### Lebesgue Risk Measures

### J. Orihuela<sup>1</sup>

<sup>1</sup>Department of Mathematics University of Murcia

### CRM, Bolsa de Barcelona, Afi. Financial Engineering Summer School, 14–17 June–2011.

イロト イポト イヨト イヨト

### The coauthors

- M. Ruiz Galán and J.O. A coercive and nonlinear James's weak compactness theorem Preprint
- M. Ruiz Galán and J.O. *Lebesgue Property for Convex Risk Meausures on Orlicz Spaces* Work in progress.

< 🗇 🕨



### • Weak compactness almost everywhere: Finance, Optimization and Risk

- S. Simons circle of ideas
- Risk measures on Orlicz spaces
- An Unbounded James Compactness Theorem
- Jouini-Schachermayer-Touzi Theorem in Orlicz spaces

イロト イポト イヨト イヨト



- Weak compactness almost everywhere: Finance, Optimization and Risk
- S. Simons circle of ideas
- Risk measures on Orlicz spaces
- An Unbounded James Compactness Theorem
- Jouini-Schachermayer-Touzi Theorem in Orlicz spaces

イロト イポト イヨト イヨト



- Weak compactness almost everywhere: Finance, Optimization and Risk
- S. Simons circle of ideas
- Risk measures on Orlicz spaces
- An Unbounded James Compactness Theorem
- Jouini-Schachermayer-Touzi Theorem in Orlicz spaces

・ 同 ト ・ ヨ ト ・ ヨ ト



- Weak compactness almost everywhere: Finance, Optimization and Risk
- S. Simons circle of ideas
- Risk measures on Orlicz spaces
- An Unbounded James Compactness Theorem
- Jouini-Schachermayer-Touzi Theorem in Orlicz spaces

イロト イポト イヨト イヨト



- Weak compactness almost everywhere: Finance, Optimization and Risk
- S. Simons circle of ideas
- Risk measures on Orlicz spaces
- An Unbounded James Compactness Theorem
- Jouini-Schachermayer-Touzi Theorem in Orlicz spaces

・ 同 ト ・ 三 ト ・

- ⊒ →

# Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

#### Theorem

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer The Mathematics of Arbitrage

# Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

#### Theorem

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer The Mathematics of Arbitrage

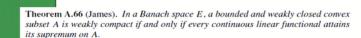
# Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

#### Theorem

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*



Proof. See, for instance, [86].

Hans Föllmer · Alexander Schied Stochastic Finance

de Gruyter Studies in Mathematics

27

The following result characterizes the weakly relatively compact subsets of the Banach space  $L^1 := L^1(\Omega, \mathcal{F}, P)$ . It implies, in particular, that a set of the form  $\{f \in L^1 \mid |f| \le g\}$  with given  $g \in L^1$  is weakly compact in  $L^1$ .

**Theorem A.67** (Dunford–Pettis). A subset A of  $L^1$  is weakly relatively compact if and only if it is bounded and uniformly integrable.

 $\sup_{f \in \mathcal{X}} ||f||_1 < \infty, \text{ and given } \varepsilon > 0 \text{ there is } a \ \delta > 0 \text{ such that if } \lambda(A) \le \delta,$ then  $\int_A |f| d\lambda \le \varepsilon$  for all  $f \in \mathcal{K}$ .

# Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

#### Theorem

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*

# Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

#### Theorem

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*

## The Theorem of James as a minimization problem

### • Let us fix a Banach space E with dual E\*

- K is a closed convex set in the Banach space E
- $\iota_{K}(x) = 0$  if  $x \in K$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$  for all  $y \in E$
- The minimization problem

$$\min\{\iota_K(\cdot)-x^*(\cdot)\}$$

on *E* for every  $x^* \in E^*$  has always solution if and only if the set *K* is weakly compact

ヘロン ヘアン ヘビン ヘビン

## The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E\*
- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$  if  $x \in K$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$  for all  $y \in E$
- The minimization problem

$$\min\{\iota_K(\cdot)-x^*(\cdot)\}$$

on *E* for every  $x^* \in E^*$  has always solution if and only if the set *K* is weakly compact

イロト 不得 とくほと くほとう

## The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E\*
- K is a closed convex set in the Banach space E
- $\iota_{\mathcal{K}}(x) = 0$  if  $x \in \mathcal{K}$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$  for all  $y \in E$
- The minimization problem

$$\min\{\iota_K(\cdot)-x^*(\cdot)\}$$

on *E* for every  $x^* \in E^*$  has always solution if and only if the set *K* is weakly compact

イロト 不得 とくほと くほとう

### The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E\*
- K is a closed convex set in the Banach space E
- $\iota_{\mathcal{K}}(x) = 0$  if  $x \in \mathcal{K}$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$  for all  $y \in E$

• The minimization problem

 $\min\{\iota_K(\cdot)-x^*(\cdot)\}$ 

on *E* for every  $x^* \in E^*$  has always solution if and only if the set *K* is weakly compact

<ロ> <同> <同> <同> <同> <同> <同> <同> <

## The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E\*
- K is a closed convex set in the Banach space E
- $\iota_{\mathcal{K}}(x) = 0$  if  $x \in \mathcal{K}$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$  for all  $y \in E$
- The minimization problem

$$\min\{\iota_{\mathcal{K}}(\cdot)-x^*(\cdot)\}$$

on *E* for every  $x^* \in E^*$  has always solution if and only if the set *K* is weakly compact

