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(F )-norm

Definition
A function

k · k : X �! [0,+1)

is called (F )-norm on the vector space X if the following
properties are satisfied:

x = 0 if, and only if, kxk = 0;
k�xk  kxk, if |�|  1 and x 2 X;
kx + yk  kxk+ kyk for every x , y 2 X;
limn k�xnk = 0, if limn kxnk = 0 for every (xn)n2N ✓ X and
� 2 R;
limn k�nxk = 0, if limn �n = 0 for every (�n)n2N and x 2 X.
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Kadec ) LUR renormings

Theorem
If a normed space (X , k · k) has a Kadec norm there is an
equivalent Kadec and locally uniformly rotund (F )-norm k · k1
on X, i.e. an (F )-norm k · k1 such that the topology determined
by the (F )-norm k · k1 on X coincides with the norm topology
and moreover we have:

1 the weak and norm topologies coincide on every sphere
{x 2 X : kxk=⇢} for ⇢ > 0.

2 For every (xn)n2N ✓ X and x 2 X we have
limn!1 kxn � xk = 0 whenever

lim
n!1

(2kxk2
1 + 2kxnk2

1 � kx + xnk2
1) = 0
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Kadec (F )-renorming , descriptiveness

Theorem
Let (X , k · k) be a normed space with a norming subspace Z in
X ⇤. TFAE:

1 There is a norm-equivalent and �(X ,Z )-lower
semicontinuous (F )-norm k · k0 on X such that �(X ,Z ) and
norm topologies coincide on the unit sphere

{x 2 X : kxk0 = 1}

2 There are isolated families Bn for the �(X ,Z )-topology,
n = 1, 2, · · · such that for every x 2 X and every ✏ > 0
there is n 2 N and some set B 2 Bn with the property that
x 2 B and

k · k � diam(B) < ✏
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Kadec meets Bing-Nagata-Smirnov-Stone

Theorem (Kadec metrization)
Let (X , k · k) be a normed space with a norming subspace Z in
X ⇤. Then the following conditions are equivalent:

1 The normed space X is �(X ,Z )�descriptive; i.e there are
isolated families Bn for the �(X ,Z )-topology, n = 1, 2, · · ·
such that for every x 2 X and every ✏ > 0 there is n 2 N
and some set B 2 Bn with the property that x 2 B and
k · k � diam(B) < ✏

2 The norm topology admits a basis B =
S

n2N Bn such that
each one of the families Bn is norm discrete and
�(X ,Z )-isolated

J. Orihuela



Kadec meets Bing-Nagata-Smirnov-Stone

Theorem (Kadec metrization)
Let (X , k · k) be a normed space with a norming subspace Z in
X ⇤. Then the following conditions are equivalent:

1 The normed space X is �(X ,Z )�descriptive; i.e there are
isolated families Bn for the �(X ,Z )-topology, n = 1, 2, · · ·
such that for every x 2 X and every ✏ > 0 there is n 2 N
and some set B 2 Bn with the property that x 2 B and
k · k � diam(B) < ✏

2 The norm topology admits a basis B =
S

n2N Bn such that
each one of the families Bn is norm discrete and
�(X ,Z )-isolated

J. Orihuela



LUR (F )-renorming

Theorem
Let (X , k · k) be a normed space with a norming subspace Z in
X ⇤ . TFAE:

1 The normed space X is �(X ,Z )�descriptive; i.e. there are
isolated families Bn for the �(X ,Z )-topology, n = 1, 2, · · ·
such that for every x 2 X and every ✏ > 0 there is n 2 N
and some set B 2 Bn with the property that x 2 B and
k · k � diam(B) < ✏

2 There is a norm-equivalent, �(X ,Z )-lower semicontinuous
and LUR (F )-norm k · k0 on X; i.e. such that for every
(xn)n2N ⇢ X and x 2 X we have limn!+1 kxn � xk = 0
whenever

lim
n!+1

(2kxk2
0 + 2kxnk2

0 � kx + xnk2
0) = 0

J. Orihuela



LUR (F )-renorming

Theorem
Let (X , k · k) be a normed space with a norming subspace Z in
X ⇤ . TFAE:

1 The normed space X is �(X ,Z )�descriptive; i.e. there are
isolated families Bn for the �(X ,Z )-topology, n = 1, 2, · · ·
such that for every x 2 X and every ✏ > 0 there is n 2 N
and some set B 2 Bn with the property that x 2 B and
k · k � diam(B) < ✏

