Locally uniformly rotund (F)-norms

J. Orihuela¹

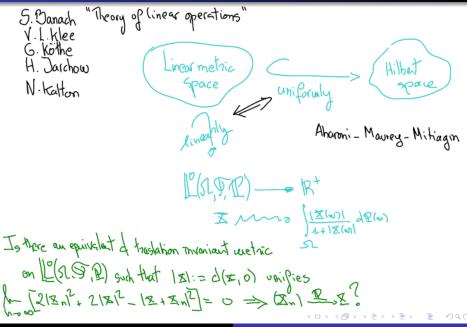
¹Department of Mathematics University of Murcia

Seminario de Análisis Matemático. Universidad de Valencia. 14 de Octubre de 2013

- S. Ferrari, L. Oncina, M. Raja y J.O. *Metrization theory and the Kadec property* Prepint 2013.
- J.O. On T_p locally uniformly rotund norms Set Valued and Variational Analysis, 2013

- Metrizable topological vector spaces and (*F*)-norms.
- Kadec norm implies LUR renorming with (F)-norm
- Descriptive Bananch spaces
- Bing-Nagata-Smirnov-Stone meets Kadec
- Construction of LUR (*F*)-norms in descriptive Bananch spaces

Metrizable topological vector spaces



Definition

A function

$$\|\cdot\|: X \longrightarrow [0, +\infty)$$

is called (F)-norm on the vector space X if the following properties are satisfied:

- *x* = 0 *if*, and only *if*, ||x|| = 0;
- $\|\lambda x\| \leq \|x\|$, if $|\lambda| \leq 1$ and $x \in X$;
- $||x + y|| \le ||x|| + ||y||$ for every $x, y \in X$;
- $\lim_{n \to \infty} \|\lambda x_n\| = 0$, if $\lim_{n \to \infty} \|x_n\| = 0$ for every $(x_n)_{n \in \mathbb{N}} \subseteq X$ and $\lambda \in \mathbb{R}$;
- $\lim_{n \to \infty} \|\lambda_n x\| = 0$, if $\lim_{n \to \infty} \lambda_n = 0$ for every $(\lambda_n)_{n \in \mathbb{N}}$ and $x \in X$.

If a normed space $(X, \|\cdot\|)$ has a Kadec norm there is an equivalent Kadec and locally uniformly rotund (F)-norm $\|\cdot\|_1$ on X, i.e. an (F)-norm $\|\cdot\|_1$ such that the topology determined by the (F)-norm $\|\cdot\|_1$ on X coincides with the norm topology and moreover we have:

- the weak and norm topologies coincide on every sphere $\{x \in X : ||x|| = \rho\}$ for $\rho > 0$.
- ② For every $(x_n)_{n \in \mathbb{N}} \subseteq X$ and $x \in X$ we have $\lim_{n\to\infty} ||x_n x|| = 0$ whenever

$$\lim_{n\to\infty} (2\|x\|_1^2 + 2\|x_n\|_1^2 - \|x + x_n\|_1^2) = 0$$

イロト イポト イヨト イヨト

Examples

R. Haydon
J. Jayne The lexico graphic product
$$K = [0, 1]^{W_1}$$

I. Namioka gives
C.A. Rugers G(K) with a Kadec renorming
bot G(K) does not have equivalent LUR norm
"Continuous functions on totally orderel spaces that are compact to their
order topologies" J. trut, kind. 178, 23-63 (2000)
A. Motto' If X is a Banada space with a Kadec norm
S. Troyanski and the krein-Milman property then X has an equivalent
J. R. Valdivia LUR norm
J. O "Kadec and Krein-Milman properties" C.R. Acad. Sci. Parts 131, Sivet 1959-464

₹ 990

Kadec (F)-renorming \Leftrightarrow descriptiveness

Theorem

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace Z in X^* . TFAE:

There is a norm-equivalent and σ(X, Z)-lower semicontinuous (F)-norm || · ||₀ on X such that σ(X, Z) and norm topologies coincide on the unit sphere

 $\{x \in X : \|x\|_0 = 1\}$

 There are isolated families B_n for the σ(X, Z)-topology, n = 1, 2, ··· such that for every x ∈ X and every ε > 0 there is n ∈ N and some set B ∈ B_n with the property that x ∈ B and

 $\|\cdot\| - \operatorname{diam}(B) < \epsilon$

ъ

イロト イポト イヨト イヨト

Kadec (F)-renorming \Leftrightarrow descriptiveness

Theorem

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace Z in X^* . TFAE:

There is a norm-equivalent and σ(X, Z)-lower semicontinuous (F)-norm || · ||₀ on X such that σ(X, Z) and norm topologies coincide on the unit sphere

$$\{x \in X : \|x\|_0 = 1\}$$

2 There are isolated families \mathcal{B}_n for the $\sigma(X, Z)$ -topology, $n = 1, 2, \cdots$ such that for every $x \in X$ and every $\epsilon > 0$ there is $n \in \mathbb{N}$ and some set $B \in \mathcal{B}_n$ with the property that $x \in B$ and

 $\|\cdot\| - \operatorname{diam}(B) < \epsilon$

ъ

イロン 不得 とくほ とくほとう

Descriptive Banach spaces

æ

・ロト ・回 ト ・ ヨト ・ ヨトー

Theorem (Kadec metrization)

