The Slice Localization Theorem

J. Orihuela

Department of Mathematics
University of Murcia
11 June 2010

Contents

- Summary
- LUR renorming
- Pointwise LUR renorming
- The Slice Localization Theorem
- Strictly convex renorming
- Uniformly rotund renorming

The coauthors

－Antonio José Guirao（Pointwise LUR）
－Matias Raja（Uniform rotundity）
－Richard Smith（Strict convexity）
－Stanimir Troyanski（all contents）
國 A．Moltó，J．Orihuela，S．Troyanski and M．Valdivia A Nonlinear Transfer Technique for Renorming Springer LNM 1951， 2009.

囯 J．Orihuela and S．Troyanski，Devilles＇s master lemma and Stone discretness in renorming theory Journal Convex Analysis 16， 2009

嗇 J．Orihuela and S．Troyanski，LUR renormings through Deville＇s master Lemma RACSAM 103 （1）， 2009 75－85

Summary

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

Summary

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

Summary

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

Summary

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

Theotem (Lindenstrauss) ㅍ reflexive Bawech space Then there ersiss $T_{i} \underline{X} \longrightarrow C_{0}(\hat{\imath})$ linear, continures one to one openctor
Valdivia approach $\left\{x_{\gamma}, f_{\gamma}\right\} M$-basis

$$
T(x):=\left(f_{\gamma}(x)\right)_{\gamma \in \Pi}
$$

$\xrightarrow{\longrightarrow}\|x\|^{2}:=\|x\|^{2}+\left\|T_{x}\right\|^{2}$ is eppivalaent shitly convex norm.

$$
\begin{aligned}
& S(x, y):=2\|x\|^{2}+2\|y\|^{2}-\|x+y\|^{2} \quad S(x, y)=0 \Rightarrow x=y \text { (Stictly cosvex) } \\
& S\left(x_{n}, y_{n}\right) \rightarrow 0 \Rightarrow \lim _{n \rightarrow \infty} \Rightarrow\left(x_{n}-y_{n} \| \rightarrow 0 \quad\left(x_{n}, x\right) \rightarrow 0 \Rightarrow \lim _{n \rightarrow \infty}(L U R)\right. \\
& S\left(x_{n}, x\right) \rightarrow 0 \Rightarrow T_{p}-\lim _{n \rightarrow \infty} x_{n}=x\left(T_{p}-L U R\right)\left(x<l^{\infty}(\hat{1})\right)
\end{aligned}
$$

Summary

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

The Connection Lemma.

Lemma (Connection lemma)

If \mathcal{B} is a uniformly bounded and $\sigma(X, F)$-slicely isolated family of subsets of X, there is an equivalent $\sigma(X, F)$ - lower semicontinuous norm $\|\cdot\|_{\mathcal{B}}$ such that

$$
\lim _{n}\left(2\left\|x_{n}\right\|_{\mathcal{B}}^{2}+2\|x\|_{\mathcal{B}}^{2}-\left\|x_{n}+x\right\|_{\mathcal{B}}^{2}\right)=0
$$

with $x \in B_{0} \in \mathcal{B}$ implies that:

The Connection Lemma.

Lemma (Connection lemma)

If \mathcal{B} is a uniformly bounded and $\sigma(X, F)$-slicely isolated family of subsets of X, there is an equivalent $\sigma(X, F)$ - lower semicontinuous norm $\|\cdot\|_{\mathcal{B}}$ such that

$$
\lim _{n}\left(2\left\|x_{n}\right\|_{\mathcal{B}}^{2}+2\|x\|_{\mathcal{B}}^{2}-\left\|x_{n}+x\right\|_{\mathcal{B}}^{2}\right)=0
$$

with $x \in B_{0} \in \mathcal{B}$ implies that:
(1) There is $n_{0} \in \mathbb{N}$ such that
$x_{n}, \frac{1}{2}\left(x_{n}+x\right) \notin \overline{\operatorname{co} \bigcup\left\{B: B \neq B_{0} ; B \in \mathcal{B}\right\}}$ for all $n \geq n_{0}$.
(2) For every positive δ there is $n_{\delta} \in \mathbb{N}$ such that
$x_{n} \in \operatorname{co}\left(B_{0}\right)+\delta B X$ whenever $n \geq n_{\delta}$.

The Connection Lemma.

