An interplay between Topology, Functional Analysis and Risk

J. Orihuela¹

¹Department of Mathematics University of Murcia

Summer Conference on General Topology and its Applications. The City College New York. 26-29 July 2011

イロト イポト イヨト イヨ

The coauthors

- M. Ruiz Galán and J.O. A coercive and nonlinear James's weak compactness theorem Preprint.
- M. Ruiz Galán and J.O. *Lebesgue Property for Convex Risk Meausures on Orlicz Spaces* Preprint.

A D b 4 A b

Contents

- Compactness and Optimization
- Compactness, Convex Analysis and Risk
- Risk measures on Orlicz spaces
- Variational problems and reflexivity.

< 🗇 🕨

- < ≣ → <

One-Perturbation Variational Principle

Compact domain \Rightarrow lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and $\alpha : X \to (-\infty, +\infty]$ proper, lsc map s.t. { $\alpha \leq c$ } is compact for all $c \in \mathbb{R}$. Then for any proper lsc map $f : X \to (-\infty, +\infty]$ bounded from below, the function $\alpha + f$ attains its minimum.

Theorem (Borwein-Fabian-Revalski)

One-Perturbation Variational Principle

Compact domain \Rightarrow lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and $\alpha : X \to (-\infty, +\infty]$ proper, lsc map s.t. { $\alpha \leq c$ } is compact for all $c \in \mathbb{R}$. Then for any proper lsc map $f : X \to (-\infty, +\infty]$ bounded from below, the function $\alpha + f$ attains its minimum.

Theorem (Borwein-Fabian-Revalski)

One-Perturbation Variational Principle

Compact domain \Rightarrow lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and $\alpha : X \to (-\infty, +\infty]$ proper, lsc map s.t. { $\alpha \leq c$ } is compact for all $c \in \mathbb{R}$. Then for any proper lsc map $f : X \to (-\infty, +\infty]$ bounded from below, the function $\alpha + f$ attains its minimum.

Theorem (Borwein-Fabian-Revalski)

One-Perturbation Variational Principle

Compact domain \Rightarrow lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and $\alpha : X \to (-\infty, +\infty]$ proper, lsc map s.t. { $\alpha \leq c$ } is compact for all $c \in \mathbb{R}$. Then for any proper lsc map $f : X \to (-\infty, +\infty]$ bounded from below, the function $\alpha + f$ attains its minimum.

Theorem (Borwein-Fabian-Revalski)

One-Perturbation Variational Principle

Compact domain \Rightarrow lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and $\alpha : X \to (-\infty, +\infty]$ proper, lsc map s.t. { $\alpha \leq c$ } is compact for all $c \in \mathbb{R}$. Then for any proper lsc map $f : X \to (-\infty, +\infty]$ bounded from below, the function $\alpha + f$ attains its minimum.

Theorem (Borwein-Fabian-Revalski)

1. One Theorem

Theorem 1 Let *X* be a Hausdorff topological space which admits a proper lsc function

 $\varphi: X \to \mathbb{R} \cup \{+\infty\}$

whose level sets are all compact. Then for any proper lsc and bounded from below function $f: X \to \mathbb{R} \cup \{+\infty\}$ the function $f + \varphi$ attains its minimum. In particular, if dom φ is relatively compact, the conclusion is true for any proper lsc function f.

Key application. In separable Banach space, a *nice* convex choice is:

$$\varphi(x) := \begin{cases} \tan\left(\|S^{-1}x\|_H^2\right), & \text{ if } \|S^{-1}x\|_H^2 < \frac{\pi}{2} \\ +\infty, & \text{ otherwise.} \end{cases}$$

for an appropriate compact, linear and injective mapping $S: H \to X$ ($H := \ell_2$). Also φ is almost Hadamard smooth:

$$\lim_{t \to 0} \sup_{h \in \operatorname{dom} \varphi} \frac{\varphi(x+th) + \varphi(x-th) - 2\varphi(x)}{t} = 0,$$

5

Remark 2 If $(X, \|\cdot\|)$ is normed and φ is convex, the result above holds for every proper lsc convex f, provided only that the level sets of φ are weakly compact, or that dom φ is.

Remark 3 In a normed space $(X, \|\cdot\|)$, by allowing translations of φ , we get a *localization* of the minimum of the perturbation (as in Bishop-Phelps, Ekeland, Borwein-Preiss [B-P], etc.).

With the same proof:

Suppose X admits a function φ as above. For any proper lsc (bounded below) function $f: X \to \mathbb{R} \cup \{+\infty\}$, for any $\bar{x} \in \text{dom } f$ and each $\lambda > 0$, the function

 $f + \varphi((\cdot - \bar{x})/\mu)$ (for some $\mu > 0$), attains its minimum at a u with $||u - \bar{x}|| \le \lambda$,

• Observe that in this case, formally, the perturbation function is *now* varying. • The core requirement of Theorem 1 is also necessary.

Namely, we have:

Theorem 4 Let $\varphi: X \to \mathbb{R} \cup \{+\infty\}$ be a proper function on a metric space X with the property that for every bounded continuous function $f: X \to \mathbb{R}$, the function $f + \varphi$ attains its minimum.

Then φ is (i) a lower semicontinuous function, (ii) bounded from below, (iii) whose level sets are all compact.

• This proof is significantly more subtle.

$\alpha + f \in C_b(X)$ attain minimum $\Rightarrow \{\alpha \leq c\}$ compact

If not there are open sets:
(A)
$$\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$$
 $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $n \neq u$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $(x_{n}) - 4_{2n} \forall x \in \amalg_{x_{n}} \forall x \in \amalg_{x_{n}} \forall x_{u}$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $(x_{n}) - 4_{2n} \forall x \in \amalg_{x_{n}} \forall x \in \amalg_{x_{n}} \forall x_{u}$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $(x_{n}) - 4_{2n} \forall x \in \amalg_{x_{n}} \forall x \in \amalg_{x_{n}} \forall x_{u}$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $(x_{n}) - 4_{2n} \forall x \in \amalg_{x_{n}} \forall x \in \amalg_{x_{n}} \forall x_{u}$.
(A) $\coprod_{x_{u}} \cap \amalg_{x_{n}} = \phi$ $(x_{n}) - 4_{2n} \forall x \in \amalg_{x_{n}} \forall x_{u} \in \amalg_{x_{n}} = -5 \times (n \to -1)$
(A) $\coprod_{x_{u}} \oplus \amalg_{x_{u} \in \amalg_{x_{u}} \oplus \amalg_{x_{u} \in \amalg_{x_{u} \in \amalg_{x_{u}} \oplus \amalg_{x_{u} \in \amalg_{x_{u}} \oplus \coprod_{x_{u} \in \amalg_{x_{u} \in \coprod_{x_{u} \in \amalg_{x_{u} \in \coprod_{x_{u} \in \amalg_{x_{u} \in \amalg_{x_{u} \in \amalg_{x_{u} \in \amalg_{x_{u} \in \amalg_{x_{u} \in \amalg_{x_{u} \in \coprod_{x_{u} \in \coprod_{$

Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,
 G. Rodé 1981, G. Godefroy 1987, V. Fonf, J.
 Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...

Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,
 G. Rodé 1981, G. Godefroy 1987, V. Fonf, J.
 Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...

Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

 R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972, G. Rodé 1981, G. Godefroy 1987, V. Fonf, J. Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...

Compactness, Functional Analysis and Risk

• H.Follmer and A.Schied Stochastic Finance

- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*
- E. Zeidler Nonlinear Functional Analysis and its Applications
- J. Borwein and Q. Zhu Techniques of Variational Analysis

イロト イポト イヨト イヨト

Theorem A.66 (lames). In a Banach space E, a bounded and weakly closed convex subset A is weakly compact if and only if every continuous linear functional attains its supremum on A.

Proof. See, for instance, [86].

