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One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)
Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]
proper, lsc map s.t. {↵  c} is compact for all c 2 R. Then for
any proper lsc map f : X ! (�1,+1] bounded from below,
the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)
If X is metrizable and ↵ : X ! (�1,+1] is a proper function
such that for all bounded continuous function
f : X ! (�1,+1], the function ↵+ f attains its minimum, then
↵ is a lsc map, bounded form below, whose sublevel sets
{↵  c} are all compact

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)
Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]
proper, lsc map s.t. {↵  c} is compact for all c 2 R. Then for
any proper lsc map f : X ! (�1,+1] bounded from below,
the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)
If X is metrizable and ↵ : X ! (�1,+1] is a proper function
such that for all bounded continuous function
f : X ! (�1,+1], the function ↵+ f attains its minimum, then
↵ is a lsc map, bounded form below, whose sublevel sets
{↵  c} are all compact

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)
Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]
proper, lsc map s.t. {↵  c} is compact for all c 2 R. Then for
any proper lsc map f : X ! (�1,+1] bounded from below,
the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)
If X is metrizable and ↵ : X ! (�1,+1] is a proper function
such that for all bounded continuous function
f : X ! (�1,+1], the function ↵+ f attains its minimum, then
↵ is a lsc map, bounded form below, whose sublevel sets
{↵  c} are all compact

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)
Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]
proper, lsc map s.t. {↵  c} is compact for all c 2 R. Then for
any proper lsc map f : X ! (�1,+1] bounded from below,
the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)
If X is metrizable and ↵ : X ! (�1,+1] is a proper function
such that for all bounded continuous function
f : X ! (�1,+1], the function ↵+ f attains its minimum, then
↵ is a lsc map, bounded form below, whose sublevel sets
{↵  c} are all compact

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

One-Perturbation Variational Principle

Compact domain ) lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)
Let X be a Hausdorff topological space and ↵ : X ! (�1,+1]
proper, lsc map s.t. {↵  c} is compact for all c 2 R. Then for
any proper lsc map f : X ! (�1,+1] bounded from below,
the function ↵+ f attains its minimum.

Theorem (Borwein-Fabian-Revalski)
If X is metrizable and ↵ : X ! (�1,+1] is a proper function
such that for all bounded continuous function
f : X ! (�1,+1], the function ↵+ f attains its minimum, then
↵ is a lsc map, bounded form below, whose sublevel sets
{↵  c} are all compact

J. Orihuela An interplay between Topology, Functional Analysis and Risk









Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

↵ + f 2 Cb(X ) attain minimum ) {↵  c} compact

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

Weak Compactness Theorem of R.C. James

Theorem
A Banach space is reflexive if and only if each continuous linear
functional attains its supremum on the unit ball

Theorem
A bounded and weakly closed subset K of a Banach space is
weakly compact if and only if each continuous linear functional
attains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972,
G. Rodé 1981, G. Godefroy 1987, V. Fonf, J.
Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons
2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda
2007, the boundary problem ...
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Compactness, Functional Analysis and Risk

H.Follmer and A.Schied Stochastic Finance
F.Delbaen Monetary Utility Functions
F.Delbaen and W.Schachermayer The Mathematics of
Arbitrage
E. Zeidler Nonlinear Functional Analysis and its
Applications
J. Borwein and Q. Zhu Techniques of Variational Analysis
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The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E
◆K (x) = 0 if x 2 K and +1 otherwise
x⇤ 2 E⇤ attains its supremum on K at
x0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 E
The minimization problem

min{◆K (·)� x⇤(·)}
on E for every x⇤ 2 E⇤ has always solution if and only if the
set K is weakly compact
When the minimization problem

min{↵(·) + x⇤(·)}
on E has solution for all x⇤ 2 E⇤ and a fixed proper
function ↵ : E ! (�1,+1]?

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E
◆K (x) = 0 if x 2 K and +1 otherwise
x⇤ 2 E⇤ attains its supremum on K at
x0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 E
The minimization problem

min{◆K (·)� x⇤(·)}
on E for every x⇤ 2 E⇤ has always solution if and only if the
set K is weakly compact
When the minimization problem

min{↵(·) + x⇤(·)}
on E has solution for all x⇤ 2 E⇤ and a fixed proper
function ↵ : E ! (�1,+1]?

