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Compactness and Optimization

One-Perturbation Variational Principle

Compact domain = Isc functions attain their minimum
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Compact domain = Isc functions attain their minimum
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proper, Isc map s.t. {a < ¢} is compact for all ¢ € R.
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One-Perturbation Variational Principle

Compact domain = Isc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and o : X — (—o0, +0]
proper, Isc map s.t. {a < ¢} is compact for all c € R. Then for
any proper Isc map f : X — (—oo, +oc| bounded from below,
the function o + f attains its minimum.
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Compactness and Optimization

One-Perturbation Variational Principle

Compact domain = Isc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and o : X — (—o0, +0]
proper, Isc map s.t. {a < ¢} is compact for all c € R. Then for
any proper Isc map f : X — (—oo, +oc| bounded from below,
the function o + f attains its minimum.

Theorem (Borwein-Fabian-Revalski)

If X is metrizable and o : X — (—o0, +00] is a proper function
such that for all bounded continuous function
f: X — (—o0,+00], the function o + f attains its minimum,
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Compactness and Optimization

One-Perturbation Variational Principle

Compact domain = Isc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and o : X — (—o0, +0]
proper, Isc map s.t. {a < ¢} is compact for all c € R. Then for
any proper Isc map f : X — (—oo, +oc| bounded from below,
the function o + f attains its minimum.

Theorem (Borwein-Fabian-Revalski)

If X is metrizable and o : X — (—o0, +00] is a proper function
such that for all bounded continuous function

f: X — (—o0, +00], the function o + f attains its minimum, then
« s a Isc map, bounded form below, whose sublevel sets

{a < c} are all compact

J. Orihuela An interplay between Topology, Functional Analysis and Risk



|1. One Theorem]

Theorem 1 Let X be a Hausdorff topological
space which admits a proper Isc function

@: X - RU {4}
whose level sets are all compact. Then for any
proper Isc and bounded from below function f :
X — Ru{+oc} the function f+y attains its min-
imum. In particular, if domy is relatively com-
pact, the conclusion is true for any proper Isc
function f.

Key application. In separable Banach space, a
nice convex choice is:

tan ([|S—1z)2), if IS 1a)F <
50('7') = ( H ‘ H
+o0, otherwise.

™

3
for an appropriate compact, linear and injective
mapping S: H — X (H :={3). Also ¢ is almost
Hadamard smooth:

N sun @z + th) + p(x — th) — 2p(z) _
t™, 0 hedom ¢ t

0,

J Brsaeon 5 Fellk
1,009




Remark 2 If (X, ] : ||} is normed and ¢ is con-
vex, the result above holds for every proper Isc
convex f, provided only that the level sets of ¢
are weakly compact, or that dom is.

Remark 3 In a normed space (X, -|), by al-
lowing translations of ¢, we get a localization of
the minimum of the perturbation (as in Bishop- |
Phelps, Ekeland, Borwein-Preiss [B-P], etc.).

With the same proof:

Suppose X admits a function ¢ as above.
For any proper Isc (bounded below) func-
tion f: X — Ru{+4oc}, for any & € dom f
and each A\ > 0, the function

f+e((-=2)/n)
(for some . > 0), attains its minimum at
au with |u—3|| <\

e Observe that in this case, formally, the per-
turbation function is now varying.



e The core requirement of Theorem 1 is also
necessary.

Namely, we have:

Theorem 4 Let ¢ : X — RU {40} be a proper
function on a metric space X with the property
that for every bounded continuous function

f: X — R, the function f+ ¢ attains its mini-
mum.

Then ¢ is (i) a lower semicontinuous function,
(ii) bounded from below, (iii) whose level sets

are all compact.

e This proof is significantly more subtle.



Compactness and Optimization

a + f € Cp(X) attain minimum = {« < ¢} compact
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Compactness and Optimization

Weak Compactness Theorem of R.C. James

A Banach space is reflexive if and only if each continuous linear
functional attains its supremum on the unit ball
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Compactness and Optimization

Weak Compactness Theorem of R.C. James

A Banach space is reflexive if and only if each continuous linear
functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is
weakly compact if and only if each continuous linear functional
attains its supremum on K

N
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Compactness and Optimization

Weak Compactness Theorem of R.C. James

A Banach space is reflexive if and only if each continuous linear
functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is
weakly compact if and only if each continuous linear functional
attains its supremum on K

v

@ R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,
G. Rodé 1981, G. Godefroy 1987, V. Fonf, J.
Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons
2002, B. Cascales, I. Namioka, J.0O. 2003, O. Kalenda
2007, the boundary problem ...