ヘロト 不同 とく ヨン 不良 とう

## **Convex Analysis**

### • We fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$

- We are going to work in a duality  $\langle \mathcal{X}, \mathcal{X}^* \rangle$  where  $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples:  $\langle \mathbb{L}^1, \mathbb{L}^{\infty} \rangle, \langle \mathbb{L}^{p}, \mathbb{L}^{q} \rangle, \langle \mathbb{L}^{\infty}, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$  defined by

$$f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$$

#### Theorem

If  $f : \mathcal{X} \to (-\infty, +\infty]$  is convex, proper and lower semicontinuous, then

• 
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

## **Convex Analysis**

- We fix an atomless probability space  $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality  $\langle \mathcal{X}, \mathcal{X}^* \rangle$  where  $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples:  $\langle \mathbb{L}^1, \mathbb{L}^\infty \rangle, \langle \mathbb{L}^p, \mathbb{L}^q \rangle, \langle \mathbb{L}^\infty, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$  defined by

 $f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$ 

#### Theorem

If  $f : \mathcal{X} \to (-\infty, +\infty]$  is convex, proper and lower semicontinuous, then

• 
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

### **Convex Analysis**

- We fix an atomless probability space  $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality  $\langle \mathcal{X}, \mathcal{X}^* \rangle$  where  $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples:  $\langle \mathbb{L}^1, \mathbb{L}^{\infty} \rangle, \langle \mathbb{L}^{p}, \mathbb{L}^{q} \rangle, \langle \mathbb{L}^{\infty}, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$  defined by

 $f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$ 

#### Theorem

If  $f : \mathcal{X} \to (-\infty, +\infty]$  is convex, proper and lower semicontinuous, then

• 
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

### **Convex Analysis**

- We fix an atomless probability space  $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality  $\langle \mathcal{X}, \mathcal{X}^* \rangle$  where  $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples:  $\langle \mathbb{L}^1, \mathbb{L}^{\infty} \rangle, \langle \mathbb{L}^p, \mathbb{L}^q \rangle, \langle \mathbb{L}^{\infty}, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$  defined by

 $f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$ 

#### Theorem

If  $f : \mathcal{X} \to (-\infty, +\infty]$  is convex, proper and lower semicontinuous, then

• 
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

### **Convex Analysis**

- We fix an atomless probability space  $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality  $\langle \mathcal{X}, \mathcal{X}^* \rangle$  where  $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples:  $\langle \mathbb{L}^1, \mathbb{L}^\infty \rangle, \langle \mathbb{L}^\rho, \mathbb{L}^q \rangle, \langle \mathbb{L}^\infty, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$

• 
$$f:\mathcal{X} o (-\infty,+\infty], f^*:\mathcal{X}^* o (-\infty,+\infty]$$
 defined by

$$f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$$

#### Theorem

If  $f : \mathcal{X} \to (-\infty, +\infty]$  is convex, proper and lower semicontinuous, then

• 
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

## **Convex Analysis**

- We fix an atomless probability space  $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality  $\langle \mathcal{X}, \mathcal{X}^* \rangle$  where  $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples:  $\langle \mathbb{L}^1, \mathbb{L}^\infty \rangle, \langle \mathbb{L}^\rho, \mathbb{L}^q \rangle, \langle \mathbb{L}^\infty, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$

• 
$$f:\mathcal{X} o (-\infty,+\infty], f^*:\mathcal{X}^* o (-\infty,+\infty]$$
 defined by

$$f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$$

#### Theorem

If  $f:\mathcal{X}\to(-\infty,+\infty]$  is convex, proper and lower semicontinuous, then

• 
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

### **Risk meausures**

#### Definition

A monetary utility function is a concave non-decreasing map

 $U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow [-\infty, +\infty)$ 

with dom(U) = { $X : U(X) \in \mathbb{R}$ }  $\neq \emptyset$  and

U(X + c) = U(X) + c, for  $X \in \mathbb{L}^{\infty}, c \in \mathbb{R}$ 

Defining  $\rho(X) = -U(X)$  the above definition of monetary utility function yields the definition of a convex risk measure. Both  $U, \rho$  are called coherent if U(0) = 0,  $U(\lambda X) = \lambda U(X)$  for all  $\lambda > 0, X \in \mathbb{L}^{\infty}$ 

イロト イポト イヨト イヨト

### **Risk meausures**

#### Definition

A monetary utility function is a concave non-decreasing map

$$U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow [-\infty, +\infty)$$

with dom(U) = { $X : U(X) \in \mathbb{R}$ }  $\neq \emptyset$  and

$$U(X + c) = U(X) + c$$
, for  $X \in \mathbb{L}^{\infty}, c \in \mathbb{R}$ 

Defining  $\rho(X) = -U(X)$  the above definition of monetary utility function yields the definition of a convex risk measure. Both  $U, \rho$  are called coherent if U(0) = 0,  $U(\lambda X) = \lambda U(X)$  for all  $\lambda > 0, X \in \mathbb{L}^{\infty}$ 