Stochastic Finance An Introduction in Discrete Time 2nd Edition

de Gruyter Studies in Mathematics

27

The following result characterizes the weakly relatively compact subsets of the Banach space $L^{\dagger} := L^{\dagger}(\Omega, \mathcal{F}, P)$. It implies, in particular, that a set of the form $\{f \in L^{\dagger} \mid |f| \leq g\}$ with given $g \in L^{\dagger}$ is weakly compact in L^{\dagger} .

Theorem A.67 (Dunford–Pettis). A subset A of L^1 is weakly relatively compact if and only if it is bounded and uniformly integrable.

 $\sup_{f \in \mathcal{X}} ||f||_1 < \infty$, and given $\varepsilon > 0$ there is a $\delta > 0$ such that if $\lambda(A) \le \delta$, then $\int_A |f| d\lambda \le \varepsilon$ for all $f \in \mathcal{K}$.

Compactness, Functional Analysis and Risk

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*
- E. Zeidler Nonlinear Functional Analysis and its Applications
- J. Borwein and Q. Zhu Techniques of Variational Analysis

イロト イポト イヨト イヨト

Compactness, Functional Analysis and Risk

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*
- E. Zeidler Nonlinear Functional Analysis and its Applications
- J. Borwein and Q. Zhu Techniques of Variational Analysis

イロト イポト イヨト イヨト

Theorem 15.1.3. Given a bounded sequence $(f_n)_{n\geq 1} \in L^1(\Omega, \mathcal{F}, \mathbf{P})$ then there are convex combinations

$$g_n \in \operatorname{conv}\{f_n, f_{n+1}, \ldots\}$$

such that $(g_n)_{n\geq 1}$ converges in measure to some $g_0 \in L^1(\Omega, \mathcal{F}, \mathbf{P})$.

A Compactness Principle

Compactness, Functional Analysis and Risk

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*
- E. Zeidler Nonlinear Functional Analysis and its Applications
- J. Borwein and Q. Zhu Techniques of Variational Analysis

イロト イポト イヨト イヨト

Eberhard Zeidler

Nonlinear Functional Analysis and its Applications II/B

Nonlinear Monotone Operators

Determined 25.16. Let $f: M \subseteq X \to \mathbb{R}$ be a functional on the subset M of the subset X.

is called *coercive* iff $f(u)/||u|| \to +\infty$ as $||u|| \to \infty$ on M. Is called *weakly coercive* iff $f(u) \to +\infty$ as $||u|| \to \infty$ on M.

EXAMPLE 25.17. Let $a: X \times X \to \mathbb{R}$ be a strongly positive bilinear functional the B-space X. Then a is coercive.

Note: For all $u \in X$ and fixed c > 0, $a(u, u) \ge c ||u||^2$. Hence $a(u, u)/||u|| \to +\infty$ $\|u\| \to \infty$.

In contrast to Theorem 25.C, the set M can be unbounded in the following

Descene 25.D (Main Theorem on Weakly Coercive Functionals). Suppose the functional $f: M \subseteq X \rightarrow \mathbb{R}$ has the following three properties:

M is a nonempty closed convex set in the reflexive B-space X (e.g., M = X). f is weakly sequentially lower semicontinuous on M.

f is weakly coercive.

Then f has a minimum on M.

Compactness, Functional Analysis and Risk

- H.Follmer and A.Schied Stochastic Finance
- F.Delbaen Monetary Utility Functions
- F.Delbaen and W.Schachermayer *The Mathematics of Arbitrage*
- E. Zeidler Nonlinear Functional Analysis and its Applications
- J. Borwein and Q. Zhu Techniques of Variational Analysis

イロト イポト イヨト イヨト

CMS Books in Mathematics

Jonathan M. Borwein Qiji J. Zhu

Techniques of Variational Analysis in Theo

In a metric space X, the conditions imposed on the unique perturbation φ in Theorem 6.5.1 are also necessary.

Theorem 6.5.2 Let $\varphi: X \to \mathbb{R} \cup \{+\infty\}$ be a proper function on a metric space X. Suppose that for every bounded continuous function $f: X \to \mathbb{R}$, the function $f + \varphi$ attains its minimum. Then φ is a lsc function, bounded from below, whose sublevel sets are all compact.

The Theorem of James as a minimization problem

• Let us fix a Banach space E with dual E*

- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$ for all $y \in E$
- The minimization problem

 $\min\{\iota_{\mathcal{K}}(\cdot)-x^*(\cdot)\}$

on *E* for every $x^* \in E^*$ has always solution if and only if the set *K* is weakly compact

• When the minimization problem

 $\min\{\alpha(\cdot) + x^*(\cdot)\}$

on *E* has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \to (-\infty, +\infty]$?

The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E*
- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at
 - $x_0 \in K \Leftrightarrow \iota_k(y) \iota_K(x_0) \ge x^*(y x_0)$ for all $y \in E$
- The minimization problem

 $\min\{\iota_K(\cdot)-x^*(\cdot)\}$

on *E* for every $x^* \in E^*$ has always solution if and only if the set *K* is weakly compact

• When the minimization problem

 $\min\{\alpha(\cdot) + x^*(\cdot)\}$

on *E* has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \to (-\infty, +\infty]$?

The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E*
- K is a closed convex set in the Banach space E
- $\iota_{\mathcal{K}}(x) = 0$ if $x \in \mathcal{K}$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$ for all $y \in E$
- The minimization problem

 $\min\{\iota_{\mathcal{K}}(\cdot)-x^*(\cdot)\}$

on *E* for every $x^* \in E^*$ has always solution if and only if the set *K* is weakly compact

• When the minimization problem

 $\min\{\alpha(\cdot) + \boldsymbol{x}^*(\cdot)\}$

on *E* has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \to (-\infty, +\infty]$?

The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E*
- K is a closed convex set in the Banach space E
- $\iota_{\mathcal{K}}(x) = 0$ if $x \in \mathcal{K}$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K \Leftrightarrow \iota_k(y) - \iota_K(x_0) \ge x^*(y - x_0)$ for all $y \in E$

• The minimization problem

 $\min\{\iota_K(\cdot)-x^*(\cdot)\}$

on *E* for every $x^* \in E^*$ has always solution if and only if the set *K* is weakly compact

• When the minimization problem

 $\min\{\alpha(\cdot) + x^*(\cdot)\}$

on *E* has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \to (-\infty, +\infty]$?

The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E*
- K is a closed convex set in the Banach space E
- $\iota_{\mathcal{K}}(x) = 0$ if $x \in \mathcal{K}$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on *K* at

$$x_0 \in \mathcal{K} \Leftrightarrow \iota_{\mathcal{K}}(y) - \iota_{\mathcal{K}}(x_0) \geq x^*(y - x_0)$$
 for all $y \in E$

• The minimization problem

$$\min\{\iota_{\mathcal{K}}(\cdot)-x^*(\cdot)\}$$

on *E* for every $x^* \in E^*$ has always solution if and only if the set *K* is weakly compact

• When the minimization problem

 $\min\{\alpha(\cdot) + x^*(\cdot)\}$

on *E* has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \to (-\infty, +\infty]$?

Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, $\alpha : E \to (-\infty, +\infty]$ proper, (lower semicontinuous) function with

$$\lim_{\|\boldsymbol{x}\|\to\infty}\frac{\alpha(\boldsymbol{x})}{\|\boldsymbol{x}\|}=+\infty$$

Suppose that there is $c \in \mathbb{R}$ such that the level set $\{\alpha \leq c\}$ fails to be (relatively) weakly compact. Then there is $x^* \in E^*$ such that,the infimum

$$\inf_{\mathbf{x}\in E}\{\langle \mathbf{x},\mathbf{x}^*\rangle+\alpha(\mathbf{x})\}$$

is not attained.

イロト イポト イヨト イヨト

ъ

Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, $\alpha : E \to (-\infty, +\infty]$ proper, (lower semicontinuous) function with

$$\lim_{\|x\|\to\infty}\frac{\alpha(x)}{\|x\|}=+\infty$$

Suppose that there is $c \in \mathbb{R}$ such that the level set $\{\alpha \leq c\}$ fails to be (relatively) weakly compact. Then there is $x^* \in E^*$ such that the infimum

$$\inf_{x\in E}\{\langle x,x^*\rangle+\alpha(x)\}$$

is not attained.

