex arguments we get that

‖|x|‖2 + ‖|y|‖2

2
−
∥∥∥∥∣∣∣∣x+ y

2

∣∣∣∣∥∥∥∥2

> 0 (2.3)

if, and only if,

µ

({
s ∈ G :

‖xs‖2 + ‖ys‖2

2
−
∥∥∥∥xs + ys

2

∥∥∥∥2

> 0

})
> 0.

For Λ ⊂ Γ and x ∈ X we set

PΛx(γ) =

 x(γ) if γ ∈ Λ;

0 otherwise.

For a β ∈ Γ we shall write Pβ instead of P{β}.

Lemma 2.2. For every non-empty Λ ⊂ Γ we have ‖|PΛ|‖ = 1.

Proof. Using (2.2) we get for every x ∈ X

‖|PΛx|‖ =
1

2

(∥∥∣∣(PΛx+ PΓ\Λx
)

+
(
PΛx− PΓ\Λx

)∣∣∥∥) ≤
≤ 1

2

(∥∥∣∣PΛx+ PΓ\Λx
∣∣∥∥+

∥∥∣∣PΛx− PΓ\Λx
∣∣∥∥) = ‖|x|‖.

Lemma 2.3. The norm ‖| · |‖ is pointwise lower semicontinuous whenever ‖ · ‖
is pointwise lower semicontinuous, and provided X does not contain isomorphic
copies of `∞(Λ) for an uncountable set Λ.



8 A. MOLTÓ, J. ORIHUELA, S. TROYANSKI AND V. ZIZLER

Proof. Pick xα ∈ X such that limα xα = x for some x ∈ X in the topology of
pointwise convergence. Set Λ = supp x. From Lemma 2.1 we get that #Λ ≤ ℵ0. So
there exists a sequence {αk}∞k=1 such that

lim
k
‖|xαk

|‖ = lim inf
α
‖|xα|‖ (2.4)

and

lim
k
PΛxαk

(γ) = x(γ) for all γ ∈ Γ.

Since ‖ · ‖ is pointwise lower semicontinuous we get that

lim inf
k

∥∥PΛx
s
αk

∥∥ ≥ ‖xs‖ for all s ∈ G. (2.5)

Taking into account Fatou’s Lemma we get∫
G

lim inf
k

∥∥PΛx
s
αk

∥∥2
dµ(s) ≤ lim inf

k

∫
G

∥∥PΛx
s
αk

∥∥2
dµ(s).

This (2.5), (2.4) and Lemma 2.2 imply

‖|x|‖ =

(∫
G

‖xs‖2dµ(s)

)1/2

≤ lim inf
k
‖|PΛxαk

|‖ ≤ lim
k
‖|xαk

|‖ = lim inf
α
‖|xα|‖ .

Lemma 2.4. The norm ‖| · |‖ is a lattice norm provided #supp x ≤ ℵ0 for every
x ∈ X.

Proof. Let A be the family of all finite subsets A of Γ partially ordered by
inclusion. Then for every z ∈ X we have limA PAz = z in the topology of the
pointwise convergence. Since ‖| · |‖ is pointwise lower semicontinuous we get

lim inf
A
‖|PAz|‖ ≥ ‖|z|‖ .

On the other hand Lemma 2.2 gives us ‖|PAz|‖ ≤ ‖|z|‖ so

lim
A
‖|PAz|‖ = ‖|z|‖ . (2.6)

Pick now x, y ∈ X with |x| ≤ |y|. For every finite set A ⊂ Γ we can find λσ ≥ 0,
σ ∈ {−1, 1}A × {1}Γ\A, such that

∑
σ λσ = 1 and PAx =

∑
σ λσPAy

σ. From (2.2)
we have ‖|PAyσ|‖ = ‖|PAy|‖ for all σ. Hence ‖|PAx|‖ ≤ ‖|PAy|‖. Having in mind
(2.6) we get ‖|x|‖ ≤ ‖|y|‖.

Lemma 2.5. For every p ∈ (1, 2] there exists a positive number cp such that for
every x, y ∈ `p we have

(‖x‖p + ‖y‖p)
2
p−1

(
‖x‖p + ‖y‖p

2
−
∥∥∥∥x+ y

2

∥∥∥∥p) ≥ cp‖x− y‖2
This inequality is a homogeneous version of the uniform convexity inequality for

`p, 1 < p ≤ 2. For the proof see e.g. [9] or [10].

By con {δγ : γ ∈ Γ} we denote the positive cone generated by the Dirac measures
δγ , γ ∈ Γ.