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace *Z* in *X*^{*}. Then the following conditions are equivalent:

- The normed space X is $\sigma(X, Z)$ -descriptive; i.e there are isolated families \mathcal{B}_n for the $\sigma(X, Z)$ -topology, $n = 1, 2, \cdots$ such that for every $x \in X$ and every $\epsilon > 0$ there is $n \in \mathbb{N}$ and some set $B \in \mathcal{B}_n$ with the property that $x \in B$ and $\|\cdot\| - \operatorname{diam}(B) < \epsilon$
- 2 The norm topology admits a basis $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ such that each one of the families \mathcal{B}_n is norm discrete and $\sigma(X, Z)$ -isolated

ヘロト ヘ戸ト ヘヨト ヘヨト

Theorem (Kadec metrization)

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace *Z* in *X*^{*}. Then the following conditions are equivalent:

- The normed space X is $\sigma(X, Z)$ -descriptive; i.e there are isolated families \mathcal{B}_n for the $\sigma(X, Z)$ -topology, $n = 1, 2, \cdots$ such that for every $x \in X$ and every $\epsilon > 0$ there is $n \in \mathbb{N}$ and some set $B \in \mathcal{B}_n$ with the property that $x \in B$ and $\|\cdot\| - \operatorname{diam}(B) < \epsilon$
- 2 The norm topology admits a basis $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ such that each one of the families \mathcal{B}_n is norm discrete and $\sigma(X, Z)$ -isolated

くロト (過) (目) (日)

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace Z in X^* . TFAE:

- The normed space X is σ(X, Z)-descriptive; i.e. there are isolated families B_n for the σ(X, Z)-topology, n = 1, 2, ··· such that for every x ∈ X and every ε > 0 there is n ∈ N and some set B ∈ B_n with the property that x ∈ B and || · || diam(B) < ε
- 2 There is a norm-equivalent, $\sigma(X, Z)$ -lower semicontinuous and LUR (F)-norm $\|\cdot\|_0$ on X; i.e. such that for every $(x_n)_{n\in\mathbb{N}} \subset X$ and $x \in X$ we have $\lim_{n\to+\infty} ||x_n - x|| = 0$ whenever

$$\lim_{n \to +\infty} (2\|x\|_0^2 + 2\|x_n\|_0^2 - \|x + x_n\|_0^2) = 0$$

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace Z in X^* . TFAE:

- The normed space X is $\sigma(X, Z)$ -descriptive; i.e. there are isolated families \mathcal{B}_n for the $\sigma(X, Z)$ -topology, $n = 1, 2, \cdots$ such that for every $x \in X$ and every $\epsilon > 0$ there is $n \in \mathbb{N}$ and some set $B \in \mathcal{B}_n$ with the property that $x \in B$ and $\|\cdot\| - \operatorname{diam}(B) < \epsilon$
- 2 There is a norm-equivalent, $\sigma(X, Z)$ -lower semicontinuous and LUR (F)-norm $\|\cdot\|_0$ on X; i.e. such that for every $(x_n)_{n\in\mathbb{N}} \subset X$ and $x \in X$ we have $\lim_{n\to+\infty} ||x_n - x|| = 0$ whenever

$$\lim_{n \to +\infty} (2\|x\|_0^2 + 2\|x_n\|_0^2 - \|x + x_n\|_0^2) = 0$$

Let A be a subset of a vector space X and $p \in (0, 1]$. A is said to be p-convex if for every $x, y \in A$ and $\tau, \mu \in [0, 1]$ such that $\tau^p + \mu^p = 1$ we have $\tau x + \mu y \in A$.

If A is p-convex and absorbent, its p-Minkowski functional is

 $p_A(x) := \inf\{\lambda^p : \lambda > 0, x \in \lambda A\}$

p_A is a *p*-seminorm, i.e we have

•
$$p_A(\lambda x) = |\lambda|^p p_A(x)$$

• $p_A(x+y) \leq p_A(x) + p_A(y)$.

The Minkowski functional is defined as usual:

 $q_A(x) := \inf\{\lambda : \lambda > \mathbf{0}, x \in \lambda A\}$

we have $q_A(x)^p = p_A(x)$ for every $x \in X$ and q_A is a quasinorm : $q_A(x + y) \le 2^{(1/p)-1}(q_A(x) + q_A(y))$

Let A be a subset of a vector space X and $p \in (0, 1]$. A is said to be p-convex if for every $x, y \in A$ and $\tau, \mu \in [0, 1]$ such that $\tau^p + \mu^p = 1$ we have $\tau x + \mu y \in A$.

If A is p-convex and absorbent, its p-Minkowski functional is

 $p_A(x) := \inf\{\lambda^p : \lambda > 0, x \in \lambda A\}$

 p_A is a *p*-seminorm, i.e we have

•
$$p_A(\lambda x) = |\lambda|^p p_A(x)$$

• $p_A(x+y) \leq p_A(x) + p_A(y)$.