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E
◆K (x) = 0 if x 2 K and +1 otherwise
x⇤ 2 E⇤ attains its supremum on K at
x0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 E
The minimization problem

min{◆K (·)� x⇤(·)}
on E for every x⇤ 2 E⇤ has always solution if and only if the
set K is weakly compact
When the minimization problem

min{↵(·) + x⇤(·)}
on E has solution for all x⇤ 2 E⇤ and a fixed proper
function ↵ : E ! (�1,+1]?

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E
◆K (x) = 0 if x 2 K and +1 otherwise
x⇤ 2 E⇤ attains its supremum on K at
x0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 E
The minimization problem

min{◆K (·)� x⇤(·)}
on E for every x⇤ 2 E⇤ has always solution if and only if the
set K is weakly compact
When the minimization problem

min{↵(·) + x⇤(·)}
on E has solution for all x⇤ 2 E⇤ and a fixed proper
function ↵ : E ! (�1,+1]?

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E⇤

K is a closed convex set in the Banach space E
◆K (x) = 0 if x 2 K and +1 otherwise
x⇤ 2 E⇤ attains its supremum on K at
x0 2 K , ◆k (y)� ◆K (x0) � x⇤(y � x0) for all y 2 E
The minimization problem

min{◆K (·)� x⇤(·)}
on E for every x⇤ 2 E⇤ has always solution if and only if the
set K is weakly compact
When the minimization problem

min{↵(·) + x⇤(·)}
on E has solution for all x⇤ 2 E⇤ and a fixed proper
function ↵ : E ! (�1,+1]?

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

Minimizing {↵(x) + x⇤(x) : x 2 E}

Theorem (M. Ruiz and J. Orihuela)
Let E be a Banach space, ↵ : E ! (�1,+1] proper, (lower
semicontinuous) function with

lim
kxk!1

↵(x)
kxk = +1

Suppose that there is c 2 R such that the level set {↵  c} fails
to be (relatively) weakly compact. Then there is x⇤ 2 E⇤ such
that,the infimum

inf
x2E

{hx , x⇤i+ ↵(x)}

is not attained.
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{↵  c} not w.c.) 9x⇤ : infE{x⇤(·) + ↵(·)} not attained

Lemma
Let A be a bounded but not relatively weakly compact subset of
the Banach space E. If (an) ⇢ A is a sequence without weak
cluster point in E, then there is (x⇤

n ) ⇢ BE⇤ , g0 =
P1

n=1 �nx⇤
n

with 0  �n  1 for all n 2 N and
P1

n=1 �n = 1 such that:
for every h 2 l1(A), with

lim inf
n

x⇤
n (a)  h(a)  lim sup

n
x⇤

n (a)

for all a 2 A, we will have that g0 + h doest not attain its
minimum on A
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Maximizing {x⇤(x)� ↵(x) : x 2 E}

Theorem (M. Ruiz and J. Orihuela)
Let E be a Banach space, ↵ : E ! (�1,+1] proper, lower
semicontinuous function, then we have:

If @↵(E) = E⇤ then the level sets {↵  c} are weakly
compact for all c 2 R whenever ↵ is a coercive map, i.e.
limkxk!1

↵(x)
kxk = +1. ,

It ↵ has weakly compact level sets and the
Fenchel-Legendre conjugate ↵⇤ is finite, i.e.
sup{x⇤(x)� ↵(x) : x 2 E} < +1 for all x⇤ 2 E⇤, then
@↵(E) = E⇤
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Convex Analysis

We fix an atomless probability space (⌦,F ,P)
We are going to work in a duality hX ,X ⇤i where
L1(⌦,F) ✓ X ✓ L0(⌦,F)

Examples: hL1,L1i, hLp,Lqi, hL1,ba(⌦,F)i
f : X ! (�1,+1], f ⇤ : X ⇤ ! (�1,+1] defined by

f ⇤(x⇤) = sup{x⇤(x)� f (x) : x 2 X}

Theorem
If f : X ! (�1,+1] is convex, proper and lower
semicontinuous, then

f ⇤⇤ �X= f
for all x 2 X , x⇤ 2 X we have hx , x⇤i  f (x) + f ⇤(x⇤)
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If f : X ! (�1,+1] is convex, proper and lower
semicontinuous, then

f ⇤⇤ �X= f
for all x 2 X , x⇤ 2 X we have hx , x⇤i  f (x) + f ⇤(x⇤)
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Risk meausures

