One side James' Compactness Theorem

J. Orihuela ${ }^{1}$

${ }^{1}$ Department of Mathematics
University of Murcia

Topological Methods in Analysis and Optimization. On the occasion of the 70th birthday of Prof. Petar Kenderov

A birthday Theorem

- P. Kenderov 2003
- J. Lindenstrauss 2006
- M. Valdivia 2010
- W. Schachermayer 2010
- J. Borwein 2011
- I. Karatzas 2012
- F. Delbaen 2012
- A. Defant 2013
- P. Kenderov 2013
- N. Ghoussoub 2013

The coauthors

- M. Ruiz Galán and J.O. A coercive and nonlinear James's weak compactness theorem Nonlinear Analysis 75 (2012) 598-611.
- M. Ruiz Galán and J.O. Lebesgue Property for Convex Risk Meausures on Orlicz Spaces Math. Finan. Econ. 6(1) (2012) 15-35.
- B. Cascales, M. Ruiz Gal'an and J.O. Compactness, Optimality and Risk Computational and Analytical Mathematics. Conference in honour of J.M Borwein 60'th birthday. Chapter 10, Springer Verlag 2013, 153-208.
- B. Cascales and J. O. One side James' Theorem Preprint 2013.

Contents

- Compactness and Optimization.
- Variational problems and reflexivity.
- One-side James' Theorem.
- Conic Godefroy's Theorem.
- Dual variational problems.

One-Perturbation Variational Principle

Compact domain \Rightarrow Isc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and $\alpha: X \rightarrow(-\infty,+\infty]$ proper, Isc map s.t. $\{\alpha \leq c\}$ is compact for all $c \in \mathbb{R}$. Then for any proper Isc map $f: X \rightarrow(-\infty,+\infty]$ bounded from below, the function $\alpha+f$ attains its minimum.

Theorem (Borwein-Fabian-Revalski)

If X is metrizable and $\alpha: X \rightarrow(-\infty,+\infty]$ is a proper function such that for all bounded continuous function
$f: X \rightarrow(-\infty,+\infty]$, the function $\alpha+f$ attains its minimum, then α is a Isc map, bounded form below, whose sublevel sets $\{\alpha \leq c\}$ are all compact

CMS Books in Mathematics

Jonathan M. Borwein Qiji J. Zhu

Techniques of Variational

In a metric space X, the conditions imposed on the unique perturbation φ in Theorem 6.5.1 are also necessary.

Theorem 6.5.2 Let $\varphi: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper function on a metric space X. Suppose that for every bounded continuous function $f: X \rightarrow \mathbb{R}$, the function $f+\varphi$ attains its minimum. Then φ is a lsc function, bounded from below, whose sublevel sets are all compact.

Weak Compactness Theorem of R.C. James

Theorem
 A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

Theorem
A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K
R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972, G. Rodé 1981, G. Godefroy 1987, V. Fonf, J. Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem

Theorem

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K

Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K
R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972, G. Rodé 1981, G. Godefroy 1987, V. Fonf, J. Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...

The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E^{*}
- K is a closed convex set in the Banach space E
- $\iota_{K}(x)=0$ if $x \in K$ and $+\infty$ otherwise
- $x^{*} \in E^{*}$ attains its supremum on K at

- The minimization problem

on E for every $x^{*} \in E^{*}$ has always solution if and only if the set K is weakly compact
- When the minimization problem

The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E^{*}
- K is a closed convex set in the Banach space E
- $\iota_{K}(x)=0$ if $x \in K$ and $+\infty$ otherwise
- $x^{*} \in E^{*}$ attains its supremum on K at
$x_{0} \in K \Leftrightarrow \iota_{k}(y)-\iota_{K}\left(x_{0}\right) \geq x^{*}\left(y-x_{0}\right)$ for all $y \in E$

- The minimization problem

$\min \left\{\iota_{K}(\cdot)-x^{*}(\cdot)\right\}$

on E for every $x^{*} \in E^{*}$ has always solution if and only if the
set K is weakly compact

- When the minimization problem
on E has solution for all $x^{*} \in E^{*}$ and a fixed proper

The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E^{*}
- K is a closed convex set in the Banach space E
- $\iota_{K}(x)=0$ if $x \in K$ and $+\infty$ otherwise
- $x^{*} \in E^{*}$ attains its supremum on K at
$x_{0} \in K \Leftrightarrow \iota_{k}(y)-\iota_{K}\left(x_{0}\right) \geq x^{*}\left(y-x_{0}\right)$ for all $y \in E$
- The minimization problem

$$
\min \left\{\iota_{K}(\cdot)-x^{*}(\cdot)\right\}
$$

on E for every $x^{*} \in E^{*}$ has always solution if and only if the set K is weakly compact

- When the minimization problem

$$
\min \left\{\alpha(\cdot)+x^{*}(\cdot)\right\}
$$

on E has solution for all $x^{*} \in E^{*}$ and a fixed proper function $\alpha: E \rightarrow(-\infty,+\infty]$?

