Abstract

We present a robust representation theorem for monetary convex risk measures $\rho : \mathcal{X} \to \mathbb{R}$ such that

 $\lim_{n \to \infty} \rho(X_n) = \rho(X)$ whenever (X_n) almost surely converges to X,

 $|X_n| \leq Z \in \mathcal{X}$, for every $n \in \mathbb{N}$ and \mathcal{X} is an arbitrary Orlicz space. The separable $\langle \mathbb{L}^1, \mathbb{L}^\infty \rangle$ case of Jouini, Schachermayer and Touzi, [Jou-Scha-Tou06], as well as the non-separable version of Delbaen [Del09], are contained as a particular case here. We answer a natural question posed by Biagini and Fritelli in [Bia-Fri09]. Our approach is based on the study for unbounded sets, as the epigraph of a given penalty function associated with ρ , of the celebrated weak compactness Theorem due to R. C. James [Jam72].

Introduction

Let us fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ together with \mathcal{X} , a linear space of functions in \mathbb{R}^{Ω} that contains the constant functions. We assume here that $(\Omega, \mathcal{F}, \mathbb{P})$ is atomless. The space \mathcal{X} is going to describe all possible financial positions $X : \Omega \to \mathbb{R}$ where $X(\omega)$ is the discounted net worth of the position at the end of the trading period if the scenario $\omega \in \Omega$ is realized. The problem of quantifying the risk of a financial position $X \in \mathcal{X}$ is modeled with function $\rho: \mathcal{X} \to \mathbb{R}$ that satisfy:

• Monotoniticity : If $X \leq Y$, then $\rho(X) \geq \rho(Y)$

• Cash invariance: If $m \in \mathbb{R}$ then $\rho(X + m) = \rho(X) - m$

Such a function ρ is called *monetary measure of risk*, see Chapter 4 in [Foll-Schi04]. When it is a convex function too, *i.e.*

$$\rho(\lambda X + (1 - \lambda)Y) \le \lambda \rho(X) + (1 - \lambda)\rho(Y) \text{ for } 0 \le \lambda \le 1,$$

then ρ is called *convex measure of risk*. If \mathcal{X} is a Frechet lattice, the convexity and monotoniticity of ρ lead to continuity and subdifferentiability at all positions $X \in \mathcal{X}$ by the extended Namioka-Klee Theorem of [Bia-Fri09], as well as to strong representations of the form

$$\rho(X) = \max_{Y \in (\mathcal{X}')^+} \{ \langle Y, -X \rangle - \rho^*(-Y) \},$$

for every $X \in \mathcal{X}$ whenever \mathcal{X} is order continuous (see Theorem 1 and Corollary 1 in [Bia-Fri09]). Here $(\mathcal{X}')^+$ denotes the positive cone of continuous linear functionals, ρ^* is the Fenchel conjugate to ρ :

$$\rho^*(Y) = \sup_{X \in \mathcal{X}} \{ \langle Y, X \rangle - \rho(X) \}$$

for all $Y \in \mathcal{X}'$, and $\langle \cdot, \cdot \rangle$ denotes the bilinear form for the duality between \mathcal{X} and its topological dual \mathcal{X}' . When the Frechet lattice \mathcal{X} is not order continuous, for instance the Lebesgue space of bounded and measurable functions $\mathcal{X} = \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ with its canonical essential supremum norm $\|\cdot\|_{\infty}$, we have the representation formula with a supremum instead of maximum:

$$\rho(X) = \sup_{Y \in (\mathcal{X}_n^{\sim})^+} \{ \langle Y, -X \rangle - \rho^*(-Y) \},$$

where $(\mathcal{X}_n^{\sim})^+$ denotes the positive cone of the order continuous linear functionals $\mathcal{X}_n^{\sim} \subset \mathcal{X}'$, whenever the risk measure ρ is $\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})$ -lower semicontinuous, as seen in Proposition 1 in [Bia-Fri09]. A natural question posed by them is whether the sup in formula (1) is attained.

