The Slice Localization Theorem

J. Orihuela

Department of Mathematics University of Murcia

11 June 2010

J. Orihuela The Slice Localization Theorem

= 900

ヘロト ヘアト ヘビト ヘビト

- Summary
- LUR renorming
- Pointwise LUR renorming
- The Slice Localization Theorem
- Strictly convex renorming
- Uniformly rotund renorming

A E > A E >

ъ

The coauthors

- Antonio José Guirao (Pointwise LUR)
- Matias Raja (Uniform rotundity)
- Richard Smith (Strict convexity)
- Stanimir Troyanski (all contents)
- A. Moltó, J. Orihuela, S. Troyanski and M. Valdivia A Nonlinear Transfer Technique for Renorming Springer LNM 1951, 2009.
- J. Orihuela and S. Troyanski, *Devilles's master lemma and Stone discretness in renorming theory* Journal Convex Analysis 16, 2009
- J. Orihuela and S. Troyanski, *LUR renormings through Deville's master Lemma* RACSAM 103 (1), 2009 75–85

ヘロト ヘ戸ト ヘヨト ヘヨト

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Theorem (Lindenstructs)
$$X$$
 reflexive Bausch space
Then there with $T: X \longrightarrow G(T)$ linean continuous
one to one openator
Valdinia approach $J \times S, f_S J$ M-basis
 $T(x) := (f_S(x))_{S \in T}$
 $J = (I \times I)^2 := II \times I)^2 + II T \times I)^2$ is opinalast shidly contex norm.
 $J = Z I \times I)^2 + Z I Y I)^2 - I X + Y II^2$
 $S(x, y) := Z I \times I)^2 + Z I Y I)^2 - I X + Y II^2$
 $S(x_n, y_n) \rightarrow 0 \implies (I \times n - y_n \cdot I) \rightarrow 0 \implies (L \times R)$
 $S(x_n, x_n) \rightarrow 0 \implies (I \times n - y_n \cdot I) \rightarrow 0 \implies (I \times n - x \cdot (T_P - L \cup R))$
 $S(x_n, x_n) \rightarrow 0 \implies T_P - J_{int} \times n = x \cdot (T_P - L \cup R)$
 $(X = Z I) \times I = Z I =$

- The Valencia and Murcia Seminar in Functional Analysis, 25 years of research
- Renorming techniques without coordinates.
- Nonlinear transfer techniques for renormings.
- Interplay between geometry and topology in Banach spaces.

(雪) (ヨ) (ヨ)

3

Lemma (Connection lemma)

If \mathcal{B} is a uniformly bounded and $\sigma(X, F)$ -slicely isolated family of subsets of X, there is an equivalent $\sigma(X, F)$ - lower semicontinuous norm $\|\cdot\|_{\mathcal{B}}$ such that

$$\lim_{n} \left(2 \|x_{n}\|_{\mathcal{B}}^{2} + 2 \|x\|_{\mathcal{B}}^{2} - \|x_{n} + x\|_{\mathcal{B}}^{2} \right) = 0$$

with $x \in B_0 \in \mathcal{B}$ implies that:

 There is n₀ ∈ N such that x_n, ½(x_n + x) ∉ co ∪ {B : B ≠ B₀; B ∈ B} for all n ≥ n₀.
 For every positive δ there is n_δ ∈ N such that x_n ∈ co(B₀) + δB_x whenever n ≥ n_δ.

イロト イポト イヨト イヨト 三日

Lemma (Connection lemma)

If \mathcal{B} is a uniformly bounded and $\sigma(X, F)$ -slicely isolated family of subsets of X, there is an equivalent $\sigma(X, F)$ - lower semicontinuous norm $\|\cdot\|_{\mathcal{B}}$ such that

$$\lim_{n} \left(2 \|x_{n}\|_{\mathcal{B}}^{2} + 2 \|x\|_{\mathcal{B}}^{2} - \|x_{n} + x\|_{\mathcal{B}}^{2} \right) = 0$$

with $x \in B_0 \in \mathcal{B}$ implies that:

ヘロト ヘアト ヘビト ヘビト

ъ

Lemma (Connection lemma)