Minimizing $\left\{\alpha(x)+x^{*}(x): x \in E\right\}$

Theorem (M. Ruiz and J. O.)

Let E be a Banach space, $\alpha: E \rightarrow(-\infty,+\infty]$ proper, (lower semicontinuous) function with

$$
\lim _{\|x\| \rightarrow \infty} \frac{\alpha(x)}{\|x\|}=+\infty
$$

Suppose that there is $c \in \mathbb{R}$ such that the level set $\{\alpha \leq c\}$ fails to be (relatively) weakly compact.
that, the infimum
is not attained.

Minimizing $\left\{\alpha(x)+x^{*}(x): x \in E\right\}$

Theorem (M. Ruiz and J. O.)

Let E be a Banach space, $\alpha: E \rightarrow(-\infty,+\infty]$ proper, (lower semicontinuous) function with

$$
\lim _{\|x\| \rightarrow \infty} \frac{\alpha(x)}{\|x\|}=+\infty
$$

Suppose that there is $\boldsymbol{c} \in \mathbb{R}$ such that the level set $\{\alpha \leq c\}$ fails to be (relatively) weakly compact. Then there is $x^{*} \in E^{*}$ such that, the infimum

$$
\inf _{x \in E}\left\{\left\langle x, x^{*}\right\rangle+\alpha(x)\right\}
$$

is not attained.
(

$\{\alpha \leq c\}$ not w.c. $\Rightarrow \exists x^{*}: \inf _{E}\left\{x^{*}(\cdot)+\alpha(\cdot)\right\}$ not attained

Lemma
Let A be a bounded but not relatively weakly compact subset of the Banach space E. If $\left(a_{n}\right) \subset A$ is a sequence without weak cluster point in E,

```
with 0\leq\mp@subsup{\lambda}{n}{}\leq1 for all }n\in\mathbb{N}\mathrm{ and }\mp@subsup{\sum}{n=1}{\infty}\mp@subsup{\lambda}{n}{}=1\mathrm{ such
for all a\inA, we will have that }\mp@subsup{g}{0}{}+h\mathrm{ doest not attain its
```

minimum on A

Lemma

Let A be a bounded but not relatively weakly compact subset of the Banach space E. If $\left(a_{n}\right) \subset A$ is a sequence without weak cluster point in E, then there is $\left(x_{n}^{*}\right) \subset B_{E^{*}}, g_{0}=\sum_{n=1}^{\infty} \lambda_{n} x_{n}^{*}$ with $0 \leq \lambda_{n} \leq 1$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$ such that: for every $h \in I^{\infty}(A)$, with

$$
\liminf _{n} x_{n}^{*}(a) \leq h(a) \leq \limsup _{n} x_{n}^{*}(a)
$$

for all $a \in A$, we will have that $g_{0}+h$ doest not attain its minimum on A

Maximizing $\left\{x^{*}(x)-\alpha(x): x \in E\right\}$

Theorem (M. Ruiz, J. O. and J. Saint Raymond)

Let E be a Banach space, $\alpha: E \rightarrow(-\infty,+\infty]$ proper, lower semicontinuous function, then we have:

- If $\partial \alpha(E)=E^{*}$ then the level sets $\{\alpha \leq c\}$ are weakly compact for all $c \in \mathbb{R}$.
- If α has weakly compact level sets and the

Fenchel-Legendre conjugate α^{*} is finite, i.e.
$\sup \left\{x^{*}(x)-\alpha(x): x \in E\right\}<+\infty$ for all $x^{*} \in E^{*}$, then $\partial \alpha(E)=E^{*}$

Risk meausures

Definition

A monetary utility function is a concave non-decreasing map

$$
U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow[-\infty,+\infty)
$$

with $\operatorname{dom}(U)=\{X: U(X) \in \mathbb{R}\} \neq \emptyset$ and

$$
U(X+c)=U(X)+c, \text { for } X \in \mathbb{L}^{\infty}, c \in \mathbb{R}
$$

Defining $\rho(X)=-U(X)$ the above definition of monetary utility function yields the definition of a convex risk measure.Both U, ρ are called coherent if $U(0)=0, U(\lambda X)=\lambda U(X)$ for all
$\lambda>0, X \in \mathbb{L}^{\infty}$

is ondor seppertially continutus $\Leftrightarrow\left|\hat{x}_{n}\right| \leq Z \quad \forall_{n} \quad \underline{x}_{n} \xrightarrow{a s} \underline{x}$

- phas debesguv pupenty

$$
\lim _{r \rightarrow \infty} p\left(\bar{\Xi}_{n}\right)=p(\underline{\underline{\nabla}})
$$

