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Summary

The Valencia and Murcia Seminar in Functional Analysis,
25 years of research
Renorming techniques without coordinates.
Nonlinear transfer techniques for renormings.
Interplay between geometry and topology in Banach
spaces.
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The Connection Lemma.

Lemma (Connection lemma)

If B is a uniformly bounded and σ(X ,F )-slicely isolated family
of subsets of X , there is an equivalent σ(X ,F )- lower
semicontinuous norm ‖ · ‖B such that

lim
n

(
2 ‖xn‖2B + 2 ‖x‖2B − ‖xn + x‖2B

)
= 0

with x ∈ B0 ∈ B implies that:
1 There is n0 ∈ N such that

xn,
1
2(xn + x) /∈ co

⋃
{B : B 6= B0; B ∈ B} for all n ≥ n0.

2 For every positive δ there is nδ ∈ N such that
xn ∈ co(B0) + δBX whenever n ≥ nδ.
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Corollary
In a normed space X, with a norming subspace F in X ∗, we
have an equivalent σ(X ,F )-lower semicontinuous and locally
uniformly rotund norm if, and only if, there are slicely isolated
families for the σ(X ,F ) topology

{Bn : n = 1,2, ...}

such that for every x in X and every ε > 0 there is some
positive integer n with the property that

x ∈ B ∈ Bn and that ‖ · ‖ − diam(B) < ε
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Pointwise LUR renorming

Theorem
Let X be a subspace of the Banach space l∞(Γ). They are
equivalent:

1 X admits an equivalent Tp-locally uniformly rotund norm.
2 There is a metric ρ on X generating a topology finer then

Tp and Id : X → (X , ρ) σ-slicely continuous.
3 The pointwise convergence topology Tp on X has a
σ-slicely isolated network.

4 There is a sequence of sets (An) in X and families of
Tp-open half spaces (Hn) such that the slicing families of
sets (An ∩Hn) verifies:

For every Tp-neighbourhood of the origin W and every
x ∈ X there is p ∈ N such that x ∈ Ap ∩ H0 for some
H0 ∈ Hp and Ap ∩ H ⊂ x + W whenever x ∈ H ∈ Hp
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Weak∗ LUR renorming

Theorem (Matias Raja)
A compact space K has a σ-discrete network (i.e. it is
descriptive) if, and only if, C(K )∗ admits an equivalent w∗-LUR
norm
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σ-slicely isolated network implies Tp LUR renorming

LetM = ∪∞n=1Mn the σ-slicely isolated network for Tp.
Take for every n ∈ N open half spaces Hn such that:
∪Mn ⊂ ∪Hn and H ∈ Hn meets just one element inMn

Apply the Connection Lemma to get
‖ · ‖n,r := ‖ · ‖Hn,(∪Mn)∩B(0,r)

Glue the countable information we have:
‖| · ‖|2 :=

∑∞
n,r=1 cn,r‖ · ‖2n,r

Given limn(2‖|xn|‖2 + 2‖|x |‖2 − ‖|x + xn|‖2) = 0, a convex
Tp neighbourhood of the origin W , M0 ∈Mp with
x ∈ M0 ⊂ x + W/2
If ‖x‖ < r , since limn(2‖xn‖2p,r + 2‖x‖2p,r − ‖x + xn‖2p,r ) = 0

we have x , xn ∈ co(M0) + B(0, δ) for n ≥ nδ0
Then xn ∈ x + W for n ≥ nδ0 for δ small enough to have
δBX ⊂W/2.
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Nonlinear transfer for Tp LUR renorming

Theorem
Let X ⊂ l∞(Γ) and

Φ : X → (Y , ρ)

a σ-slicely continuous map. If there is a sequence of sets (Dn)
in Y such that for every Tp-neighbourhood of the origen W and
x ∈ X there is some δ > 0, p ∈ N with

Φx ∈ Dp and Φ−1(Dp ∩ Bρ(Φx , δ)) ⊂ x + W ,

then X admits an equivalent Tp-LUR norm.