If \mathcal{B} is a uniformly bounded and $\sigma(X, F)$ -slicely isolated family of subsets of X, there is an equivalent $\sigma(X, F)$ - lower semicontinuous norm $\|\cdot\|_{\mathcal{B}}$ such that

$$\lim_{n} \left(2 \|x_{n}\|_{\mathcal{B}}^{2} + 2 \|x\|_{\mathcal{B}}^{2} - \|x_{n} + x\|_{\mathcal{B}}^{2} \right) = 0$$

with $x \in B_0 \in \mathcal{B}$ implies that:

 There is n₀ ∈ N such that x_n, ½(x_n + x) ∉ co ∪ {B : B ≠ B₀; B ∈ B} for all n ≥ n₀.
 For every positive δ there is n_δ ∈ N such that

 $x_n \in \operatorname{co}(B_0) + \delta B_X$ whenever $n \ge n_\delta$.

ヘロン 人間 とくほ とくほ とう

Corollary

In a normed space X, with a norming subspace F in X^* , we have an equivalent $\sigma(X, F)$ -lower semicontinuous and locally uniformly rotund norm if, and only if, there are slicely isolated families for the $\sigma(X, F)$ topology

 $\{B_n : n = 1, 2, ...\}$

such that for every x in X and every $\epsilon > 0$ there is some positive integer n with the property that

 $x \in B \in \mathcal{B}_n$ and that $\|\cdot\| - diam(B) < \epsilon$

ヘロト ヘアト ヘビト ヘビト

Let X be a subspace of the Banach space $I^{\infty}(\Gamma)$. They are equivalent:

- X admits an equivalent T_p-locally uniformly rotund norm.
- **2** There is a metric ρ on X generating a topology finer then T_{ρ} and Id : $X \to (X, \rho) \sigma$ -slicely continuous.
- The pointwise convergence topology T_p on X has a σ-slicely isolated network.
- There is a sequence of sets (A_n) in X and families of T_p-open half spaces (H_n) such that the slicing families of sets (A_n ∩ H_n) verifies:
 - For every T_p -neighbourhood of the origin W and every $x \in X$ there is $p \in \mathbb{N}$ such that $x \in A_p \cap H_0$ for some $H_0 \in \mathcal{H}_p$ and $A_p \cap H \subset x + W$ whenever $x \in H \in \mathcal{H}_p$

ヘロト 人間 ト ヘヨト ヘヨト

Let X be a subspace of the Banach space $I^{\infty}(\Gamma)$. They are equivalent:

- X admits an equivalent T_p-locally uniformly rotund norm.
- **2** There is a metric ρ on X generating a topology finer then T_{ρ} and Id : $X \rightarrow (X, \rho) \sigma$ -slicely continuous.
- Solution The pointwise convergence topology T_p on X has a σ -slicely isolated network.
- There is a sequence of sets (A_n) in X and families of T_p-open half spaces (H_n) such that the slicing families of sets (A_n ∩ H_n) verifies:
 - For every T_p -neighbourhood of the origin W and every $x \in X$ there is $p \in \mathbb{N}$ such that $x \in A_p \cap H_0$ for some $H_0 \in \mathcal{H}_p$ and $A_p \cap H \subset x + W$ whenever $x \in H \in \mathcal{H}_p$

ヘロト ヘアト ヘヨト ヘ

Theorem (Matias Raja)

A compact space K has a σ -discrete network (i.e. it is descriptive) if, and only if, $C(K)^*$ admits an equivalent w*-LUR norm

ヘロン 人間 とくほ とくほ とう

3

• Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_p .

- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{ρ} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{\rho}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{p,r}^2 + 2||x||_{p,r}^2 ||x + x_n||_{p,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{ρ} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{\rho}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{p,r}^2 + 2||x||_{p,r}^2 ||x + x_n||_{p,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup \mathcal{M}_n \subset \cup \mathcal{H}_n$ and $H \in \mathcal{H}_n$ meets just one element in \mathcal{M}_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{ρ} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{\rho}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{p,r}^2 + 2||x||_{p,r}^2 ||x + x_n||_{p,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{ρ} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{\rho}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{p,r}^2 + 2||x||_{p,r}^2 ||x + x_n||_{p,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get

$$\|\cdot\|_{n,r}:=\|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$$

- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{ρ} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{\rho}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{p,r}^2 + 2||x||_{p,r}^2 ||x + x_n||_{p,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{ρ} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{\rho}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{p,r}^2 + 2||x||_{p,r}^2 ||x + x_n||_{p,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_n (2||x_n||^2 + 2||x|||^2 ||x + x_n|||^2) = 0$, a convex T_ρ neighbourhood of the origin W, $M_0 \in \mathcal{M}_\rho$ with $x \in M_0 \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{p,r}^2 + 2||x||_{p,r}^2 ||x + x_n||_{p,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{\rho,r}^2 + 2||x||_{\rho,r}^2 ||x + x_n||_{\rho,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{\rho,r}^2 + 2||x||_{\rho,r}^2 ||x + x_n||_{\rho,r}^2) = 0$
- we have $x, x_n \in co(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