The Minkowski functional is defined as usual:

 $q_A(x) := \inf\{\lambda : \lambda > 0, x \in \lambda A\}$

we have $q_A(x)^p = p_A(x)$ for every $x \in X$ and q_A is a quasinorm : $q_A(x + y) \le 2^{(1/p)-1}(q_A(x) + q_A(x))$

Let A be a subset of a vector space X and $p \in (0, 1]$. A is said to be p-convex if for every $x, y \in A$ and $\tau, \mu \in [0, 1]$ such that $\tau^p + \mu^p = 1$ we have $\tau x + \mu y \in A$.

If A is p-convex and absorbent, its p-Minkowski functional is

 $p_A(x) := \inf\{\lambda^p : \lambda > 0, x \in \lambda A\}$

 p_A is a *p*-seminorm, i.e we have

•
$$p_A(\lambda x) = |\lambda|^p p_A(x)$$

•
$$p_A(x+y) \leq p_A(x) + p_A(y)$$
.

The Minkowski functional is defined as usual:

 $q_A(x) := \inf\{\lambda : \lambda > 0, x \in \lambda A\}$

we have $q_A(x)^p = p_A(x)$ for every $x \in X$ and q_A is a quasinorm : $q_A(x + y) \le 2^{(1/p)-1}(q_A(x) + q_A(x))$

Let A be a subset of a vector space X and $p \in (0, 1]$. A is said to be p-convex if for every $x, y \in A$ and $\tau, \mu \in [0, 1]$ such that $\tau^p + \mu^p = 1$ we have $\tau x + \mu y \in A$.

If A is p-convex and absorbent, its p-Minkowski functional is

 $p_A(x) := \inf\{\lambda^p : \lambda > 0, x \in \lambda A\}$

 p_A is a *p*-seminorm, i.e we have

•
$$p_A(\lambda x) = |\lambda|^p p_A(x)$$

•
$$p_A(x+y) \leq p_A(x) + p_A(y)$$
.

The Minkowski functional is defined as usual:

 $q_A(x) := \inf\{\lambda : \lambda > 0, x \in \lambda A\}$

we have $q_A(x)^p = p_A(x)$ for every $x \in X$ and q_A is a quasinorm : $q_A(x + y) \le 2^{(1/p)-1}(q_A(x) + q_A(y))$.

Let A be a subset of a vector space X and $p \in (0, 1]$. A is said to be p-convex if for every $x, y \in A$ and $\tau, \mu \in [0, 1]$ such that $\tau^p + \mu^p = 1$ we have $\tau x + \mu y \in A$.

If A is p-convex and absorbent, its p-Minkowski functional is

 $p_A(x) := \inf\{\lambda^p : \lambda > 0, x \in \lambda A\}$

 p_A is a *p*-seminorm, i.e we have

•
$$p_A(\lambda x) = |\lambda|^p p_A(x)$$

•
$$p_A(x+y) \leq p_A(x) + p_A(y)$$
.

The Minkowski functional is defined as usual:

 $q_A(x) := \inf\{\lambda : \lambda > 0, x \in \lambda A\}$

we have $q_A(x)^p = p_A(x)$ for every $x \in X$ and q_A is a quasinorm : $q_A(x + y) \le 2^{(1/p)-1}(q_A(x) + q_A(y))$.

p-convex sets

J. Orihuela

p-convex functions

Definition

A real function $\phi : X \longrightarrow \mathbb{R}$ is said to be p-convex for $p \in (0, 1]$ if

 $\phi(\tau \mathbf{x} + \mu \mathbf{y}) \le \tau \phi(\mathbf{x}) + \mu \phi(\mathbf{y})$

whenever $\tau \geq 0$, $\mu \geq 0$ and $\tau^p + \mu^p = 1$.

- the epigraph of ϕ is *p*-convex if and only if ϕ is *p*-convex;
- if φ is convex and φ(0) = 0, then φ is p-convex for every p∈ (0, 1];
- if φ_p is p-convex, φ_q is q-convex, with 0 both of them are non-negative, then φ_p + φ_q is p-convex;
- if φ : X → ℝ is p-convex for some 0 from above in a neighbourhood of x ∈ X, then φ is locally Lipschitz at x
- $\tau^{\rho}\mu^{\rho}(\phi(x) \phi(y))^2 \leq \tau^{\rho}\phi(x)^2 + \mu^{\rho}\phi(y)^2 \phi(\tau x + \mu y)^2$ whenever $\tau^{\rho} + \mu^{\rho} = 1$ and $\tau \geq 0, \mu \geq 0$.

p-convex functions

Definition

A real function $\phi : X \longrightarrow \mathbb{R}$ is said to be p-convex for $p \in (0, 1]$ if

 $\phi(\tau \mathbf{x} + \mu \mathbf{y}) \le \tau \phi(\mathbf{x}) + \mu \phi(\mathbf{y})$

whenever $\tau \geq 0$, $\mu \geq 0$ and $\tau^p + \mu^p = 1$.

- the epigraph of φ is p-convex if and only if φ is p-convex;
- if φ is convex and φ(0) = 0, then φ is p-convex for every p∈ (0, 1];
- if φ_p is *p*-convex, φ_q is *q*-convex, with 0 both of them are non-negative, then φ_p + φ_q is *p*-convex;
- if φ : X → ℝ is p-convex for some 0 from above in a neighbourhood of x ∈ X, then φ is locally Lipschitz at x

•
$$\tau^{\rho}\mu^{\rho}(\phi(x) - \phi(y))^2 \leq \tau^{\rho}\phi(x)^2 + \mu^{\rho}\phi(y)^2 - \phi(\tau x + \mu y)^2$$

whenever $\tau^{\rho} + \mu^{\rho} = 1$ and $\tau \geq 0, \mu \geq 0$.