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization

Compactness, Functional Analysis and Risk

@ H.Follmer and A.Schied Stochastic Finance
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Theorem A.66 (James). dn a Banach space E. a bounded and weakly closed convex

suhset A is weakly compact if and enly if every cominuons linear functional attains

irs supremum on A,

Proof. See, for instance, [86]. [ =]
The following resull characterizes the weakly relatively compact subsets of the

Banach space L' = L@, 7, Py n implies, in particular, that a set of the form

[f & L' |1f] = g) with given g & L' is weakly compact in L".

) | - '.
\t(lcl-l{l Qtl Theorem A.67 (Dunford—Pettis). A subset A of L' is weakly relavively compact if
L_J AVIB LAY and onl it is bounded and uniformly integrable.
}_‘l '
AN AN
1Nance

SUPy ¢ |l flly < 0, and given ¢ >0 there is a 8> 0 such that if A(4) <8,
then [,|f|dNseforallf€ X
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Theorem 15.1.3. Given a bounded sequence (fn)a>1 € LY (2, F.P) then

there are convex combinations

Un 1= t'f!lli‘{fn- fu-{—l-- . )}

such that (gn)n>1 converges in measure to some go € LY(Q.F.P).

Springer Finance

Freddy Delbaen
Walter Schachermayer

The Mathematics
of Arbitrage

15

A Compbactness Princibnle
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lf:M;x-uRbumnuiomlomm subset M of the

-iﬂ‘mMndamuhl-wonM,
eakly coercive iff f{u) — +=0 as ful = oo on M.

17, Let a: X % X — R be a strongly pasitive bilinear functional
X. Then a is coercive.

orallu € X and fixed ¢ > Oyaluu) = ¢ Jui®. Hence alu, w)/lull =+
o
st to Theorem 25.C, the set M can be unbounded in the following

25D (M m.ummwmmﬁu?umm}mm
metional f: M S X — B has the following three properties:

s amnmydwimmexmhwadkxiumuxtem M= X).
is weakly sequentially lower i on M.

is weakly coercive.

f has a minimum on M.
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CMS Books in Mathematics

Jonathan M. Borwein
Qiji J. Zhu

Techniques of |

Variational : . ‘ ‘

g In a metric space X, the conditions imposed on the unique perturbation ¢
Ana].YSlS in Theorem 6.5.1 are also necessary.
Theorem 6.5.2 Let p: X — RU {400} be a proper function on a metric
space X. Suppose that for every bounded continuous function f: X — R, the
function f + ¢ attains its minimum. Then  is a lsc function, bounded from
below, whose sublevel sets are all compact,

Canadian Mathematical Society
Société mathématique du Canada



Compactness and Optimization

The Theorem of James as a minimization problem

@ Let us fix a Banach space E with dual E*

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization

The Theorem of James as a minimization problem

@ Let us fix a Banach space E with dual E*
@ K is a closed convex set in the Banach space E

J. Orihuela An interplay between Topology, Functional Analysis and Risk
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The Theorem of James as a minimization problem

@ Let us fix a Banach space E with dual E*
@ K is a closed convex set in the Banach space E
@ 1x(x) =0if x € K and 4o otherwise

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization

The Theorem of James as a minimization problem

@ Let us fix a Banach space E with dual E*
@ K is a closed convex set in the Banach space E
@ 1x(x) =0if x € K and 4o otherwise
@ x* € E* attains its supremum on K at
Xo € K< w(y) —ik(x0) > x*(y — xo) forally e E
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Compactness and Optimization

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E*

K is a closed convex set in the Banach space E
tk(x) = 0if x € K and 400 otherwise

Xx* € E* attains its supremum on K at

Xo € K< w(y) —ik(x0) > x*(y — xo) forally e E
The minimization problem

min{vk(-) — x*(-)}
on E for every x* € E* has always solution if and only if the
set K is weakly compact
@ When the minimization problem
min{a(-) +x*(1)}
on E has solution for all x* € E* and a fixed proper
function o : E — (—o0, +00]?
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Compactness and Optimization

Minimizing {a(x) + x*(x) : x € E}

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, o : E — (—o0, +0c| proper, (lower
semicontinuous) function with
a(x)

— 7 — 4
lIx|l—00 || X]|
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Compactness and Optimization

Minimizing {a(x) + x*(x) : x € E}

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, o : E — (—o0, +0c| proper, (lower
semicontinuous) function with
@ = +00
lIxll—eo [[X]
Suppose that there is ¢ € R such that the level set {« < c} fails
to be (relatively) weakly compact.
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Compactness and Optimization

Minimizing {a(x) + x*(x) : x € E}

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, o : E — (—o0, +0c| proper, (lower
semicontinuous) function with
@ = +00
lIxll—eo [[X]
Suppose that there is ¢ € R such that the level set {« < c} fails
to be (relatively) weakly compact. Then there is x* € E* such
that,the infimum

Int {06, X°) + a(x)}

is not attained.
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Compactness and Optimization