- Let $\mathcal{M} = \bigcup_{n=1}^{\infty} \mathcal{M}_n$ the σ -slicely isolated network for T_{ρ} .
- Take for every $n \in \mathbb{N}$ open half spaces \mathcal{H}_n such that:
- $\cup M_n \subset \cup H_n$ and $H \in H_n$ meets just one element in M_n
- Apply the Connection Lemma to get $\|\cdot\|_{n,r} := \|\cdot\|_{\mathcal{H}_n,(\cup\mathcal{M}_n)\cap B(0,r)}$
- Glue the countable information we have: $\||\cdot\||^2 := \sum_{n,r=1}^{\infty} c_{n,r} \|\cdot\|_{n,r}^2$
- Given $\lim_{n}(2||x_{n}||^{2} + 2||x||^{2} ||x + x_{n}||^{2}) = 0$, a convex T_{p} neighbourhood of the origin $W, M_{0} \in \mathcal{M}_{p}$ with $x \in M_{0} \subset x + W/2$
- If ||x|| < r, since $\lim_{n \to \infty} (2||x_n||_{\rho,r}^2 + 2||x||_{\rho,r}^2 ||x + x_n||_{\rho,r}^2) = 0$
- we have $x, x_n \in \operatorname{co}(M_0) + B(0, \delta)$ for $n \ge n_0^{\delta}$
- Then $x_n \in x + W$ for $n \ge n_0^{\delta}$ for δ small enough to have $\delta B_X \subset W/2$.

Nonlinear transfer for T_p LUR renorming

Theorem

Let $X \subset I^{\infty}(\Gamma)$ and

$$\Phi: \boldsymbol{X} \to (\boldsymbol{Y}, \rho)$$

a σ -slicely continuous map. If there is a sequence of sets (D_n) in Y such that for every T_p -neighbourhood of the origen W and $x \in X$ there is some $\delta > 0$, $p \in \mathbb{N}$ with

 $\Phi x \in D_p$ and $\Phi^{-1}(D_p \cap B_\rho(\Phi x, \delta)) \subset x + W$,

then X admits an equivalent T_p -LUR norm.

Corollary (Moltó, Orihuela, Troyanski, Valdivia)

If X has an F-smooth norm $\|\cdot\|$ with dual norm G-smooth on the set of norm attaining functionals, then X admits an equivalent LUR norm

Nonlinear transfer for T_p LUR renorming

Theorem

Let $X \subset I^{\infty}(\Gamma)$ and

$$\Phi: \boldsymbol{X} \to (\boldsymbol{Y}, \rho)$$

a σ -slicely continuous map. If there is a sequence of sets (D_n) in Y such that for every T_p -neighbourhood of the origen W and $x \in X$ there is some $\delta > 0$, $p \in \mathbb{N}$ with

$$\Phi x \in D_{\rho} \text{ and } \Phi^{-1}(D_{\rho} \cap B_{\rho}(\Phi x, \delta)) \subset x + W,$$

then X admits an equivalent T_p -LUR norm.

Corollary (Moltó, Orihuela, Troyanski, Valdivia)

If X has an F-smooth norm $\|\cdot\|$ with dual norm G-smooth on the set of norm attaining functionals, then X admits an equivalent LUR norm

Nonlinear transfer for T_p LUR renorming

Theorem

Let $X \subset I^{\infty}(\Gamma)$ and

$$\Phi: \boldsymbol{X} \to (\boldsymbol{Y}, \rho)$$

a σ -slicely continuous map. If there is a sequence of sets (D_n) in Y such that for every T_p -neighbourhood of the origen W and $x \in X$ there is some $\delta > 0$, $p \in \mathbb{N}$ with

$$\Phi x \in D_{\rho} \text{ and } \Phi^{-1}(D_{\rho} \cap B_{\rho}(\Phi x, \delta)) \subset x + W,$$

then X admits an equivalent T_p -LUR norm.