Definition (p-distance)

Let C be a w^{*}-compact and p-convex subset of X^{**} , 0 ,

$$\varphi(x) := \inf_{\mathbf{c}^{**} \in \mathbf{C}} \{ \sup\{ | \langle x - \mathbf{c}^{**}, \mathbf{z}^* \rangle | : \mathbf{z}^* \in \mathbf{B}_{X^*} \cap \mathbf{Z} \} \}$$

 φ is a p-convex, $\sigma(X, Z)$ -lower semicontinuous and 1-Lipschitz map from X to $[0, +\infty)$.

Definition

A family $\mathcal{B} := \{B_i : i \in I\}$ of subsets in the normed space X is said to be p-isolated for the $\sigma(X, Z)$ -topology if for every $i \in I$

$$B_i \cap \overline{\operatorname{co}_{\rho}\{B_j : j \neq i, j \in I\}}^{\sigma(X,Z)} = \emptyset.$$

(日) (四) (日) (日) (日)

Definition (p-distance)

Let C be a w^{*}-compact and p-convex subset of X^{**} , 0 ,

$$\varphi(\mathbf{x}) := \inf_{\mathbf{c}^{**} \in \mathbf{C}} \{ \sup\{ | \langle \mathbf{x} - \mathbf{c}^{**}, \mathbf{z}^* \rangle | : \mathbf{z}^* \in \mathbf{B}_{\mathbf{X}^*} \cap \mathbf{Z} \} \}$$

 φ is a p-convex, $\sigma(X, Z)$ -lower semicontinuous and 1-Lipschitz map from X to $[0, +\infty)$.

Definition

A family $\mathcal{B} := \{B_i : i \in I\}$ of subsets in the normed space X is said to be p-isolated for the $\sigma(X, Z)$ -topology if for every $i \in I$

$$B_i \cap \overline{\operatorname{co}_{\rho}\{B_j : j \neq i, j \in I\}}^{\sigma(X,Z)} = \emptyset.$$

(日)

Let $\mathcal{B} := \{B_i \ i \in I\}$ be an uniformly bounded family of subsets of *X*. The following are equivalent:

• The family \mathcal{B} is p-isolated for the $\sigma(X, Z)$ -topology; i.e.

$$B_i \cap \overline{\operatorname{co}_p\{B_j : j \neq i, j \in I\}}^{\sigma(X,Z)} = \emptyset.$$

for every $i \in I$

There exists a family L := {φ_i : X → [0, +∞) : i ∈ I} of p-convex and σ(X, Z)-lower semicontinuous functions such that for every i ∈ I

$$\{x \in X : \varphi_i(x) > 0\} \cap \bigcup_{i \in I} B_i = B_i.$$

Let $\mathcal{B} := \{B_i \ i \in I\}$ be an uniformly bounded family of subsets of *X*. The following are equivalent:

• The family \mathcal{B} is p-isolated for the $\sigma(X, Z)$ -topology; i.e.

$$B_i \cap \overline{\operatorname{co}_p}\{B_j : j \neq i, j \in I\}^{\sigma(X,Z)} = \emptyset.$$

for every $i \in I$

2 There exists a family L := {φ_i : X → [0, +∞) : i ∈ I} of p-convex and σ(X, Z)-lower semicontinuous functions such that for every i ∈ I

$$\{x \in X : \varphi_i(x) > 0\} \cap \bigcup_{j \in I} B_j = B_j.$$

イロト イヨト イヨト イ

Lemma (Decomposition lemma)

Let \mathcal{B} be a uniformly bounded and isolated family of sets for the $\sigma(X, Z)$ topology. Then for every $B \in \mathcal{B}$ we can write

$$B = \bigcup_{n=1}^{\infty} B_n$$

in such a way that, for every $n \in \mathbb{N}$ fixed, the family

$$\{B_n: B \in \mathcal{B}\}$$

is $\sigma(X, Z)$ -q-isolated whenever $q < \frac{\log 2}{\log 4n}$.

Let $\mathcal{B} = \{B_i : i \in I\}$ be a uniformly bounded and p-isolated family of subsets of X for the $\sigma(X, Z)$ topology. Then there is a norm-equivalent $\sigma(X, Z)$ -lower semicontinuous p-norm $q_{\mathcal{B}}(\cdot)$ on X such that for every $i_0 \in I$, every $x \in B_{i_0}$, and every sequence $(x_n)_{n \in \mathbb{N}}$ in X the condition

$$\lim_{n\to+\infty} [2q_{\mathcal{B}}^2(x_n)+2q_{\mathcal{B}}^2(x)-q_{\mathcal{B}}^2(x+x_n)]=0,$$

implies that:

• there exists $n_0 \in \mathbb{N}$ such that $x_n, \frac{x_n+x}{2^{1/p}} \notin \overline{\operatorname{co}_p}\{B_i : i \neq i_0, i \in I\}^{\sigma(X,Z)}$ for every $n \ge n_0$;