{a < ¢} not w.c.= Ix* : infe{x*(-) + a(-)} not attained

Lemma

Let A be a bounded but not relatively weakly compact subset of
the Banach space E. If (a,) C A is a sequence without weak
cluster point in E,
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Compactness and Optimization

{a < ¢} not w.c.= Ix* : infe{x*(-) + a(-)} not attained

Lemma

Let A be a bounded but not relatively weakly compact subset of
the Banach space E. If (a,) C A is a sequence without weak
cluster point in E, then there is (x;;) C Bg«,go = Y o1 AnX;)
with0 < X\, <1 forallne N and ", \n = 1 such that:

for every h € I°°(A), with

Iimninfx;(a) < h(a) < limsup x,(a)
n

for all a € A, we will have that go + h doest not attain its
minimum on A
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Compactness and Optimization

{a < c} notw.c.= Ix* :infe{x*(:) + «(:)} not attained
= Hohn-Banody > u(“*c?)(_wa
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Compactness and Optimization

Maximizing {x*(x) — a(x) : x € E}

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, o : E — (—o0,+00] proper, lower
semicontinuous function, then we have:
@ Ifoa(E) = E* then the level sets {« < c} are weakly
compact for all ¢ € R whenever « is a coercive map, i.e.

i alx) _
I|mHX||HOO ™ = —+00.
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Compactness and Optimization

Maximizing {x*(x) — a(x) : x € E}

Theorem (M. Ruiz and J. Orihuela)
Let E be a Banach space, o : E — (—o0,+00| proper, lower
semicontinuous function, then we have:

@ IfOa(E) = E* then the level sets {« < c} are weakly
compact for all ¢ € R whenever « is a coercive map, i.e.
I|mHX||HOO % = 400.,

@ It o has weakly compact level sets and the
Fenchel-Legendre conjugate «* is finite, i.e.
sup{x*(x) — a(x) : x € E} < +oo for all x* € E*, then
da(E) = E*

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness, Convex Analysis and Risk

Convex Analysis

@ We fix an atomless probability space (2, F,P)
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Convex Analysis

@ We fix an atomless probability space (2, F,P)
@ We are going to work in a duality (X', X*) where
L>®(Q,F) C X CLYQ, F)
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Compactness, Convex Analysis and Risk

Convex Analysis

@ We fix an atomless probability space (2, F,P)

@ We are going to work in a duality (X', X*) where
L>®(Q,F) C X CLYQ, F)

@ Examples: (L', 1.°°), (LP,1.9), (L>°, ba(Q, F))
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Compactness, Convex Analysis and Risk

Convex Analysis

@ We fix an atomless probability space (2, F,P)

@ We are going to work in a duality (X', X*) where
L>®(Q,F) C X CLYQ, F)

@ Examples: (L', 1.°°), (LP,1.9), (L>°, ba(Q, F))

@ f: X — (—o0,+0],
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Compactness, Convex Analysis and Risk

Convex Analysis

@ We fix an atomless probability space (2, F,P)

@ We are going to work in a duality (X', X*) where
L®(Q,F) C X CLY(Q,F)

@ Examples: (L', 1.°°), (LP,1.9), (L>°, ba(Q, F))

@ f: X — (—o0,+00], f*: X* — (—o0, +0o0] defined by

f*(x*) = sup{x*(x) — f(x) : x € X}
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Compactness, Convex Analysis and Risk

Convex Analysis

@ We fix an atomless probability space (2, F,P)

@ We are going to work in a duality (X', X*) where
L®(Q,F) C X CLY(Q,F)

@ Examples: (L', 1.°°), (LP,1.9), (L>°, ba(Q, F))

@ f: X — (—o0,+00], f*: X* — (—o0, +0o0] defined by

f*(x*) = sup{x*(x) — f(x) : x € X}

Iff: X — (—o0,+00] is convex, proper and lower
semicontinuous, then

@ forallx € X,x* € X we have (x,x*) < f(x) + f*(x*)
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Compactness, Convex Analysis and Risk

Risk meausures

A monetary utility function is a concave non-decreasing map
U:L>®(Q,F,P) = [-o0,+00)
with dom(U) = {X : U(X) € R} # 0 and

UX+c)=UX)+c, for X e L>* ceR
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Compactness, Convex Analysis and Risk

Risk meausures

Definition
A monetary utility function is a concave non-decreasing map

U :L*(Q,F,P) = [—o0,+00)
with dom(U) = {X : U(X) € R} # 0 and
UX+c)=UX)+c, for X e L>* ceR

Defining p(X) = —U(X) the above definition of monetary utility
function yields the definition of a convex risk measure.
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Compactness, Convex Analysis and Risk

Risk meausures

Definition
A monetary utility function is a concave non-decreasing map

U :L*(Q,F,P) = [—o0,+00)
with dom(U) = {X : U(X) € R} # 0 and
UX+c)=UX)+c, for X e L>* ceR