Corollary (Moltó, Orihuela, Troyanski, Valdivia)

If X has an F-smooth norm ‖ · ‖ with dual norm G-smooth on
the set of norm attaining functionals, then X admits an
equivalent LUR norm
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Nonlinear transfer for Tp LUR renorming

Theorem
X ⊂ l∞(Γ), Y ⊂ l∞(∆) normed spaces, Φ : X → Y be a map
with sequences of sets (An) in X , (Dn) in Y such that:

For every Tp-open half space G ⊂ Y, x ∈ X with Φx ∈ G
there is p ∈ N and a Tp-open half space H ⊂ X with

x ∈ Ap ∩ H and Φ(Ap ∩ H) ⊂ G

For every Tp-open half space H ⊂ X, y ∈ Y with
Φ−1y ∩ H 6= ∅ there is q ∈ N, a Tp-open half space G ⊂ Y
with

y ∈ Dq ∩G and Φ−1(Dq ∩G) ⊂ H

Then X admits an equivalent Tp LUR norm if, and only if Y
does it.

J. Orihuela The Slice Localization Theorem



The Slice Localization Theorem.

Theorem
Given a bounded subset A ⊂ X and a family H of open half
spaces slicing A there is an equivalent norm ‖ · ‖H,A such that:
for (xn) in X and x ∈ A ∩ H, with H ∈ H, the LUR condition

lim
n

(2‖xn‖2H,A + 2‖x‖2H,A − ‖x + xn‖2H,A) = 0

implies the existence of a sequence of half spaces {Hn ∈ H}:

There is n0 ∈ N such that x , xn ∈ Hn for n ≥ n0 if xn ∈ A.
For every δ > 0 there is some nδ such that

x , xn ∈ co(A ∩ Hn)) + B(0, δ)

for all n ≥ nδ
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Application for LUR renorming

Theorem (Bing-Nagata-Stone meet renorming)
Let X be a normed space with a norming subspace F ⊂ X ∗.
X admits an equivalent σ(X ,F )-lower semicontinuous and LUR
norm if, and only if,
the norm topology admits a basis
where Bn is norm discrete and σ(X ,F )-slicely isolated family for
every n ∈ N.

Theorem (Matias Raja’s formulation)

Let X be a as above. We assume that there are subsets (An)
such that for every x and ε > 0 we can find p ∈ N and a
σ(X ,F )-open half space H such that x ∈ Ap ∩ H and
diam(Ap ∩ H) ≤ ε. Then X admits an equivalent σ(X ,F )-lower
semicontinuous LUR norm.
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Strictly convex renormings

Theorem (Slice localization for the rotundity condition )
Given a bounded subset A ⊂ X and a family H of open half
spaces slicing A, there is an equivalent norm ‖ · ‖H,A such that:
for x , y in X and x ∈ A ∩ H, with H ∈ H, the R condition

2‖x‖2H,A + 2‖y‖2H,A − ‖x + y‖2H,A = 0

implies the existence of half spaces (Hn ∈ H):
Both x , y ∈ Hn,n = 1,2, · · · if y ∈ A.
In any case, for every n ∈ N we have

x , y ∈ co(A ∩ Hn) + B(0,1/n)
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Strictly convex renormings
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Strictly Convex Renorming Present.

Theorem ( Birthday’s Theorem)

Let (X , ‖ · ‖) be a normed space, F a norming subspace in X ∗.
X admits an equivalent σ(X ,F )-lower semicontinuous rotund
norm if, and only if,
there are families of σ(X ,F )-open half spaces Hn in X
(∗)-separating points in X, i.e.