If or every positive δ there is $n_{\delta} \in \mathbb{N}$ such that $x_n \in \overline{\operatorname{co}(B_{i_0} \cup \{0\}) + B(0, \delta)}^{\sigma(X, Z)} \text{ whenever } n \ge n_{\delta}$

Let $\mathcal{B} = \{B_i : i \in I\}$ be a uniformly bounded and p-isolated family of subsets of X for the $\sigma(X, Z)$ topology. Then there is a norm-equivalent $\sigma(X, Z)$ -lower semicontinuous p-norm $q_{\mathcal{B}}(\cdot)$ on X such that for every $i_0 \in I$, every $x \in B_{i_0}$, and every sequence $(x_n)_{n \in \mathbb{N}}$ in X the condition

$$\lim_{n\to+\infty} [2q_{\mathcal{B}}^2(x_n)+2q_{\mathcal{B}}^2(x)-q_{\mathcal{B}}^2(x+x_n)]=0,$$

implies that:

there exists n₀ ∈ N such that x_n, x_{n+x/2^{1/p}} ∉ co_p{B_i : i ≠ i₀, i ∈ I}^{σ(X,Z)} for every n ≥ n₀;
for every positive δ there is n_δ ∈ N such that x_n ∈ co(B_{i0} ∪ {0}) + B(0, δ)^{σ(X,Z)} whenever n ≥ n_δ.

Let $\mathcal{B} = \{B_i : i \in I\}$ be a uniformly bounded and p-isolated family of subsets of X for the $\sigma(X, Z)$ topology. Then there is a norm-equivalent $\sigma(X, Z)$ -lower semicontinuous p-norm $q_{\mathcal{B}}(\cdot)$ on X such that for every $i_0 \in I$, every $x \in B_{i_0}$, and every sequence $(x_n)_{n \in \mathbb{N}}$ in X the condition

$$\lim_{n\to+\infty} [2q_{\mathcal{B}}^2(x_n)+2q_{\mathcal{B}}^2(x)-q_{\mathcal{B}}^2(x+x_n)]=0,$$

implies that:

• there exists $n_0 \in \mathbb{N}$ such that $x_n, \frac{x_n+x}{2^{1/p}} \notin \overline{\operatorname{co}_p\{B_i : i \neq i_0, i \in I\}}^{\sigma(X,Z)}$ for every $n \ge n_0$; • for every positive δ there is $n_\delta \in \mathbb{N}$ such that $x_n \in \overline{\operatorname{co}(B_{i_0} \cup \{0\}) + B(0, \delta)}^{\sigma(X,Z)}$ whenever $n \ge n_\delta$.

Let $\mathcal{B} = \{B_i : i \in I\}$ be a uniformly bounded and p-isolated family of subsets of X for the $\sigma(X, Z)$ topology. Then there is a norm-equivalent $\sigma(X, Z)$ -lower semicontinuous p-norm $q_{\mathcal{B}}(\cdot)$ on X such that for every $i_0 \in I$, every $x \in B_{i_0}$, and every sequence $(x_n)_{n \in \mathbb{N}}$ in X the condition

$$\lim_{n\to+\infty} [2q_{\mathcal{B}}^2(x_n)+2q_{\mathcal{B}}^2(x)-q_{\mathcal{B}}^2(x+x_n)]=0,$$

implies that:

• there exists $n_0 \in \mathbb{N}$ such that $x_n, \frac{x_n+x}{2^{1/p}} \notin \overline{\operatorname{co}_p\{B_i : i \neq i_0, i \in I\}}^{\sigma(X,Z)}$ for every $n \ge n_0$;

イロト 不得 とくほ とくほ とうほ

If or every positive δ there is n_δ ∈ ℕ such that $x_n ∈ \overline{co(B_{i_0} ∪ \{0\}) + B(0, \delta)}^{\sigma(X,Z)} \text{ whenever } n ≥ n_δ.$

- Fix isolated families B_n for the σ(X, Z)-topology such that for every x ∈ X and every ε > 0 there is n ∈ N and some set B ∈ B_n with x ∈ B and || · || − diam(B) < ε.
- {B_n}_{n∈ℕ} are assumed to be p_n-isolated for some sequence p_n ∈ (0, 1] by decomposition lemma.
- Consider the *p_n*-norms *q_{B_n}(·)* constructed using the p-Localization Theorem

•
$$F_{\mathcal{B}}^{2}(x) := \|x\|_{Z}^{2} + \sum_{n=1}^{+\infty} \frac{1}{\zeta_{n}^{2p_{n}} 2^{n}} q_{\mathcal{B}_{n}}^{2}(x)$$
 where $q_{\mathcal{B}_{n}}(x) \leq \zeta_{n}^{p_{n}} \|x\|^{p_{n}} \leq \zeta_{n}^{p_{n}} \max\{1, \|x\|\}.$

- If $\lim_{n \to +\infty} [2F_{\mathcal{B}}^2(x_n) + 2F_{\mathcal{B}}^2(x) F_{\mathcal{B}}^2(x + x_n)] = 0$ then $\lim_{n \to +\infty} [2q_{\mathcal{B}_m}^2(x_n) + 2q_{\mathcal{B}_m}^2(x) - q_{\mathcal{B}_m}^2(x + x_n)] = 0$ for all m.
- If $\epsilon > 0$, $m \in \mathbb{N}$ and $B_0 \in \mathcal{B}_m$ with $x \in B_0 \subseteq x + \frac{\epsilon}{2}B_X$ there exists $n_{\frac{\epsilon}{2}}$ such that $x_n \in \overline{\operatorname{co}(B_0 \cup \{0\}) + B(0, \frac{\epsilon}{2})}^{\sigma(X,Z)}$ whenever $n \ge n_{\frac{\epsilon}{2}}$.