イロト イポト イヨト イヨト

= 900

Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, $\alpha : E \to (-\infty, +\infty]$ proper, (lower semicontinuous) function with

$$\lim_{\|\boldsymbol{x}\|\to\infty}\frac{\alpha(\boldsymbol{x})}{\|\boldsymbol{x}\|}=+\infty$$

Suppose that there is $c \in \mathbb{R}$ such that the level set $\{\alpha \leq c\}$ fails to be (relatively) weakly compact. Then there is $x^* \in E^*$ such that,the infimum

$$\inf_{\mathbf{x}\in \mathbf{E}}\{\langle \mathbf{x}, \mathbf{x}^*\rangle + \alpha(\mathbf{x})\}$$

is not attained.

イロト イ理ト イヨト イヨト

3

$\{\alpha \leq c\}$ not w.c. $\Rightarrow \exists x^* : \inf_E \{x^*(\cdot) + \alpha(\cdot)\}$ not attained

Lemma

Let A be a bounded but not relatively weakly compact subset of the Banach space E. If $(a_n) \subset A$ is a sequence without weak cluster point in E, then there is $(x_n^*) \subset B_{E^*}$, $g_0 = \sum_{n=1}^{\infty} \lambda_n x_n^*$ with $0 \le \lambda_n \le 1$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \lambda_n = 1$ such that: for every $h \in I^{\infty}(A)$, with

$$\liminf_n x_n^*(a) \le h(a) \le \limsup_n x_n^*(a)$$

for all $a \in A$, we will have that $g_0 + h$ doest not attain its minimum on A

イロト イポト イヨト イヨト

$\{\alpha \leq c\}$ not w.c. $\Rightarrow \exists x^* : \inf_E \{x^*(\cdot) + \alpha(\cdot)\}$ not attained

Lemma

Let A be a bounded but not relatively weakly compact subset of the Banach space E. If $(a_n) \subset A$ is a sequence without weak cluster point in E, then there is $(x_n^*) \subset B_{E^*}, g_0 = \sum_{n=1}^{\infty} \lambda_n x_n^*$ with $0 \leq \lambda_n \leq 1$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \lambda_n = 1$ such that: for every $h \in I^{\infty}(A)$, with

$$\liminf_n x_n^*(a) \le h(a) \le \limsup_n x_n^*(a)$$

for all $a \in A$, we will have that $g_0 + h$ doest not attain its minimum on A

ヘロト 人間 ト ヘヨト ヘヨト

J. Orihuela
Maximizing $\{x^*(x) - \alpha(x) : x \in E\}$

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, $\alpha : E \to (-\infty, +\infty]$ proper, lower semicontinuous function, then we have:

- If ∂α(E) = E* then the level sets {α ≤ c} are weakly compact for all c ∈ ℝ whenever α is a coercive map, i.e. lim_{||x||→∞} α(x)/||x|| = +∞.
- It α has weakly compact level sets and the Fenchel-Legendre conjugate α* is finite, i.e. sup{x*(x) - α(x) : x ∈ E} < +∞ for all x* ∈ E*, then ∂α(E) = E*

イロト イポト イヨト イヨト

ъ

Maximizing $\{x^*(x) - \alpha(x) : x \in E\}$

Theorem (M. Ruiz and J. Orihuela)

Let E be a Banach space, $\alpha : E \to (-\infty, +\infty]$ proper, lower semicontinuous function, then we have:

- If ∂α(E) = E* then the level sets {α ≤ c} are weakly compact for all c ∈ ℝ whenever α is a coercive map, i.e. lim_{||x||→∞} α(x)/||x|| = +∞.
- It α has weakly compact level sets and the Fenchel-Legendre conjugate α* is finite, i.e. sup{x*(x) − α(x) : x ∈ E} < +∞ for all x* ∈ E*, then ∂α(E) = E*

ヘロト ヘアト ヘビト ヘビト

1

Convex Analysis

• We fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$

- We are going to work in a duality $\langle \mathcal{X}, \mathcal{X}^* \rangle$ where $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples: $\langle \mathbb{L}^1, \mathbb{L}^{\infty} \rangle, \langle \mathbb{L}^{p}, \mathbb{L}^{q} \rangle, \langle \mathbb{L}^{\infty}, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$ defined by

$$f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$$

Theorem

If $f : \mathcal{X} \to (-\infty, +\infty]$ is convex, proper and lower semicontinuous, then

•
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

Convex Analysis

- We fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality $\langle \mathcal{X}, \mathcal{X}^* \rangle$ where $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples: $\langle \mathbb{L}^1, \mathbb{L}^{\infty} \rangle, \langle \mathbb{L}^{p}, \mathbb{L}^{q} \rangle, \langle \mathbb{L}^{\infty}, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$ defined by

 $f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$

Theorem

If $f : \mathcal{X} \to (-\infty, +\infty]$ is convex, proper and lower semicontinuous, then

•
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

Convex Analysis

- We fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality $\langle \mathcal{X}, \mathcal{X}^* \rangle$ where $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples: $\langle \mathbb{L}^1, \mathbb{L}^{\infty} \rangle, \langle \mathbb{L}^{p}, \mathbb{L}^{q} \rangle, \langle \mathbb{L}^{\infty}, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$ defined by

 $f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$

Theorem

If $f : \mathcal{X} \to (-\infty, +\infty]$ is convex, proper and lower semicontinuous, then

•
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

Convex Analysis

- We fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality $\langle \mathcal{X}, \mathcal{X}^* \rangle$ where $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples: $\langle \mathbb{L}^1, \mathbb{L}^{\infty} \rangle, \langle \mathbb{L}^{p}, \mathbb{L}^{q} \rangle, \langle \mathbb{L}^{\infty}, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f: \mathcal{X} \to (-\infty, +\infty], f^*: \mathcal{X}^* \to (-\infty, +\infty]$ defined by

 $f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$

Theorem

If $f : \mathcal{X} \to (-\infty, +\infty]$ is convex, proper and lower semicontinuous, then

•
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

Convex Analysis

- We fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality $\langle \mathcal{X}, \mathcal{X}^* \rangle$ where $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples: $\langle \mathbb{L}^1, \mathbb{L}^\infty \rangle, \langle \mathbb{L}^\rho, \mathbb{L}^q \rangle, \langle \mathbb{L}^\infty, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$
- $f:\mathcal{X} o (-\infty,+\infty], f^*:\mathcal{X}^* o (-\infty,+\infty]$ defined by

$$f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$$

Theorem

If $f : \mathcal{X} \to (-\infty, +\infty]$ is convex, proper and lower semicontinuous, then

•
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

Convex Analysis

- We fix an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- We are going to work in a duality $\langle \mathcal{X}, \mathcal{X}^* \rangle$ where $\mathbb{L}^{\infty}(\Omega, \mathcal{F}) \subseteq \mathcal{X} \subseteq \mathbb{L}^0(\Omega, \mathcal{F})$
- Examples: $\langle \mathbb{L}^1, \mathbb{L}^\infty \rangle, \langle \mathbb{L}^\rho, \mathbb{L}^q \rangle, \langle \mathbb{L}^\infty, \mathbf{ba}(\Omega, \mathcal{F}) \rangle$

•
$$f:\mathcal{X} o (-\infty,+\infty], f^*:\mathcal{X}^* o (-\infty,+\infty]$$
 defined by

$$f^*(x^*) = \sup\{x^*(x) - f(x) : x \in \mathcal{X}\}$$

Theorem

If $f:\mathcal{X}\to(-\infty,+\infty]$ is convex, proper and lower semicontinuous, then