For every two different points x and y in X there is some
integer p with

1 {x , y} ∩ H0 6= ∅ for some H0 ∈ Hp
2 {x , y} ∩ H has at most one element for every H ∈ Hp
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Half-spaces (∗)-separation⇒ 〈 strictly convex 〉

Hn families of half-spaces (∗)-separating X .
For every n,R > 0 we apply SLT to construct an equivalent
norm ‖ · ‖n,R for non empty slices in Hn ∩ B(0,R).
‖x‖n,R = ‖y‖n,R = ‖(x + y)/2‖n,R ⇒ x , y ∈ H ′ ∈ Hn for
some H ′ whenever one of them is in ∪{H : H ∈ Hn} and
both are in B(0,R).
If we define an equivalent norm on X by the expression:

‖|x |‖2 :=
∞∑

n=1,R=1

cn,R‖x‖2n

for every x ∈ X , where (cn,R) has beeen chosen
accordingly for the uniform convergence of the series on
bounded sets.
Then ‖| · |‖ is the equivalent rotund norm we are looking for.
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Nonlinear Transfer for Strictly Convex Renorming

Theorem
X ⊂ l∞(Γ) and Y ⊂ l∞(∆) normed spaces,
Φ : X → Y be a one to one map
with an increasing sequences of sets

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · ∈ X

such that:

For every Tp-open half space G ⊂ Y, x ∈ X with Φx ∈ G
there is p ∈ N and a Tp-open half space H ⊂ X with

x ∈ Ap ∩ H and Φ(Ap ∩ H) ⊂ G

Then X admits an equivalent Tp-lower semicontinuous strictly
convex norm whenever Y has it.
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Nonlinear Transfer for Strictly Convex Renorming

Theorem
X ⊂ l∞(Γ) and Y ⊂ l∞(∆) normed spaces,
Φ : X → Y be a one to one map
with a sequences of convex sets (An) in X such that:

For every Tp-open half space G ⊂ Y, x ∈ X with Φx ∈ G
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Nonlinear Transfer for Strictly Convex Renorming

Theorem
X normed space and θn : X → l∞(Γ) bounded on bounded sets
such that:

|θn(
u + v

2
)| ≤ |θnu + θnv

2
| in l∞(Γ)

for all u, v ∈ X ,n ∈ N. If given x 6= y in X there is p ∈ N,A ⊂ Γ
with θpx�A 6= θpy�A and either

min{|θpx(α)| : α ∈ A} > |θpx(γ)| for all γ ∈ Γ \ A.
min{|θpy(α)| : α ∈ A} > |θpy(γ)| for all γ ∈ Γ \ A.

Then X admits an equivalent strictly convex norm

J. Orihuela The Slice Localization Theorem



Internal characterization for spaces C(K )∗

Theorem
Let K be an scattered compact space.
C(K )∗ admits an equivalent dual and strictly convex norm if,
and only if, there are families of open sets

(Un)∞n=1(∗)− separating points of K ,

i.e.
For every two different points x and y in K there is some
integer p such that

1 {x , y} ∩ U0 6= ∅ for some U0 ∈ Up
2 {x , y} ∩ U has at most one element for every U ∈ Up
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The Slice Localization Theorem.

Theorem (UR case)
Given a bounded subset A ⊂ X and open half spaces H slicing
A,
there is an equivalent norm ‖ · ‖H,A such that:
for (xn) ∈ A∩H, (yn) bounded sequence in X, the UR condition

lim
n

(2‖xn‖2H,A + 2‖yn‖2H,A − ‖yn + xn‖2H,A) = 0

implies, for every ε > 0, the existence of half spaces
{Hε

n ∈ H,n ∈ N}:

yn, xn ∈ (Hε
n + ε) eventually if (yn) is eventually in A.

In any case, for every δ > 0

yn, xn ∈ co(A ∩ (Hε
n + ε)) + B(0, δ)

for all n big enough.
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Uniformly rotund renorming.

Theorem (UR case)
A Banach space admits an equivalent uniformly rotund norm if,
and only if, for every ε > 0 we have:

BX =
Nε⋃

n=1

Bε
n

and every set Bε
n is uniformly ε-denting; i.e there is δεn > 0 such

that for every x ∈ Bε
n there is an open half space H with

diam(H ∩ Bε
n) < ε

B(x , δεn) ⊂ H ∩ Bε
n
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