For risk measures defined on L^{∞} , the representation formula with supremum is equivalent to the so-called Fatou property, given in Theorem 4.31 in [Foll-Shci04]. The fact that the order continuity of ρ is equivalent to turning the sup into a max in (1) i.e.

$$\rho(X) = \max_{Y \in (L^1)^+} \{ -\mathbb{E}[Y \cdot X] - \rho^*(-Y) \},$$

for every $X \in L^{\infty}$, is the statement of the so called Jouini-Schachermayer-Touzi Theorem in [Del09] (see Theorem 5.2 in [Jou-Sch-Tou06]).

S. Biagini and M. Fritelli show in [Bia-Fri09] that order continuity of the risk measure ρ is sufficient to turn a maximum in (1) for an arbitrary locally convex Frechet lattice \mathcal{X} . Our main contribution here shows that sequential order continuity is a necessary and sufficient condition for it when \mathcal{X} is an arbitrary Orlicz space L^{Ψ} such that the order continuous linear functionals coincides with the Orlicz heart \mathbb{M}^{Ψ^*} , i.e., we present the Jouini-Schachermayer-Touzi Theorem for risk measures defined on Orlicz spaces.

A Young function Ψ is an even, convex function $\Psi: E \to [0, +\infty]$ with the properties: $\Psi(0) = 0$, $\lim_{x\to\infty} \Psi(x) = +\infty$ and $\Psi < +\infty$ in a neighborhood of 0. The Orlicz space L^{Ψ} is defined as:

$$L^{\Psi}(\Omega, \mathcal{F}, \mathbb{P}) := \{ X \in L^{0}(\Omega, \mathcal{F}, \mathbb{P}) : \exists \alpha > 0 \text{ with } \mathbb{E}_{\mathbb{P}}[\Psi(\alpha X)] < +\infty \}$$

with the Luxemburg norm on it: $N_{\Psi}(X) := \inf\{c > 0 : \mathbb{E}_{\mathbb{P}}[\Psi(\frac{1}{c}X)] \leq 1\}$. With the usual pointwise lattice operations, $L^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ is a Banach lattice and we have inclusions: $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \subset L^{\Psi}(\Omega, \mathcal{F}, \mathbb{P}) \subset L^{1}(\Omega, \mathcal{F}, \mathbb{P})$. Moreover, $(L^{\Psi})^* = L^{\Psi^*} \oplus G$ where G is the singular band and L^{Ψ^*} is the order continuous band identified with the Orlicz space L^{Ψ^*} , where

$$\Psi^*(y) := \sup_{x \in \mathbb{D}} \{yx - \Psi(x)\}$$

is the Young function conjugate to Ψ .

Lebesgue property for convex risk measures on Orlicz spaces

J. Orihuela (joseori@um.es)

Departamento de Matemáticas, Murcia University, 30.100 Campus Espinardo 15 (Murcia), Spain

Lebesgue risk measures 2

Theorem 1 (Main result) Let Ψ be a Young function with finite conjugate Ψ^* and

 $\alpha: (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P}))^* \to \mathbb{R} \cup \{+\infty\}$

be a $\sigma((\mathbb{L}^{\Psi})^*, \mathbb{L}^{\Psi})$ -lower semicontinuous penalty function representing a finite monetary risk measure ρ as $(Y)\}.$

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ -\mathbb{E}[XY] - \alpha($$

The following are equivalent:

(i) For each $c \in \mathbb{R}$, $\alpha^{-1}((-\infty, c])$ is a weakly compact subset of $\mathbb{M}^{\Psi^*}(\Omega, \mathcal{F}, \mathbb{P})$. (ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ -\mathbb{E}[XY] - \cdot \}$$

is attained.

(iii) ρ is order sequentially continuous.

Let us remark that order sequential continuity for a map ρ in \mathbb{L}^{Ψ} is equivalent to having

 $\lim \rho(X_n) = \rho(X)$

whenever (X_n) is a sequence in L^{Ψ} almost surely convergent to X and bounded by some $Z \in L^{\Psi}$, i.e. $|X_n| \leq Z$ for every $n \in \mathbb{N}$. For that reason we say that a map $\rho : L^{\Psi} \to (-\infty, +\infty]$ verifies the Lebesgue property whenever it is sequentially order continuous.

When Ψ is a Young function that verifies the Δ_2 condition, i.e. if there are $t_0 > 0$ and K > 0 such that: $\Phi(2t) \leq K\Phi(t)$ for all $t > t_0$, we have a result for the risk measures studied by P. Cheredito and T. Li., see [Che-Li09]. The Orlicz heart M^{Ψ^*} is the Morse subspace of all $X \in L^{\Psi^*}$ such that $\mathbb{E}_{\mathbb{P}}[\Psi^*(\beta X)] < +\infty$

for all $\beta > 0$.