Lemma (Connection lemma)

If \mathcal{B} is a uniformly bounded and $\sigma(X, F)$-slicely isolated family of subsets of X, there is an equivalent $\sigma(X, F)$ - lower semicontinuous norm $\|\cdot\|_{\mathcal{B}}$ such that

$$
\lim _{n}\left(2\left\|x_{n}\right\|_{\mathcal{B}}^{2}+2\|x\|_{\mathcal{B}}^{2}-\left\|x_{n}+x\right\|_{\mathcal{B}}^{2}\right)=0
$$

with $x \in B_{0} \in \mathcal{B}$ implies that:
(1) There is $n_{0} \in \mathbb{N}$ such that

$$
x_{n}, \frac{1}{2}\left(x_{n}+x\right) \notin \overline{\operatorname{co} \bigcup\left\{B: B \neq B_{0} ; B \in \mathcal{B}\right\}} \text { for all } n \geq n_{0} .
$$

(2) For every positive δ there is $n_{\delta} \in \mathbb{N}$ such that $x_{n} \in \operatorname{co}\left(B_{0}\right)+\delta B_{X}$ whenever $n \geq n_{\delta}$.

Corollary

In a normed space X, with a norming subspace F in X^{*}, we have an equivalent $\sigma(X, F)$-lower semicontinuous and locally uniformly rotund norm if, and only if, there are slicely isolated families for the $\sigma(X, F)$ topology

$$
\left\{\mathcal{B}_{n}: n=1,2, \ldots\right\}
$$

such that for every x in X and every $\epsilon>0$ there is some positive integer n with the property that

$$
x \in B \in \mathcal{B}_{n} \text { and that }\|\cdot\|-\operatorname{diam}(B)<\epsilon
$$

Pointwise LUR renorming

Theorem

Let X be a subspace of the Banach space $I^{\infty}(\Gamma)$. They are equivalent:
(1) X admits an equivalent T_{p}-locally uniformly rotund norm.
(2) There is a metric ρ on X generating a topology finer then T_{p} and $I d: X \rightarrow(X, \rho) \sigma$-slicely continuous.
(3) The pointwise convergence topology T_{p} on X has a σ-slicely isolated network.

Pointwise LUR renorming

Theorem

Let X be a subspace of the Banach space $I^{\infty}(\Gamma)$. They are equivalent:
(1) X admits an equivalent T_{p}-locally uniformly rotund norm.
(2) There is a metric ρ on X generating a topology finer then T_{p} and $I d: X \rightarrow(X, \rho) \sigma$-slicely continuous.
(3) The pointwise convergence topology T_{p} on X has a σ-slicely isolated network.
4 There is a sequence of sets $\left(A_{n}\right)$ in X and families of T_{p}-open half spaces $\left(\mathcal{H}_{n}\right)$ such that the slicing families of sets $\left(A_{n} \cap \mathcal{H}_{n}\right)$ verifies:

- For every T_{p}-neighbourhood of the origin W and every $x \in X$ there is $p \in \mathbb{N}$ such that $x \in A_{p} \cap H_{0}$ for some $H_{0} \in \mathcal{H}_{p}$ and $A_{p} \cap H \subset x+W$ whenever $x \in H \in \mathcal{H}_{p}$

Weak* LUR renorming

Theorem (Matias Raja)

A compact space K has a σ-discrete network (i.e. it is descriptive) if, and only if, $C(K)^{*}$ admits an equivalent $w^{*}-L U R$ norm

σ-slicely isolated network implies T_{p} LUR renorming

- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
$\|\cdot\|_{n, r}:=\|\cdot\|_{\mathcal{H} n,\left(U \mathcal{M}_{n}\right) \cap B(0, r)}$
- Glue the countable information we have:
- Given $\lim _{n}\left(2\left\|\left|x_{n}\| \|^{2}+2\||x|\|^{2}-\left\|\left|x+x_{n}\right|\right\|^{2}\right)=0\right.\right.$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have $x, x_{n} \in \operatorname{co}\left(M_{0}\right)+B(0, \delta)$ for $n \geq n_{0}^{\delta}$
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have $\delta B_{X} \subset W / 2$.