Definition
A monetary utility function is a concave non-decreasing map

U : L1(⌦,F ,P) ! [�1,+1)

with dom(U) = {X : U(X ) 2 R} 6= ; and

U(X + c) = U(X ) + c, for X 2 L1, c 2 R

Defining ⇢(X ) = �U(X ) the above definition of monetary utility
function yields the definition of a convex risk measure.Both U, ⇢
are called coherent if U(0) = 0, U(�X ) = �U(X ) for all
� > 0,X 2 L1
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Representing risk measures

Theorem
A convex (resp. coherent) risk measure ⇢ : L1(⌦,F ,P) ! R
admits a representation

⇢(X ) = sup{µ(�X )� ↵(µ) : µ 2 ba, µ � 0µ(⌦) = 1}

(resp.
⇢(X ) = sup{µ(�X ) : µ 2 S ✓ {µ 2 ba, µ � 0, µ(⌦) = 1}}) If in
addition ⇢ is �(L1,L1)-lower semicontinuous we have:

⇢(X ) = sup{EQ(�X )� ↵(Q) : Q << P and EP(dQ/dP) = 1}}

(resp.
⇢(X ) = sup{EQ(�X )) : Q 2 {Q << P and EP(dQ/dP) = 1}})
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Minimizing {↵(Y ) + E(X · Y ) : Y 2 L1}
Theorem (Jouini-Schachermayer-Touzi)
Let U : L1(⌦,F ,P) ! R be a monetary utility function with the
Fatou property and U⇤ : L1(⌦,F ,P)⇤ ! [0,1] its
Fenchel-Legendre transform. They are equivalent:

1 {U⇤  c} is �(L1,L1)-compact subset for all c 2 R
2 For every X 2 L1 the infimum in the equality

U(X ) = inf
Y2L1

{U⇤(Y ) + E[XY ]},

is attained
3 For every uniformly bounded sequence (Xn) tending a.s. to

X we have
lim

n!1
U(Xn) = U(X ).
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Tools for the proof

The proof in [JST] is for separable L1(⌦,F ,P). The
separability is needed to show 2) ) 1) with a variant of the
separable James’ compactness Theorem we provided to
authors.
Delbaen has given a proof for general non separable
spaces using an homogenisation trick. He shows how to
apply directly the non separable James’ compactness
Theorem in the duality hL1(⌦,F ,P),L1(⌦,F ,P)i.
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De la Vallée Poussin’s Theorem

Definition
A family H 2 L1 is uniformly integrable if it is bounded and
limP(A)&0

R
A |X |dP = 0 uniformly in X 2 H

Theorem
A family H ⇢ L0 is uniformly integrable if, and only if there is a
convex function � : R ! [0,+1) s.t
�(0) = 0,�(x) = �(�x), limx!1

�(x)
x = +1 which

sup{
Z
�(X )dP : X 2 H} < 1

J. Orihuela An interplay between Topology, Functional Analysis and Risk



Compactness and Optimization
Compactness, Convex Analysis and Risk

Risk Measures in Orlicz spaces
Variational problems and reflexivity

Orlicz spaces

An even, convex function  : E ! R [ {1} such that:
1  (0) = 0
2 limx!1 (x) = +1
3  < +1 in a neighbourhood of 0

is called a Young function
1 L (⌦,F ,P) := {X 2 L0 : 9↵ > 0,EP[ (↵X )] < +1}
2 N (X ) := inf{c > 0 : EP[ (

1
c X )]  1}

3 L1(⌦,F ,P) ⇢ L (⌦,F ,P) ⇢ L1(⌦,F ,P)
4 the Morse subspace

M = {X 2 L : EP[ (�X )] < +1for all � > 0},
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Lebesgue measures go to Orlicz spaces