Defining p(X) = —U(X) the above definition of monetary utility
function yields the definition of a convex risk measure.Both U, p
are called coherent if U(0) = 0, U(AX) = AU(X) for all
A>0Xel™®
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Compactness, Convex Analysis and Risk

Representing risk measures

A convex (resp. coherent) risk measure p : L>°(Q, F,P) - R
admits a representation

p(X) = sup{p(—X) —a(p) : p € ba, p > 0p(Q2) = 1}

(resp.
p(X) = sup{u(~X): p €S C {peba,u>0uQ)=1}})

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness, Convex Analysis and Risk

Representing risk measures

A convex (resp. coherent) risk measure p : L>°(Q, F,P) - R
admits a representation

p(X) = sup{p(—X) —a(p) : p € ba, p > 0p(Q2) = 1}

(resp.
p(X) =sup{u(—X):pe S C{ueba p=>0,uQ)=1}})Ifin
addition p is o(L>°, L") -lower semicontinuous we have:
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Compactness, Convex Analysis and Risk

Representing risk measures

A convex (resp. coherent) risk measure p : L>°(Q, F,P) - R
admits a representation

p(X) = sup{p(—X) —a(p) : p € ba, p > 0p(Q2) = 1}

(resp.
p(X) =sup{u(—X):pe S C{ueba p=>0,uQ)=1}})Ifin
addition p is o(L>°, L") -lower semicontinuous we have:

p(X) = sup{Eq(—X) — (Q) : Q << P and Ep(dQ/dP) = 1}}

(resp.
p(X) = sup{Eqg(—X)) : Q € {Q << P and Ep(dQ/dP) = 1}})
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Compactness, Convex Analysis and Risk

Minimizing {a(Y) +E(X-Y): Y L'}

Theorem (Jouini-Schachermayer-Touzi)

Let U :L>(Q, F,P) — R be a monetary utility function with the
Fatou property and U* : L>°(Q, F,P)* — [0, 0] its
Fenchel-Legendre transform. They are equivalent:
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Compactness, Convex Analysis and Risk

Minimizing {a(Y) +E(X-Y): Y L'}

Theorem (Jouini-Schachermayer-Touzi)

Let U :L>(Q, F,P) — R be a monetary utility function with the
Fatou property and U* : L>°(Q, F,P)* — [0, 0] its
Fenchel-Legendre transform. They are equivalent:

@ (U <c} iso(L',L>®)-compact subset for all ¢ € R
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Compactness, Convex Analysis and Risk

Minimizing {a(Y) +E(X-Y): Y L'}

Theorem (Jouini-Schachermayer-Touzi)

Let U :L>(Q, F,P) — R be a monetary utility function with the
Fatou property and U* : L>°(Q, F,P)* — [0, 0] its
Fenchel-Legendre transform. They are equivalent:

@ (U <c} iso(L',L>®)-compact subset for all ¢ € R
@ Forevery X € L™ the infimum in the equality

UL = i ) - BIp

is attained
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Compactness, Convex Analysis and Risk

Minimizing {a(Y) +E(X-Y): Y L'}

Theorem (Jouini-Schachermayer-Touzi)

Let U :L>(Q, F,P) — R be a monetary utility function with the
Fatou property and U* : L>°(Q, F,P)* — [0, 0] its
Fenchel-Legendre transform. They are equivalent:

@ (U <c} iso(L',L>®)-compact subset for all ¢ € R

@ Forevery X € L™ the infimum in the equality

U(X) = inf {U"(Y)+E[XY]},

is attained

© For every uniformly bounded sequence (X,) tending a.s. to
X we have

lim U(X,) = U(X).
N— 00
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Compactness, Convex Analysis and Risk

Tools for the proof

@ The proof in [JST] is for separable L.'(Q, F,P). The
separability is needed to show 2) = 1) with a variant of the
separable James’ compactness Theorem we provided to
authors.
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Compactness, Convex Analysis and Risk

Tools for the proof

@ The proof in [JST] is for separable L.'(Q, F,P). The
separability is needed to show 2) = 1) with a variant of the
separable James’ compactness Theorem we provided to
authors.

@ Delbaen has given a proof for general non separable
spaces using an homogenisation trick. He shows how to
apply directly the non separable James’ compactness
Theorem in the duality (L'(Q, F,P), L>(Q, F,P)).
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Compactness, Convex Analysis and Risk

Tools for the proof

@ The proof in [JST] is for separable L.'(Q, F,P). The
separability is needed to show 2) = 1) with a variant of the
separable James’ compactness Theorem we provided to
authors.