Theorem 2.6. Let X be a solid Banach lattice of real functions on some set Γ
such that ‖·‖∞ ≤ ‖·‖X . The following assertions are equivalent:
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(i) X admits a pointwise lower semicontinuous strictly convex norm.
(ii) X admits a lattice pointwise lower semicontinuous strictly convex norm.

(iii) X admits a pointwise lower semicontinuous strictly lattice norm (i.e. ‖x‖ < ‖y‖
whenever |x| < |y|).

(iv) The set Z of all pairs z = (x, y) ∈ X2, 0 < x < y, can be written Z =
⋃
n∈N Zn

in such a way that for every z = (x, y) ∈ Zn there exists f ∈ con {δγ : γ ∈ Γ}
with

f(y) > sup

{
f

(
u+ v

2

)
: (u, v) ∈ Zn

}
.

Proof. We use the diagram

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (iii) =⇒ (ii) =⇒ (i)

(i) =⇒ (ii) Assume that ‖ · ‖ is a pointwise lower semicontinuous strictly convex
norm. Let ‖| · |‖ be the norm obtained from ‖ · ‖ by (2.1). Since ‖ · ‖ is a strictly
convex norm X does not contain isomorphic copies of `∞(Λ) for an uncountable
set Λ (see e.g. [4, p. 123]). Then from Lemma 2.3 and Lemma 2.4 we get that ‖| · |‖
is a lattice pointwise lower semicontinuous norm. From (2.3) it follows that ‖| · |‖
is strictly convex.

(ii) =⇒ (iii) Pick x, y ∈ X, 0 < x < y. Let ‖ · ‖ be a lattice strictly convex

norm. Then ‖x‖ ≤ ‖y‖. Assume that ‖x‖ = ‖y‖. Since x <
x+ y

2
< y we get

‖x‖ ≤
∥∥∥∥x+ y

2

∥∥∥∥ ≤ ‖y‖. Hence

∥∥∥∥x+ y

2

∥∥∥∥ = ‖x‖ = ‖y‖. Since ‖ · ‖ is strictly convex

we have x = y.

(iii) =⇒ (iv) It follows directly from the proof of Corollary 1.4.

(iv) =⇒ (iii) Denote by Z̃ (respectively Z̃n) the set of all z = (x, y) ∈ X2 such
that either (|x|, |y|) or (|y|, |x|) belongs to Z (respectively Zn). Let us see that Z̃n is
quasi diagonal with respect to (X,pointwise). Indeed let (|x|, |y|) ∈ Zn, f =

∑
aγδγ ,

aγ > 0 and

f(|y|) > sup

{
f

(
u+ v

2

)
: (u, v) ∈ Zn

}
.

Set g =
∑
aγsign y(γ)δγ . Then g(y) = f(|y|) and g(u + v) ≤ f(|u| + |v|) for

any (u, v) ∈ X2. Hence Z̃n is pointwise quasi diagonal and Z̃ is sigma pointwise
quasi diagonal. According to Proposition 1.5 there exists on X a pointwise lower
semicontinuous equivalent norm ‖ · ‖ such that x = y whenever (x, y) ∈ Z̃ and
‖x‖ = ‖y‖ = ‖(x+ y)/2‖. Let us show that #supp u ≤ ℵ0 for every u ∈ X. Indeed
otherwise from Lemma 2.1 it follows that there exists Λ ⊂ Γ, #Λ > ℵ0, such that
every bounded function v on Λ with supp v ⊂ Λ belongs to X. Then from a slight
adaptation of Day’s proof that `∞(Λ) does not admit a strictly convex norm it
follows that there exist x, y ∈ X, 0 < x < y with ‖x‖ = ‖y‖ = ‖(x+ y)/2‖ (see e.g.
[4, p. 123]). For the sake of completeness we include a proof of this assertion.

Let `∞c (Γ) be the subspace of `∞(Γ) made up by all x ∈ `∞(Γ) with countable
support. Let S be the unit sphere of `∞c (Γ) (for the supremum norm). For each x ∈
S, x > 0, let Fx := {y ∈ S : y �supp x= x �supp x, y > 0}, mx := inf {‖y‖ : y ∈ Fx}
and Mx := sup {‖y‖ : y ∈ Fx}. The assertion will be proved as soon as we find
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x ∈ S with x > 0 such that

Mx = mx. (2.7)

This will follow from two observations. First for any x ∈ S with x > 0 we have

‖x‖ ≤ Mx +mx

2
. (2.8)

Indeed given ε > 0 take y ∈ Fx such that ‖y‖ − ε < mx. Then for any y′ ∈ Fx we
have 2x ≤ y + y′, therefore 2‖x‖ ≤ ‖y‖+ ‖y′‖ ≤ mx +Mx + ε and (2.8) follows.