2 There is a norm-equivalent, �(X ,Z )-lower semicontinuous
and LUR (F )-norm k · k0 on X; i.e. such that for every
(xn)n2N ⇢ X and x 2 X we have limn!+1 kxn � xk = 0
whenever

lim
n!+1

(2kxk2
0 + 2kxnk2

0 � kx + xnk2
0) = 0

J. Orihuela



Method of proof

Definition (p-convex set and hull)
Let A be a subset of a vector space X and p 2 (0, 1]. A is said
to be p-convex if for every x , y 2 A and ⌧, µ 2 [0, 1] such that
⌧p + µp = 1 we have ⌧x + µy 2 A.

If A is p-convex and absorbent, its p-Minkowski functional is

pA(x) := inf{�p : � > 0, x 2 �A}

pA is a p-seminorm, i.e we have
pA(�x) = |�|ppA(x)
pA(x + y)  pA(x) + pA(y).

The Minkowski functional is defined as usual:

qA(x) := inf{� : � > 0, x 2 �A}

we have qA(x)p = pA(x) for every x 2 X and
qA is a quasinorm : qA(x + y)  2(1/p)�1(qA(x) + qA(y)).

J. Orihuela



Method of proof

Definition (p-convex set and hull)
Let A be a subset of a vector space X and p 2 (0, 1]. A is said
to be p-convex if for every x , y 2 A and ⌧, µ 2 [0, 1] such that
⌧p + µp = 1 we have ⌧x + µy 2 A.

If A is p-convex and absorbent, its p-Minkowski functional is

pA(x) := inf{�p : � > 0, x 2 �A}

pA is a p-seminorm, i.e we have
pA(�x) = |�|ppA(x)
pA(x + y)  pA(x) + pA(y).

The Minkowski functional is defined as usual:

qA(x) := inf{� : � > 0, x 2 �A}

we have qA(x)p = pA(x) for every x 2 X and
qA is a quasinorm : qA(x + y)  2(1/p)�1(qA(x) + qA(y)).

J. Orihuela



Method of proof

Definition (p-convex set and hull)
Let A be a subset of a vector space X and p 2 (0, 1]. A is said
to be p-convex if for every x , y 2 A and ⌧, µ 2 [0, 1] such that
⌧p + µp = 1 we have ⌧x + µy 2 A.

If A is p-convex and absorbent, its p-Minkowski functional is

pA(x) := inf{�p : � > 0, x 2 �A}

pA is a p-seminorm, i.e we have
pA(�x) = |�|ppA(x)
pA(x + y)  pA(x) + pA(y).

The Minkowski functional is defined as usual:

qA(x) := inf{� : � > 0, x 2 �A}

we have qA(x)p = pA(x) for every x 2 X and
qA is a quasinorm : qA(x + y)  2(1/p)�1(qA(x) + qA(y)).

J. Orihuela



Method of proof

Definition (p-convex set and hull)
Let A be a subset of a vector space X and p 2 (0, 1]. A is said
to be p-convex if for every x , y 2 A and ⌧, µ 2 [0, 1] such that
⌧p + µp = 1 we have ⌧x + µy 2 A.

If A is p-convex and absorbent, its p-Minkowski functional is

pA(x) := inf{�p : � > 0, x 2 �A}

pA is a p-seminorm, i.e we have
pA(�x) = |�|ppA(x)
pA(x + y)  pA(x) + pA(y).

The Minkowski functional is defined as usual:

qA(x) := inf{� : � > 0, x 2 �A}

we have qA(x)p = pA(x) for every x 2 X and
qA is a quasinorm : qA(x + y)  2(1/p)�1(qA(x) + qA(y)).

J. Orihuela



Method of proof

Definition (p-convex set and hull)
Let A be a subset of a vector space X and p 2 (0, 1]. A is said
to be p-convex if for every x , y 2 A and ⌧, µ 2 [0, 1] such that
⌧p + µp = 1 we have ⌧x + µy 2 A.

If A is p-convex and absorbent, its p-Minkowski functional is

pA(x) := inf{�p : � > 0, x 2 �A}

pA is a p-seminorm, i.e we have
pA(�x) = |�|ppA(x)
pA(x + y)  pA(x) + pA(y).