ヘロン 人間 とくほ とくほ とう

### **Risk meausures**

#### Definition

A monetary utility function is a concave non-decreasing map

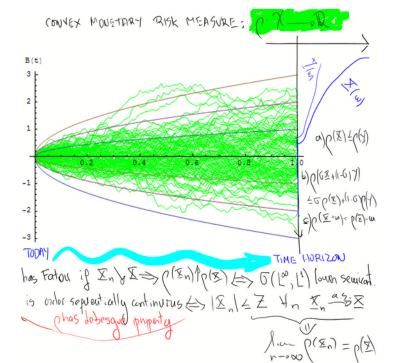
$$U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow [-\infty, +\infty)$$

with dom(U) = { $X : U(X) \in \mathbb{R}$ }  $\neq \emptyset$  and

$$U(X + c) = U(X) + c$$
, for  $X \in \mathbb{L}^{\infty}, c \in \mathbb{R}$ 

Defining  $\rho(X) = -U(X)$  the above definition of monetary utility function yields the definition of a convex risk measure. Both  $U, \rho$  are called coherent if U(0) = 0,  $U(\lambda X) = \lambda U(X)$  for all  $\lambda > 0, X \in \mathbb{L}^{\infty}$ 

ヘロン 人間 とくほ とくほ とう



### Representing risk measures

#### Theorem

A convex (resp. coherent) risk measure  $\rho : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \mathbf{ba}, \mu \ge \mathbf{0}\mu(\Omega) = \mathbf{1}\}$$

#### (resp.

 $\rho(X) = \sup\{\mu(-X) : \mu \in S \subseteq \{\mu \in \mathbf{ba}, \mu \ge 0, \mu(\Omega) = 1\}\})$  If in addition  $\rho$  is  $\sigma(\mathbb{L}^{\infty}, \mathbb{L}^{1})$ -lower semicontinuous we have:

 $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X) - \alpha(\mathbb{Q}) : \mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\}$ 

(resp.  $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X)\} : \mathbb{Q} \in \{\mathbb{Q} <<\mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\})$ 

### Representing risk measures

#### Theorem

A convex (resp. coherent) risk measure  $\rho : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \mathbf{ba}, \mu \ge \mathbf{0}\mu(\Omega) = \mathbf{1}\}$$

#### (resp.

 $\rho(X) = \sup\{\mu(-X) : \mu \in S \subseteq \{\mu \in \mathbf{ba}, \mu \ge 0, \mu(\Omega) = 1\}\})$  If in addition  $\rho$  is  $\sigma(\mathbb{L}^{\infty}, \mathbb{L}^{1})$ -lower semicontinuous we have:

 $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X) - \alpha(\mathbb{Q}) : \mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\}$ 

(resp.

 $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X)) : \mathbb{Q} \in \{\mathbb{Q} <<\mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\})$ 

### Representing risk measures

#### Theorem

A convex (resp. coherent) risk measure  $\rho : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \mathbf{ba}, \mu \ge \mathbf{0}\mu(\Omega) = \mathbf{1}\}$$

#### (resp.

 $\rho(X) = \sup\{\mu(-X) : \mu \in S \subseteq \{\mu \in \mathbf{ba}, \mu \ge 0, \mu(\Omega) = 1\}\})$  If in addition  $\rho$  is  $\sigma(\mathbb{L}^{\infty}, \mathbb{L}^{1})$ -lower semicontinuous we have:

$$\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X) - \alpha(\mathbb{Q}) : \mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\}$$

(resp.  $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X)\} : \mathbb{Q} \in \{\mathbb{Q} <<\mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\})$ 

# Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

#### Theorem (Jouini-Schachermayer-Touzi)

Let  $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$  be a monetary utility function with the Fatou property and  $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$  its Fenchel-Legendre transform. They are equivalent:

{U\* ≤ c} is σ(L<sup>1</sup>, L<sup>∞</sup>)-compact subset for all c ∈ ℝ
 For every X ∈ L<sup>∞</sup> the infimum in the equality

 $U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$ 

#### is attained

For every uniformly bounded sequence (X<sub>n</sub>) tending a.s. to X we have

$$\lim_{n\to\infty} U(X_n) = U(X).$$

# Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

#### Theorem (Jouini-Schachermayer-Touzi)

Let  $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$  be a monetary utility function with the Fatou property and  $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$  its Fenchel-Legendre transform. They are equivalent:

•  $\{U^* \leq c\}$  is  $\sigma(\mathbb{L}^1, \mathbb{L}^\infty)$ -compact subset for all  $c \in \mathbb{R}$ 

3) For every  $X\in\mathbb{L}^\infty$  the infimum in the equality

 $U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$ 

#### is attained

For every uniformly bounded sequence (X<sub>n</sub>) tending a.s. to X we have

$$\lim_{n\to\infty} U(X_n) = U(X).$$

# Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

#### Theorem (Jouini-Schachermayer-Touzi)

Let  $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$  be a monetary utility function with the Fatou property and  $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$  its Fenchel-Legendre transform. They are equivalent:

- $\{U^* \leq c\}$  is  $\sigma(\mathbb{L}^1, \mathbb{L}^\infty)$ -compact subset for all  $c \in \mathbb{R}$
- **2** For every  $X \in \mathbb{L}^{\infty}$  the infimum in the equality

$$U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$$

#### is attained

Sor every uniformly bounded sequence (X<sub>n</sub>) tending a.s. to X we have

$$\lim_{n\to\infty} U(X_n) = U(X).$$

# Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

### Theorem (Jouini-Schachermayer-Touzi)

Let  $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$  be a monetary utility function with the Fatou property and  $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$  its Fenchel-Legendre transform. They are equivalent:

- $\{U^* \leq c\}$  is  $\sigma(\mathbb{L}^1, \mathbb{L}^\infty)$ -compact subset for all  $c \in \mathbb{R}$
- **2** For every  $X \in \mathbb{L}^{\infty}$  the infimum in the equality

$$U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$$

#### is attained

For every uniformly bounded sequence (X<sub>n</sub>) tending a.s. to X we have

$$\lim_{n\to\infty} U(X_n) = U(X).$$

## Tools for the proof

- The proof in [JST] is for separable L<sup>1</sup>(Ω, F, P). The separability is needed to show 2) ⇒ 1) with a variant of the separable James' compactness Theorem.
- Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James' compactness Theorem in the duality (L<sup>1</sup>(Ω, F, P), L<sup>∞</sup>(Ω, F, P)).