On the other hand let us observe that for any sequence {xn}∞n=1, xn ∈ S, xn > 0,
such that xn+1 ∈ Fxn

for n ∈ N we have that the bounded sequences {Mxn
}∞n=1

and {mxn}
∞
n=1 are monotone, therefore convergent. Then (2.7) will be proved if we

show that they converge to the same limit. For this purpose we take {xn}∞n=1 in
such a way that Mxn

− ‖xn+1‖ < 2−n−1 then from (2.8) we get that

Mxn+1
−mxn+1

2
= Mxn+1 −

Mxn+1
+mxn+1

2
≤Mxn − ‖xn+1‖ < 2−n−1.

Thus

Mxn+1
−mxn+1

< 2−n,

which implies that limn→∞mxn
= limn→∞Mxn

and (2.7) is proved.

Now we introduce ‖| · |‖ by (2.1). According to Lemma 2.4 ‖| · |‖ is a lattice norm.
We show that ‖| · |‖ is a strictly lattice norm. Indeed let |x| < |y|. Then (xs, ys) ∈ Z̃
for all s ∈ G, therefore

‖xs‖2 + ‖ys‖2

2
−
∥∥∥∥xs + ys

2

∥∥∥∥ > 0.

From (2.3) we get that ‖|x|‖ < ‖|y|‖.

(iii) =⇒ (ii) We set δγ(x) = x(γ) for x ∈ X and γ ∈ Γ. Since the norm ‖ · ‖ is
pointwise lower semicontinuous, span {δγ}γ∈Γ ⊂ X

∗ must be 1–norming for X. For
p ≥ 1 set

‖x‖p = sup


∑
γ∈Γ

|aγx(γ)|p
1/p

:

∥∥∥∥∥∥
∑
γ∈Γ

aγδγ

∥∥∥∥∥∥ ≤ 1

 .

Having in mind that span {δγ}γ∈Γ is 1–norming for X we get

‖x‖ = ‖x‖1 ≥ ‖x‖p. (2.9)

From the choice of ‖ · ‖p it follows that it is pointwise lower semicontinuous for
every p > 1. It is easy to see that

lim
p→1
‖x‖p = ‖x‖. (2.10)

Claim For every z ∈ X and every ε > 0 there exists pz,ε > 1 such that

|aβz(β)|p > ε (2.11)

whenever

1 ≤ p ≤ pz,ε, ‖z‖ − ‖z − Pβz‖ ≥ 3ε, (2.12)
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∑
γ∈Γ

aγδγ

∥∥∥∥∥∥ ≤ 1,
∑
γ∈Γ

|aγz(γ)|p > ‖z‖pp − ε.

Proof. For τ ≥ 0 and p ≥ 0 we set µp(τ) = max {τp, τ}. It is easy to see that
for σ ∈ [0, τ ] and p ≥ 1 the inequality

µp(τ) ≥ τ − σ + σp (2.13)

holds. Pick z ∈ X and ε > 0. From (2.9) and (2.10) it follows that there exists
pz,ε > 1 such that for all p ∈ [1, pz,ε]

‖z‖pp ≥ µp(‖z‖)− ε. (2.14)

We have ‖z‖ − ‖y‖ ≥ 3ε where y = z − Pβz. Since ‖y‖ ≤ ‖z‖ we can apply (2.13)
for τ = ‖z‖ and σ = ‖y‖. Taking into account that ‖y‖p ≤ ‖y‖ from (2.14) we get
that for all p ∈ [1, pz,ε]

‖z‖pp − ‖y‖pp ≥ µp(‖z‖)− ε− ‖y‖p ≥ ‖z‖ − ‖y‖ − ε ≥ 2ε. (2.15)

Pick
∑
γ∈Γ aγδγ and p satisfying (2.12). Then we have

‖y‖pp ≥
∑
γ∈Γ

|aγz(γ)|p − |aβz(β)|p > ‖z‖pp − ε− |aβz(β)|p .

This together with (2.15) implies (2.11).

Pick pn > 1, n = 1, 2, . . . such that pn −→ 1 and set

Φ(x) =

∞∑
n=0

2−n‖x‖pnpn

where p0 = 1. Let ‖| · |‖ be the Minkowski functional of Φ. Let us prove that ‖| · |‖
is strictly convex. Indeed suppose that ‖|x|‖ = ‖|y|‖ = ‖|(x+ y)/2|‖. By convexity
arguments we have that

‖x‖pnpn + ‖y‖pnpn
2

−
∥∥∥∥x+ y

2

∥∥∥∥pn
pn

= 0, n = 0, 1, 2, . . . (2.16)

Assume that x(β) 6= y(β) for some β ∈ Γ. We consider two cases. First let
x(β)y(β) < 0. Then since |x(β) + y(β)| < |x(β)| + |y(β)| and ‖ · ‖ is a strictly
lattice norm we get

‖x+ y‖1 = ‖x+ y‖ < ‖|x|+ |y|‖ ≤ ‖x‖+ ‖y‖ = ‖x‖1 + ‖y‖1
which contradicts (2.16) for p0 = 1.

