Interacciones entre la Topología, la Geometría y el Análisis infinito dimensionales

José Orihuela Calatayud

Real Academia de Ciencias

Universidad de Murcia

2 de Marzo de 2005

Hipótesis del continuo de Cantor: (Primer problema de Hilbert)

Supongamos que X es un subconjunto no numerable de \mathbb{R} . Entonces existe una biyección $M:X\to\mathbb{R}$.

Teorema (Gödel, 1938)

ZFC no contradictorio (consistente) \Rightarrow ZFC+HC es no contradictorio y no es posible probar la negación de HC dentro de ZFC.

Teorema (Cohen, 1963)

ZFC no contradictorio (consistente) \Rightarrow ZFC+ \neg HC es no contradictorio y no es posible probar la HC dentro de ZFC.

Teorema (Grande de Baire)

Sea (T,d) un espacio métrico completo y separable y $f:T\to\mathbb{R}^n$. Son equivalentes:

- (a) f es de la primera clase de Baire; esto es, límite puntual de una sucesión de funciones continuas.
- (b) $f_{|C|}$ tiene un punto de continuidad para cada subconjunto cerrado C en T.
- (c) f es de la primera clase de Borel; esto es, $f^{-1}(V)$ es un \mathcal{F}_{σ} para cualquier conjunto abierto V de \mathbb{R}^n .

Teorema (Lebesgue, 1905)

Sean (T,d) un espacio métrico completo y separable y $f:T\to\mathbb{R}^n$. Para $1\leq \xi<\omega_1$,

f está en la clase B_{ξ} de Baire si, y sólo si, f es $\Sigma^0_{\xi+1}-$ medible.

En particular

$$\bigcup \{B_{\xi}: \xi < \omega_1\} \equiv \text{ funciones medibles Borel}$$

Teorema (Primer teorema de Lebesgue)

Sea $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ separadamente continua. Entonces f es Baire-uno.

Sea K un espacio compacto y $A \subset C_p(K)$ subconjunto τ_p -metrizable. Entonces existen funciones continuas

$$F_n: (A, \tau_p) \to (C(K), \|\cdot\|_{\infty}) \quad n = 1, 2, \dots$$

tales que $\lim_{n\to\infty} F_n(x) = x$ para todo $x \in A$.

(Id: $A \to C(K)$ es $\tau_p - \|\cdot\|_{\infty}$ de la primera clase de Baire).

Cuando A es tal que el álgebra generada por A es todo C(K), entonces la identidad

$$Id: (C(K), \tau_p) \to (C(K), \|\cdot\|_{\infty})$$

es el límite puntual de una sucesión de funciones "continuas a trozos", lo que llamamos σ -continua.

Teorema (Hansell)

Sean (T,d) un espacio métrico completo, (E,ϱ) un espacio métrico y $f:T\to E$ medible Borel. Entonces f es σ -continua.

Teorema (Hansell)

Para (T,d) un espacio métrico arbitrario y (E,ϱ) un subconjunto convexo de un espacio normado son equivalentes, para $f:T\to E$ las siguientes condiciones:

- (a) f es σ -continua y de la primera clase de Borel.
- (b) f es de la primera clase de Baire.

Teorema (Toruńczyk)

Sea X un espacio de Banach. Son equivalentes:

- (a) Cualquier cubrimiento por abiertos de X admite una partición de la unidad subordinada con funciones de clase C^1 .
- (b) Para cualquier $f: X \to \mathbb{R}$ continua y cualquier $\varepsilon > 0$ existe una función de clase C^1 , $g: X \to \mathbb{R}$ con $|f(x) g(x)| \le \varepsilon$ para todo $x \in X$.
- (c) Existe una inmersión homeomórfica $\varphi: X \to c_0(\Gamma)$ para algún conjunto Γ tal que las composiciones $\pi_\gamma \circ \varphi: X \to \mathbb{R}$ son de clase C^1 para todo $\gamma \in \Gamma$; π_γ es la proyección en la γ -coordenada.

Para espacios WCD (por ejemplo separable o reflexivo) las condiciones equivalen a

(d) X admite una función "meseta" de clase C^1 .

Para un espacio de Banach X son equivalentes:

- (a) X es de Asplund (diferenciabilidad Fréchet de funciones convexas).
- (b) Cada subconjunto acotado no vacío de X^* tiene rebanadas de diámetro arbitrariamente pequeño.
- (c) Existe $f: X \to X^*$ σ -continua y tal que $< x, f(x) >= \|x\|$ para todo $x \in X$.

Sea X un espacio de Banach con normas equivalentes localmente uniformemente convexas en X y el dual X^* , entonces X admite particiones de la unidad de clase C^1 .

Teorema (Preiss, Phelps, Namioka, Ribarska)

Sea X un espacio de Banach con norma Gateaux diferenciable. Entonces (B_{X^*}, w^*) es fragmentable y en X cualquier función convexa será diferenciable Gateaux en un G_{δ} -denso.

Sea X un espacio de Banach, $F \subset X^*$ normante. Son equivalentes:

- (a) X admite una norma equivalente $\sigma(X,F)$ -inferiormente semicontinua y localmente uniformemente convexa.
- (b) $Id: (X, \sigma(X, F)) \to (X, \|\cdot\|)$ es σ -continua por rebanadas.

[Para $C_p(K) \to (C(K), \|\cdot\|)$ σ -continua por rebanadas del span $\{\delta_x : x \in K\}$.]

Teorema (Haydon)

Sea K un espacio compacto con una métrica d inferiormente semicontinua tal que

$$Id: K \rightarrow (K, d)$$

es σ -continua. Entonces C(K) admite una norma equivalente localmente uniformemente convexa.

Teorema (Valdivia)

El espacio $C([0,1]^\Gamma)$ admite una norma equivalente τ_p -inferiormente semicontinua y localmente uniformemente convexa.

Teorema (Borsuk-Dugundji)

Sea K un espacio métrico compacto. Entonces existe un operador lineal de extensión

$$\theta: C(K) \to C([0,1]^{\mathbb{N}})$$

que es continuo para las topologías de la convergencia puntual y que conserva la norma.

Teorema (Mazur)

Para $1 \le p < +\infty$ los espacios L^p y ℓ^p son homeomorfos a ℓ^2 .