Representing risk measures

Theorem

A convex (resp. coherent) risk measure $\rho: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$ admits a representation

$$
\rho(X)=\sup \{\mu(-X)-\alpha(\mu): \mu \in \mathbf{b a}, \mu \geq 0 \mu(\Omega)=1\}
$$

(resp.
$\rho(X)=\sup \{\mu(-X): \mu \in \mathcal{S} \subseteq\{\mu \in \mathbf{b a}, \mu \geq 0, \mu(\Omega)=1\}\}$) If in addition ρ is $\sigma\left(\mathbb{L}^{\infty}, \mathbb{L}^{1}\right)$-lower semicontinuous we have:

$$
\left.\rho(X)=\sup \left\{\mathbb{E}_{\mathbb{Q}}(-X)-\alpha(\mathbb{Q}): \mathbb{Q} \ll \mathbb{P} \text { and } \mathbb{E}_{\mathbb{P}}(d \mathbb{Q} / d \mathbb{P})=1\right\}\right\}
$$

(resp.
$\rho(X)=\sup \left\{\mathbb{E}_{\mathbb{Q}}(-X)\right): \mathbb{Q} \in\left\{\mathbb{Q} \ll \mathbb{P}\right.$ and $\left.\left.\left.\mathbb{E}_{\mathbb{P}}(d \mathbb{Q} / d \mathbb{P})=1\right\}\right\}\right)$

Minimizing $\left\{\alpha(Y)+\mathbb{E}(X \cdot Y): Y \in \mathbb{L}^{1}\right\}$

Theorem (Jouini-Schachermayer-Touzi)

Let $U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$ be a monetary utility function with the
Fatou property and $U^{*}: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^{*} \rightarrow[0, \infty]$ its
Fenchel-Legendre transform. They are equivalent:
(1) $\left\{U^{*} \leq c\right\}$ is $\sigma\left(\mathbb{L}^{1}, \mathbb{L}^{\infty}\right)$-compact subset for all $c \in \mathbb{R}$
(2) For every $X \in \mathbb{L}^{\infty}$ the infimum in the equality

$$
U(X)=\inf _{Y \in \mathbb{L}^{1}}\left\{U^{*}(Y)+\mathbb{E}[X Y]\right\}
$$

is attained
(3) For every uniformly bounded sequence $\left(X_{n}\right)$ tending a.s. to X we have

$$
\lim _{n \rightarrow \infty} U\left(X_{n}\right)=U(X)
$$

Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures on Orlicz spaces)

Let $\rho(X)=\sup _{Y \in \mathbb{M}^{*} *}\left\{\mathbb{E}_{\mathbb{P}}[-X Y]-\alpha(Y)\right\}$ be a finite convex risk measure on L^{Ψ} with $\alpha:\left(\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^{*} \rightarrow(-\infty,+\infty]\right.$ a penalty function w^{*}-lower semicontinuos. T.F.A.E.:
(i) For all $c \in \mathbb{R}, \alpha^{-1}((-\infty, c])$ is a relatively weakly compact subset of $\mathbb{M}^{\Psi^{*}}(\Omega, \mathcal{F}, \mathbb{P})$.
(ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$
\rho(X)=\sup _{Y \in \mathbb{M}^{W^{*}}}\left\{\mathbb{E}_{\mathbb{P}}[-X Y]-\alpha(Y)\right\}
$$

is attained.
(iii) ρ is sequentially order continuous

Applications to nonlinear variational problems

Theorem (Reflexivity frame)

Let E be a real Banach space and

$$
\alpha: E \longrightarrow \mathbb{R} \cup\{+\infty\}
$$

a a function such that $\operatorname{dom}(\alpha)$ has nonempty interior and for all $x^{*} \in E^{*}$ there exists $x_{0} \in E$ with

$$
\alpha\left(x_{0}\right)+x^{*}\left(x_{0}\right)=\inf _{x \in E}\left\{\alpha(x)+x^{*}(x)\right\}
$$

Then E is reflexive.

$\left[\partial \alpha(E)=E^{*}\right] \Rightarrow E=E^{* *}$

- Fix an open ball $\boldsymbol{B} \subseteq \operatorname{dom}(\alpha)$
- $-\downarrow^{+\infty} B \rightarrow-1\left((-\infty)^{\sigma}\right)\left(E, E^{*}\right)$
- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$

has non void interior relative to B
- There is G onen in E such that
$\emptyset \neq B \cap G \subset B \cap{\overline{\alpha^{-1}}((-\infty, q])}^{\sigma\left(E, E^{*}\right)}$
${\overline{\alpha^{-1}((-\mathrm{inf}, q])}}^{\sigma\left(E, E^{*}\right)}$ weakly compact $\Rightarrow G$ contains an open relatively weakly compact ball
- B_{E} is weakly compact