σ-slicely isolated network implies T_{p} LUR renorming

- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- Apply the Connection Lemma to get
- Glue the countable information we have:
- Given $\lim _{n}\left(2\left\|| | x_{n}\left|\left\|^{2}+2\right\|\right| x\left|\left\|^{2}-\right\|\right| x+x_{n} \mid\right\|^{2}\right)=0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have $x, x_{n} \in \operatorname{co}\left(M_{0}\right)+B(0 . \delta)$ for $n>n_{n}^{\delta}$
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have $\delta B_{X} \subset W / 2$.
- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$
- Apply the Connection Lemma to get
- Glue the countable information we have:
- Given $\lim _{n}\left(2\left\|\left|x_{n}\| \|^{2}+2\||x|\|^{2}-\left\|\left|x+x_{n}\right|\right\|^{2}\right)=0\right.\right.$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have $\delta B_{X} \subset W / 2$.
- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
- Glue the countable information we have:
- Given $\lim _{n}\left(2\left\|\left|x_{n}\| \|^{2}+2\||x|\|^{2}-\left\|\left|x+x_{n}\right|\right\|^{2}\right)=0\right.\right.$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have $\delta B_{X} \subset W / 2$.
- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
$\|\cdot\|_{n, r}:=\|\cdot\|_{\mathcal{H}_{n},\left(\cup \mathcal{M}_{n}\right) \cap B(0, r)}$
- Glue the countable information we have:
- Given $\lim _{n}\left(2\left\|| | x_{n}\left|\left\|^{2}+2\right\|\right| x\left|\left\|^{2}-\right\|\right| x+x_{n} \mid\right\|^{2}\right)=0$, a convex
T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with
$x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have $\delta B_{X} \subset W / 2$.
- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
$\|\cdot\|_{n, r}:=\|\cdot\|_{\mathcal{H}_{n,(}\left(\cup \mathcal{M}_{n}\right) \cap B(0, r)}$
- Glue the countable information we have:
$\|\mid \cdot\|\left\|^{2}:=\sum_{n, r=1}^{\infty} c_{n, r}\right\| \cdot \|_{n, r}^{2}$
- Given $\lim _{n}\left(2\left\|| | x_{n}\right\|^{2}+2\||x|\|^{2}-\left\|\mid x+x_{n}\right\| \|^{2}\right)=0$, a convex
T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with
$x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have $\delta B_{X} \subset W / 2$.

σ-slicely isolated network implies T_{p} LUR renorming

- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
$\|\cdot\|_{n, r}:=\|\cdot\|_{\mathcal{H}_{n,(}\left(\cup \mathcal{M}_{n}\right) \cap B(0, r)}$
- Glue the countable information we have:
$\left\|\left.\|\cdot\|\right|^{2}:=\sum_{n, r=1}^{\infty} c_{n, r}\right\| \cdot \|_{n, r}^{2}$
- Given $\lim _{n}\left(2\left\|| | x_{n}\left|\left\|^{2}+2\right\|\right| x\left|\left\|^{2}-\right\|\right| x+x_{n} \mid\right\|^{2}\right)=0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with
$x \in M_{0} \subset x+W / 2$
- we have
- Then $x \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have

σ-slicely isolated network implies T_{p} LUR renorming

- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
$\|\cdot\|_{n, r}:=\|\cdot\|_{\mathcal{H}_{n,(}\left(\cup \mathcal{M}_{n}\right) \cap B(0, r)}$
- Glue the countable information we have:
$\left\|\left.\|\cdot\|\right|^{2}:=\sum_{n, r=1}^{\infty} c_{n, r}\right\| \cdot \|_{n, r}^{2}$
- Given $\lim _{n}\left(2\left\|| | x_{n}\left|\left\|^{2}+2\right\|\right| x\left|\left\|^{2}-\right\|\right| x+x_{n} \mid\right\|^{2}\right)=0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have

σ-slicely isolated network implies T_{p} LUR renorming

- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
$\|\cdot\|_{n, r}:=\|\cdot\|_{\mathcal{H}_{n,(}\left(\cup \mathcal{M}_{n}\right) \cap B(0, r)}$
- Glue the countable information we have:
$\left\|\left.\|\cdot\|\right|^{2}:=\sum_{n, r=1}^{\infty} c_{n, r}\right\| \cdot \|_{n, r}^{2}$
- Given $\lim _{n}\left(2\left\|| | x_{n}\left|\left\|^{2}+2\right\|\right| x\left|\left\|^{2}-\right\|\right| x+x_{n} \mid\right\|^{2}\right)=0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have $x, x_{n} \in \operatorname{co}\left(M_{0}\right)+B(0, \delta)$ for $n \geq n_{0}^{\delta}$