ヘロト 人間 とくほとく ほとう

# Tools for the proof

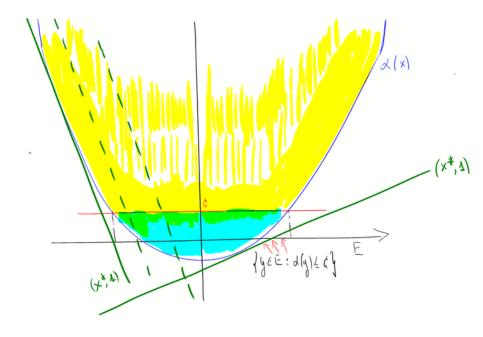
- The proof in [JST] is for separable L<sup>1</sup>(Ω, F, P). The separability is needed to show 2) ⇒ 1) with a variant of the separable James' compactness Theorem.
- Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James' compactness Theorem in the duality ⟨L<sup>1</sup>(Ω, F, P), L<sup>∞</sup>(Ω, F, P)⟩.

・ロト ・ 日本・ ・ 日本・

# Tools for the proof

- The proof in [JST] is for separable L<sup>1</sup>(Ω, F, P). The separability is needed to show 2) ⇒ 1) with a variant of the separable James' compactness Theorem.
- Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James' compactness Theorem in the duality ⟨L<sup>1</sup>(Ω, F, P), L<sup>∞</sup>(Ω, F, P)⟩.

・ロト ・ 日本・ ・ 日本・



# Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

#### Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space,  $\alpha : E \to (-\infty, +\infty]$  proper, lower semicontinuous function with

$$\lim_{\|\boldsymbol{x}\|\to\infty}\frac{\alpha(\boldsymbol{x})}{\|\boldsymbol{x}\|}=+\infty$$

Suppose that there is  $c \in \mathbb{R}$  such that the level set  $\{\alpha \leq c\}$  fails to be weakly compact. Then there is  $x^* \in E^*$  such that,the infimum

$$\inf_{x\in E}\{\langle x,x^*\rangle+\alpha(x)\}$$

is not attained.

イロト イポト イヨト イヨト

# Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

#### Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space,  $\alpha : E \to (-\infty, +\infty]$  proper, lower semicontinuous function with

$$\lim_{\|x\|\to\infty}\frac{\alpha(x)}{\|x\|}=+\infty$$

Suppose that there is  $c \in \mathbb{R}$  such that the level set  $\{\alpha \leq c\}$  fails to be weakly compact. Then there is  $x^* \in E^*$  such that,the infimum

$$\inf_{x\in E}\{\langle x,x^*\rangle+\alpha(x)\}$$

is not attained.

ヘロト ヘアト ヘビト ヘビト

Minimizing  $\{\alpha(x) + x^*(x) : x \in E\}$ 

### Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space,  $\alpha : E \to (-\infty, +\infty]$  proper, lower semicontinuous function with

$$\lim_{\|x\|\to\infty}\frac{\alpha(x)}{\|x\|}=+\infty$$

Suppose that there is  $c \in \mathbb{R}$  such that the level set  $\{\alpha \leq c\}$  fails to be weakly compact. Then there is  $x^* \in E^*$  such that,the infimum

$$\inf_{\boldsymbol{x}\in\boldsymbol{\mathcal{E}}}\{\langle \boldsymbol{x},\boldsymbol{x}^*\rangle+\alpha(\boldsymbol{x})\}$$

is not attained.

イロト イポト イヨト イヨト

# Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

### Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space,  $\alpha : E \to (-\infty, +\infty]$  proper, lower semicontinuous function with

 $\lim_{\|x\|\to\infty}\frac{\alpha(x)}{\|x\|} + \infty \quad \forall x \in \mathbb{R}^* = \mathbb{R}$ 

Suppose that there is  $c \in \mathbb{R}$  such that the level set  $\{\alpha \leq c\}$  fails to be weakly compact. Then there is  $x^* \in E^*$  such that,the infimum

$$\inf_{\mathbf{x}\in \mathbf{E}}\{\langle \mathbf{x}, \mathbf{x}^*\rangle + \alpha(\mathbf{x})\}$$

is not attained.

イロト イ理ト イヨト イヨト

## Sup-limsup Theorem

#### Theorem (Simons)

Let  $\Gamma$  be a set and  $(z_n)_n$  a uniformly bounded sequence in  $\ell^{\infty}(\Gamma)$ . If  $\Lambda$  is a subset of  $\Gamma$  such that for every sequence of positive numbers  $(\lambda_n)_n$  with  $\sum_{n=1}^{\infty} \lambda_n = 1$  there exists  $b \in \Lambda$  such that

$$\sup\{\sum_{n=1}^{\infty}\lambda_n z_n(y): y\in \Gamma\}=\sum_{n=1}^{\infty}\lambda_n z_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$