$\left[\partial \alpha(E)=E^{*}\right] \Rightarrow E=E^{* *}$

- Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$
- $B=\bigcup_{p=1}^{+\infty} B \cap{\overline{\alpha^{-1}((-\infty, p])}}^{\sigma\left(E, E^{*}\right)}$
- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$

has non void interior relative to B

- There is G onen in F such that
$\emptyset \neq B \cap G \subset B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}$
${\overline{\alpha^{-1}((-\mathrm{inf}, q])}}^{\sigma\left(E, E^{*}\right)}$ weakly compact $\Rightarrow G$ contains an open relatively weakly compact ball
- B_{E} is weakly compact

$\left[\partial \alpha(E)=E^{*}\right] \Rightarrow E=E^{* *}$

- Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$
- $B=\bigcup_{p=1}^{+\infty} B \cap{\overline{\alpha^{-1}((-\infty, p])}}^{\sigma\left(E, E^{*}\right)}$
- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$
B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}
$$

has non void interior relative to B

- There is G open in E such that

- $\alpha^{-1}((-$ inf, $q])$
weakly compact $\Rightarrow G$ contains an
open relatively weakly compact ball
- B_{E} is weakly compact

$\left[\partial \alpha(E)=E^{*}\right] \Rightarrow E=E^{* *}$

- Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$
- $B=\bigcup_{p=1}^{+\infty} B \cap{\overline{\alpha^{-1}((-\infty, p])}}^{\sigma\left(E, E^{*}\right)}$
- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$
B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}
$$

has non void interior relative to B

- There is G open in E such that
$\emptyset \neq B \cap G \subset B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}$
open relatively weakly compact ball
- B_{E} is weakly compact

$\left[\partial \alpha(E)=E^{*}\right] \Rightarrow E=E^{* *}$

- Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$
- $B=\bigcup_{p=1}^{+\infty} B \cap{\overline{\alpha^{-1}((-\infty, p])}}^{\sigma\left(E, E^{*}\right)}$
- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$
B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}
$$

has non void interior relative to B

- There is G open in E such that
$\emptyset \neq B \cap G \subset B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}$
${\overline{\alpha^{-1}((-\inf , q])}}^{\sigma\left(E, E^{*}\right)}$ weakly compact $\Rightarrow G$ contains an open relatively weakly compact ball
- B_{E} is weakly compact

$\left[\partial \alpha(E)=E^{*}\right] \Rightarrow E=E^{* *}$

- Fix an open ball $B \subseteq \operatorname{dom}(\alpha)$
- $B=\bigcup_{p=1}^{+\infty} B \cap{\overline{\alpha^{-1}((-\infty, p])}}^{\sigma\left(E, E^{*}\right)}$
- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$
B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}
$$

has non void interior relative to B

- There is G open in E such that
$\emptyset \neq B \cap G \subset B \cap{\overline{\alpha^{-1}((-\infty, q])}}^{\sigma\left(E, E^{*}\right)}$
- ${\overline{\alpha^{-1}((-\mathrm{inf}, q])}}^{\sigma\left(E, E^{*}\right)}$ weakly compact $\Rightarrow G$ contains an open relatively weakly compact ball
- B_{E} is weakly compact

Jorollary 2.101 (Main Theorem on Monotone Operators). Let X be ! real, reflexive Banach space, and let $A: X \rightarrow X^{*}$ be a monotone, hemiconinuous, bounded, and coercive operator, and $b \in X^{*}$. Then a solution of the quation $A u=b$ exists.

Applications to nonlinear variational problems

Given an operator $\Phi: E \longrightarrow E^{*}$ it is said to be monotone provided that

$$
\text { for all } x, y \in E, \quad(\Phi x-\Phi y)(x-y) \geq 0
$$

and symmetric if for all $x, y \in E,<\Phi(x), y>=<\Phi(y), x\rangle$

Corollary

A real Banach space E is reflexive whenever there exists a monotone, symmetric and surjective operator $\Phi: E \longrightarrow E^{*}$

Question
Let E be a real Banach space and $\phi: E \rightarrow 2^{E^{*}}$ a monotone
multivalued map with non void interior domain.
$[\Phi(E)$

Applications to nonlinear variational problems

Given an operator $\Phi: E \longrightarrow E^{*}$ it is said to be monotone provided that

$$
\text { for all } x, y \in E, \quad(\Phi x-\Phi y)(x-y) \geq 0
$$

and symmetric if for all $x, y \in E,<\Phi(x), y>=<\Phi(y), x\rangle$

Corollary

A real Banach space E is reflexive whenever there exists a monotone, symmetric and surjective operator $\Phi: E \longrightarrow E^{*}$

Question

Let E be a real Banach space and $\Phi: E \rightarrow 2^{E^{*}}$ a monotone multivalued map with non void interior domain.

$$
\left[\Phi(E)=E^{*}\right] \Rightarrow E=E^{* *} ?
$$

Sup-limsup Theorem

Theorem (Simons)