σ-slicely isolated network implies T_{p} LUR renorming

- Let $\mathcal{M}=\cup_{n=1}^{\infty} \mathcal{M}_{n}$ the σ-slicely isolated network for T_{p}.
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_{n} such that:
- $\cup \mathcal{M}_{n} \subset \cup \mathcal{H}_{n}$ and $H \in \mathcal{H}_{n}$ meets just one element in \mathcal{M}_{n}
- Apply the Connection Lemma to get
$\|\cdot\|_{n, r}:=\|\cdot\|_{\mathcal{H}_{n,(}\left(\cup \mathcal{M}_{n}\right) \cap B(0, r)}$
- Glue the countable information we have:
$\left\|\left.\|\cdot\|\right|^{2}:=\sum_{n, r=1}^{\infty} c_{n, r}\right\| \cdot \|_{n, r}^{2}$
- Given $\lim _{n}\left(2\left\|| | x_{n}\left|\left\|^{2}+2\right\|\right| x\left|\left\|^{2}-\right\|\right| x+x_{n} \mid\right\|^{2}\right)=0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x+W / 2$
- If $\|x\|<r$, since $\lim _{n}\left(2\left\|x_{n}\right\|_{p, r}^{2}+2\|x\|_{p, r}^{2}-\left\|x+x_{n}\right\|_{p, r}^{2}\right)=0$
- we have $x, x_{n} \in \operatorname{co}\left(M_{0}\right)+B(0, \delta)$ for $n \geq n_{0}^{\delta}$
- Then $x_{n} \in x+W$ for $n \geq n_{0}^{\delta}$ for δ small enough to have $\delta B_{X} \subset W / 2$.

Nonlinear transfer for T_{p} LUR renorming

Theorem

Let $X \subset l^{\infty}(\Gamma)$ and

$$
\Phi: X \rightarrow(Y, \rho)
$$

a σ-slicely continuous map. If there is a sequence of sets $\left(D_{n}\right)$ in Y such that for every T_{p}-neighbourhood of the origen W and $x \in X$ there is some $\delta>0, p \in \mathbb{N}$ with

$$
\phi x \in D_{p} \text { and } \phi^{-1}\left(D_{p} \cap B_{p}(\Phi x, \delta)\right) \subset x+W
$$

then X admits an equivalent T_{p}-LUR norm.

Corolary (Moltó, Orihuela, Troyanski, Valdivia)

If X has an F-smooth norm $\|\cdot\|$ with dual norm G-smooth on the set of norm attaining functionals, then X admits an equivalent LUR norm

Nonlinear transfer for T_{p} LUR renorming

Theorem

Let $X \subset I^{\infty}(\Gamma)$ and

$$
\Phi: X \rightarrow(Y, \rho)
$$

a σ-slicely continuous map. If there is a sequence of sets $\left(D_{n}\right)$ in Y such that for every T_{p}-neighbourhood of the origen W and $x \in X$ there is some $\delta>0, p \in \mathbb{N}$ with

$$
\Phi x \in D_{p} \text { and } \Phi^{-1}\left(D_{p} \cap B_{\rho}(\Phi x, \delta)\right) \subset x+W
$$

then X admits an equivalent T_{p}-LUR norm.

Corollary (Moltó, Orihuela, Troyanski, Valdivia)
If X has an F-smooth norm || . \|| with dual norm G-smooth on the set of norm attaining functionals, then X admits an
equivalent LUR norm

Nonlinear transfer for T_{p} LUR renorming

Theorem

Let $X \subset I^{\infty}(\Gamma)$ and

$$
\Phi: X \rightarrow(Y, \rho)
$$

a σ-slicely continuous map. If there is a sequence of sets $\left(D_{n}\right)$ in Y such that for every T_{p}-neighbourhood of the origen W and $x \in X$ there is some $\delta>0, p \in \mathbb{N}$ with

$$
\Phi x \in D_{p} \text { and } \Phi^{-1}\left(D_{p} \cap B_{\rho}(\Phi x, \delta)\right) \subset x+W
$$

then X admits an equivalent T_{p}-LUR norm.
Corollary (Moltó, Orihuela, Troyanski, Valdivia)
If X has an F-smooth norm $\|\cdot\|$ with dual norm G-smooth on the set of norm attaining functionals, then X admits an equivalent LUR norm

Nonlinear transfer for T_{p} LUR renorming

Theorem

$X \subset I^{\infty}(\Gamma), Y \subset I^{\infty}(\Delta)$ normed spaces, $\Phi: X \rightarrow Y$ be a map with sequences of sets $\left(A_{n}\right)$ in $X,\left(D_{n}\right)$ in Y such that:

- For every T_{p}-open half space $G \subset Y, x \in X$ with $\Phi x \in G$ there is $p \in \mathbb{N}$ and a T_{p}-open half space $H \subset X$ with

$$
x \in A_{p} \cap H \text { and } \Phi\left(A_{p} \cap H\right) \subset G
$$

- For every T_{p}-open half space $H \subset X, y \in Y$ with $\Phi^{-1} y \cap H \neq \emptyset$ there is $q \in \mathbb{N}$, a T_{p}-open half space $G \subset Y$ with

$$
y \in D_{q} \cap G \text { and } \Phi^{-1}\left(D_{q} \cap G\right) \subset H
$$

Then X admits an equivalent T_{p} LUR norm if, and only if Y does it.

The Slice Localization Theorem.

Theorem

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A there is an equivalent norm $\|\cdot\|_{\mathcal{H}, A}$ such that: for $\left(x_{n}\right)$ in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the LUR condition

$$
\lim _{n}\left(2\left\|x_{n}\right\|_{\mathcal{H}, A}^{2}+2\|x\|_{\mathcal{H}, A}^{2}-\left\|x+x_{n}\right\|_{\mathcal{H}, A}^{2}\right)=0
$$

implies the existence of a sequence of half spaces $\left\{H_{n} \in \mathcal{H}\right\}$:

- There is $n_{0} \in \mathbb{N}$ such that $x, x_{n} \in H_{n}$ for $n \geq n_{0}$ if $x_{n} \in A$.
- For every $\delta>0$ there is some n_{δ} such that

$$
\left.x, x_{n} \in \operatorname{co}\left(A \cap H_{n}\right)\right)+B(0, \delta)
$$

for all $n \geq n_{\delta}$

Application for LUR renorming

> Theorem (Bing-Nagata-Stone meet renorming)
> Let X be a normed space with a norming subspace $F \subset X^{*}$. X admits an equivalent $\sigma(X, F)$-lower semicontinuous and LUR norm if, and only if, the norm topology admits a basis where \mathcal{B}_{n} is norm discrete family for every $n \in \mathbb{N}$.

Theorem (Matias Raja's formulation)
Let X be a as above. We assume that there are subsets $\left(A_{n}\right)$
such that for every x and $\varepsilon>0$ we can find $p \in \mathbb{N}$ and a
$\sigma(X, F)$-open half space H such that $x \in A_{p} \cap H$ and
$\operatorname{diam}\left(A_{p} \cap H\right) \leq \epsilon$. Then X admits an equivalent $\sigma(X, F)$-lower
semicontinuous LUR norm.

Application for LUR renorming

> Theorem (Bing-Nagata-Stone meet renorming)
> Let X be a normed space with a norming subspace $F \subset X^{*}$.
> X admits an equivalent $\sigma(X, F)$-lower semicontinuous and LUR norm if, and only if, the norm topology admits a basis
> where \mathcal{B}_{n} is norm discrete and $\sigma(X, F)$-slicely isolated family for every $n \in \mathbb{N}$.

Theorem (Matias Raja's formulation)

Let X be a as above. We assume that there are subsets $\left(A_{n}\right)$ such that for every x and $\varepsilon>0$ we can find $p \in \mathbb{N}$ and a $\sigma(X, F)$-open half space H such that $x \in A_{p} \cap H$ and $\operatorname{diam}\left(A_{p} \cap H\right) \leq \epsilon$. Then X admits an equivalent $\sigma(X, F)$-lower semicontinuous LUR norm.

Strictly convex renormings

Theorem (Slice localization for the rotundity condition)
Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm || \|f, A such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

$$
2\|x\|_{\mathcal{H}, A}^{2}+2\|y\|_{\mathcal{H}, A}^{2}-\|x+y\|_{\mathcal{H}, A}^{2}=0
$$

implies the existence of half spaces $\left(H_{n} \in \mathcal{H}\right)$:

- Both $x, y \in H_{n}, n=1,2, \cdots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have
$x, y \in \operatorname{co}\left(A \cap H_{n}\right)+B(0,1 / n)$

Strictly convex renormings

Theorem (Slice localization for the rotundity condition)
Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H}, A}$ such that:

implies the existence of half spaces $\left(H_{n} \in \mathcal{H}\right)$:

- Both $x, y \in H_{n}, n=12 \ldots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have
$x, y \in \operatorname{co}\left(A \cap H_{n}\right)+B(0,1 / n)$