•
$$f^{**} \upharpoonright_{\mathcal{X}} = f$$

Risk meausures

Definition

A monetary utility function is a concave non-decreasing map

 $U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow [-\infty, +\infty)$

with dom(U) = { $X : U(X) \in \mathbb{R}$ } $\neq \emptyset$ and

U(X + c) = U(X) + c, for $X \in \mathbb{L}^{\infty}, c \in \mathbb{R}$

Defining $\rho(X) = -U(X)$ the above definition of monetary utility function yields the definition of a convex risk measure. Both U, ρ are called coherent if U(0) = 0, $U(\lambda X) = \lambda U(X)$ for all $\lambda > 0, X \in \mathbb{L}^{\infty}$

イロン イボン イヨン イヨン

= 990

Risk meausures

Definition

A monetary utility function is a concave non-decreasing map

$$U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow [-\infty, +\infty)$$

with dom(U) = { $X : U(X) \in \mathbb{R}$ } $\neq \emptyset$ and

$$U(X + c) = U(X) + c$$
, for $X \in \mathbb{L}^{\infty}, c \in \mathbb{R}$

Defining $\rho(X) = -U(X)$ the above definition of monetary utility function yields the definition of a convex risk measure. Both U, ρ are called coherent if U(0) = 0, $U(\lambda X) = \lambda U(X)$ for all $\lambda > 0, X \in \mathbb{L}^{\infty}$

ヘロト 人間 ト ヘヨト ヘヨト

3

Risk meausures

Definition

A monetary utility function is a concave non-decreasing map

$$U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow [-\infty, +\infty)$$

with dom(U) = { $X : U(X) \in \mathbb{R}$ } $\neq \emptyset$ and

$$U(X + c) = U(X) + c$$
, for $X \in \mathbb{L}^{\infty}, c \in \mathbb{R}$

Defining $\rho(X) = -U(X)$ the above definition of monetary utility function yields the definition of a convex risk measure. Both U, ρ are called coherent if U(0) = 0, $U(\lambda X) = \lambda U(X)$ for all $\lambda > 0, X \in \mathbb{L}^{\infty}$

イロト イポト イヨト イヨト

3

Representing risk measures

Theorem

A convex (resp. coherent) risk measure $\rho : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \mathbf{ba}, \mu \ge \mathbf{0}\mu(\Omega) = \mathbf{1}\}$$

(resp.

 $\rho(X) = \sup\{\mu(-X) : \mu \in S \subseteq \{\mu \in \mathbf{ba}, \mu \ge 0, \mu(\Omega) = 1\}\})$ If in addition ρ is $\sigma(\mathbb{L}^{\infty}, \mathbb{L}^{1})$ -lower semicontinuous we have:

 $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X) - \alpha(\mathbb{Q}) : \mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\}$

(resp. $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X)\} : \mathbb{Q} \in \{\mathbb{Q} <<\mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\})$

Representing risk measures

Theorem

A convex (resp. coherent) risk measure $\rho : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \mathbf{ba}, \mu \ge \mathbf{0}\mu(\Omega) = \mathbf{1}\}$$

(resp.

 $\rho(X) = \sup\{\mu(-X) : \mu \in S \subseteq \{\mu \in \mathbf{ba}, \mu \ge 0, \mu(\Omega) = 1\}\})$ If in addition ρ is $\sigma(\mathbb{L}^{\infty}, \mathbb{L}^{1})$ -lower semicontinuous we have:

 $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X) - \alpha(\mathbb{Q}) : \mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\}$

(resp.

 $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X)\} : \mathbb{Q} \in \{\mathbb{Q} <<\mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\})$

Representing risk measures

Theorem

A convex (resp. coherent) risk measure $\rho : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \mathbf{ba}, \mu \ge \mathbf{0}\mu(\Omega) = \mathbf{1}\}$$

(resp.

 $\rho(X) = \sup\{\mu(-X) : \mu \in S \subseteq \{\mu \in \mathbf{ba}, \mu \ge 0, \mu(\Omega) = 1\}\})$ If in addition ρ is $\sigma(\mathbb{L}^{\infty}, \mathbb{L}^{1})$ -lower semicontinuous we have:

$$\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X) - \alpha(\mathbb{Q}) : \mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\}$$

(resp. $\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X)\} : \mathbb{Q} \in \{\mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\})$

Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

Theorem (Jouini-Schachermayer-Touzi)

Let $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a monetary utility function with the Fatou property and $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$ its Fenchel-Legendre transform. They are equivalent:

{U* ≤ c} is σ(L¹, L[∞])-compact subset for all c ∈ ℝ
 Por every X ∈ L[∞] the infimum in the equality

 $U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$

is attained

For every uniformly bounded sequence (X_n) tending a.s. to X we have

 $\lim_{n\to\infty} U(X_n) = U(X).$

Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

Theorem (Jouini-Schachermayer-Touzi)

Let $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a monetary utility function with the Fatou property and $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$ its Fenchel-Legendre transform. They are equivalent:

• $\{U^* \leq c\}$ is $\sigma(\mathbb{L}^1, \mathbb{L}^\infty)$ -compact subset for all $c \in \mathbb{R}$

3 For every $X \in \mathbb{L}^{\infty}$ the infimum in the equality

 $U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$

is attained

For every uniformly bounded sequence (X_n) tending a.s. to X we have

 $\lim_{n\to\infty} U(X_n) = U(X).$

Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

Theorem (Jouini-Schachermayer-Touzi)

Let $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a monetary utility function with the Fatou property and $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$ its Fenchel-Legendre transform. They are equivalent:

- $\{U^* \leq c\}$ is $\sigma(\mathbb{L}^1, \mathbb{L}^\infty)$ -compact subset for all $c \in \mathbb{R}$
- **2** For every $X \in \mathbb{L}^{\infty}$ the infimum in the equality

$$U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$$

is attained

For every uniformly bounded sequence (X_n) tending a.s. to X we have

$$\lim_{n\to\infty} U(X_n) = U(X).$$

Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

Theorem (Jouini-Schachermayer-Touzi)

Let $U : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a monetary utility function with the Fatou property and $U^* : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$ its Fenchel-Legendre transform. They are equivalent:

- $\{U^* \leq c\}$ is $\sigma(\mathbb{L}^1, \mathbb{L}^\infty)$ -compact subset for all $c \in \mathbb{R}$
- **2** For every $X \in \mathbb{L}^{\infty}$ the infimum in the equality

$$U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},\$$

is attained

For every uniformly bounded sequence (X_n) tending a.s. to X we have

$$\lim_{n\to\infty}U(X_n)=U(X).$$

Tools for the proof

- The proof in [JST] is for separable L¹(Ω, F, P). The separability is needed to show 2) ⇒ 1) with a variant of the separable James' compactness Theorem we provided to authors.
- Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James' compactness Theorem in the duality ⟨L¹(Ω, F, P), L[∞](Ω, F, P)⟩.

Tools for the proof

- The proof in [JST] is for separable L¹(Ω, F, P). The separability is needed to show 2) ⇒ 1) with a variant of the separable James' compactness Theorem we provided to authors.
- Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James' compactness Theorem in the duality ⟨L¹(Ω, F, P), L[∞](Ω, F, P)⟩.

Tools for the proof

- The proof in [JST] is for separable L¹(Ω, F, P). The separability is needed to show 2) ⇒ 1) with a variant of the separable James' compactness Theorem we provided to authors.
- Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James' compactness Theorem in the duality ⟨L¹(Ω, F, P), L[∞](Ω, F, P)⟩.