@ Delbaen has given a proof for general non separable
spaces using an homogenisation trick. He shows how to
apply directly the non separable James’ compactness
Theorem in the duality (L'(Q, F,P), L>(Q, F,P)).
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Risk Measures in Orlicz spaces

De la Vallée Poussin’s Theorem

A family # € L' is uniformly integrable if it is bounded and
limpeay0 [4|X|dP = 0 uniformly in X € H

Theorem

A family H c L° is uniformly integrable if, and only if there is a
convex function ® : R — [0, +00) s.t

®(0) = 0, d(x) = D(—x), liMy_00 2 = 00 which

== =

sup{/cb(X)dIF’ X eH} <o
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Risk Measures in Orlicz spaces

Orlicz spaces

An even, convex function ¥V : E — R U {oo} such that:
Q@ v(0)=0
Q limy_ oo V(x) = 00
@ V < +ooin a neighbourhood of 0

is called a Young function
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Risk Measures in Orlicz spaces

Orlicz spaces

An even, convex function ¥V : E — R U {oo} such that:
Q@ v(0)=0
Q limy_ oo V(x) = 00
@ V < +ooin a neighbourhood of 0

is called a Young function

Q LY(Q,F,P):={Xcl%: 3a>0,Ep[¥(aX)] < +oo}
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Risk Measures in Orlicz spaces

Orlicz spaces

An even, convex function ¥V : E — R U {oo} such that:
Q@ v(0)=0
Q limy_ oo V(x) = 00
@ V < +ooin a neighbourhood of 0
is called a Young function
Q@ LY(Q F,P):={XeclL%: 3a > 0,Ep[¥(aX)] < 400}
Q Ny(X) :=inf{c>0:Ep[W(1X)] < 1}
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Risk Measures in Orlicz spaces

Orlicz spaces

An even, convex function ¥V : E — R U {oo} such that:
Q@ v(0)=0
Q limy_ oo V(x) = 00
@ V < +ooin a neighbourhood of 0
is called a Young function
Q@ LY(Q F,P):={XeclL%: 3a > 0,Ep[¥(aX)] < 400}
Q Ny(X) :=inf{c>0:Ep[W(1X)] < 1}
Q L>(Q,F,P) c L¥Y(Q,F,P) c LY (Q, F,P)

© the Morse subspace
MY = {X € LY : Ep[¥(BX)] < +ocfor all 3 > 0},
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Risk Measures in Orlicz spaces

Lebesgue measures go to Orlicz spaces

@ A Lebesgue risk measure p : L>° — R can be extended to
a risk measure on some Orlicz space 5 : LY — R
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Risk Measures in Orlicz spaces

Lebesgue measures go to Orlicz spaces

@ A Lebesgue risk measure p : L>° — R can be extended to
a risk measure on some Orlicz space 5 : LY — R

Theorem (F. Delbaen)

Every risk measure p : LY — R defined on an Orlicz space .Y
with LY \ L™ # () has the Lebesgue property restricted to L.>°
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Risk Measures in Orlicz spaces

Lebesgue measures go to Orlicz spaces

@ A Lebesgue risk measure p : L>° — R can be extended to
a risk measure on some Orlicz space 5 : LY — R

Theorem (F. Delbaen)

Every risk measure p : LY — R defined on an Orlicz space .Y
with LY \ L™ # () has the Lebesgue property restricted to L.>°

@ (Biagini-Fritelli) In general financial markets, the
indifference price is a (except for the sign) a convex risk
measure on an Orlicz space L naturally induced by the
utility function u of the agent.
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Risk Measures in Orlicz spaces

Namioka-Klee Theorem

Any linear and positive functional ¢ : X — R on a Fréchet
lattice X' is continuous
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Risk Measures in Orlicz spaces

Namioka-Klee Theorem

Any linear and positive functional ¢ : X — R on a Fréchet
lattice X' is continuous

Theorem (S. Biagini and M. Fritelli 2009)

Let (X, T) be an order continuous Frechet lattice. Any convex
monotone increasing functional U : X — R is order continuous
and it admits a dual representation as

Ubg = max {y'(x)-U(y)}

forallx € X
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Risk Measures in Orlicz spaces

Komlos C-Properties

@ Alinear topology 7 on X has the C-property if for every
A C X andevery x € A thereis a sequence (xp) € A
together with z, € co{x, : p > n} such that (z,) is order
convergent to x.
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Risk Measures in Orlicz spaces

Komlos C-Properties

@ Alinear topology 7 on X has the C-property if for every

A C X andevery x € A thereis a sequence (xp) € A
together with z, € co{x, : p > n} such that (z,) is order
convergent to x.

@ If {vp}n>1 € AC X, another one {un}n>1 is a convex block
sequence of {Vvn},>1 if there are finite subsets of N
maxFy <minF, <---<maxFp, <minF, 4 <--- and
(AT i€ Fn} C(0,1], X e, AT =1 withup = 3, ATV
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Risk Measures in Orlicz spaces

Komlos C-Properties

@ Alinear topology 7 on X has the C-property if for every
A C X andevery x € A thereis a sequence (xp) € A
together with z, € co{x, : p > n} such that (z,) is order
convergent to x.