Strictly convex renormings

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H}, A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

$$
2\|x\|_{\mathcal{H}, A}^{2}+2\|y\|_{\mathcal{H}, A}^{2}-\|x+y\|_{\mathcal{H}, A}^{2}=0
$$

implies the existence of half spaces $\left(H_{n} \in \mathcal{H}\right)$:

$$
\text { In any case, for every } n \in \mathbb{N} \text { we have }
$$

Strictly convex renormings

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H}, A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

$$
2\|x\|_{\mathcal{H}, A}^{2}+2\|y\|_{\mathcal{H}, A}^{2}-\|x+y\|_{\mathcal{H}, A}^{2}=0
$$

implies the existence of half spaces $\left(H_{n} \in \mathcal{H}\right)$:

- Both $x, y \in H_{n}, n=1,2, \cdots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have

Strictly convex renormings

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H}, A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

$$
2\|x\|_{\mathcal{H}, A}^{2}+2\|y\|_{\mathcal{H}, A}^{2}-\|x+y\|_{\mathcal{H}, A}^{2}=0
$$

implies the existence of half spaces $\left(H_{n} \in \mathcal{H}\right)$:

- Both $x, y \in H_{n}, n=1,2, \cdots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have

$$
x, y \in \operatorname{co}\left(A \cap H_{n}\right)+B(0,1 / n)
$$

Strictly Convex Renorming Present.

```
Theorem ( Birthday's Theorem)
Let (X,|\cdot|) be a normed space, F a norming subspace in X*
X \text { admits an equivalent } \sigma ( X , F ) \text { -lower semicontinuous rotund}
norm if, and only if,
there are families of \sigma(X,F)-open half spaces }\mp@subsup{\mathcal{H}}{n}{}\mathrm{ in X
(*)-separating points in X, i.e.
    - For every two different points x and y in X there is some
        integer p with
        (1) {x,y}\capH}\mp@subsup{H}{0}{}\not=\emptyset\mathrm{ for some }\mp@subsup{H}{0}{}\in\mp@subsup{\mathcal{H}}{p}{
        (2) {x,y}\capH}\mathrm{ has at most one element for every H}H\in\mathcal{H
```


Strictly Convex Renorming Present.

Theorem (Birthday's Theorem)

Let $(X,\|\cdot\|)$ be a normed space, F a norming subspace in X^{*}. X admits an equivalent $\sigma(X, F)$-lower semicontinuous rotund norm if, and only if, there are families of $\sigma(X, F)$-open half spaces \mathcal{H}_{n} in X $(*)$-separating points in X, i.e.

- For every two different points x and y in X there is some integer p with
(1) $\{x, y\} \cap H_{0} \neq \emptyset$ for some $H_{0} \in \mathcal{H}_{p}$
(2) $\{x, y\} \cap H$ has at most one element for every $H \in \mathcal{H}_{p}$
- \mathcal{H}_{n} families of half-spaces $(*)$-separating X.
- For every $n, R>0$ we apply SLT to construct an equivalent norm $\|\cdot\|_{n, R}$ for non empty slices in $\mathcal{H}_{n} \cap B(0, R)$.
- $\|x\|_{n R}=\|y\|_{n R}=\|(x+y) / 2\|_{n R} \Rightarrow x, y \in H^{\prime} \in \mathcal{H}_{n}$ for some H^{\prime} whenever one of them is in $\cup\{H: H \in \mathcal{H}\}$ and both are in $B(0, R)$.
- If we define an equivalent norm on X by the expression:

for every $x \in X$, where $\left(c_{n, R}\right)$ has beeen chosen
accordingly for the uniform convergence of the series on bounded sets.
- Then ||| • || is the equivalent rotund norm we are looking for.
- \mathcal{H}_{n} families of half-spaces $(*)$-separating X.
- For every $n, R>0$ we apply SLT to construct an equivalent norm $\|\cdot\|_{n, R}$ for non empty slices in $\mathcal{H}_{n} \cap B(0, R)$.
some H^{\prime} whenever one of them is in $\cup\left\{H: H \in \mathcal{H}_{n}\right\}$ and both are in $B(0, R)$.
- If we define an equivalent norm on X by the expression:

for every $x \in X$, where $\left(c_{n, R}\right)$ has beeen chosen
accordingly for the uniform convergence of the series on bounded sets.
- \mathcal{H}_{n} families of half-spaces $(*)$-separating X.
- For every $n, R>0$ we apply SLT to construct an equivalent norm $\|\cdot\|_{n, R}$ for non empty slices in $\mathcal{H}_{n} \cap B(0, R)$.
- $\|x\|_{n, R}=\|y\|_{n, R}=\|(x+y) / 2\|_{n, R} \Rightarrow x, y \in H^{\prime} \in \mathcal{H}_{n}$ for some H^{\prime} whenever one of them is in $\cup\left\{H: H \in \mathcal{H}_{n}\right\}$ and both are in $B(0, R)$.
- If we define an equivalent norm on X by the expression:

for every $x \in X$, where $\left(c_{n, R}\right)$ has beeen chosen
accordingly for the uniform convergence of the series on bounded sets.
- \mathcal{H}_{n} families of half-spaces $(*)$-separating X.
- For every $n, R>0$ we apply SLT to construct an equivalent norm $\|\cdot\|_{n, R}$ for non empty slices in $\mathcal{H}_{n} \cap B(0, R)$.
- $\|x\|_{n, R}=\|y\|_{n, R}=\|(x+y) / 2\|_{n, R} \Rightarrow x, y \in H^{\prime} \in \mathcal{H}_{n}$ for some H^{\prime} whenever one of them is in $\cup\left\{H: H \in \mathcal{H}_{n}\right\}$ and both are in $B(0, R)$.
- If we define an equivalent norm on X by the expression:

$$
\left\|\|x\|^{2}:=\sum_{n=1, R=1}^{\infty} c_{n, R}\right\| x \|_{n}^{2}
$$

for every $\boldsymbol{x} \in X$, where $\left(C_{n, R}\right)$ has beeen chosen
accordingly for the uniform convergence of the series on bounded sets.

- \mathcal{H}_{n} families of half-spaces $(*)$-separating X.
- For every $n, R>0$ we apply SLT to construct an equivalent norm $\|\cdot\|_{n, R}$ for non empty slices in $\mathcal{H}_{n} \cap B(0, R)$.
- $\|x\|_{n, R}=\|y\|_{n, R}=\|(x+y) / 2\|_{n, R} \Rightarrow x, y \in H^{\prime} \in \mathcal{H}_{n}$ for some H^{\prime} whenever one of them is in $\cup\left\{H: H \in \mathcal{H}_{n}\right\}$ and both are in $B(0, R)$.
- If we define an equivalent norm on X by the expression:

$$
\left\|\|x\|^{2}:=\sum_{n=1, R=1}^{\infty} c_{n, R}\right\| x \|_{n}^{2}
$$

for every $x \in X$, where $\left(c_{n, R}\right)$ has beeen chosen accordingly for the uniform convergence of the series on bounded sets.

- \mathcal{H}_{n} families of half-spaces $(*)$-separating X.
- For every $n, R>0$ we apply SLT to construct an equivalent norm $\|\cdot\|_{n, R}$ for non empty slices in $\mathcal{H}_{n} \cap B(0, R)$.
- $\|x\|_{n, R}=\|y\|_{n, R}=\|(x+y) / 2\|_{n, R} \Rightarrow x, y \in H^{\prime} \in \mathcal{H}_{n}$ for some H^{\prime} whenever one of them is in $\cup\left\{H: H \in \mathcal{H}_{n}\right\}$ and both are in $B(0, R)$.
- If we define an equivalent norm on X by the expression:

$$
\left\|\|x\|^{2}:=\sum_{n=1, R=1}^{\infty} c_{n, R}\right\| x \|_{n}^{2}
$$

for every $x \in X$, where $\left(c_{n, R}\right)$ has beeen chosen accordingly for the uniform convergence of the series on bounded sets.

- Then $|||\cdot|||$ is the equivalent rotund norm we are looking for.

Nonlinear Transfer for Strictly Convex Renorming

Theorem

$X \subset I^{\infty}(\Gamma)$ and $Y \subset I^{\infty}(\Delta)$ normed spaces,
$\Phi: X \rightarrow Y$ be a one to one map with an increasing sequences of sets

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots \in X
$$

such that:

- For every T_{p}-open half space $G \subset Y, x \in X$ with $\Phi x \in G$ there is $p \in \mathbb{N}$ and a T_{p}-open half space $H \subset X$ with

$$
x \in A_{p} \cap H \text { and } \Phi\left(A_{p} \cap H\right) \subset G
$$

Then X admits an equivalent T_{p}-lower semicontinuous strictly convex norm whenever Y has it.