Let Γ be a set and $\left(z_{n}\right)_{n}$ a uniformly bounded sequence in $\ell^{\infty}(\Gamma)$. If \wedge is a subset of Γ such that for every sequence of positive numbers $\left(\lambda_{n}\right)_{n}$ with $\sum_{n=1}^{\infty} \lambda_{n}=1$ there exists $b \in \Lambda$ such that

$$
\sup \left\{\sum_{n=1}^{\infty} \lambda_{n} z_{n}(y): y \in \Gamma\right\}=\sum_{n=1}^{\infty} \lambda_{n} z_{n}(b)
$$

then we have:
$\sup _{\lambda \in \Lambda} \limsup _{k \rightarrow \infty} x_{k}(\lambda)=\sup _{\gamma \in \Gamma} \lim _{k \rightarrow \infty} \sup _{k} x_{k}(\gamma)$

Sup-limsup Theorem

Theorem (Simons)

Let Γ be a set and $\left(z_{n}\right)_{n}$ a uniformly bounded sequence in $\ell^{\infty}(\Gamma)$. If \wedge is a subset of Γ such that for every sequence of positive numbers $\left(\lambda_{n}\right)_{n}$ with $\sum_{n=1}^{\infty} \lambda_{n}=1$ there exists $b \in \Lambda$ such that

$$
\sup \left\{\sum_{n=1}^{\infty} \lambda_{n} z_{n}(y): y \in \Gamma\right\}=\sum_{n=1}^{\infty} \lambda_{n} z_{n}(b)
$$

then we have:

$$
\sup _{\lambda \in \Lambda} \limsup _{k \rightarrow \infty} x_{k}(\lambda)=\sup _{\gamma \in \Gamma} \limsup _{k \rightarrow \infty} x_{k}(\gamma)
$$

Weak Compactness through Sup-limsup Theorem

Theorem

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:
(1) K is weakly compact.
(2) For every sequence $\left(x_{n}^{*}\right) \subset B_{E^{*}}$ we have

$$
\sup _{k \in K}\left\{\limsup _{n \rightarrow \infty} x_{n}^{*}(k)\right\}=\sup _{\kappa \in \bar{K}^{w^{*}}}\left\{\limsup _{n \rightarrow \infty} x_{n}^{*}(\kappa)\right\}
$$

Sup-limsup Theorem \Rightarrow Compactness

- If K is not weakly compact there is $x_{0}^{* *} \in \bar{K}^{W^{*}} \subset E^{* *}$ with $x_{0}^{* *} \notin E$
- The Hahn Banach Theorem provide us $x^{* * *} \in B_{E^{* * *}} \cap E^{-}$ with $x^{* * *}\left(x_{0}^{* *}\right)=\alpha>0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence $\left(x_{n}^{*}\right) \subset B_{E^{*}}$ such that:
(1) $\lim _{n \rightarrow \infty} x_{n}^{*}(x)=0$ for all $x \in E$
(2) $x_{n}^{*}\left(x_{0}^{* *}\right)>\alpha / 2$ for all $n \in \mathbb{N}$
- Then
$0=\sup _{k \in K}\left\{\lim _{n \rightarrow \infty} x_{n}^{*}(k)\right\}=\sup _{k \in K}\left\{\limsup _{n \rightarrow \infty} x_{n}^{*}(k)\right\} \geq$

Sup-limsup Theorem \Rightarrow Compactness

- If K is not weakly compact there is $x_{0}^{* *} \in \bar{K}^{\omega^{*}} \subset E^{* *}$ with $x_{0}^{* *} \notin E$
- The Hahn Banach Theorem provide us $x^{* * *} \in B_{E^{* * *}} \cap E^{\perp}$ with $x^{* * *}\left(x_{0}^{* *}\right)=\alpha>0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence $\left(x_{n}^{*}\right) \subset B_{E^{*}}$ such that: (1) $\lim _{n \rightarrow \infty} x_{n}^{*}(x)=0$ for all $x \in E$ $\alpha / 2$ for all $n \in \mathbb{N}$
- Then
$0=\sup _{k \in K}\left\{\lim _{n \rightarrow \infty} x_{n}^{*}(k)\right\}=\sup _{k \in K}\left\{\limsup _{n \rightarrow \infty} x_{n}^{*}(k)\right\}$

Sup-limsup Theorem \Rightarrow Compactness

- If K is not weakly compact there is $x_{0}^{* *} \in \bar{K}^{\omega^{*}} \subset E^{* *}$ with $x_{0}^{* *} \notin E$
- The Hahn Banach Theorem provide us $x^{* * *} \in B_{E^{* * *}} \cap E^{\perp}$ with $x^{* * *}\left(x_{0}^{* *}\right)=\alpha>0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence $\left(x_{n}^{*}\right) \subset B_{E^{*}}$ such that:
(1) $\lim _{n \rightarrow \infty} x_{n}^{*}(x)=0$ for all $x \in E$
(2) $x_{n}^{*}\left(x_{0}^{* *}\right)>\alpha / 2$ for all $n \in \mathbb{N}$
- Then
$0=\sup _{k \in K}\left\{\lim _{n \rightarrow \infty} x_{n}^{*}(k)\right\}=\sup _{k \in K}\left\{\limsup _{n \rightarrow \infty} x_{n}^{*}(k)\right\}$