Corollary 2 Let Ψ a Young function that verifies the Δ_2 condition and finite Ψ^* . Let $\rho : \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a finite convex risk measure with the Fatou property and

 $\rho^*: \mathbb{L}^{\Psi^*}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R} \cup \{+\infty\}$

its Fenchel–Legendre conjugate defined on the dual space. The following are equivalent: (i) For each $c \in \mathbb{R}$, $(\rho^*)^{-1}((-\infty, c])$ is a weakly compact subset of $\mathbb{M}^{\Psi^*}(\Omega, \mathcal{F}, \mathbb{P})$. (ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$\rho(X) = \sup_{Y \in (\mathbb{M}^{\Psi^*})^+} \{ \mathbb{E}[-XY] -$$

is attained.

(iii) ρ is sequentially order continuous.

(iv) $\lim_{n} \rho(X_n) = \rho(X)$ whenever $X_n \nearrow X$ in \mathbb{L}^{Ψ} .

(v) $Dom(\rho^*) \subset \mathbb{M}^{\Psi^*}$.

Corollary 3 Let Ψ be a Young function with conjugate Ψ^* that verifies the Δ_2 condition. Let $\rho : \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a finite convex risk measure with the Fatou property and

 $\rho^*: (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to \mathbb{R} \cup \{+\infty\}$

its Fenchel–Legendre conjugate defined on the dual space. The following are equivalent: (i) For each $c \in \mathbb{R}$, $(\rho^*)^{-1}((-\infty, c])$ is a weakly compact subset of $\mathbb{L}^{\Psi^*}(\Omega, \mathcal{F}, \mathbb{P})$. (ii) For every $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$, the supremum in the equality

$$\rho(X) = \sup_{Y \in (\mathbb{L}^{\Psi^*})^+} \{ \mathbb{E}[-XY] -$$

is attained.

(iii) ρ is sequentially order continuous.

(iv) $\lim_{n} \rho(X_n) = \rho(X)$ whenever $X_n \nearrow X$ in \mathbb{L}^{Ψ} .

(v) $Dom(\rho^*) \subset \mathbb{L}^{\Psi^*}$. F. Delbaen has proved we always are forced to have the compactness-continuity property ((i)-(iii) in Theorem

1) restricted to the duality $\langle \mathbb{L}^1, \mathbb{L}^\infty \rangle$, whenever the convex risk measure ρ is defined on a rearrangement invariant solid space \mathcal{X} such that $\mathcal{X} \setminus L^{\infty} \neq \emptyset$, as seen in Section 4.16 in [Del12]. This result is even true for non-continuous risk measures since F. Delbaen only asks for the property

 $\rho(X) \ge 0 = \rho(0)$ whenever $X \ge 0$

instead of monotonicity. Our Theorem 1 complements Delbaen's results when looking for compactnesscontinuity properties in the duality $\langle \mathbb{M}^{\Psi^*}, \mathbb{L}^{\Psi} \rangle$.

(1)

 $\alpha(Y)\}$

 $-\rho^*(-Y)\}$

 $-\rho^*(-Y)$

3 Main tool

Theorem 4 (Perturbed James' Theorem) Let E be a real Banach space and

be a proper map such that

Theorem 4 has been recently proved by J. SaintRaymond [Sain12] solving our conjecture in [Ori-Rui02] where it was proved assuming that

inequalities for unbounded sets as the epigraph

of the penalty function α . Indeed we prove the following: a subset of T satisfying the following boundary condition:

where $co_{\sigma} \{ \Phi_n : n \ge 1 \} := \{ \sum_{n=1}^{\infty} \lambda_n \Phi_n : \text{ for all } n \in \mathbb{N} \}$

that

(*resp.* $y^*(x) = \sup_T(x)$) then

(resp.

sup

Poster based on a joint work wit M. Ruiz Galán from Granada University (Spain). Mathematics and Financial Economics: Volume 6, Issue 1 (2012), 15-35. DOI 10.1007/s11579-012-0058-5

4 **References**

[Bia-Fri09] S. Biagini and M. Fritelli, On the Extension of the Namioka-Klee Theorem and on tha Fatou Property for *Risk Measures* Optimality and Risk- Modern Trends in Mathematical Finance. The Kabanov Festschrift. Springer Verlag Berling 2009 1–28.