ヘロン 人間 とくほ とくほう

## Sup-limsup Theorem

#### Theorem (Simons)

Let  $\Gamma$  be a set and  $(z_n)_n$  a uniformly bounded sequence in  $\ell^{\infty}(\Gamma)$ . If  $\Lambda$  is a subset of  $\Gamma$  such that for every sequence of positive numbers  $(\lambda_n)_n$  with  $\sum_{n=1}^{\infty} \lambda_n = 1$  there exists  $b \in \Lambda$  such that

$$\sup\{\sum_{n=1}^{\infty}\lambda_n z_n(y): y\in \Gamma\}=\sum_{n=1}^{\infty}\lambda_n z_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$

ヘロト ヘ戸ト ヘヨト ヘヨト

# Weak Compactness through Sup–limsup Theorem

#### Theorem

Let E be a separable Banach space and  $K \subset E$  a closed convex and bounded subset. They are equivalent:

- K is weakly compact.
- **2** For every sequence  $(x_n^*) \subset B_{E^*}$  we have

 $\sup_{k\in\mathcal{K}}\{\limsup_{n\to\infty} x_n^*(k)\} = \sup_{\kappa\in\overline{\mathcal{K}}^{w^*}}\{\limsup_{n\to\infty} x_n^*(\kappa)\}$ 

イロト 不得 とくほと くほとう

# De la Vallée Poussin's Theorem

### Definition

A family  $\mathcal{H} \in \mathbb{L}^1$  is uniformly integrable if it is bounded and  $\lim_{\mathbb{P}(A)\searrow 0} \int_{\mathcal{A}} |X| d\mathbb{P} = 0$  uniformly in  $X \in \mathcal{H}$ 

#### Theorem

A family  $\mathcal{H} \subset L^0$  is uniformly integrable if, and only if there is a convex function  $\Phi : \mathbb{R} \to [0, +\infty)$  s.t  $\Phi(0) = 0, \Phi(x) = \Phi(-x), \lim_{x \to \infty} \frac{\Phi(x)}{x} = +\infty$  which

$$\sup\{\int \Phi(X)d\mathbb{P}: X \in \mathcal{H}\} < \infty$$

イロト イポト イヨト イヨト

## **Orlicz spaces**

An even, convex function  $\Psi : E \to \mathbb{R} \cup \{\infty\}$  such that:

- **1**  $\Psi(0) = 0$
- 2  $\lim_{x\to\infty} \Psi(x) = +\infty$
- $\Psi < +\infty$  in a neighbourhood of 0

is called a Young function

- 2  $N_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \le 1\}$
- the Morse subspace  $\mathbb{M}^{\Psi} = \{ X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{for all } \beta > 0 \},$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

## **Orlicz spaces**

An even, convex function  $\Psi : E \to \mathbb{R} \cup \{\infty\}$  such that:

 $\textcircled{0} \Psi(0) = 0$ 

2 
$$\lim_{x\to\infty} \Psi(x) = +\infty$$

•  $\Psi < +\infty$  in a neighbourhood of 0

### is called a Young function

- 2  $N_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \le 1\}$
- $\ \ \, {\mathbb S} \ \ \, {\mathbb L}^\infty(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^{\Psi}(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^1(\Omega,{\mathcal F},{\mathbb P})$
- (a) the Morse subspace  $\mathbb{M}^{\Psi} = \{X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0\},$

イロン 不良 とくほう 不良 とうしょう

## **Orlicz spaces**

An even, convex function  $\Psi : E \to \mathbb{R} \cup \{\infty\}$  such that:

 $\textcircled{0} \Psi(0) = 0$ 

2 
$$\lim_{x\to\infty} \Psi(x) = +\infty$$

•  $\Psi < +\infty$  in a neighbourhood of 0

is called a Young function

$$\textcircled{0} \hspace{0.1cm} \mathbb{L}^{\Psi}(\Omega,\mathcal{F},\mathbb{P}):=\{X\in\mathbb{L}^{0}:\exists\alpha>0,\mathbb{E}_{\mathbb{P}}[\Psi(\alpha X)]<+\infty\}$$

- $P_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \leq 1 \}$
- $\ \ \, {\rm I}^\infty(\Omega,{\mathcal F},{\mathbb P})\subset {\mathbb L}^{\Psi}(\Omega,{\mathcal F},{\mathbb P})\subset {\mathbb L}^1(\Omega,{\mathcal F},{\mathbb P})$

### • the Morse subspace $\mathbb{M}^{\Psi} = \{X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0\},$

ヘロト 人間 とくほとく ほとう

## **Orlicz spaces**

An even, convex function  $\Psi : E \to \mathbb{R} \cup \{\infty\}$  such that:

 $\textcircled{0} \Psi(0) = 0$ 

2 
$$\lim_{x\to\infty} \Psi(x) = +\infty$$

•  $\Psi < +\infty$  in a neighbourhood of 0

is called a Young function

$$\textcircled{0} \hspace{0.1cm} \mathbb{L}^{\Psi}(\Omega,\mathcal{F},\mathbb{P}) := \{ X \in \mathbb{L}^{0} : \exists \alpha > 0, \mathbb{E}_{\mathbb{P}}[\Psi(\alpha X)] < +\infty \}$$

**2** 
$$N_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \le 1\}$$

 $\ \ \, {\mathbb S} \ \ \, {\mathbb L}^\infty(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^{\Psi}(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^1(\Omega,{\mathcal F},{\mathbb P})$ 