Sup-limsup Theorem \Rightarrow Compactness

- If K is not weakly compact there is $x_{0}^{* *} \in \bar{K}^{\omega^{*}} \subset E^{* *}$ with $x_{0}^{* *} \notin E$
- The Hahn Banach Theorem provide us $x^{* * *} \in B_{E^{* * *}} \cap E^{\perp}$ with $x^{* * *}\left(x_{0}^{* *}\right)=\alpha>0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence $\left(x_{n}^{*}\right) \subset B_{E^{*}}$ such that:
(1) $\lim _{n \rightarrow \infty} x_{n}^{*}(x)=0$ for all $x \in E$
(2) $x_{n}^{*}\left(x_{0}^{* *}\right)>\alpha / 2$ for all $n \in \mathbb{N}$
- Then

$$
\begin{gathered}
0=\sup _{k \in K}\left\{\lim _{n \rightarrow \infty} x_{n}^{*}(k)\right\}=\sup _{k \in K}\left\{\limsup _{n \rightarrow \infty} x_{n}^{*}(k)\right\} \geq \\
=\sup _{v^{* *} \in \bar{K}^{w^{*}}}\left\{\limsup _{n \rightarrow \infty} x_{n}^{*}\left(v^{* *}\right)\right\}=\limsup _{n \rightarrow \infty} x_{n}^{*}\left(x_{0}^{* *}\right) \geq \alpha / 2>0
\end{gathered}
$$

Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:
(1) K is weakly compact.
(2) For any covering $K \subset \cup_{n=1}^{\infty} D_{n}$ by an increasing sequence of closed convex subsets $D_{n} \subset K$, we have

$$
{\overline{\cup_{n}^{\infty}}{\overline{D_{n}}}^{w^{*}}\|\cdot\|}^{\|}=\bar{K}^{w^{*}}
$$

- The proof uses Krein Milman and Bishop Phelps theorems

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space, $K \subset E^{*}$ be w^{*}-compact convex, $B \subset K$, TFAE:
(1) For any covering $B \subset \cup_{n=1}^{\infty} D_{n}$ by an increasing sequence of convex subsets $D_{n} \subset K$, we have

$$
\bigcup_{n=1}^{\infty}{\overline{D_{n}}}^{w^{*}}\|\cdot\|
$$

(2) $\sup _{f \in B}\left(\lim \sup _{k} f\left(x_{k}\right)\right)=\sup _{g \in K}\left(\lim \sup _{k} g\left(x_{k}\right)\right)$ for every sequence $\left\{x_{k}\right\} \subset B_{X}$
(3) $\sup _{f \in B}\left(\lim \sup _{k} f\left(x_{k}\right)\right)>\inf _{\sum \lambda-1, \lambda_{i} \geq 0}\left(\sup _{g \in K} g\left(\sum \lambda_{i} x_{i}\right)\right)$ for every sequence $\left\{x_{k}\right\} \subset B_{X}$

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space, $K \subset E^{*}$ be w^{*}-compact convex, $B \subset K$, TFAE:
(1) For any covering $B \subset \cup_{n=1}^{\infty} D_{n}$ by an increasing sequence of convex subsets $D_{n} \subset K$, we have

$$
\bigcup_{n=1}^{\infty}{\overline{D_{n}}}^{w^{*}}\|\cdot\|
$$

(2) $\sup _{f \in B}\left(\lim \sup _{k} f\left(x_{k}\right)\right)=\sup _{g \in K}\left(\lim \sup _{k} g\left(x_{k}\right)\right)$ for every sequence $\left\{x_{k}\right\} \subset B_{X}$.

for every sequence $\left\{x_{k}\right\} \subset B_{x}$

Fonf-Lindenstrauss = Simons

Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space, $K \subset E^{*}$ be w^{*}-compact convex, $B \subset K$, TFAE:
(1) For any covering $B \subset \cup_{n=1}^{\infty} D_{n}$ by an increasing sequence of convex subsets $D_{n} \subset K$, we have

$$
\bigcup_{n=1}^{\infty}{\overline{D_{n}}}^{w^{*}}\|\cdot\|
$$

(2) $\sup _{f \in B}\left(\lim \sup _{k} f\left(x_{k}\right)\right)=\sup _{g \in K}\left(\lim \sup _{k} g\left(x_{k}\right)\right)$ for every sequence $\left\{x_{k}\right\} \subset B_{X}$.
(3) $\sup _{f \in B}\left(\lim \sup _{k} f\left(x_{k}\right)\right) \geq \inf _{\sum \lambda_{i}=1, \lambda_{i} \geq 0}\left(\sup _{g \in K} g\left(\sum \lambda_{i} x_{i}\right)\right)$ for every sequence $\left\{x_{k}\right\} \subset B_{X}$.