The Minkowski functional is defined as usual:

qA(x) := inf{� : � > 0, x 2 �A}

we have qA(x)p = pA(x) for every x 2 X and
qA is a quasinorm : qA(x + y)  2(1/p)�1(qA(x) + qA(y)).

J. Orihuela



p-convex sets
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p-convex functions

Definition
A real function � : X �! R is said to be p-convex for p 2 (0, 1] if

�(⌧x + µy)  ⌧�(x) + µ�(y)

whenever ⌧ � 0, µ � 0 and ⌧p + µp = 1.

the epigraph of � is p-convex if and only if � is p-convex;
if � is convex and �(0) = 0, then � is p-convex for every
p 2 (0, 1];
if �p is p-convex, �q is q-convex, with 0 < p  q < 1 and
both of them are non-negative, then �p + �q is p-convex;
if � : X ! R is p-convex for some 0 < p  1 and bounded
from above in a neighbourhood of x 2 X , then � is locally
Lipschitz at x
⌧pµp(�(x)� �(y))2  ⌧p�(x)2 + µp�(y)2 � �(⌧x + µy)2

whenever ⌧p + µp = 1 and ⌧ � 0, µ � 0.
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p-convex functions

Definition (p-distance)
Let C be a w⇤-compact and p-convex subset of X ⇤⇤, 0 < p  1,

'(x) := inf
c⇤⇤2C

{sup{| hx � c⇤⇤, z⇤i | : z⇤ 2 BX⇤ \ Z}}

' is a p-convex, �(X ,Z )-lower semicontinuous and 1-Lipschitz
map from X to [0,+1).

Definition
A family B := {Bi : i 2 I} of subsets in the normed space X is
said to be p-isolated for the �(X ,Z )-topology if for every i 2 I

Bi \ cop{Bj : j 6= i , j 2 I}�(X ,Z )
= ;.
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Orthogonal p-convex sets and functions

Theorem

Let B := {Bi i 2 I} be an uniformly bounded family of subsets of
X . The following are equivalent:

1 The family B is p-isolated for the �(X ,Z )-topology; i.e.

Bi \ cop{Bj : j 6= i , j 2 I}�(X ,Z )
= ;.

for every i 2 I
2 There exists a family L := {'i : X ! [0,+1) : i 2 I} of

p-convex and �(X ,Z )-lower semicontinuous functions
such that for every i 2 I

{x 2 X : 'i(x) > 0} \
[

j2I

Bj = Bi .
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Isolatedness ) p-convex isolatedly decomposable

Lemma (Decomposition lemma)
Let B be a uniformly bounded and isolated family of sets for the
�(X ,Z ) topology. Then for every B 2 B we can write

B =
1[

n=1

Bn

in such a way that, for every n 2 N fixed, the family

{Bn : B 2 B}

is �(X ,Z )-q-isolated whenever q < log 2
log 4n .
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p-Localization Theorem

Theorem
Let B = {Bi : i 2 I} be a uniformly bounded and p-isolated
family of subsets of X for the �(X ,Z ) topology. Then there is a
norm-equivalent �(X ,Z )-lower semicontinuous p-norm qB(·) on
X such that for every i0 2 I, every x 2 Bi0 , and every sequence
(xn)n2N in X the condition

lim
n!+1

[2q2
B(xn) + 2q2

B(x)� q2
B(x + xn)] = 0,

implies that:
1 there exists n0 2 N such that

xn,
xn+x
21/p /2 cop{Bi : i 6= i0, i 2 I}�(X ,Z )

for every n � n0;
2 for every positive � there is n� 2 N such that

xn 2 co(Bi0 [ {0}) + B(0, �)
�(X ,Z )

whenever n � n�.
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Descriptive ) LUR (F )-renorming

Fix isolated families Bn for the �(X ,Z )-topology such that
for every x 2 X and every ✏ > 0 there is n 2 N and some
set B 2 Bn with x 2 B and k · k � diam(B) < ✏.
{Bn}n2N are assumed to be pn-isolated for some sequence
pn 2 (0, 1] by decomposition lemma.
Consider the pn-norms qBn(·) constructed using the
p-Localization Theorem
F 2
B(x) := kxk2

Z +
P+1

n=1
1

⇣2pn
n 2n

q2
Bn
(x) where

qBn(x)  ⇣pn
n kxkpn  ⇣pn

n max{1, kxk}.
If limn!+1[2F 2

B(xn) + 2F 2
B(x)� F 2

B(x + xn)] = 0 then
limn!+1[2q2

Bm
(xn) + 2q2

Bm
(x)� q2

Bm
(x + xn)] = 0 for all m.