De la Vallée Poussin's Theorem

Definition

A family $\mathcal{H} \in \mathbb{L}^1$ is uniformly integrable if it is bounded and $\lim_{\mathbb{P}(A)\searrow 0} \int_{\mathcal{A}} |X| d\mathbb{P} = 0$ uniformly in $X \in \mathcal{H}$

Theorem

A family $\mathcal{H} \subset L^0$ is uniformly integrable if, and only if there is a convex function $\Phi : \mathbb{R} \to [0, +\infty)$ s.t $\Phi(0) = 0, \Phi(x) = \Phi(-x), \lim_{x \to \infty} \frac{\Phi(x)}{x} = +\infty$ which

$$\sup\{\int \Phi(X)d\mathbb{P}: X \in \mathcal{H}\} < \infty$$

Orlicz spaces

An even, convex function $\Psi : E \to \mathbb{R} \cup \{\infty\}$ such that:

- **1** $\Psi(0) = 0$
- 2 $\lim_{x\to\infty} \Psi(x) = +\infty$
- $\Psi < +\infty$ in a neighbourhood of 0

is called a Young function

- 2 $N_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \le 1\}$
- $\ \ \, \exists \ \ \, \mathbb{L}^\infty(\Omega,\mathcal{F},\mathbb{P})\subset\mathbb{L}^\Psi(\Omega,\mathcal{F},\mathbb{P})\subset\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$
- the Morse subspace $\mathbb{M}^{\Psi} = \{ X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{for all } \beta > 0 \},$

Orlicz spaces

An even, convex function $\Psi : E \to \mathbb{R} \cup \{\infty\}$ such that:

- **1** $\Psi(0) = 0$
- 2 $\lim_{x\to\infty} \Psi(x) = +\infty$
- $\Psi < +\infty$ in a neighbourhood of 0

is called a Young function

- $\ \ \, \exists \ \ \, \mathbb{L}^\infty(\Omega,\mathcal{F},\mathbb{P})\subset\mathbb{L}^{\Psi}(\Omega,\mathcal{F},\mathbb{P})\subset\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$
- (a) the Morse subspace $\mathbb{M}^{\Psi} = \{ X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0 \},$

Orlicz spaces

An even, convex function $\Psi : E \to \mathbb{R} \cup \{\infty\}$ such that:

 $\textcircled{0} \Psi(0) = 0$

2
$$\lim_{x\to\infty} \Psi(x) = +\infty$$

(a) $\Psi < +\infty$ in a neighbourhood of 0

is called a Young function

$$\textcircled{0} \hspace{0.1cm} \mathbb{L}^{\Psi}(\Omega,\mathcal{F},\mathbb{P}):=\{X\in\mathbb{L}^{0}:\exists\alpha>0,\mathbb{E}_{\mathbb{P}}[\Psi(\alpha X)]<+\infty\}$$

- $P_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \leq 1 \}$
- $\ \ \, {\mathbb 3} \ \ \, {\mathbb L}^\infty(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^{\Psi}(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^1(\Omega,{\mathcal F},{\mathbb P})$

• the Morse subspace $\mathbb{M}^{\Psi} = \{X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0\},\$

Orlicz spaces

An even, convex function $\Psi : E \to \mathbb{R} \cup \{\infty\}$ such that:

 $\textcircled{0} \Psi(0) = 0$

2
$$\lim_{x\to\infty} \Psi(x) = +\infty$$

• $\Psi < +\infty$ in a neighbourhood of 0

is called a Young function

$$\textcircled{0} \hspace{0.1cm} \mathbb{L}^{\Psi}(\Omega,\mathcal{F},\mathbb{P}) := \{ X \in \mathbb{L}^{0} : \exists \alpha > 0, \mathbb{E}_{\mathbb{P}}[\Psi(\alpha X)] < +\infty \}$$

2
$$N_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \le 1\}$$

 $\ \ \, {\mathbb S} \ \ \, {\mathbb L}^\infty(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^{\Psi}(\Omega,{\mathcal F},{\mathbb P}) \subset {\mathbb L}^1(\Omega,{\mathcal F},{\mathbb P})$

(a) the Morse subspace $\mathbb{M}^{\Psi} = \{ X \in \mathbb{L}^{\Psi} : \mathbb{E}_{\mathbb{P}}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0 \},$

Lebesgue measures go to Orlicz spaces

 A Lebesgue risk measure ρ : L[∞] → R can be extended to a risk measure on some Orlicz space ρ̄ : L^Ψ → R

Theorem (F. Delbaen)

Every risk measure $\rho : \mathbb{L}^{\Psi} \to \mathbb{R}$ defined on an Orlicz space \mathbb{L}^{Ψ} with $\mathbb{L}^{\Psi} \setminus \mathbb{L}^{\infty} \neq \emptyset$ has the Lebesgue property restricted to \mathbb{L}^{∞}

 (Biagini-Fritelli) In general financial markets, the indifference price is a (except for the sign) a convex risk measure on an Orlicz space L^û naturally induced by the utility function *u* of the agent.

Lebesgue measures go to Orlicz spaces

 A Lebesgue risk measure ρ : L[∞] → ℝ can be extended to a risk measure on some Orlicz space ρ̄ : L^Ψ → ℝ

Theorem (F. Delbaen)

Every risk measure $\rho : \mathbb{L}^{\Psi} \to \mathbb{R}$ defined on an Orlicz space \mathbb{L}^{Ψ} with $\mathbb{L}^{\Psi} \setminus \mathbb{L}^{\infty} \neq \emptyset$ has the Lebesgue property restricted to \mathbb{L}^{∞}

 (Biagini-Fritelli) In general financial markets, the indifference price is a (except for the sign) a convex risk measure on an Orlicz space L^û naturally induced by the utility function *u* of the agent.

Lebesgue measures go to Orlicz spaces

 A Lebesgue risk measure ρ : L[∞] → R can be extended to a risk measure on some Orlicz space ρ̄ : L^Ψ → R

Theorem (F. Delbaen)

Every risk measure $\rho : \mathbb{L}^{\Psi} \to \mathbb{R}$ defined on an Orlicz space \mathbb{L}^{Ψ} with $\mathbb{L}^{\Psi} \setminus \mathbb{L}^{\infty} \neq \emptyset$ has the Lebesgue property restricted to \mathbb{L}^{∞}

 (Biagini-Fritelli) In general financial markets, the indifference price is a (except for the sign) a convex risk measure on an Orlicz space L^û naturally induced by the utility function *u* of the agent.

Namioka-Klee Theorem

Theorem

Any linear and positive functional $\varphi : \mathcal{X} \to \mathbb{R}$ on a Fréchet lattice \mathcal{X} is continuous

Theorem (S. Biagini and M. Fritelli 2009)

Let $(\mathcal{X}, \mathcal{T})$ be an order continuous Frechet lattice. Any convex monotone increasing functional $U : \mathcal{X} \to \mathbb{R}$ is order continuous and it admits a dual representation as

$$U(x) = \max_{y' \in (\mathcal{X}_n^{\sim})_+} \{y'(x) - U^*(y')\}$$

for all $x \in \mathcal{X}$

Namioka-Klee Theorem

Theorem

Any linear and positive functional $\varphi : \mathcal{X} \to \mathbb{R}$ on a Fréchet lattice \mathcal{X} is continuous

Theorem (S. Biagini and M. Fritelli 2009)

Let $(\mathcal{X}, \mathcal{T})$ be an order continuous Frechet lattice. Any convex monotone increasing functional $U : \mathcal{X} \to \mathbb{R}$ is order continuous and it admits a dual representation as

$$U(x) = \max_{y' \in (\mathcal{X}_n^{\sim})_+} \{ y'(x) - U^*(y') \}$$

for all $x \in \mathcal{X}$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ъ

· < 프 > < 프 >

Komlos C-Properties

- A linear topology *T* on *X* has the *C*-property if for every A ⊂ X and every x ∈ A^T there is a sequence (x_n) ∈ A together with z_n ∈ co{x_p : p ≥ n} such that (z_n) is order convergent to x.
- If $\{v_n\}_{n\geq 1} \in A \subset \mathcal{X}$, another one $\{u_n\}_{n\geq 1}$ is a *convex block* sequence of $\{v_n\}_{n\geq 1}$ if there are finite subsets of \mathbb{N} max $F_1 < \min F_2 \leq \cdots < \max F_n < \min F_{n+1} < \cdots$ and $\{\lambda_i^n : i \in F_n\} \subset (0, 1], \sum_{i \in F_n} \lambda_i^n = 1$ with $u_n = \sum_{i \in F_n} \lambda_i^n v_i$.
- When each sequence {*x_n*}_{n≥1} in *A* has a convex block *T*-convergent sequence we say that *A* is *T*-convex block compact.