F. Delbaen problem

Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with $0 \notin C$.
following problem has been posed by F. Delbaen motivated by risk measures theory:

Question

Example (R. Haydon)
In everv non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and $0 \notin C$ such that every linear form $x^{*} \in E^{*}$ such that $x^{*}(C)>0$ attains its minimum on C.

F. Delbaen problem

Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with $0 \notin C$. The following problem has been posed by F. Delbaen motivated by risk measures theory:

Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

> Example (R. Haydon)
> In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and $0 \notin C$ such that every linear form $x^{*} \in E^{*}$ such that $x^{*}(C)>0$ attains its minimum on C.

F. Delbaen problem

Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with $0 \notin C$. The following problem has been posed by F. Delbaen motivated by risk measures theory:

Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

Example (R. Haydon)

In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and $0 \notin C$ such that every linear form $x^{*} \in E^{*}$ such that $x^{*}(C)>0$ attains its minimum on C.

$$
0<\varepsilon<1 / 4
$$

$$
\varepsilon \leqslant J<1
$$

$$
\frac{1-5}{M}<\varepsilon \in \frac{2 \pi}{M}<1
$$

$$
g(z)=\varepsilon \sigma+(1-\sigma) g(y)
$$

$$
\geqslant \varepsilon \sigma+(1-\sigma)>\varepsilon>1 / M
$$

$$
g\left(z^{\prime}\right)=\sqrt[y]{3 / 4}
$$

Si $f(c)>0 \Rightarrow f^{3}\left(a_{A}\right)>0$

$$
\forall c \&, c=\varepsilon x_{0}+\mu\left(y-\varepsilon x_{0}\right), \mu \geqslant 0
$$ and $y \in A_{1}+\sigma$

and f athirst its infonc at εx_{0}

$$
f_{G} E^{*} f\left(A_{c}\right)>0 \Rightarrow \mathcal{D}_{0} y f-g \| \leq x / M
$$

$A_{1+5}=\left\{\times F E, \quad\right.$ ghat $215 J^{2}$, NY $\left.=1\right\}$

Positive results

Theorem (Birthday's Theorem)

Let E be a separable Banach space. Let C be a closed, convex and bounded subset of $E \backslash\{0\}, D \subset C$ a relatively weakly compact set of directions such that, for every $x^{*} \in E^{*}$, we have that

$$
\inf \left\{x^{*}(c): c \in C\right\}
$$

is attained at some point of C whenever

$$
x^{*}\left(a^{\prime}\right)>0 \text { for every } a^{\prime} \in D \text {. }
$$

Then C is weakly compact.

Positive results

Theorem (Birthday's Theorem)

Let E be a separable Banach space. Let C be a closed, convex and bounded subset of $E \backslash\{0\}, D \subset C$ a relatively weakly compact set of directions such that, for every $x^{*} \in E^{*}$, we have that

$$
\inf \left\{x^{*}(c): c \in C\right\}
$$

is attained at some point of C whenever

$$
x^{*}(d)>0 \text { for every } d \in D .
$$

Then C is weakly compact.

Unbounded Simon's inequality

Theorem (Simons's Theorem in \mathbb{R}^{X})

Let X be a nonempty set, let $\left(f_{n}\right)$ be a pointwise bounded sequence in \mathbb{R}^{X} and let Y be a subset of X such that for every $g \in \operatorname{co}_{\sigma_{p}}\left\{f_{n}: n \geq 1\right\}$ there exists $y \in Y$ with

$$
g(y)=\sup \{g(x): x \in X\}
$$

Then the following statements hold true:

$$
\begin{equation*}
\inf \left\{\sup _{x \in X} g(x): g \in \operatorname{co}_{\sigma_{\rho}}\left\{f_{n}: n \geq 1\right\}\right\} \leq \sup _{v \in Y}\left(\lim \sup _{n} f_{n}(y)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup \left\{\lim \sup _{n} f_{n}(x): x \in X\right\}=\sup \left\{\lim _{n} \sup _{n} f_{n}(y): y \in Y\right\} \tag{2}
\end{equation*}
$$

Unbounded Rainwater's Theorem

Theorem (Unbounded Rainwater-Simons's theorem)