<ロ> <四> <四> <四> <三</td>

• $\|\cdot\|$ dist $(x_n, I_x) \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$

• there is $r_{(n,\epsilon)} \in [0,1]$ such that $||x_n - r_{(n,\epsilon)}x|| \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$.

- By induction we select integers $n_1 < n_2 < \cdots < n_k < \cdots$ such that $||x_{n_k} r_{(n_k, 1/k)}x|| \le \frac{1}{k}$.
- By compactness there is a sequence of integers $k_1 < k_2 < \cdots < k_j < \cdots$ such that $\lim_{j \to +\infty} r_{(n_{k_i}, 1/k_j)} = r \in [0, 1]$ and $\|\cdot\| \lim_{j \to +\infty} x_{n_{k_j}} = rx$
- If $||x||_Z = 1$ we also have $\lim_n ||x_n||_Z = ||x||_Z = 1$ and it follows that r = 1, so we have found a subsequence (x_{n_j}) of the given sequence (x_n) which norm converges to x
- Since the reasoning is valid for every subsequence too, the proof is over

イロト イポト イヨト イヨト

• $\|\cdot\|\operatorname{dist}(x_n, I_x) \leq \epsilon$ for $n \geq n_{\frac{\epsilon}{2}}$

- there is $r_{(n,\epsilon)} \in [0,1]$ such that $||x_n r_{(n,\epsilon)}x|| \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$.
- By induction we select integers $n_1 < n_2 < \cdots < n_k < \cdots$ such that $||x_{n_k} r_{(n_k, 1/k)}x|| \le \frac{1}{k}$.
- By compactness there is a sequence of integers $k_1 < k_2 < \cdots < k_j < \cdots$ such that $\lim_{j \to +\infty} r_{(n_{k_i}, 1/k_j)} = r \in [0, 1]$ and $\|\cdot\| \lim_{j \to +\infty} x_{n_{k_j}} = rx$
- If $||x||_Z = 1$ we also have $\lim_n ||x_n||_Z = ||x||_Z = 1$ and it follows that r = 1, so we have found a subsequence (x_{n_j}) of the given sequence (x_n) which norm converges to x
- Since the reasoning is valid for every subsequence too, the proof is over

- $\|\cdot\|$ dist $(x_n, I_x) \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$
- there is $r_{(n,\epsilon)} \in [0,1]$ such that $||x_n r_{(n,\epsilon)}x|| \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$.
- By induction we select integers $n_1 < n_2 < \cdots < n_k < \cdots$ such that $||x_{n_k} r_{(n_k, 1/k)}x|| \le \frac{1}{k}$.
- By compactness there is a sequence of integers $k_1 < k_2 < \cdots < k_j < \cdots$ such that $\lim_{j \to +\infty} r_{(n_{k_i}, 1/k_j)} = r \in [0, 1]$ and $\|\cdot\| \lim_{j \to +\infty} x_{n_{k_j}} = rx$
- If $||x||_Z = 1$ we also have $\lim_n ||x_n||_Z = ||x||_Z = 1$ and it follows that r = 1, so we have found a subsequence (x_{n_j}) of the given sequence (x_n) which norm converges to x
- Since the reasoning is valid for every subsequence too, the proof is over

- $\|\cdot\|$ dist $(x_n, I_x) \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$
- there is $r_{(n,\epsilon)} \in [0,1]$ such that $||x_n r_{(n,\epsilon)}x|| \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$.
- By induction we select integers $n_1 < n_2 < \cdots < n_k < \cdots$ such that $||x_{n_k} r_{(n_k, 1/k)}x|| \le \frac{1}{k}$.
- By compactness there is a sequence of integers $k_1 < k_2 < \cdots < k_j < \cdots$ such that $\lim_{j \to +\infty} r_{(n_{k_j}, 1/k_j)} = r \in [0, 1]$ and $\|\cdot\| \lim_{j \to +\infty} x_{n_{k_j}} = rx$
- If $||x||_Z = 1$ we also have $\lim_n ||x_n||_Z = ||x||_Z = 1$ and it follows that r = 1, so we have found a subsequence (x_{n_j}) of the given sequence (x_n) which norm converges to x
- Since the reasoning is valid for every subsequence too, the proof is over