Komlos C-Properties

- A linear topology *T* on *X* has the *C*-property if for every *A* ⊂ *X* and every *x* ∈ *A*^{*T*} there is a sequence (*x_n*) ∈ *A* together with *z_n* ∈ co{*x_p* : *p* ≥ *n*} such that (*z_n*) is order convergent to *x*.
- If $\{v_n\}_{n\geq 1} \in A \subset \mathcal{X}$, another one $\{u_n\}_{n\geq 1}$ is a *convex block* sequence of $\{v_n\}_{n\geq 1}$ if there are finite subsets of \mathbb{N} max $F_1 < \min F_2 \leq \cdots < \max F_n < \min F_{n+1} < \cdots$ and $\{\lambda_i^n : i \in F_n\} \subset (0, 1], \sum_{i \in F_n} \lambda_i^n = 1$ with $u_n = \sum_{i \in F_n} \lambda_i^n v_i$.
- When each sequence {*x_n*}_{n≥1} in *A* has a convex block *T*-convergent sequence we say that *A* is *T*-convex block compact.

イロト 不得 とくほ とくほとう

Komlos C-Properties

- A linear topology *T* on *X* has the *C*-property if for every *A* ⊂ *X* and every *x* ∈ *A*^{*T*} there is a sequence (*x_n*) ∈ *A* together with *z_n* ∈ co{*x_p* : *p* ≥ *n*} such that (*z_n*) is order convergent to *x*.
- If $\{v_n\}_{n\geq 1} \in A \subset \mathcal{X}$, another one $\{u_n\}_{n\geq 1}$ is a *convex block* sequence of $\{v_n\}_{n\geq 1}$ if there are finite subsets of \mathbb{N} max $F_1 < \min F_2 \leq \cdots < \max F_n < \min F_{n+1} < \cdots$ and $\{\lambda_i^n : i \in F_n\} \subset (0, 1], \sum_{i \in F_n} \lambda_i^n = 1$ with $u_n = \sum_{i \in F_n} \lambda_i^n v_i$.
- When each sequence {*x_n*}_{n≥1} in *A* has a convex block *T*-convergent sequence we say that *A* is *T*-convex block compact.

イロン 不同 とくほ とくほ とう

Theorem (S.Biagini and M.Fritelli 2009)

Let $(\mathcal{X}, \mathcal{T})$ a locally convex Frechet lattice and $U : \mathcal{X} \to (-\infty, +\infty]$ proper and convex. If $\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})$ has the *C*-property then *U* is order lower semicontinuous if, and only if

$$U(x) = \sup_{y' \in (\mathcal{X}_n^{\sim})} \{y'(x) - U^*(y')\}$$

for all $x \in \mathcal{X}$

Question (Biagini-Fritelli)

When is it possible to turn sup to max on \mathcal{X}_n^{\sim} ?
Theorem (S.Biagini and M.Fritelli 2009)

Let $(\mathcal{X}, \mathcal{T})$ a locally convex Frechet lattice and $U : \mathcal{X} \to (-\infty, +\infty]$ proper and convex. If $\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})$ has the *C*-property then *U* is order lower semicontinuous if, and only if

$$U(x) = \sup_{y' \in (\mathcal{X}_n^{\sim})} \{y'(x) - U^*(y')\}$$

for all $x \in \mathcal{X}$

Question (Biagini-Fritelli)

When is it possible to turn sup to max on \mathcal{X}_n^{\sim} ?

J. Orihuela

An interplay between Topology, Functional Analysis and Risk

Sup-limsup Theorem

Theorem (Simons)

Let Γ be a set and $(z_n)_n$ a uniformly bounded sequence in $\ell^{\infty}(\Gamma)$. If Λ is a subset of Γ such that for every sequence of positive numbers $(\lambda_n)_n$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ there exists $b \in \Lambda$ such that

$$\sup\{\sum_{n=1}^{\infty}\lambda_n z_n(y): y\in \Gamma\}=\sum_{n=1}^{\infty}\lambda_n z_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$

J. Orihuela An interplay between Topology, Functional Analysis and Risk

ヘロト ヘ戸ト ヘヨト ヘヨト

Sup-limsup Theorem

Theorem (Simons)

Let Γ be a set and $(z_n)_n$ a uniformly bounded sequence in $\ell^{\infty}(\Gamma)$. If Λ is a subset of Γ such that for every sequence of positive numbers $(\lambda_n)_n$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ there exists $b \in \Lambda$ such that

$$\sup\{\sum_{n=1}^{\infty}\lambda_n z_n(y): y\in \Gamma\}=\sum_{n=1}^{\infty}\lambda_n z_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Weak Compactness through Sup–limsup Theorem

Theorem

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:

- K is weakly compact.
- **2** For every sequence $(x_n^*) \subset B_{E^*}$ we have

 $\sup_{k\in K} \{\limsup_{n\to\infty} x_n^*(k)\} = \sup_{\kappa\in \overline{K}^{w^*}} \{\limsup_{n\to\infty} x_n^*(\kappa)\}$

Sup-limsup Theorem \Rightarrow Compactness

- If K is not weakly compact there is $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$ with $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us x^{***} ∈ B_{E^{***}} ∩ E[⊥] with x^{***}(x₀^{**}) = α > 0
- The separability of *E*, Ascoli's and Bipolar Theorems permit to construct a sequence (*x_n*^{*}) ⊂ *B_{E^{*}*} such that:

1 lim
$$_{n o \infty} x_n^*(x) = 0$$
 for all $x \in E$

2)
$$x_n^*(x_0^{**}) > \alpha/2$$
 for all $n \in \mathbb{N}$

• Then

$$0 = \sup_{k \in K} \{\lim_{n \to \infty} x_n^*(k)\} = \sup_{k \in K} \{\limsup_{n \to \infty} x_n^*(k)\} \ge$$

 $= \sup_{v^{**} \in \overline{K}^{w^*}} \{\limsup_{n \to \infty} x_n^*(v^{**})\} \ge \limsup_{n \to \infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$

Sup-limsup Theorem \Rightarrow Compactness

- If *K* is not weakly compact there is $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$ with $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us x^{***} ∈ B_{E^{***}} ∩ E[⊥] with x^{***}(x₀^{**}) = α > 0
- The separability of *E*, Ascoli's and Bipolar Theorems permit to construct a sequence (*x*^{*}_n) ⊂ *B*_{E*} such that:

1 lim
$$_{n
ightarrow\infty} x_n^*(x) = 0$$
 for all $x \in E$

2)
$$x_n^*(x_0^{**}) > \alpha/2$$
 for all $n \in \mathbb{N}$

• Then

$$0 = \sup_{k \in K} \{\lim_{n \to \infty} x_n^*(k)\} = \sup_{k \in K} \{\limsup_{n \to \infty} x_n^*(k)\} \ge$$

 $= \sup_{v^{**} \in \overline{K}^{w^*}} \{\limsup_{n \to \infty} x_n^*(v^{**})\} \ge \limsup_{n \to \infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$

Sup-limsup Theorem \Rightarrow Compactness

- If K is not weakly compact there is $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$ with $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us x^{***} ∈ B_{E^{***}} ∩ E[⊥] with x^{***}(x₀^{**}) = α > 0
- The separability of *E*, Ascoli's and Bipolar Theorems permit to construct a sequence (*x_n*^{*}) ⊂ *B_{E^{*}*} such that:

$$Iim_{n \to \infty} x_n^*(x) = 0 \text{ for all } x \in E$$

2
$$x_n^*(x_0^{**}) > \alpha/2$$
 for all $n \in \mathbb{N}$

• Then

$$0 = \sup_{k \in K} \{\lim_{n \to \infty} x_n^*(k)\} = \sup_{k \in K} \{\limsup_{n \to \infty} x_n^*(k)\} \ge$$

 $= \sup_{v^{**}\in \overline{K}^{W^*}} \{\limsup_{n\to\infty} x_n^*(v^{**})\} \ge \limsup_{n\to\infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$