If E is a Banach space, $B \subset C$ are nonempty subsets of E^{*} and $\left(x_{n}\right)$ is a bounded sequence in E such that for every

$$
x \in \operatorname{co}_{\sigma}\left\{x_{n}: n \geq 1\right\}
$$

there exists $b^{*} \in B$ with $\left\langle x, b^{*}\right\rangle=\sup \left\{\left\langle x, c^{*}\right\rangle: c^{*} \in C\right\}$, then

$$
\sup _{b^{*} \in B}\left(\lim \sup _{n}\left\langle x_{n}, b^{*}\right\rangle\right)=\sup _{c^{*} \in C}\left(\lim _{n} \sup _{n}\left\langle x_{n}, c^{*}\right\rangle\right) .
$$

As a consequence

$$
\sigma(E, B)-\lim _{n} x_{n}=0 \Rightarrow \sigma(E, C)-\lim _{n} x_{n}=0
$$

Unbounded Godefroy's Theorem

Theorem (Unbounded Godefroy's Theorem)

Let E a Banach space and B a nonempty subset of E^{*}. Let us assume there is a relatively weakly compact subset $D \subset E^{*}$ such that:
(1) $0 \notin \overline{\operatorname{co}(B \cup D)} \cdot\|\cdot\|$
(2) For every $x \in E$ with $x\left(d^{*}\right)<0$ for all $d^{*} \in D$ we have $\sup \left\{x\left(c^{*}\right): c^{*} \in B\right\}=x\left(b^{*}\right)$ for some $b^{*} \in B$.
(3) For every convex bounded subset $L \subset E$ and every

$$
\begin{aligned}
& x^{* *} \in \bar{L}^{\sigma\left(E^{* *}, B \cup \bar{D}^{w}\right)} \text { there is a sequence }\left(x_{n}\right) \text { in } L \text { such that } \\
& \left\langle x^{* *}, z^{*}\right\rangle=\lim _{n}\left\langle x_{n}, z^{*}\right\rangle \text { for every } z^{*} \in B \cup \bar{D}^{w}
\end{aligned}
$$

Then

$$
\overline{\operatorname{co}(B)}^{w^{*}} \subset \bigcup\left\{\overline{\operatorname{co}(B)} \cdot\|\cdot\| \quad \overline{\cos (D)}^{\|} \cdot \| \quad: \lambda \in[0,+\infty)\right\} .
$$

Conic Godefroy's Theorem

Theorem (Conic Godefroy's Theorem)

Let E a Banach space and B a nonempty subset of E^{*}. Let us assume $0 \notin \overline{\operatorname{co}(B)}{ }^{\|\cdot\|}$ and fix $D \subset B$, a relatively weakly compact set so that:
(1) For every $x \in E$ with $x\left(d^{*}\right)>0$ for every $d^{*} \in D$, we have $\inf \left\{x\left(c^{*}\right): c^{*} \in B\right\}=x\left(b^{*}\right)>0$ for some $b^{*} \in B$.
(2) For every convex bounded subset $L \subset E$, and every $x^{* *} \in \bar{L}^{\sigma\left(E^{* *}, B \cup \bar{D}^{w}\right)}$, there is a sequence $\left(x_{n}\right)$ in L such that $\left\langle x^{* *}, z^{*}\right\rangle=\lim _{n}\left\langle x_{n}, z^{*}\right\rangle$, for every $z^{*} \in B \cup \bar{D}^{\mathrm{w}}$.
Then the norm closed convex truncated cone C generated by B, i.e. $C:=\overline{\bigcup\{\lambda \operatorname{co}(B): \lambda \in[1+\infty)\}}{ }^{\|\cdot\|}$, is w^{*}-closed.

Dual variational problems

Theorem

Let E be a separable Banach space without copies of $\ell^{1}(\mathbb{N})$,

$$
f: E^{*} \longrightarrow \mathbb{R} \cup\{+\infty\}
$$

norm lower semicontinuous, convex and proper map, such that for all $x \in E, \quad x-f$ attains its supremum on E^{*}.

Then the map f is w^{*}-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $f^{-1}((-\infty, \mu])$ is w^{*}-compact.

Dual variational problems

Theorem

Let E be a Banach space,

$$
f: E^{*} \longrightarrow \mathbb{R} \cup\{+\infty\}
$$

convex, proper and lower semicontinuous map with either a weakly Lindelöf- \sum or a strongly pseudocompact epigraph, such that
for all $x \in E, \quad x-f$ attains its supremum on E^{*}.
Then f is w^{*}-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $f^{-1}((-\infty, \mu])$ is w^{*}-compact.

Dual variational problems

Theorem

Let E be a Banach space without copies of $\ell^{1}(\mathbb{N})$,

$$
f: E^{*} \longrightarrow \mathbb{R} \cup\{+\infty\}
$$

convex, proper and norm lower semicontinuous map with w*-K-analytic epigraph, such that

$$
\text { for all } x \in E, \quad x-f \text { attains its supremum on } E^{*} \text {. }
$$

Then f is w^{*}-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $f^{-1}((-\infty, \mu])$ is w^{*}-compact.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND

MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en iulio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y nara el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I arow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as vanuary,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who draas
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR PETAR:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