Corollary (Moltó, Orihuela, Troyanski, Valdivia)

If X has an F-smooth norm $\|\cdot\|$ with dual norm G-smooth on the set of norm attaining functionals, then X admits an equivalent LUR norm

 $X \subset I^{\infty}(\Gamma), Y \subset I^{\infty}(\Delta)$ normed spaces, $\Phi : X \to Y$ be a map with sequences of sets (A_n) in X, (D_n) in Y such that:

 For every T_p-open half space G ⊂ Y, x ∈ X with Φx ∈ G there is p ∈ N and a T_p-open half space H ⊂ X with

 $x \in A_p \cap H$ and $\Phi(A_p \cap H) \subset G$

 For every T_p-open half space H ⊂ X, y ∈ Y with Φ⁻¹y ∩ H ≠ Ø there is q ∈ N, a T_p-open half space G ⊂ Y with

$$y \in D_q \cap G$$
 and $\Phi^{-1}(D_q \cap G) \subset H$

Then X admits an equivalent T_p LUR norm if, and only if Y does it.

・ロト ・同ト ・ヨト ・ヨト

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A there is an equivalent norm $\|\cdot\|_{\mathcal{H},A}$ such that: for (x_n) in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the LUR condition

$$\lim_{n} (2\|x_{n}\|_{\mathcal{H},\mathcal{A}}^{2} + 2\|x\|_{\mathcal{H},\mathcal{A}}^{2} - \|x + x_{n}\|_{\mathcal{H},\mathcal{A}}^{2}) = 0$$

implies the existence of a sequence of half spaces $\{H_n \in \mathcal{H}\}$:

- There is $n_0 \in \mathbb{N}$ such that $x, x_n \in H_n$ for $n \ge n_0$ if $x_n \in A$.
- For every $\delta > 0$ there is some n_{δ} such that

$$x, x_n \in \operatorname{co}(A \cap H_n)) + B(0, \delta)$$

for all $n \geq n_{\delta}$

▲ 同 ▶ → モラ ▶

Theorem (Bing-Nagata-Stone meet renorming)

Let X be a normed space with a norming subspace $F \subset X^*$. X admits an equivalent $\sigma(X, F)$ -lower semicontinuous and LUR norm if, and only if, the norm topology admits a basis where \mathcal{B}_n is norm discrete and $\sigma(X, F)$ -slicely isolated family for every $n \in \mathbb{N}$.

Theorem (Matias Raja's formulation)

Let X be a as above. We assume that there are subsets (A_n) such that for every x and $\varepsilon > 0$ we can find $p \in \mathbb{N}$ and a $\sigma(X, F)$ -open half space H such that $x \in A_p \cap H$ and diam $(A_p \cap H) \leq \epsilon$. Then X admits an equivalent $\sigma(X, F)$ -lower semicontinuous LUR norm.

ヘロン ヘアン ヘビン ヘビン

Theorem (Bing-Nagata-Stone meet renorming)

Let X be a normed space with a norming subspace $F \subset X^*$. X admits an equivalent $\sigma(X, F)$ -lower semicontinuous and LUR norm if, and only if, the norm topology admits a basis where \mathcal{B}_n is norm discrete and $\sigma(X, F)$ -slicely isolated family for every $n \in \mathbb{N}$.

Theorem (Matias Raja's formulation)

Let X be a as above. We assume that there are subsets (A_n) such that for every x and $\varepsilon > 0$ we can find $p \in \mathbb{N}$ and a $\sigma(X, F)$ -open half space H such that $x \in A_p \cap H$ and diam $(A_p \cap H) \leq \epsilon$. Then X admits an equivalent $\sigma(X, F)$ -lower semicontinuous LUR norm.

ヘロト ヘアト ヘヨト ヘ

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H},A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

 $2\|x\|_{\mathcal{H},A}^{2} + 2\|y\|_{\mathcal{H},A}^{2} - \|x+y\|_{\mathcal{H},A}^{2} = 0$

implies the existence of half spaces $(H_n \in \mathcal{H})$:

- Both $x, y \in H_n, n = 1, 2, \cdots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have

 $x,y\in co(A\cap H_n)+B(0,1/n)$

▲圖> ▲ ヨ> ▲ ヨ>

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H},A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

 $2\|x\|_{\mathcal{H},A}^2 + 2\|y\|_{\mathcal{H},A}^2 - \|x+y\|_{\mathcal{H},A}^2 = 0$

implies the existence of half spaces $(H_n \in \mathcal{H})$:

- Both $x, y \in H_n, n = 1, 2, \cdots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have

 $x, y \in co(A \cap H_n) + B(0, 1/n)$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ .

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H},A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

$$2\|x\|_{\mathcal{H},A}^{2}+2\|y\|_{\mathcal{H},A}^{2}-\|x+y\|_{\mathcal{H},A}^{2}=0$$

implies the existence of half spaces $(H_n \in \mathcal{H})$:

- Both $x, y \in H_n, n = 1, 2, \cdots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have

 $x,y\in co(A\cap H_n)+B(0,1/n)$

・ロト ・聞 ト ・ヨト ・ヨト

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H},A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

$$2\|x\|_{\mathcal{H},A}^2 + 2\|y\|_{\mathcal{H},A}^2 - \|x+y\|_{\mathcal{H},A}^2 = 0$$

implies the existence of half spaces $(H_n \in \mathcal{H})$:

• Both $x, y \in H_n, n = 1, 2, \cdots$ if $y \in A$.

• In any case, for every $n \in \mathbb{N}$ we have

 $x,y\in co(A\cap H_n)+B(0,1/n)$

・ロン ・聞 と ・ ヨン ・ ヨン・

Theorem (Slice localization for the rotundity condition)

Given a bounded subset $A \subset X$ and a family \mathcal{H} of open half spaces slicing A, there is an equivalent norm $\|\cdot\|_{\mathcal{H},A}$ such that: for x, y in X and $x \in A \cap H$, with $H \in \mathcal{H}$, the R condition

$$2\|x\|_{\mathcal{H},A}^2 + 2\|y\|_{\mathcal{H},A}^2 - \|x+y\|_{\mathcal{H},A}^2 = 0$$

implies the existence of half spaces $(H_n \in \mathcal{H})$:

- Both $x, y \in H_n, n = 1, 2, \cdots$ if $y \in A$.
- In any case, for every $n \in \mathbb{N}$ we have

 $x,y\in \textit{co}(A\cap H_n)+B(0,1/n)$

★課 と ★ 注 と ★

Theorem (Birthday's Theorem)

Let $(X, \|\cdot\|)$ be a normed space, F a norming subspace in X^* . X admits an equivalent $\sigma(X, F)$ -lower semicontinuous rotund norm if, and only if, there are families of $\sigma(X, F)$ -open half spaces \mathcal{H}_n in X

- For every two different points x and y in X there is some integer p with

 - @ ${x,y} ∩ H$ has at most one element for every $H ∈ H_p$

ヘロト ヘワト ヘビト ヘビト

Theorem (Birthday's Theorem)

Let $(X, \|\cdot\|)$ be a normed space, F a norming subspace in X^* . X admits an equivalent $\sigma(X, F)$ -lower semicontinuous rotund norm if, and only if, there are families of $\sigma(X, F)$ -open half spaces \mathcal{H}_n in X

(*)-separating points in X, i.e.

• For every two different points x and y in X there is some integer p with

2 $\{x, y\} \cap H$ has at most one element for every $H \in \mathcal{H}_p$

ヘロト 人間 ト ヘヨト ヘヨト

- \mathcal{H}_n families of half-spaces (*)-separating X.
- For every n, R > 0 we apply SLT to construct an equivalent norm || · ||_{n,R} for non empty slices in H_n ∩ B(0, R).
- $||x||_{n,R} = ||y||_{n,R} = ||(x + y)/2||_{n,R} \Rightarrow x, y \in H' \in \mathcal{H}_n$ for some H' whenever one of them is in $\cup \{H : H \in \mathcal{H}_n\}$ and both are in B(0, R).
- If we define an equivalent norm on *X* by the expression:

$$|||x|||^2 := \sum_{n=1,R=1}^{\infty} c_{n,R} ||x||_n^2$$

for every $x \in X$, where $(c_{n,R})$ has been chosen accordingly for the uniform convergence of the series on bounded sets.

• Then $\||\cdot|\|$ is the equivalent rotund norm we are looking for.