### (a) the Morse subspace $\mathbb{M}^{\Psi} = \{ X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0 \},$

・ロト ・同ト ・ヨト ・ヨトー

## Lebesgue measures go to Orlicz spaces

 A Lebesgue risk measure ρ : L<sup>∞</sup> → R can be extended to a risk measure on some Orlicz space ρ̄ : L<sup>Ψ</sup> → R

#### Theorem (F. Delbaen)

Every risk measure  $\rho : \mathbb{L}^{\Psi} \to \mathbb{R}$  defined on an Orlicz space  $\mathbb{L}^{\Psi}$  with  $\mathbb{L}^{\Psi} \setminus \mathbb{L}^{\infty} \neq \emptyset$  has the Lebesgue property restricted to  $\mathbb{L}^{\infty}$ 

 (Biagini-Fritelli) In general financial markets, the indifference price is a (except for the sign) a convex risk measure on an Orlicz space L<sup>û</sup> naturally induced by the utility function *u* of the agent.

イロン イロン イヨン イヨン

## Lebesgue measures go to Orlicz spaces

 A Lebesgue risk measure ρ : L<sup>∞</sup> → R can be extended to a risk measure on some Orlicz space ρ̄ : L<sup>Ψ</sup> → R

### Theorem (F. Delbaen)

Every risk measure  $\rho : \mathbb{L}^{\Psi} \to \mathbb{R}$  defined on an Orlicz space  $\mathbb{L}^{\Psi}$  with  $\mathbb{L}^{\Psi} \setminus \mathbb{L}^{\infty} \neq \emptyset$  has the Lebesgue property restricted to  $\mathbb{L}^{\infty}$ 

 (Biagini-Fritelli) In general financial markets, the indifference price is a (except for the sign) a convex risk measure on an Orlicz space L<sup>û</sup> naturally induced by the utility function *u* of the agent.

イロト イポト イヨト イヨト

## Lebesgue measures go to Orlicz spaces

 A Lebesgue risk measure ρ : L<sup>∞</sup> → ℝ can be extended to a risk measure on some Orlicz space ρ̄ : L<sup>Ψ</sup> → ℝ

### Theorem (F. Delbaen)

Every risk measure  $\rho : \mathbb{L}^{\Psi} \to \mathbb{R}$  defined on an Orlicz space  $\mathbb{L}^{\Psi}$  with  $\mathbb{L}^{\Psi} \setminus \mathbb{L}^{\infty} \neq \emptyset$  has the Lebesgue property restricted to  $\mathbb{L}^{\infty}$ 

 (Biagini-Fritelli) In general financial markets, the indifference price is a (except for the sign) a convex risk measure on an Orlicz space L<sup>û</sup> naturally induced by the utility function *u* of the agent.

イロン イロン イヨン イヨン

## Namioka-Klee Theorem

#### Theorem

Any linear and positive functional  $\varphi : \mathcal{X} \to \mathbb{R}$  on a Fréchet lattice  $\mathcal{X}$  is continuous

### Theorem (S. Biagini and M. Fritelli 2009)

Let  $(\mathcal{X}, \mathcal{T})$  be an order continuous Frechet lattice. Any convex monotone increasing functional  $U : \mathcal{X} \to \mathbb{R}$  is order continuous and it admits a dual representation as

$$U(x) = \max_{y' \in (\mathcal{X}_n^{\sim})_+} \{ y'(x) - U^*(y') \}$$

for all  $x \in \mathcal{X}$ 

ヘロト ヘアト ヘビト ヘビト

## Namioka-Klee Theorem

#### Theorem

Any linear and positive functional  $\varphi : \mathcal{X} \to \mathbb{R}$  on a Fréchet lattice  $\mathcal{X}$  is continuous

### Theorem (S. Biagini and M. Fritelli 2009)

Let  $(\mathcal{X}, \mathcal{T})$  be an order continuous Frechet lattice. Any convex monotone increasing functional  $U : \mathcal{X} \to \mathbb{R}$  is order continuous and it admits a dual representation as

$$U(x) = \max_{y' \in (\mathcal{X}_n^{\sim})_+} \{ y'(x) - U^*(y') \}$$

for all  $x \in \mathcal{X}$ 

ヘロト 人間 ト ヘヨト ヘヨト

# Komlos C-Properties

- A linear topology *T* on *X* has the *C*-property if for every *A* ⊂ *X* and every *x* ∈ *A*<sup>*T*</sup> there is a sequence (*x<sub>n</sub>*) ∈ *A* together with *z<sub>n</sub>* ∈ co{*x<sub>p</sub>* : *p* ≥ *n*} such that (*z<sub>n</sub>*) is order convergent to *x*.
- If  $\{v_n\}_{n\geq 1} \in A \subset \mathcal{X}$ , another one  $\{u_n\}_{n\geq 1}$  is a *convex block* sequence of  $\{v_n\}_{n\geq 1}$  if there are finite subsets of  $\mathbb{N}$  max  $F_1 < \min F_2 \leq \cdots < \max F_n < \min F_{n+1} < \cdots$  and  $\{\lambda_i^n : i \in F_n\} \subset (0, 1], \sum_{i \in F_n} \lambda_i^n = 1$  with  $u_n = \sum_{i \in F_n} \lambda_i^n v_i$ .
- When each sequence {*x<sub>n</sub>*}<sub>n≥1</sub> in *A* has a convex block *T*-convergent sequence we say that *A* is *T*-convex block compact.