A Lebesgue risk measure ⇢ : L1 ! R can be extended to
a risk measure on some Orlicz space ⇢ : L ! R

Theorem (F. Delbaen)

Every risk measure ⇢ : L ! R defined on an Orlicz space L 
with L \ L1 6= ; has the Lebesgue property restricted to L1

(Biagini-Fritelli) In general financial markets, the
indifference price is a (except for the sign) a convex risk
measure on an Orlicz space Lû naturally induced by the
utility function u of the agent.
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Namioka-Klee Theorem

Theorem
Any linear and positive functional ' : X ! R on a Fréchet
lattice X is continuous

Theorem (S. Biagini and M. Fritelli 2009)
Let (X , T ) be an order continuous Frechet lattice. Any convex
monotone increasing functional U : X ! R is order continuous
and it admits a dual representation as

U(x) = max
y 02(X⇠

n )+
{y 0(x)� U⇤(y 0)}

for all x 2 X
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Komlos C-Properties

A linear topology T on X has the C-property if for every
A ⇢ X and every x 2 AT there is a sequence (xn) 2 A
together with zn 2 co{xp : p � n} such that (zn) is order
convergent to x .
If {vn}n�1 2 A ⇢ X , another one {un}n�1 is a convex block
sequence of {vn}n�1 if there are finite subsets of N
max F1 < min F2  · · · < max Fn < min Fn+1 < · · · and
{�n

i : i 2 Fn} ⇢ (0, 1],
P

i2Fn
�n

i = 1 with un =
P

i2Fn
�n

i vi .

When each sequence {xn}n�1 in A has a convex block
T -convergent sequence we say that A is T -convex block
compact.
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Theorem (S.Biagini and M.Fritelli 2009)
Let (X , T ) a locally convex Frechet lattice and
U : X ! (�1,+1] proper and convex. If �(X ,X⇠

n ) has the
C-property then U is order lower semicontinuous if, and only if

U(x) = sup
y 02(X⇠

n )
{y 0(x)� U⇤(y 0)}

for all x 2 X

Question (Biagini-Fritelli)
When is it possible to turn sup to max on X⇠

n ?
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Sup-limsup Theorem

Theorem (Simons)

Let � be a set and (zn)n a uniformly bounded sequence in
`1(�). If ⇤ is a subset of � such that for every sequence of
positive numbers (�n)n with

P1
n=1 �n = 1 there exists b 2 ⇤

such that

sup{
1X

n=1

�nzn(y) : y 2 �} =
1X

n=1

�nzn(b),

then we have:

sup
�2⇤

lim sup
k!1

xk (�) = sup
�2�

lim sup
k!1

xk (�)
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Weak Compactness through Sup–limsup Theorem

Theorem
Let E be a separable Banach space and K ⇢ E a closed
convex and bounded subset. They are equivalent:

1 K is weakly compact.
2 For every sequence (x⇤

n ) ⇢ BE⇤ we have

sup
k2K

{lim sup
n!1

x⇤
n (k)} = sup

2K w⇤
{lim sup

n!1
x⇤

n ()}
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Sup–limsup Theorem ) Compactness

If K is not weakly compact there is x⇤⇤
0 2 K w⇤

⇢ E⇤⇤ with
x⇤⇤

0 /2 E
The Hahn Banach Theorem provide us x⇤⇤⇤ 2 BE⇤⇤⇤ \ E?

with x⇤⇤⇤(x⇤⇤
0 ) = ↵ > 0

The separability of E , Ascoli’s and Bipolar Theorems
permit to construct a sequence (x⇤

n ) ⇢ BE⇤ such that:
1 limn!1 x⇤

n (x) = 0 for all x 2 E
2 x⇤

n (x⇤⇤
0 ) > ↵/2 for all n 2 N

Then

0 = sup
k2K

{ lim
n!1

x⇤
n (k)} = sup

k2K
{lim sup

n!1
x⇤

n (k)} �

= sup
v⇤⇤2K w⇤

{lim sup
n!1

x⇤
n (v

⇤⇤)} � lim sup
n!1

x⇤
n (x

⇤⇤
0 ) � ↵/2 > 0
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Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)
Let E be a separable Banach space and K ⇢ E a closed
convex and bounded subset. They are equivalent:

1 K is weakly compact.
2 For any covering K ⇢ [1

n=1Dn by an increasing sequence
of closed convex subsets Dn ⇢ K , we have

[1
n Dn

w⇤k·k
= K w⇤

.