<□> < □> < □> < □> = - のへへ

- \mathcal{H}_n families of half-spaces (*)-separating X.
- For every n, R > 0 we apply SLT to construct an equivalent norm || · ||_{n,R} for non empty slices in H_n ∩ B(0, R).
- $||x||_{n,R} = ||y||_{n,R} = ||(x + y)/2||_{n,R} \Rightarrow x, y \in H' \in \mathcal{H}_n$ for some H' whenever one of them is in $\cup \{H : H \in \mathcal{H}_n\}$ and both are in B(0, R).
- If we define an equivalent norm on *X* by the expression:

$$|||x|||^2 := \sum_{n=1,R=1}^{\infty} c_{n,R} ||x||_n^2$$

for every $x \in X$, where $(c_{n,R})$ has been chosen accordingly for the uniform convergence of the series on bounded sets.

• Then $\||\cdot|\|$ is the equivalent rotund norm we are looking for.

<□> < □> < □> < □> = - のへへ

- \mathcal{H}_n families of half-spaces (*)-separating X.
- For every n, R > 0 we apply SLT to construct an equivalent norm || · ||_{n,R} for non empty slices in H_n ∩ B(0, R).
- $||x||_{n,R} = ||y||_{n,R} = ||(x + y)/2||_{n,R} \Rightarrow x, y \in H' \in \mathcal{H}_n$ for some H' whenever one of them is in $\cup \{H : H \in \mathcal{H}_n\}$ and both are in B(0, R).
- If we define an equivalent norm on *X* by the expression:

$$|||x|||^2 := \sum_{n=1,R=1}^{\infty} c_{n,R} ||x||_n^2$$

for every $x \in X$, where $(c_{n,R})$ has been chosen accordingly for the uniform convergence of the series on bounded sets.

• Then $\||\cdot|\|$ is the equivalent rotund norm we are looking for.

- \mathcal{H}_n families of half-spaces (*)-separating X.
- For every n, R > 0 we apply SLT to construct an equivalent norm || · ||_{n,R} for non empty slices in H_n ∩ B(0, R).
- $||x||_{n,R} = ||y||_{n,R} = ||(x + y)/2||_{n,R} \Rightarrow x, y \in H' \in \mathcal{H}_n$ for some H' whenever one of them is in $\cup \{H : H \in \mathcal{H}_n\}$ and both are in B(0, R).
- If we define an equivalent norm on X by the expression:

$$|||x|||^2 := \sum_{n=1,R=1}^{\infty} c_{n,R} ||x||_n^2$$

for every $x \in X$, where $(c_{n,R})$ has been chosen accordingly for the uniform convergence of the series on bounded sets.

• Then $\||\cdot|\|$ is the equivalent rotund norm we are looking for.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

- \mathcal{H}_n families of half-spaces (*)-separating X.
- For every n, R > 0 we apply SLT to construct an equivalent norm || · ||_{n,R} for non empty slices in H_n ∩ B(0, R).
- $||x||_{n,R} = ||y||_{n,R} = ||(x + y)/2||_{n,R} \Rightarrow x, y \in H' \in \mathcal{H}_n$ for some H' whenever one of them is in $\cup \{H : H \in \mathcal{H}_n\}$ and both are in B(0, R).
- If we define an equivalent norm on X by the expression:

$$|||x|||^2 := \sum_{n=1,R=1}^{\infty} c_{n,R} ||x||_n^2$$

for every $x \in X$, where $(c_{n,R})$ has been chosen accordingly for the uniform convergence of the series on bounded sets.

• Then $\||\cdot|\|$ is the equivalent rotund norm we are looking for.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → り Q (?)

- \mathcal{H}_n families of half-spaces (*)-separating X.
- For every n, R > 0 we apply SLT to construct an equivalent norm || · ||_{n,R} for non empty slices in H_n ∩ B(0, R).
- $||x||_{n,R} = ||y||_{n,R} = ||(x + y)/2||_{n,R} \Rightarrow x, y \in H' \in \mathcal{H}_n$ for some H' whenever one of them is in $\cup \{H : H \in \mathcal{H}_n\}$ and both are in B(0, R).
- If we define an equivalent norm on X by the expression:

$$|||x|||^2 := \sum_{n=1,R=1}^{\infty} c_{n,R} ||x||_n^2$$

for every $x \in X$, where $(c_{n,R})$ has been chosen accordingly for the uniform convergence of the series on bounded sets.

• Then $\||\cdot|\|$ is the equivalent rotund norm we are looking for.