イロト イポト イヨト イヨト 三日

- $\|\cdot\|\operatorname{dist}(x_n, I_x) \leq \epsilon$ for $n \geq n_{\frac{\epsilon}{2}}$
- there is $r_{(n,\epsilon)} \in [0,1]$ such that $||x_n r_{(n,\epsilon)}x|| \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$.
- By induction we select integers $n_1 < n_2 < \cdots < n_k < \cdots$ such that $||x_{n_k} r_{(n_k, 1/k)}x|| \le \frac{1}{k}$.
- By compactness there is a sequence of integers $k_1 < k_2 < \cdots < k_j < \cdots$ such that $\lim_{j \to +\infty} r_{(n_{k_j}, 1/k_j)} = r \in [0, 1]$ and $\|\cdot\| \lim_{j \to +\infty} x_{n_{k_j}} = rx$
- If $||x||_Z = 1$ we also have $\lim_n ||x_n||_Z = ||x||_Z = 1$ and it follows that r = 1, so we have found a subsequence (x_{n_j}) of the given sequence (x_n) which norm converges to x
- Since the reasoning is valid for every subsequence too, the proof is over

イロン 不得 とくほ とくほ とうほ

- $\|\cdot\|$ dist $(x_n, I_x) \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$
- there is $r_{(n,\epsilon)} \in [0,1]$ such that $||x_n r_{(n,\epsilon)}x|| \le \epsilon$ for $n \ge n_{\frac{\epsilon}{2}}$.
- By induction we select integers $n_1 < n_2 < \cdots < n_k < \cdots$ such that $||x_{n_k} r_{(n_k, 1/k)}x|| \le \frac{1}{k}$.
- By compactness there is a sequence of integers $k_1 < k_2 < \cdots < k_j < \cdots$ such that $\lim_{j \to +\infty} r_{(n_{k_j}, 1/k_j)} = r \in [0, 1]$ and $\|\cdot\| \lim_{j \to +\infty} x_{n_{k_j}} = rx$
- If $||x||_Z = 1$ we also have $\lim_n ||x_n||_Z = ||x||_Z = 1$ and it follows that r = 1, so we have found a subsequence (x_{n_j}) of the given sequence (x_n) which norm converges to x
- Since the reasoning is valid for every subsequence too, the proof is over

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Haydon's lemma + Burke, Kubis and Todorcevic

Lemma

Let X be a topological space, S be a set and $\varphi_s, \psi_s : X \to [0, +\infty)$ lower semicontinuous functions such that $\sup_{s \in S}(\varphi_s(x) + \psi_s(x)) < +\infty$ for every $x \in X$. Define

$$\varphi(x) = \sup_{s \in S} \varphi_s(x), \quad \theta_m(x) = \sup_{s \in S} (\varphi_s(x) + 2^{-m} \psi_s(x)),$$

and $\theta(x) = \sum_{m \in \mathbb{N}} 2^{-m} \theta_m(x)$. Assume further that $\{x_{\sigma} : \sigma \in \Sigma\}$ is a net converging to $x \in X$ and $\theta(x_{\sigma}) \to \theta(x)$. Then there exists a finer net $\{x_{\gamma}\}_{\gamma \in \Gamma}$ and a net $\{i_{\gamma}\}_{\gamma \in \Gamma} \subseteq S$ such that

$$\lim_{\gamma\in\Gamma}\varphi_{i_{\gamma}}(x_{\gamma})=\lim_{\gamma\in\Gamma}\varphi_{i_{\gamma}}(x)=\lim_{\gamma\in\Gamma}\varphi(x_{\gamma})=\sup_{s\in\mathcal{S}}\varphi_{s}(x)$$

and

$$\lim_{\gamma\in\Gamma}(\psi_{i_{\gamma}}(x_{\gamma})-\psi_{i_{\gamma}}(x))=0.$$

Let $\mathcal{B} := \{B_i : i \in I\}$ be an uniformly bounded and p-isolated family of subsets of X for the $\sigma(X, Z)$ -topology and some $p \in (0, 1]$. Then there is an equivalent $\sigma(X, Z)$ -lower semicontinuous quasinorm, with p-power a p-norm, $\|\cdot\|_{\mathcal{B}}$ on X such that: for every net $\{x_{\alpha} : \alpha \in A\}$ and x in X with $x \in B_{i_0}$ for $i_0 \in I$, the conditions $\sigma(X, Z) - \lim_{\alpha} x_{\alpha} = x$ and $\lim_{\alpha} \|x_{\alpha}\|_{\mathcal{B}} = \|x\|_{\mathcal{B}}$ imply that

• there exists
$$\alpha_0 \in A$$
 such that x_α is not in $\overline{\operatorname{co}_p\{B_i \ i \neq i_0, \ i \in I\}}^{\sigma(X,Z)}$ for $\alpha \ge \alpha_0$;

2 for every positive δ there exists $\alpha_{\delta} \in A$ such that

$$x, x_{lpha} \in \overline{\operatorname{co}(B_{i_0} \cup \{0\}) + B(0, \delta)}^{\sigma(X, Z)}$$

ヘロマ ヘビマ ヘビマ

whenever $\alpha \geq \alpha_{\delta}$.

- We can construct norm-equivalent and σ(X, Z)-lower semicontinuous F-norms F₁ and F₂ such that F₁ has the LUR property and F₂ the Kadec property.
- Then we define

$$\|\cdot\|_1(x)^2 := F_1(\cdot)^2 + F_2(\cdot)^2$$

which is an equivalent $\sigma(X, Z)$ -lower semicontinuous *F*-norm which has both Kadec and the LUR property.