Sup–limsup Theorem ⇒ Compactness

- If K is not weakly compact there is $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$ with $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us x^{***} ∈ B_{E^{***}} ∩ E[⊥] with x^{***}(x₀^{**}) = α > 0
- The separability of *E*, Ascoli's and Bipolar Theorems permit to construct a sequence (*x_n*^{*}) ⊂ *B_{E^{*}*} such that:

$$Iim_{n\to\infty} x_n^*(x) = 0 \text{ for all } x \in E$$

2
$$x_n^*(x_0^{**}) > \alpha/2$$
 for all $n \in \mathbb{N}$

Then

$$0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_n^*(k) \} = \sup_{k \in K} \{ \limsup_{n \to \infty} x_n^*(k) \} \ge$$

 $= \sup_{\boldsymbol{v}^{**} \in \overline{K}^{w^*}} \{\limsup_{n \to \infty} x_n^*(\boldsymbol{v}^{**})\} \ge \limsup_{n \to \infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$

Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:

- K is weakly compact.
- ② For any covering $K ⊂ \cup_{n=1}^{\infty} D_n$ by an increasing sequence of closed convex subsets $D_n ⊂ K$, we have

$$\overline{\cup_{n}^{\infty}\overline{D_{n}}^{w^{*}}}^{\parallel\cdot\parallel}=\overline{K}^{w^{*}}$$

The proof uses Krein Milman and Bishop Phelps theorems

Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:

- K is weakly compact.
- ② For any covering $K ⊂ ∪_{n=1}^{\infty} D_n$ by an increasing sequence of closed convex subsets $D_n ⊂ K$, we have

$$\overline{\bigcup_{n}^{\infty}\overline{D_{n}}^{w^{*}}}^{\parallel\cdot\parallel}=\overline{K}^{w^{*}}$$

The proof uses Krein Milman and Bishop Phelps theorems

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010) Let *E* be a Banach space, $K \subset E^*$ be w^* -compact convex,

 $B \subset K$, TFAE:

• For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have

$$\overline{\bigcup_{n}^{\infty}\overline{D_{n}}^{w^{*}}}^{\|\cdot\|}=K.$$

- ② $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$ for every sequence {*x_k*} ⊂ *B_X*.
- sup_{*f*∈*B*} (lim sup_{*k*} *f*(*x_k*)) ≥ inf_{∑λ_i=1,λ_i≥0}(sup_{*g*∈*K*} *g*(∑λ_i*x_i*)) for every sequence {*x_k*} ⊂ *B_X*.

イロト イポト イヨト イヨト

э

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010) Let E be a Banach space, $K \subset E^*$ be w^* -compact convex,

 $B \subset K$, TFAE:

• For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have

$$\overline{\bigcup_{n}^{\infty}\overline{D_{n}}^{w^{*}}}^{\|\cdot\|}=K.$$

② $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$ for every sequence $\{x_k\} \subset B_X$.

■ sup_{*f*∈*B*} (lim sup_{*k*} *f*(*x_k*)) ≥ inf_{∑λ*i*=1,λ*i*≥0}(sup_{*g*∈*K*} *g*(∑λ*ix_i*)) for every sequence {*x_k*} ⊂ *B_X*.

イロト イポト イヨト イヨト

3

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010) Let E be a Banach space, $K \subset E^*$ be w^* -compact convex,

 $B \subset K$, TFAE:

• For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have

$$\overline{\bigcup_{n}^{\infty}\overline{D_{n}}^{w^{*}}}^{\|\cdot\|}=K.$$

- ② $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$ for every sequence $\{x_k\} \subset B_X$.
- sup_{*f*∈*B*} (lim sup_{*k*} *f*(*x_k*)) ≥ inf_{∑λ_i=1,λ_i≥0}(sup_{*g*∈*K*} *g*(∑λ_i*x_i*)) for every sequence {*x_k*} ⊂ *B_X*.

イロト イポト イヨト イヨト

3

Inf-liminf Theorem in \mathbb{R}^{Γ}

Theorem (Inf-liminf Theorem in \mathbb{R}^{Γ})

Let $\{\Phi_k\}_{k\geq 1}$ be a pointwise bounded sequence in \mathbb{R}^{Γ} . We set $\Lambda \subseteq \Gamma$ satisfying the following boundary condition: For all $\Phi = \sum_{i=1}^{\infty} \lambda_i \Phi_i, \sum_{i=1}^{\infty} \lambda_i = 1, 0 \leq \lambda_i \leq 1$, there exists

$$\lambda_0 \in \Lambda$$
 with $\Phi(\lambda_0) = \inf\{\Phi(\gamma) : \gamma \in \Gamma\}$

Then

$$\inf_{\{\lambda \in \Lambda\}} \left(\liminf_{k \ge 1} \Phi_k(\lambda) \right) = \inf_{\{\gamma \in \Gamma\}} \left(\liminf_{k \ge 1} \Phi_k(\gamma) \right)$$

Inf-liminf Theorem in \mathbb{R}^{Γ}

Theorem (Inf-liminf Theorem in \mathbb{R}^{Γ})

Let $\{\Phi_k\}_{k\geq 1}$ be a pointwise bounded sequence in \mathbb{R}^{Γ} . We set $\Lambda \subseteq \Gamma$ satisfying the following boundary condition: For all $\Phi = \sum_{i=1}^{\infty} \lambda_i \Phi_i, \sum_{i=1}^{\infty} \lambda_i = 1, 0 \leq \lambda_i \leq 1$, there exists

$$\lambda_0 \in \Lambda$$
 with $\Phi(\lambda_0) = \inf{\Phi(\gamma) : \gamma \in \Gamma}$

Then

$$\inf_{\{\lambda \in \Lambda\}} \left(\liminf_{k \ge 1} \Phi_k(\lambda)\right) = \inf_{\{\gamma \in \Gamma\}} \left(\liminf_{k \ge 1} \Phi_k(\gamma)\right).$$

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)

Let *E* be a Banach space with B_{E^*} convex-block compact for $\sigma(E^*, E)$. If

 $\alpha: \boldsymbol{E} \to \mathbb{R} \cup \{+\infty\}$

is a proper map such that for every $x^* \in E^*$ the minimization problem

 $\inf\{\alpha(y) + x^*(y) : y \in E\}$

is attained at some point of E, then the level sets

 $\{y \in E : \alpha(y) \le c\}$

are relatively weakly compact for every $c \in \mathbb{R}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)

Let *E* be a Banach space with B_{E^*} convex-block compact for $\sigma(E^*, E)$. If

 $\alpha: \boldsymbol{E} \to \mathbb{R} \cup \{+\infty\}$

is a proper map such that for every $x^* \in E^*$ the minimization problem

 $\inf\{\alpha(y) + x^*(y) : y \in E\}$

is attained at some point of E, then the level sets

 $\{y \in E : \alpha(y) \le c\}$

are relatively weakly compact for every $c \in \mathbb{R}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)

Let *E* be a Banach space with B_{E^*} convex-block compact for $\sigma(E^*, E)$. If

 $\alpha: \boldsymbol{E} \to \mathbb{R} \cup \{+\infty\}$

is a proper map such that for every $x^* \in E^*$ the minimization problem

 $\inf\{\alpha(y) + x^*(y) : y \in E\}$

is attained at some point of E, then the level sets

 $\{y \in E : \alpha(y) \leq c\}$

are relatively weakly compact for every $c \in \mathbb{R}$.

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$ be a finite convex risk measure on L^{Ψ} with $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$ a penalty function w^* -lower semicontinuos. T.F.A.E.:

- (i) For all c ∈ ℝ, α⁻¹((-∞, c]) is a relatively weakly compact subset of M^{Ψ*}(Ω, F, ℙ).
- (ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii) ρ is sequentially order continuous

イロン イボン イヨン イヨン

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$ be a finite convex risk measure on L^{Ψ} with $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$ a penalty function w^* -lower semicontinuos. T.F.A.E.:

(i) For all c ∈ ℝ, α⁻¹((-∞, c]) is a relatively weakly compact subset of M^{Ψ*}(Ω, F, ℙ).

(ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii) ρ is sequentially order continuous

イロン イボン イヨン イヨン

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$ be a finite convex risk measure on L^{Ψ} with $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$ a penalty function w^* -lower semicontinuos. T.F.A.E.:

- (i) For all c ∈ ℝ, α⁻¹((-∞, c]) is a relatively weakly compact subset of M^{Ψ*}(Ω, F, ℙ).
- (ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii) ρ is sequentially order continuous

ヘロト ヘ部ト ヘヨト ヘヨト

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$ be a finite convex risk measure on L^{Ψ} with $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$ a penalty function w^* -lower semicontinuos. T.F.A.E.:

- (i) For all c ∈ ℝ, α⁻¹((-∞, c]) is a relatively weakly compact subset of M^{Ψ*}(Ω, F, ℙ).
- (ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii) ρ is sequentially order continuous

Nonlinear Variational Problems

Theorem (Reflexivity frame)

Let E be a real Banach space and

 $\alpha: \boldsymbol{E} \longrightarrow \mathbb{R} \cup \{+\infty\}$

a coercive function such that $dom(\alpha)$ has nonempty interior and for all $x^* \in E^*$ there exists $x_0 \in E$ with

$$\alpha(\mathbf{x}_0) + \mathbf{x}^*(\mathbf{x}_0) = \inf_{\mathbf{x}\in E} \{\alpha(\mathbf{x}) + \mathbf{x}^*(\mathbf{x})\}$$

Then E is reflexive.

Moreover, if the dual ball B_{E^*} is a w^* - convex-block compact no coercive assumption is needed for α

・ロト ・ 同ト ・ ヨト ・ ヨト

Nonlinear Variational Problems

Theorem (Reflexivity frame)

Let E be a real Banach space and

 $\alpha: \boldsymbol{E} \longrightarrow \mathbb{R} \cup \{+\infty\}$

a coercive function such that $dom(\alpha)$ has nonempty interior and for all $x^* \in E^*$ there exists $x_0 \in E$ with

$$\alpha(\mathbf{x}_0) + \mathbf{x}^*(\mathbf{x}_0) = \inf_{\mathbf{x} \in E} \{ \alpha(\mathbf{x}) + \mathbf{x}^*(\mathbf{x}) \}$$

Then E is reflexive.

Moreover, if the dual ball B_{E^*} is a w^{*}- convex-block compact no coercive assumption is needed for α

・ロト ・ 同ト ・ ヨト ・ ヨト

Nonlinear Variational Problems

Theorem (Reflexivity frame)

Let E be a real Banach space and

 $\alpha: \boldsymbol{E} \longrightarrow \mathbb{R} \cup \{+\infty\}$

a coercive function such that $dom(\alpha)$ has nonempty interior and for all $x^* \in E^*$ there exists $x_0 \in E$ with

$$\alpha(\mathbf{x}_0) + \mathbf{x}^*(\mathbf{x}_0) = \inf_{\mathbf{x} \in E} \{ \alpha(\mathbf{x}) + \mathbf{x}^*(\mathbf{x}) \}$$

Then E is reflexive.

Moreover, if the dual ball B_{E^*} is a w^* - convex-block compact no coercive assumption is needed for α

ヘロト ヘワト ヘビト ヘビト

$[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}$

• Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$

- $B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty,p])}^{\sigma(E,E^*)}$
- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

has non void interior relative to B

- There is *G* open in *E* such that $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty, q])}^{\sigma(E, E^*)}$
- $\overline{\alpha^{-1}((-\inf, q])}^{\sigma(E, E^*)}$ weakly compact \Rightarrow *G* contains an open relatively weakly compact ball
- *B_E* is weakly compact

ヘロト ヘワト ヘビト ヘビト

 $[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}$

• Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$

•
$$B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty,p])}^{\sigma(E,E^*)}$$

• Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

has non void interior relative to B

- There is *G* open in *E* such that $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$
- $\overline{\alpha^{-1}((-\inf, q])}^{\sigma(E, E^*)}$ weakly compact \Rightarrow *G* contains an open relatively weakly compact ball
- *B_E* is weakly compact

 $[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}$

• Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$

•
$$B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty, p])}^{\sigma(E, E^*)}$$

• Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

has non void interior relative to B

- There is *G* open in *E* such that $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty, q])}^{\sigma(E, E^*)}$
- $\overline{\alpha^{-1}((-\inf, q])}^{\sigma(E, E^*)}$ weakly compact \Rightarrow *G* contains an open relatively weakly compact ball
- *B_E* is weakly compact

 $[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}$

• Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$

•
$$B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty, p])}^{\sigma(E, E^*)}$$

• Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

has non void interior relative to B

- There is *G* open in *E* such that $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty, q])}^{\sigma(E, E^*)}$
- $\overline{\alpha^{-1}((-\inf, q])}^{\sigma(E, E^*)}$ weakly compact \Rightarrow *G* contains an open relatively weakly compact ball
- *B_E* is weakly compact

 $[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}$

• Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$

•
$$B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty, p])}^{\sigma(E, E^*)}$$

• Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

has non void interior relative to B

- There is G open in E such that Ø ≠ B ∩ G ⊂ B ∩ α⁻¹((-∞, q])^{σ(E,E*)} a⁻¹((-inf, q])^{σ(E,E*)} weakly compact ⇒ G contains an
- open relatively weakly compact ball
- *B_E* is weakly compact

 $[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}$

• Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$

•
$$B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty, p])}^{\sigma(E, E^*)}$$

• Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

has non void interior relative to B

- There is G open in E such that Ø ≠ B ∩ G ⊂ B ∩ α⁻¹((-∞, q])^{σ(E,E*)} a⁻¹((-inf, q])^{σ(E,E*)} weakly compact ⇒ G contains an
- $\alpha^{-1}((-\inf, q])$ are weakly compact $\Rightarrow G$ contains an open relatively weakly compact ball
- *B_E* is weakly compact

Corollary 2.101 (Main Theorem on Monotone Operators). Let X be real, reflexive Banach space, and let $A: X \to X^*$ be a monotone, hemiconinuous, bounded, and coercive operator, and $b \in X^*$. Then a solution of the quation Au = b exists.

Nonlinear variational problems

Corollary

- A real Banach space E is reflexive, provided there exists a monotone, coercive, symmetric and surjective operator
 Φ : E → E^{*}
- A real Banach space with dual ball w^{*}-convex-block compact is reflexive whenever there exists a monotone, symmetric and surjective operator Φ : E → E^{*}

Question

Let E be a real Banach space and Φ : $E \rightarrow 2^{E^*}$ a monotone multivalued map with non void interior domain.

$[\Phi(E) = E^*] \Rightarrow E = E^{**?}$

Nonlinear variational problems

Corollary

- A real Banach space E is reflexive, provided there exists a monotone, coercive, symmetric and surjective operator
 Φ : E → E*
- A real Banach space with dual ball w^{*}-convex-block compact is reflexive whenever there exists a monotone, symmetric and surjective operator Φ : E → E^{*}

Question

Let E be a real Banach space and Φ : E $\rightarrow 2^{E^*}$ a monotone multivalued map with non void interior domain.

$[\Phi(E) = E^*] \Rightarrow E = E^{**?}$

Nonlinear variational problems

Corollary

- A real Banach space E is reflexive, provided there exists a monotone, coercive, symmetric and surjective operator
 Φ : E → E^{*}
- A real Banach space with dual ball w^{*}-convex-block compact is reflexive whenever there exists a monotone, symmetric and surjective operator Φ : E → E^{*}

Question

Let E be a real Banach space and $\Phi : E \rightarrow 2^{E^*}$ a monotone multivalued map with non void interior domain.

$$[\Phi(E) = E^*] \Rightarrow E = E^{**}?$$

THANK YOU!!!!

J. Orihuela An interplay between Topology, Functional Analysis and Risk

イロン イロン イヨン イヨン