▲ Ξ ► ▲ Ξ ► Ξ = •○ Q ()

 $X \subset I^{\infty}(\Gamma)$ and $Y \subset I^{\infty}(\Delta)$ normed spaces, $\Phi: X \to Y$ be a one to one map with an increasing sequences of sets

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \in X$$

such that:

 For every T_p-open half space G ⊂ Y, x ∈ X with Φx ∈ G there is p ∈ N and a T_p-open half space H ⊂ X with

$$x \in A_p \cap H$$
 and $\Phi(A_p \cap H) \subset G$

Then X admits an equivalent T_p -lower semicontinuous strictly convex norm whenever Y has it.

 $X \subset I^{\infty}(\Gamma)$ and $Y \subset I^{\infty}(\Delta)$ normed spaces, $\Phi: X \to Y$ be a one to one map with a sequences of convex sets (A_n) in X such that:

 For every T_p-open half space G ⊂ Y, x ∈ X with Φx ∈ G there is p ∈ N and a T_p-open half space H ⊂ X with

$$x \in A_p \cap H$$
 and $\Phi(A_p \cap H) \subset G$

Then X admits an equivalent T_p -lower semicontinuous strictly convex norm whenever Y has it.

X normed space and $\theta_n : X \to I^{\infty}(\Gamma)$ bounded on bounded sets such that:

$$| heta_n(rac{u+v}{2})| \leq |rac{ heta_n u + heta_n v}{2}|$$
 in $I^\infty(\Gamma)$

for all $u, v \in X$, $n \in \mathbb{N}$. If given $x \neq y$ in X there is $p \in \mathbb{N}$, $A \subset \Gamma$ with $\theta_p x_{\uparrow A} \neq \theta_p y_{\uparrow A}$ and either

- $\min\{|\theta_{p}x(\alpha)| : \alpha \in A\} > |\theta_{p}x(\gamma)|$ for all $\gamma \in \Gamma \setminus A$.
- $\min\{|\theta_{\rho}y(\alpha)| : \alpha \in A\} > |\theta_{\rho}y(\gamma)|$ for all $\gamma \in \Gamma \setminus A$.

Then X admits an equivalent strictly convex norm

・ 回 ト ・ ヨ ト ・ ヨ ト

Let K be an scattered compact space. $C(K)^*$ admits an equivalent dual and strictly convex norm if, and only if, there are families of open sets

 $(\mathcal{U}_n)_{n=1}^{\infty}(*)$ - separating points of K,

i.e.

- For every two different points x and y in K there is some integer p such that

 - **2** $\{x, y\} \cap U$ has at most one element for every $U \in U_p$

イロト イポト イヨト イヨト

The Slice Localization Theorem.

Theorem (UR case)

Given a bounded subset $A \subset X$ and open half spaces \mathcal{H} slicing A,

there is an equivalent norm $\|\cdot\|_{\mathcal{H},A}$ such that:

for $(x_n) \in A \cap \mathcal{H}$, (y_n) bounded sequence in X, the UR condition

$$\lim_{n} (2\|x_{n}\|_{\mathcal{H},A}^{2} + 2\|y_{n}\|_{\mathcal{H},A}^{2} - \|y_{n} + x_{n}\|_{\mathcal{H},A}^{2}) = 0$$

implies, for every $\varepsilon > 0$, the existence of half spaces $\{H_n^{\varepsilon} \in \mathcal{H}, n \in \mathbb{N}\}$:

- $y_n, x_n \in (H_n^{\varepsilon} + \varepsilon)$ eventually if (y_n) is eventually in A.
- In any case, for every $\delta > 0$

$$y_n, x_n \in \overline{\operatorname{co}(A \cap (H_n^{\varepsilon} + \varepsilon))} + B(0, \delta)$$

for all n big enough.

Theorem (UR case)

A Banach space admits an equivalent uniformly rotund norm if, and only if, for every $\epsilon > 0$ we have:

$$B_X = \bigcup_{n=1}^{\mathbb{N}_{\epsilon}} B_n^{\epsilon}$$

and every set B_n^{ϵ} is uniformly ϵ -denting; i.e there is $\delta_n^{\epsilon} > 0$ such that for every $x \in B_n^{\epsilon}$ there is an open half space H with

• diam
$$(H \cap B_n^{\epsilon}) < \epsilon$$

•
$$B(x, \delta_n^{\epsilon}) \subset H \cap B_n^{\epsilon}$$