- $\lim_{n\to\infty} [2\|x\|_1^2 + 2\|x_n\|_1^2 \|x + x_n\|_1^2] = 0$ is equivalent to $\lim_{n\to\infty} [2F_i(x)^2 + 2F_i(x_n)^2 F_i(x + x_n)^2] = 0$ for i = 1, 2, and LUR property of F_1 is translated to $\|\cdot\|_1$.
- If {x_α : α ∈ (A, ≻)} is a net in X which converges to x in the topology σ(X, Z) and lim_{α∈A} ||x_α||₁ = ||x||₁ it follows that lim_{α∈A} F²_i(x_α) = F²_i(x) for i = 1, 2. Thus Kadec property of F₂ is translated to || · ||₁.

- We can construct norm-equivalent and σ(X, Z)-lower semicontinuous F-norms F₁ and F₂ such that F₁ has the LUR property and F₂ the Kadec property.
- Then we define

$$\|\cdot\|_1(x)^2 := F_1(\cdot)^2 + F_2(\cdot)^2$$

which is an equivalent $\sigma(X, Z)$ -lower semicontinuous *F*-norm which has both Kadec and the LUR property.

• $\lim_{n\to\infty} [2\|x\|_1^2 + 2\|x_n\|_1^2 - \|x + x_n\|_1^2] = 0$ is equivalent to $\lim_{n\to\infty} [2F_i(x)^2 + 2F_i(x_n)^2 - F_i(x + x_n)^2] = 0$ for i = 1, 2, and LUR property of F_1 is translated to $\|\cdot\|_1$.

If {x_α : α ∈ (A, ≻)} is a net in X which converges to x in the topology σ(X, Z) and lim_{α∈A} ||x_α||₁ = ||x||₁ it follows that lim_{α∈A} F²_i(x_α) = F²_i(x) for i = 1, 2. Thus Kadec property of F₂ is translated to || · ||₁.

- We can construct norm-equivalent and σ(X, Z)-lower semicontinuous F-norms F₁ and F₂ such that F₁ has the LUR property and F₂ the Kadec property.
- Then we define

$$\|\cdot\|_1(x)^2 := F_1(\cdot)^2 + F_2(\cdot)^2$$

which is an equivalent $\sigma(X, Z)$ -lower semicontinuous *F*-norm which has both Kadec and the LUR property.

- $\lim_{n\to\infty} [2\|x\|_1^2 + 2\|x_n\|_1^2 \|x + x_n\|_1^2] = 0$ is equivalent to $\lim_{n\to\infty} [2F_i(x)^2 + 2F_i(x_n)^2 F_i(x + x_n)^2] = 0$ for i = 1, 2, and LUR property of F_1 is translated to $\|\cdot\|_1$.
- If {x_α : α ∈ (A, ≻)} is a net in X which converges to x in the topology σ(X, Z) and lim_{α∈A} ||x_α||₁ = ||x||₁ it follows that lim_{α∈A} F²_i(x_α) = F²_i(x) for i = 1, 2. Thus Kadec property of F₂ is translated to || · ||₁.

- We can construct norm-equivalent and σ(X, Z)-lower semicontinuous F-norms F₁ and F₂ such that F₁ has the LUR property and F₂ the Kadec property.
- Then we define

$$\|\cdot\|_1(x)^2 := F_1(\cdot)^2 + F_2(\cdot)^2$$

which is an equivalent $\sigma(X, Z)$ -lower semicontinuous *F*-norm which has both Kadec and the LUR property.

• $\lim_{n\to\infty} [2||x||_1^2 + 2||x_n||_1^2 - ||x + x_n||_1^2] = 0$ is equivalent to $\lim_{n\to\infty} [2F_i(x)^2 + 2F_i(x_n)^2 - F_i(x + x_n)^2] = 0$ for i = 1, 2, and LUR property of F_1 is translated to $\|\cdot\|_1$.

If {x_α : α ∈ (A, ≻)} is a net in X which converges to x in the topology σ(X, Z) and lim_{α∈A} ||x_α||₁ = ||x||₁ it follows that lim_{α∈A} F²_i(x_α) = F²_i(x) for i = 1, 2. Thus Kadec property of F₂ is translated to || · ||₁.

- We can construct norm-equivalent and σ(X, Z)-lower semicontinuous F-norms F₁ and F₂ such that F₁ has the LUR property and F₂ the Kadec property.
- Then we define

$$\|\cdot\|_1(x)^2 := F_1(\cdot)^2 + F_2(\cdot)^2$$

which is an equivalent $\sigma(X, Z)$ -lower semicontinuous *F*-norm which has both Kadec and the LUR property.

- $\lim_{n\to\infty} [2||x||_1^2 + 2||x_n||_1^2 ||x + x_n||_1^2] = 0$ is equivalent to $\lim_{n\to\infty} [2F_i(x)^2 + 2F_i(x_n)^2 F_i(x + x_n)^2] = 0$ for i = 1, 2, and LUR property of F_1 is translated to $\|\cdot\|_1$.
- If {x_α : α ∈ (A, ≻)} is a net in X which converges to x in the topology σ(X, Z) and lim_{α∈A} ||x_α||₁ = ||x||₁ it follows that lim_{α∈A} F²_i(x_α) = F²_i(x) for i = 1,2. Thus Kadec property of F₂ is translated to || · ||₁.

THANK YOU VERY MUCH !!!!!