Assume now that x(β)y(β) ≥ 0. Since x(β) 6= y(β) we get |x(β) + y(β)| > 0. Set
z = (x + y)/2, 3ε = ‖z‖ − ‖z − Pβz‖. Since ‖ · ‖ is a strictly lattice norm we have
that ε > 0. According to the claim we can find pz,ε > 1 such that (2.12) implies
(2.11). Fix n ∈ N such that 1 < pn < min {2, pz,ε}. Set

η := 4cpnε
2/pn

(
x(β)− y(β)

x(β) + y(β)

)2

/
(
‖x‖pnpn + ‖y‖pnpn

) 2
pn
−1

(2.17)

where cpn is from Lemma 2.5. We can find f =
∑
γ aγδγ , ‖f‖ ≤ 1 and∑

γ

|aγz(γ)|pn > ‖z‖pnpn −min{ε, η}. (2.18)
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From (2.16) it follows

1

2

∑
γ

(|aγx(γ)|pn + |aγy(γ)|pn)−
∑
γ

|aγz(γ)|pn ≤
(
‖x‖pnpn + ‖y‖pnpn

)
/2−‖z‖pnpn+η = η.

From Lemma 2.5 we get

cpn

(∑
γ

|aγ (x(γ)− y(γ))|pn
)2/pn

≤ η

(∑
γ

|aγx(γ)|pn +
∑
γ

|aγy(γ)|pn
) 2

pn
−1

≤

≤ η
(
‖x‖pnpn + ‖y‖pnpn

) 2
pn
−1
.

Hence

(aβ |x(β)− y(β)|)2
< η

(
‖x‖pnpn + ‖y‖pnpn

) 2
pn
−1
/cpn .

From (2.18) and the claim we deduce∣∣∣∣aβ (x(β) + y(β))

2

∣∣∣∣pn > ε.

Then (
2ε

1
pn |x(β)− y(β)|
|x(β) + y(β)|

)2

<
η
(
‖x‖pnpn + ‖y‖pnpn

) 2
pn
−1

cpn

which contradicts (2.17).

The implication (ii) =⇒ (i) is trivial.

If X has an unconditional basis {eγ}γ∈Γ then X∗ can be identified with a lattice
which fulfils the lattice conditions at the beginning of this section. In [12] a Gâteaux
smooth norm ‖| · |‖ is obtained on `1 with unconditional constant 1, whose dual
norm is not strictly lattice.

From Theorem 2.6 it follows that in a Banach space X with unconditional basis
the existence of a dual strictly convex norm in X∗ implies the existence of a dual
strictly lattice norm.

Corollary 2.7. Let X and Γ be the Banach lattice and the set considered at
the beginning of this section. Let {Γn}∞1 be a sequence of subsets of Γ such that for
every x ∈ X and α ∈ supp x there exists a ∈ (0, |x(α)|) and m ∈ N with α ∈ Γm,
# {γ ∈ Γm : |x(γ)| > a} < ∞. Then X admits a pointwise lower semicontinuous
strictly convex norm.

Proof. For m, n ∈ N set

‖x‖m,n = sup

∑
γ∈A
|x(γ)| : A ⊂ Γm, #A ≤ n

 ,

and

‖|x|‖ = ‖x‖+

∞∑
m,n=1

2−m−n‖x‖m,n.
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Pick x, y ∈ X, |x| > |y|. We have |x(γ)| ≥ |y(γ)| for all γ ∈ Γ and |x(α)| >
|y(α)| for some α ∈ Γ. We can find a ∈ (0, |x(α)|) and m ∈ N such that α ∈
Γm and # {γ ∈ Γm : |x(γ)| > a} < ∞. Set A = {γ ∈ Γm : |x(γ)| > a} and n =
#A. Clearly sup {|y(γ)| : γ ∈ Γm \A} ≤ sup {|x(γ)| : γ ∈ Γm \A} < |x(α)|. This
implies ‖x‖m,n > ‖y‖m,n so ‖|x|‖ > ‖|y|‖.

Mercourakis space c1(Σ′ × Γ) satisfies the conditions of corollary above, see [3,
Remark 6.3, p. 249.].
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