<ロ> <同> <同> <同> <同> <同> <同> <同> <

# **Komlos C-Properties**

- A linear topology *T* on *X* has the *C*-property if for every *A* ⊂ *X* and every *x* ∈ *A*<sup>*T*</sup> there is a sequence (*x<sub>n</sub>*) ∈ *A* together with *z<sub>n</sub>* ∈ co{*x<sub>p</sub>* : *p* ≥ *n*} such that (*z<sub>n</sub>*) is order convergent to *x*.
- If  $\{v_n\}_{n\geq 1} \in A \subset \mathcal{X}$ , another one  $\{u_n\}_{n\geq 1}$  is a *convex block* sequence of  $\{v_n\}_{n\geq 1}$  if there are finite subsets of  $\mathbb{N}$  max  $F_1 < \min F_2 \leq \cdots < \max F_n < \min F_{n+1} < \cdots$  and  $\{\lambda_i^n : i \in F_n\} \subset (0, 1], \sum_{i \in F_n} \lambda_i^n = 1$  with  $u_n = \sum_{i \in F_n} \lambda_i^n v_i$ .
- When each sequence {*x<sub>n</sub>*}<sub>n≥1</sub> in *A* has a convex block *T*-convergent sequence we say that *A* is *T*-convex block compact.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

# **Komlos C-Properties**

- A linear topology *T* on *X* has the *C*-property if for every *A* ⊂ *X* and every *x* ∈ *A*<sup>*T*</sup> there is a sequence (*x<sub>n</sub>*) ∈ *A* together with *z<sub>n</sub>* ∈ co{*x<sub>p</sub>* : *p* ≥ *n*} such that (*z<sub>n</sub>*) is order convergent to *x*.
- If  $\{v_n\}_{n\geq 1} \in A \subset \mathcal{X}$ , another one  $\{u_n\}_{n\geq 1}$  is a *convex block* sequence of  $\{v_n\}_{n\geq 1}$  if there are finite subsets of  $\mathbb{N}$  max  $F_1 < \min F_2 \leq \cdots < \max F_n < \min F_{n+1} < \cdots$  and  $\{\lambda_i^n : i \in F_n\} \subset (0, 1], \sum_{i \in F_n} \lambda_i^n = 1$  with  $u_n = \sum_{i \in F_n} \lambda_i^n v_i$ .
- When each sequence {*x<sub>n</sub>*}<sub>n≥1</sub> in *A* has a convex block
   *T*-convergent sequence we say that *A* is *T*-convex block compact.

<ロ> (四) (四) (三) (三) (三)

### Theorem (S.Biagini and M.Fritelli 2009)

Let  $(\mathcal{X}, \mathcal{T})$  a locally convex Frechet lattice and  $U : \mathcal{X} \to (-\infty, +\infty]$  proper and convex. If  $\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})$  has the *C*-property then *U* is order lower semicontinuous if, and only if

$$U(x) = \sup_{y' \in (\mathcal{X}_n^{\sim})} \{y'(x) - U^*(y')\}$$

for all  $x \in \mathcal{X}$ 

Question (Biagini-Fritelli)

When is it possible to turn sup to max on  $\mathcal{X}_n^{\sim}$ ?

イロト 不得 とくほ とくほ とうほ

### Theorem (S.Biagini and M.Fritelli 2009)

Let  $(\mathcal{X}, \mathcal{T})$  a locally convex Frechet lattice and  $U : \mathcal{X} \to (-\infty, +\infty]$  proper and convex. If  $\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})$  has the *C*-property then *U* is order lower semicontinuous if, and only if

$$U(x) = \sup_{y' \in (\mathcal{X}_n^{\sim})} \{y'(x) - U^*(y')\}$$

for all  $x \in \mathcal{X}$ 

Question (Biagini-Fritelli)

When is it possible to turn sup to max on  $\mathcal{X}_n^{\sim}$ ?

## Inf-liminf Theorem in $\mathbb{R}^{\Gamma}$

### Theorem (Inf-liminf Theorem in $\mathbb{R}^{\Gamma}$ )

Let  $\{\Phi_k\}_{k\geq 1}$  be a pointwise bounded sequence in  $\mathbb{R}^{\Gamma}$ . We set  $\Lambda \subseteq \Gamma$  satisfying the following boundary condition: For all  $\Phi = \sum_{i=1}^{\infty} \lambda_i \Phi_i, \sum_{i=1}^{\infty} \lambda_i = 1, 0 \leq \lambda_i \leq 1$ , there exists

$$\lambda_0 \in \Lambda$$
 with  $\Phi(\lambda_0) = \inf\{\Phi(\gamma) : \gamma \in \Gamma\}$ 

Then

$$\inf_{\{\lambda \in \Lambda\}} \left( \liminf_{k \ge 1} \Phi_k(\lambda) \right) = \inf_{\{\gamma \in \Gamma\}} \left( \liminf_{k \ge 1} \Phi_k(\gamma) \right)$$

ヘロト ヘアト ヘビト ヘビト

## Inf-liminf Theorem in $\mathbb{R}^{\Gamma}$

### Theorem (Inf-liminf Theorem in $\mathbb{R}^{\Gamma}$ )

Let  $\{\Phi_k\}_{k\geq 1}$  be a pointwise bounded sequence in  $\mathbb{R}^{\Gamma}$ . We set  $\Lambda \subseteq \Gamma$  satisfying the following boundary condition: For all  $\Phi = \sum_{i=1}^{\infty} \lambda_i \Phi_i, \sum_{i=1}^{\infty} \lambda_i = 1, 0 \leq \lambda_i \leq 1$ , there exists

$$\lambda_0 \in \Lambda$$
 with  $\Phi(\lambda_0) = \inf\{\Phi(\gamma) : \gamma \in \Gamma\}$ 