[Che-Li09] P. Cheridito and T. Li Risks measures on Orlicz hearts, Math. Finance 192 (2009) 189–214. [Del09] F. Delbaen, Differentiability properties of Utility Functions, F. Delbaen et al.(eds.) Optimality and Risk-

Modern Trends in Mathematical Finance. Springer Verlag 2009, 39–48. [Del12] F. Delbaen, *Draft: Monetary Utility Functions* Lectures Notes in preparation.

Mathematics 27, 2nd Edition . Walter de Gruyter, Berlin, 2004.

Adv. Math. Econ. 9 (2006), 49–71.

[Ori-Rui12] J. Orihuela and M. Ruiz Galán, A coercive James's weak compactness theorem and nonlinear variational problems, Nonlinear Analysis 75 (2012), 598–611.

[Rao-Ren91] M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces* Marce Dekker, Inc. Ney York 1991 [Rui-Sim02] M. Ruiz Galán and S. Simons, A new minimax theorem and a perturbed James's theorem, Bull. Australian Math. Soc. 66 (2002), 43-56.

[Sain12 J. Saint Raymond, Characterizing convex functions on a reflexive Banach space, Preprint

Partially supported by the research grant MTM2011-25377, Ministerio Ciencia e Innovación, Spain

 $\alpha: E \longrightarrow \mathbb{R} \cup \{\infty\}$

for every $x^* \in E^*$, $x^* - \alpha$ attains its supremum on E.

Then, for each $c \in \mathbb{R}$, the corresponding sublevel set $\alpha^{-1}((-\infty, c])$ is a relatively weakly compact subset of E.

$$\lim_{\|x\|\to+\infty}\frac{\alpha(x)}{\|x\|} = 0$$

Theorem 4 were firstly presented at the meeting Analysis, Stochastics and Aplications, held at Viena in July 2010, to celebrate Walter Schachermayer's 60th Birthday, see http://www.mat.univie.ac.at/ anstap10/slides/Orihuela.pdf, for Banach spaces E with weak*-sequentially compact dual unit ball, as they are the Orlicz spaces that contain the domain of a penalty function α in our applications. Our approach contains classical James' result with new Simons's

 $\operatorname{Epi}(\alpha) = \{ (x, t) \in E \times \mathbb{R} : \alpha(x) \le t \}$

Theorem 5 (Inf-liminf Theorem in \mathbb{R}^T) Let $\{\Phi_k\}_{k>1}$ be a pointwise bounded sequence in \mathbb{R}^T and suppose that Y is

for every $\Phi \in co_{\sigma} \{ \Phi_k : k \ge 1 \}$ there exists $y \in Y$ with $\Phi(y) = inf(\Phi)$.

$$n \ge 1, \ \lambda_n \ge 0 \text{ and } \sum_{n=1}^{\infty} \lambda_n = 1 \}.$$
 Then

 $\inf_{Y} \left(\liminf_{k \ge 1} \Phi_k \right) = \inf_{T} \left(\liminf_{k \ge 1} \Phi_k \right).$

Corollary 6 If $Y \subset T$ are nonempty subsets of E^* , and $\{x_n\}_{n>1}$ is a bounded sequence in the Banach space E such

for every $x \in co_{\sigma}\{x_n : n \ge 1\}$ there exists $y^* \in Y$ with $y^*(x) = \inf_{T}(x)$,

$$\liminf_{n \ge 1} x_n = \inf_T \left(\liminf_{n \ge 1} x_n \right).$$
$$\max_{n \ge 1} x_n = \sup_T \left(\limsup_{n \ge 1} x_n \right).$$

- [Foll-Schi04] H. Föllmer and A. Schied Stochastic Finance. An Introduction in Discrete Time de Gruyter Studies in
- [Jam72] R.C. James, *Reflexivity and the Sup of Linear Functionals*, Isr. J. Math. **13** (1972), 289–300
- [Jou-Scha-Tou06] E. Jouini, W. Schachermayer and N. Touzi, Law invariant risk measures have the Fatou property,