Nonlinear Transfer for Strictly Convex Renorming

Theorem

$X \subset I^{\infty}(\Gamma)$ and $Y \subset I^{\infty}(\Delta)$ normed spaces,
$\Phi: X \rightarrow Y$ be a one to one map
with a sequences of convex sets $\left(A_{n}\right)$ in X such that:

- For every T_{p}-open half space $G \subset Y, x \in X$ with $\Phi x \in G$ there is $p \in \mathbb{N}$ and a T_{p}-open half space $H \subset X$ with

$$
x \in A_{p} \cap H \text { and } \Phi\left(A_{p} \cap H\right) \subset G
$$

Then X admits an equivalent T_{p}-lower semicontinuous strictly convex norm whenever Y has it.

Nonlinear Transfer for Strictly Convex Renorming

Theorem

X normed space and $\theta_{n}: X \rightarrow I^{\infty}(\Gamma)$ bounded on bounded sets such that:

$$
\left|\theta_{n}\left(\frac{u+v}{2}\right)\right| \leq\left|\frac{\theta_{n} u+\theta_{n} v}{2}\right| \text { in } I^{\infty}(\Gamma)
$$

for all $u, v \in X, n \in \mathbb{N}$. If given $x \neq y$ in X there is $p \in \mathbb{N}, A \subset \Gamma$ with $\theta_{p} x_{\upharpoonright A} \neq \theta_{p} y_{\upharpoonright A}$ and either

- $\min \left\{\left|\theta_{p} x(\alpha)\right|: \alpha \in A\right\}>\left|\theta_{p} x(\gamma)\right|$ for all $\gamma \in \Gamma \backslash A$.
- $\min \left\{\left|\theta_{p} y(\alpha)\right|: \alpha \in A\right\}>\left|\theta_{p} y(\gamma)\right|$ for all $\gamma \in \Gamma \backslash A$.

Then X admits an equivalent strictly convex norm

Internal characterization for spaces $C(K)^{*}$

Theorem

Let K be an scattered compact space.
$C(K)^{*}$ admits an equivalent dual and strictly convex norm if, and only if, there are families of open sets

$$
\left(\mathcal{U}_{n}\right)_{n=1}^{\infty}(*)-\text { separating points of } K,
$$

i.e.

- For every two different points x and y in K there is some integer p such that
(1) $\{x, y\} \cap U_{0} \neq \emptyset$ for some $U_{0} \in \mathcal{U}_{p}$
(2) $\{x, y\} \cap U$ has at most one element for every $U \in \mathcal{U}_{p}$

The Slice Localization Theorem.

Theorem (UR case)

Given a bounded subset $A \subset X$ and open half spaces \mathcal{H} slicing A,
there is an equivalent norm $\|\cdot\|_{\mathcal{H}, A}$ such that:
for $\left(x_{n}\right) \in A \cap \mathcal{H},\left(y_{n}\right)$ bounded sequence in X, the UR condition

$$
\lim _{n}\left(2\left\|x_{n}\right\|_{\mathcal{H}, A}^{2}+2\left\|y_{n}\right\|_{\mathcal{H}, A}^{2}-\left\|y_{n}+x_{n}\right\|_{\mathcal{H}, A}^{2}\right)=0
$$

implies, for every $\varepsilon>0$, the existence of half spaces $\left\{H_{n}^{\varepsilon} \in \mathcal{H}, n \in \mathbb{N}\right\}$:

- $y_{n}, x_{n} \in\left(H_{n}^{\varepsilon}+\varepsilon\right)$ eventually if $\left(y_{n}\right)$ is eventually in A.
- In any case, for every $\delta>0$

$$
y_{n}, x_{n} \in \overline{\operatorname{co}\left(A \cap\left(H_{n}^{\varepsilon}+\varepsilon\right)\right)}+B(0, \delta)
$$

for all n big enough.

Uniformly rotund renorming.

Theorem (UR case)

A Banach space admits an equivalent uniformly rotund norm if, and only if, for every $\epsilon>0$ we have:

$$
B_{X}=\bigcup_{n=1}^{\mathbb{N}_{\epsilon}} B_{n}^{\epsilon}
$$

and every set B_{n}^{ϵ} is uniformly ϵ-denting; i.e there is $\delta_{n}^{\epsilon}>0$ such that for every $x \in B_{n}^{\epsilon}$ there is an open half space H with

- $\operatorname{diam}\left(H \cap B_{n}^{\epsilon}\right)<\epsilon$
- $B\left(x, \delta_{n}^{\epsilon}\right) \subset H \cap B_{n}^{\epsilon}$