@ If {vp}n>1 € AC X, another one {un}n>1 is a convex block
sequence of {Vvn},>1 if there are finite subsets of N
maxFy <minF, <---<maxFp, <minF, 4 <--- and
(AT i€ Fn} C(0,1], X e, AT =1 withup = 3, ATV

@ When each sequence {x,},>1 in A has a convex block
T-convergent sequence we say that A is 7T-convex block
compact.
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Risk Measures in Orlicz spaces

Theorem (S.Biagini and M.Fritelli 2009)

Let (X, T) a locally convex Frechet lattice and
U: X — (—o0,+o0] proper and convex. If o(X, X}) has the
C-property then U is order lower semicontinuous if, and only if

U(x)= sup {y'(x)-U"(y")}

y'e(xy)
forall x e X

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Risk Measures in Orlicz spaces

Theorem (S.Biagini and M.Fritelli 2009)

Let (X, T) a locally convex Frechet lattice and
U: X — (—o0,+o0] proper and convex. If o(X, X}) has the
C-property then U is order lower semicontinuous if, and only if

U(x)= sup {y'(x)-U"(y")}

y'e(Xy)

forallx €¢ X

Question (Biagini-Fritelli)

When is it possible to turn sup to max on X5 ?

r.[g.’( 41\)0, aﬁun-\-%t\\uf\wrmkao r _'i-':;‘t.‘u m (X.'T/ ) ?
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Risk Measures in Orlicz spaces

Sup-limsup Theorem

Theorem (Simons)

LetT be a set and (z,)n a uniformly bounded sequence in
¢>°(T). If A is a subset of T such that for every sequence of
positive numbers (Ap)n with Y77 4 A\p = 1 there exists b € A
such that

sup{> _Anzn(y) : ¥y €T} =>_ Anzn(b),
n=1 n=1

then we have:
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Risk Measures in Orlicz spaces

Sup-limsup Theorem

Theorem (Simons)

LetT be a set and (z,)n a uniformly bounded sequence in
¢>°(T). If A is a subset of T such that for every sequence of
positive numbers (Ap)n with Y77 4 A\p = 1 there exists b € A
such that

sup{> _Anzn(y) : ¥y €T} =>_ Anzn(b),
n=1 n=1

then we have:

sup limsup xx(\) = suplim sup xx(v)
AEN  k—oo yel k—oo
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Risk Measures in Orlicz spaces

Weak Compactness through Sup-limsup Theorem

Let E be a separable Banach space and K C E a closed
convex and bounded subset. They are equivalent:

@ K is weakly compact.
@ For every sequence (x;;) C Bg« we have

sup{limsup x;(k)} = sup {limsup x,(x)}

keK h—o0 —w* n—oo
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Risk Measures in Orlicz spaces

Sup-limsup Theorem = Compactness

@ If K is not weakly compact there is x;* € K" c E* with
xX*¢E
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Risk Measures in Orlicz spaces

Sup-limsup Theorem = Compactness

@ If K is not weakly compact there is x;* € K" c E* with
xX*¢E

@ The Hahn Banach Theorem provide us x*** € Bg«.- N E+
with x***(x5*) = a >0
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Risk Measures in Orlicz spaces

Sup-limsup Theorem = Compactness

@ If K is not weakly compact there is x;* € K" c E* with
xX*¢E
@ The Hahn Banach Theorem provide us x*** € Bg«.- N E+
with x***(x5*) = a >0
@ The separability of E, Ascoli’s and Bipolar Theorems
permit to construct a sequence (x;;) C Bg« such that:
@ lim, o xi(x)=0forall x € E
Q x;(x5*)>a/2forallne N
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Risk Measures in Orlicz spaces

Sup-limsup Theorem = Compactness

@ If K is not weakly compact there is x;* € K" c E* with
xX*¢E
@ The Hahn Banach Theorem provide us x*** € Bg«.- N E+
with x***(x5*) = a >0
@ The separability of E, Ascoli’s and Bipolar Theorems
permit to construct a sequence (x;;) C Bg« such that:
@ lim, o xi(x)=0forall x € E
Q x;(x5*)>a/2forallne N
@ Then

0 = sup{ Iim x,(k)} = sup{limsup x;(k)} >
keK n—oo

keK n—oo

= sup {limsupx,(v*)} > limsup x;(x*) > /2 >0
yreeg? Mo n=0o0
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Risk Measures in Orlicz spaces

Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and K C E a closed
convex and bounded subset. They are equivalent:

@ K is weakly compact.

@ For any covering K C U , D, by an increasing sequence
of closed convex subsets D, C K, we have

——— e

U%O Dn -
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Risk Measures in Orlicz spaces

Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and K C E a closed
convex and bounded subset. They are equivalent:

@ K is weakly compact.