The proof uses Krein Milman and Bishop Phelps theorems
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Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)
Let E be a Banach space, K ⇢ E⇤ be w⇤�compact convex,
B ⇢ K , TFAE:

1 For any covering B ⇢ [1
n=1Dn by an increasing sequence

of convex subsets Dn ⇢ K , we have

[1
n Dn

w⇤k·k
= K .

2 supf2B (lim supk f (xk )) = supg2K (lim supk g(xk ))
for every sequence {xk} ⇢ BX .

3 supf2B (lim supk f (xk )) � infP�i=1,�i�0(supg2K g(
P

�i xi))
for every sequence {xk} ⇢ BX .
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Inf-liminf Theorem in R�

Theorem (Inf-liminf Theorem in R�)

Let {�k}k�1 be a pointwise bounded sequence in R�. We set
⇤ ✓ � satisfying the following boundary condition:
For all � =

P1
i=1 �i�i ,

P1
i=1 �i = 1, 0  �i  1, there exists

�0 2 ⇤ with �(�0) = inf{�(�) : � 2 �}

Then

inf
{�2⇤}

✓
lim inf

k�1
�k (�)

◆
= inf

{�2�}

✓
lim inf

k�1
�k (�)

◆
.
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A Nonlinear James Theorem

Theorem (M.Ruiz and J. Orihuela)
Let E be a Banach space with BE⇤ convex-block compact for
�(E⇤,E). If

↵ : E ! R [ {+1}
is a proper map such that for every x⇤ 2 E⇤ the minimization
problem

inf{↵(y) + x⇤(y) : y 2 E}
is attained at some point of E, then the level sets

{y 2 E : ↵(y)  c}

are relatively weakly compact for every c 2 R.
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Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)
Let ⇢(X ) = supY2M ⇤{EP[�XY ]� ↵(Y )} be a finite convex risk
measure on L with ↵ : (L (⌦,F ,P)⇤ ! (�1,+1] a penalty
function w⇤-lower semicontinuos. T.F.A.E.:

(i) For all c 2 R, ↵�1((�1, c]) is a relatively weakly compact
subset of M ⇤

(⌦,F ,P).
(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X ) = sup
Y2M ⇤

{EP[�XY ]� ↵(Y )}

is attained.
(iii) ⇢ is sequentially order continuous
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Nonlinear Variational Problems

Theorem (Reflexivity frame)
Let E be a real Banach space and

↵ : E �! R [ {+1}

a coercive function such that dom(↵) has nonempty interior and
for all x⇤ 2 E⇤ there exists x0 2 E with

↵(x0) + x⇤(x0) = inf
x2E

{↵(x) + x⇤(x)}

Then E is reflexive.
Moreover, if the dual ball BE⇤ is a w⇤- convex-block compact no
coercive assumption is needed for ↵
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[@↵(E) = E⇤] ) E = E⇤⇤

Fix an open ball B ✓ dom(↵)

B =
S+1

p=1 B \ ↵�1((�1, p])
�(E ,E⇤)

Baire Category Theorem ) there is q 2 N :

B \ ↵�1((�1, q])
�(E ,E⇤)

has non void interior relative to B
There is G open in E such that
; 6= B \ G ⇢ B \ ↵�1((�1, q])

�(E ,E⇤)

↵�1((� inf, q])
�(E ,E⇤)

weakly compact ) G contains an
open relatively weakly compact ball
BE is weakly compact
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Nonlinear variational problems

Corollary

A real Banach space E is reflexive, provided there exists a
monotone, coercive, symmetric and surjective operator
� : E �! E⇤

A real Banach space with dual ball w⇤-convex-block
compact is reflexive whenever there exists a monotone,
symmetric and surjective operator � : E �! E⇤

Question
Let E be a real Banach space and � : E ! 2E⇤ a monotone
multivalued map with non void interior domain.

[�(E) = E⇤] ) E = E⇤⇤?
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THANK YOU!!!!
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