Then

$$\inf_{\{\lambda \in \Lambda\}} \left( \liminf_{k \ge 1} \Phi_k(\lambda) \right) = \inf_{\{\gamma \in \Gamma\}} \left( \liminf_{k \ge 1} \Phi_k(\gamma) \right).$$

ヘロト ヘアト ヘビト ヘビト

# A Nonlinear James Theorem

#### Theorem

Let *E* be a Banach space with  $B_{E^*}$  convex-block compact for  $\sigma(E^*, E)$ . If

 $\alpha: \boldsymbol{E} \to \mathbb{R} \cup \{+\infty\}$ 

is a proper map such that for every  $x^* \in E^*$  the minimization problem

 $\inf\{\alpha(y) + x^*(y) : y \in E\}$ 

is attained at some point of E, then the level sets

 $\{y \in E : \alpha(y) \le c\}$ 

are relatively weakly compact for every  $\mathsf{c} \in \mathbb{R}.$ 

ヘロト ヘワト ヘビト ヘビト

# A Nonlinear James Theorem

#### Theorem

Let *E* be a Banach space with  $B_{E^*}$  convex-block compact for  $\sigma(E^*, E)$ . If

 $\alpha: \boldsymbol{E} \to \mathbb{R} \cup \{+\infty\}$ 

is a proper map such that for every  $x^* \in E^*$  the minimization problem

 $\inf\{\alpha(y) + x^*(y) : y \in E\}$ 

is attained at some point of E, then the level sets

 $\{y \in E : \alpha(y) \le c\}$ 

are relatively weakly compact for every  $c \in \mathbb{R}$ .

ヘロト ヘワト ヘビト ヘビト

# A Nonlinear James Theorem

#### Theorem

Let *E* be a Banach space with  $B_{E^*}$  convex-block compact for  $\sigma(E^*, E)$ . If

 $\alpha: \boldsymbol{E} \to \mathbb{R} \cup \{+\infty\}$ 

is a proper map such that for every  $x^* \in E^*$  the minimization problem

 $\inf\{\alpha(y) + x^*(y) : y \in E\}$ 

is attained at some point of E, then the level sets

 $\{y \in E : \alpha(y) \leq c\}$ 

are relatively weakly compact for every  $c \in \mathbb{R}$ .

ヘロト ヘワト ヘビト ヘビト

# Order Continuity of Risk Measures

### Theorem (Lebesgue Risk Measures)

Let  $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$  be a finite convex risk measure on  $L^{\Psi}$  with  $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$  a penalty function  $w^*$ -lower semicontinuos. T.F.A.E.:

- (i) For all c ∈ ℝ, α<sup>-1</sup>((-∞, c]) is a relatively weakly compact subset of M<sup>Ψ\*</sup>(Ω, F, ℙ).
- (ii) For every  $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ , the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii)  $\rho$  is sequentially order continuous

# Order Continuity of Risk Measures

### Theorem (Lebesgue Risk Measures)

Let  $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$  be a finite convex risk measure on  $L^{\Psi}$  with  $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$  a penalty function  $w^*$ -lower semicontinuos. T.F.A.E.:

(i) For all c ∈ ℝ, α<sup>-1</sup>((-∞, c]) is a relatively weakly compact subset of M<sup>Ψ\*</sup>(Ω, F, ℙ).

(ii) For every  $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ , the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii)  $\rho$  is sequentially order continuous

# Order Continuity of Risk Measures

### Theorem (Lebesgue Risk Measures)

Let  $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$  be a finite convex risk measure on  $L^{\Psi}$  with  $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$  a penalty function  $w^*$ -lower semicontinuos. T.F.A.E.:

- (i) For all c ∈ ℝ, α<sup>-1</sup>((-∞, c]) is a relatively weakly compact subset of M<sup>Ψ\*</sup>(Ω, F, ℙ).
- (ii) For every  $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ , the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

iii)  $\rho$  is sequentially order continuous

# Order Continuity of Risk Measures

### Theorem (Lebesgue Risk Measures)

Let  $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$  be a finite convex risk measure on  $L^{\Psi}$  with  $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$  a penalty function  $w^*$ -lower semicontinuos. T.F.A.E.:

- (i) For all c ∈ ℝ, α<sup>-1</sup>((-∞, c]) is a relatively weakly compact subset of M<sup>Ψ\*</sup>(Ω, F, ℙ).
- (ii) For every  $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ , the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii)  $\rho$  is sequentially order continuous

## Order Continuity of Risk Measures

### Theorem (Lebesgue Risk Measures)

Let  $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y)$  be a finite convex risk measure on  $L^{\Psi}$  with  $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$  a penalty function  $w^*$ -lower semicontinuos. T.F.A.E.:

- (i) For all c ∈ ℝ, β<sup>-1</sup>((-∞, c]) is a relatively weakly compact subset of M<sup>Ψ\*</sup>(Ω, F, ℙ).
- (ii) For every  $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ , the supremum in the equality of

 $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{\mathbb{E}_{\mathbb{P}}[-XY] - \phi(Y)\}$ is attained.  $(\mathbb{I}_{\mathcal{O}}^{\mathbb{P}} \neq \mathbb{P}_{\mathcal{O}}^{\mathbb{P}} \land \mathbb{$ 

### THANK YOU!!!!

J. Orihuela Lebesgue Risk Measures