@ For any covering K C U , D, by an increasing sequence
of closed convex subsets D, C K, we have

——— e

U%O Dn -

@ The proof uses Krein Milman and Bishop Phelps theorems
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Risk Measures in Orlicz spaces

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)
Let E be a Banach space, K ¢ E* be w*—compact convex,
B C K, TFAE:
@ For any covering B C U , D, by an increasing sequence
of convex subsets D, C K, we have

——ll

U,%ODn = K
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Risk Measures in Orlicz spaces

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)
Let E be a Banach space, K ¢ E* be w*—compact convex,
B C K, TFAE:
@ For any covering B C U , D, by an increasing sequence
of convex subsets D, C K, we have

=

U,%ODn S K

@ supsep (Iimsupy f(x)) = supgek (limsupy g(xk))
for every sequence {xx} C Bx.
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Risk Measures in Orlicz spaces

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)
Let E be a Banach space, K ¢ E* be w*—compact convex,
B C K, TFAE:
@ For any covering B C U , D, by an increasing sequence
of convex subsets D, C K, we have

=

U,%ODn S K
@ supsep (Iimsupy f(x)) = supgek (limsupy g(xk))
for every sequence {xx} C Bx.

© supyscp (limsupy f(xk)) > infz >\,-:1,>\,-20(SUpg€K a>_oixi)
for every sequence {xx} C Bx.

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Risk Measures in Orlicz spaces

Inf-liminf Theorem in R"

Theorem (Inf-liminf Theorem in R")

Let {®x}k>1 be a pointwise bounded sequence in R". We set
A C T satisfying the following boundary condition:
Forall® =72, X\i®;, >, A\i=1,0 < \; <1, there exists

Ao € A with d(N\g) = inf{d(y) : v €T}
Then
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Risk Measures in Orlicz spaces

Inf-liminf Theorem in R"

Theorem (Inf-liminf Theorem in R")

Let {®x}k>1 be a pointwise bounded sequence in R". We set
A C T satisfying the following boundary condition:
Forall® =72, X\i®;, >, A\i=1,0 < \; <1, there exists

Ao € A with d(N\g) = inf{d(y) : v €T}
Then

inf (liminfor(\) ) = inf (liminfox() ) .
{iQA}('T>'P «l )> {v're]r}('rk]l”n km)
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Risk Measures in Orlicz spaces

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)

Let E be a Banach space with Bg« convex-block compact for
o(E*,E).
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Risk Measures in Orlicz spaces

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)

Let E be a Banach space with Bg« convex-block compact for
o(E* E). If

a: E— RU{+o0}

is a proper map such that for every x* € E* the minimization
problem

inf{a(y) + x*(y) : y € E}
is attained at some point of E,
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Risk Measures in Orlicz spaces

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)

Let E be a Banach space with Bg« convex-block compact for
o(E* E). If

a: E— RU{+o0}

is a proper map such that for every x* € E* the minimization
problem

inf{a(y) + x*(y) : y € E}
is attained at some point of E, then the level sets

{yeE:aly)<c}

are relatively weakly compact for every ¢ € R.
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Risk Measures in Orlicz spaces

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let p(X) = supy gy {Ep[—XY] — a(Y)} be a finite convex risk
measure on LY with o : (LY(Q, F,P)* — (—o0, +o0] a penalty
function w*-lower semicontinuos. T.FA.E.:
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Risk Measures in Orlicz spaces

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let p(X) = supy gy {Ep[—XY] — a(Y)} be a finite convex risk
measure on LY with o : (LY(Q, F,P)* — (—o0, +o0] a penalty
function w*-lower semicontinuos. T.FA.E.:

(i) Forallc € R, a~'((—o0,c]) is a relatively weakly compact
subset of MY (Q, F, P).
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Risk Measures in Orlicz spaces

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let p(X) = supy gy {Ep[—XY] — a(Y)} be a finite convex risk
measure on LY with o : (LY(Q, F,P)* — (—o0, +o0] a penalty
function w*-lower semicontinuos. T.FA.E.:

(i) Forallc € R, a~'((—o0,c]) is a relatively weakly compact
subset of MY (Q, F, P).

(ii) Forevery X € L¥(Q, F,P), the supremum in the equality

p(X) = sup {Es[-XY]—a(¥)}
YeMv*

is attained.

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Risk Measures in Orlicz spaces

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let p(X) = supy gy {Ep[—XY] — a(Y)} be a finite convex risk
measure on LY with o : (LY(Q, F,P)* — (—o0, +o0] a penalty
function w*-lower semicontinuos. T.FA.E.:

(i) Forallc € R, a~'((—o0,c]) is a relatively weakly compact
subset of MY (Q, F, P).