If ✏ > 0, m 2 N and B0 2 Bm with x 2 B0 ✓ x + ✏
2BX there

exists n ✏
2

such that xn 2 co(B0 [ {0}) + B(0, ✏
2)

�(X ,Z )

whenever n � n ✏
2
.
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Descriptive ) LUR (F )-renorming

k · kdist(xn, Ix)  ✏ for n � n ✏
2

there is r(n,✏) 2 [0, 1] such that kxn � r(n,✏)xk  ✏ for n � n ✏
2
.

By induction we select integers n1 < n2 < · · · < nk < · · ·
such that kxnk � r(nk ,1/k)xk  1

k .
By compactness there is a sequence of integers
k1 < k2 < · · · < kj < · · · such that
limj!+1 r(nkj

,1/kj ) = r 2 [0, 1] and k · k � limj!+1 xnkj
= rx

If kxkZ = 1 we also have limn kxnkZ = kxkZ = 1 and it
follows that r = 1, so we have found a subsequence (xnj )
of the given sequence (xn) which norm converges to x
Since the reasoning is valid for every subsequence too, the
proof is over
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of the given sequence (xn) which norm converges to x
Since the reasoning is valid for every subsequence too, the
proof is over
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Descriptive ) LUR (F )-renorming
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Haydon’s lemma + Burke, Kubis and Todorcevic

Lemma
Let X be a topological space, S be a set and
's, s : X ! [0,+1) lower semicontinuous functions such that
sups2S('s(x) +  s(x)) < +1 for every x 2 X. Define

'(x) = sup
s2S

's(x), ✓m(x) = sup
s2S

('s(x) + 2�m s(x)),

and ✓(x) =
P

m2N 2�m✓m(x). Assume further that {x� : � 2 ⌃}
is a net converging to x 2 X and ✓(x�) ! ✓(x). Then there
exists a finer net {x�}�2� and a net {i�}�2� ✓ S such that

lim
�2�

'i� (x�) = lim
�2�

'i� (x) = lim
�2�

'(x�) = sup
s2S

's(x)

and
lim
�2�

( i� (x�)�  i� (x)) = 0.
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p-connection with R. Haydon

Theorem
Let B := {Bi : i 2 I} be an uniformly bounded and p-isolated
family of subsets of X for the �(X ,Z )-topology and some
p 2 (0, 1]. Then there is an equivalent �(X ,Z )-lower
semicontinuous quasinorm, with p-power a p-norm, k · kB on X
such that: for every net {x↵ : ↵ 2 A} and x in X with x 2 Bi0 for
i0 2 I, the conditions �(X ,Z )� lim↵ x↵ = x and
lim↵ kx↵kB = kxkB imply that

1 there exists ↵0 2 A such that x↵ is not in
cop{Bi i 6= i0, i 2 I}�(X ,Z )

for ↵ � ↵0;
2 for every positive � there exists ↵� 2 A such that

x , x↵ 2 co(Bi0 [ {0}) + B(0, �)
�(X ,Z )

whenever ↵ � ↵�.
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Descriptive ) LUR + Kadec (F )-renorming

We can construct norm-equivalent and �(X ,Z )-lower
semicontinuous F-norms F1 and F2 such that F1 has the
LUR property and F2 the Kadec property.
Then we define

k · k1(x)2 := F1(·)2 + F2(·)2

which is an equivalent �(X ,Z )-lower semicontinuous
F -norm which has both Kadec and the LUR property.
limn!1[2kxk2

1 + 2kxnk2
1 � kx + xnk2

1] = 0 is equivalent to
limn!1[2Fi(x)2 + 2Fi(xn)2 � Fi(x + xn)2] = 0 for i = 1, 2,
and LUR property of F1 is translated to k · k1.
If {x↵ : ↵ 2 (A,�)} is a net in X which converges to x in
the topology �(X ,Z ) and lim↵2A kx↵k1 = kxk1 it follows
that lim↵2A F 2

i (x↵) = F 2
i (x) for i = 1, 2. Thus Kadec

property of F2 is translated to k · k1.
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THANK YOU VERY MUCH !!!!!
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