(ii) Forevery X € L¥(Q, F,P), the supremum in the equality
p(X) = sup {Ep[-XY]—a(Y)}
YeMv*

is attained.
(iii) p is sequentially order continuous

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Variational problems and reflexivity

Nonlinear Variational Problems

Theorem (Reflexivity frame)
Let E be a real Banach space and

a: E— RU{+o0}

a coercive function such that dom(«) has nonempty interior and
for all x* € E* there exists xg € E with

a(x0) + X" (%) = Inf {a(x) + X" (x)}
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Variational problems and reflexivity

Nonlinear Variational Problems

Theorem (Reflexivity frame)
Let E be a real Banach space and

a: E— RU{+o0}

a coercive function such that dom(«) has nonempty interior and
for all x* € E* there exists xg € E with

a(x0) + X" (%) = Inf {a(x) + X" (x)}

Then E is reflexive.

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Variational problems and reflexivity

Nonlinear Variational Problems

Theorem (Reflexivity frame)
Let E be a real Banach space and

a: E— RU{+o0}

a coercive function such that dom(«) has nonempty interior and
for all x* € E* there exists xg € E with

a(x0) + X" (%) = Inf {a(x) + X" (x)}

Then E is reflexive.
Moreover, if the dual ball Be- is a w*- convex-block compact no
coercive assumption is needed for o
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Variational problems and reflexivity

[0a(E) = E*] = E = E**

@ Fix an open ball B C dom(«)
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Variational problems and reflexivity

[0a(E) = E*] = E = E**

@ Fix an open ball B C dom(«)

o B=Bna ((—oop) )
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Variational problems and reflexivity

[0a(E) = E*] = E = E**

@ Fix an open ball B C dom(«)

° B=U;% Bra((—o0,o)" "
@ Baire Category Theorem = thereis g € N :

Bra ((—ooq) ")

has non void interior relative to B
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Variational problems and reflexivity

[0a(E) = E*] = E = E**

@ Fix an open ball B C dom(«)

———————(E,E*)
° B=J;% Bna'((~o0,pl)
@ Baire Category Theorem = thereis g € N :

- (E,E*

Bha 1((—oc,q) )
has non void interior relative to B

@ There is G open in E such that

0+£BNGCBNa T ((—s0,q) 7
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Variational problems and reflexivity

[0a(E) = E*] = E = E**

@ Fix an open ball B C dom(«)

————————(E,E¥)

° B=U}% Bna((~oc,0)

@ Baire Category Theorem = thereis g € N :
Bra (oo q) "

has non void interior relative to B
@ There is G open in E such that
0 #ABnNnGC Bﬂa—1(( 00, q])

o m BED weakly compact = G contains an
open relatively weakly compact ball

o(E,E*)
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Variational problems and reflexivity

[0a(E) = E*] = E = E**

@ Fix an open ball B C dom(«)

———————(E,E*)
° B=J;% Bna'((~o0,pl)
@ Baire Category Theorem = thereis g € N :

- (E,E*

Bra ((—ooa)
has non void interior relative to B

@ There is G open in E such that
0 #ABnNnGC Bﬂa—1(( 00, q])

E*

@ o 1((—inf, q]) ) weakly compact = G contains an
open relatively weakly compact ball

@ Bg is weakly compact

o(E,E*)
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2.3 Operators of Monotone Type 41

Zorollary 2.101 (Main Theorem on Monotone Operators). Let X be
» read, reflexive Banach space, and let A : X — X* be a menotone, hemicon-

inuons, bounded. and J: . and b € X*. Then a solution of the
quation Aw = b exrists,

variational equation
afu,v) = 1)
forallveV

Galerkin method
aluy.m) = fl)

for all v, &V,

SYImmetry

by
symmetry

variational problem

&I\I‘I Jiw)

Ritz method

r{“&l'vn J(on)




Variational problems and reflexivity

Nonlinear variational problems

Corollary

@ A real Banach space E is reflexive, provided there exists a
monotone, coercive, symmetric and surjective operator
¢: E— E*
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Variational problems and reflexivity

Nonlinear variational problems

Corollary

@ A real Banach space E is reflexive, provided there exists a
monotone, coercive, symmetric and surjective operator
¢: E— E*

@ A real Banach space with dual ball w*-convex-block
compact is reflexive whenever there exists a monotone,
symmetric and surjective operator ® : E — E*
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Variational problems and reflexivity

Nonlinear variational problems

Corollary

@ A real Banach space E is reflexive, provided there exists a
monotone, coercive, symmetric and surjective operator
¢: E— E*

@ A real Banach space with dual ball w*-convex-block
compact is reflexive whenever there exists a monotone,
symmetric and surjective operator ® : E — E*

Let E be a real Banach space and ¢ : E — 2" a monotone
multivalued map with non void interior domain.

[6(E) = E*] = E = E™*?
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Variational problems and reflexivity

THANK YOouU!!!!

interplay between Topology, Functional Analysis
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