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Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if and only if each continuous linear
functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is
weakly compact if and only if each continuous linear functional
attains its supremum on K

R.C. James 1964, 1972
J.D. Pryce 1964
S. Simons 1972
G. Rodé 1981
G. Godefroy 1987
V. Fonf, J. Lindenstrauss, B. Phelps 2000-03
M. Ruiz, S. Simons 2002
B. Cascales, I. Namioka, J.O. 2003
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The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E∗

K is a closed convex set in the Banach space E

ιK (x) = 0 if x ∈ K and +∞ otherwise

x∗ ∈ E∗ attains its supremum on K at
x0 ∈ K ⇔ ιk (y)− ιK (x0) ≥ x∗(y − x0) for all y ∈ E

The minimization problem

min{ιK (·)− x∗(·)}

on E for every x∗ ∈ E∗ has always solution if and only if the
set K is weakly compact
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Minimizing {V (Y ) + E(X · Y ) : Y ∈ L
1}

Theorem (Jouini-Schachermayer-Touzi)

Let U : L∞(Ω,F ,P) → R be a monetary utility function with the
Fatou property and V : L∞(Ω,F ,P)∗ → [0,∞] its
Fenchel-Legendre transform. They are equivalent:

1 {V ≤ c} is σ(L1,L∞)-compact subset of L1(Ω,F ,P) for all
c ∈ R

2 For every X ∈ L
∞(Ω,F ,P) the infimum in the equality

U(X ) = inf
Y∈L1

{V (Y ) + E[XY ]},

is attained
3 For every uniformly bounded sequence (Xn) tending a.s. to

X we have
lim

n→∞
U(Xn) = U(X ).

J. Orihuela Interplay between Functional Analysis Optimality and Risk



Minimizing {V (Y ) + E(X · Y ) : Y ∈ L
1}

Theorem (Jouini-Schachermayer-Touzi)

Let U : L∞(Ω,F ,P) → R be a monetary utility function with the
Fatou property and V : L∞(Ω,F ,P)∗ → [0,∞] its
Fenchel-Legendre transform. They are equivalent:

1 {V ≤ c} is σ(L1,L∞)-compact subset of L1(Ω,F ,P) for all
c ∈ R

2 For every X ∈ L
∞(Ω,F ,P) the infimum in the equality

U(X ) = inf
Y∈L1

{V (Y ) + E[XY ]},

is attained
3 For every uniformly bounded sequence (Xn) tending a.s. to

X we have
lim

n→∞
U(Xn) = U(X ).

J. Orihuela Interplay between Functional Analysis Optimality and Risk



Minimizing {V (Y ) + E(X · Y ) : Y ∈ L
1}

Theorem (Jouini-Schachermayer-Touzi)

Let U : L∞(Ω,F ,P) → R be a monetary utility function with the
Fatou property and V : L∞(Ω,F ,P)∗ → [0,∞] its
Fenchel-Legendre transform. They are equivalent:

1 {V ≤ c} is σ(L1,L∞)-compact subset of L1(Ω,F ,P) for all
c ∈ R

2 For every X ∈ L
∞(Ω,F ,P) the infimum in the equality

U(X ) = inf
Y∈L1

{V (Y ) + E[XY ]},

is attained
3 For every uniformly bounded sequence (Xn) tending a.s. to

X we have
lim

n→∞
U(Xn) = U(X ).

J. Orihuela Interplay between Functional Analysis Optimality and Risk



Minimizing {V (Y ) + E(X · Y ) : Y ∈ L
1}

Theorem (Jouini-Schachermayer-Touzi)

Let U : L∞(Ω,F ,P) → R be a monetary utility function with the
Fatou property and V : L∞(Ω,F ,P)∗ → [0,∞] its
Fenchel-Legendre transform. They are equivalent:

1 {V ≤ c} is σ(L1,L∞)-compact subset of L1(Ω,F ,P) for all
c ∈ R

2 For every X ∈ L
∞(Ω,F ,P) the infimum in the equality

U(X ) = inf
Y∈L1

{V (Y ) + E[XY ]},

is attained
3 For every uniformly bounded sequence (Xn) tending a.s. to

X we have
lim

n→∞
U(Xn) = U(X ).

J. Orihuela Interplay between Functional Analysis Optimality and Risk



Tools for the proof

The proof in [JST] is for separable L
1(Ω,F ,P). The

separability is needed to show 2) ⇒ 1) with a variant of the
separable James’ compactness Theorem.

Delbaen has given a proof for general non separable
spaces using an homogenisation trick. He shows how to
apply directly the non separable James’ compactness
Theorem in the duality 〈L1(Ω,F ,P),L∞(Ω,F ,P)〉.
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Minimizing {V (y) + x∗(y) : y ∈ E}

Theorem
Let E be a separable Banach space,

V : E → R ∪ {∞}

proper, convex l.s.c. with dom(V ) = {V < ∞} a bounded
subset of E. Suppose that there is c ∈ R such that the level set
{V ≤ c} fails to be weakly compact. Then there is x∗ ∈ E∗ such
that,the infimum

inf
x∈E

{〈x , x∗〉+ V (x)}

is not attained.
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Simons’ inequality

Lemma (Simons)

Let Γ be a set and (zn)n a uniformly bounded sequence in
ℓ∞(Γ). If Λ is a subset of Γ such that for every sequence of
positive numbers (λn)n with

∑∞
n=1 λn = 1 there exists b ∈ Λ

such that

sup{
∞
∑

n=1

λnzn(y) : y ∈ Γ} =

∞
∑

n=1

λnzn(b),

then

sup
b∈Λ

{lim sup
n→∞

zn(b)} ≥ inf
{

sup
Γ

w : w ∈ co{zn : n ∈ N}
}
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Weak Compactness through inequalities

Theorem

Let E be a separable Banach space and K ⊂ E a closed
convex and bounded subset. They are equivalent:

1 K is weakly compact.
2 For every sequence (x∗

n ) ⊂ BE∗ we have

sup
k∈K

{lim sup
n→∞

x∗
n (k)} ≥ inf

{

sup
κ∈K

w∗

w(κ) : w ∈ co{x∗
n : n ∈ N}

}
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Simons inequality ⇒ Compactness

If (2) happens and K is not weakly compact there is
x∗∗

0 ∈ K
w∗

⊂ E∗∗ with x∗∗
0 /∈ E

The Hahn Banach Theorem provide us x∗∗∗ ∈ BE∗∗∗ ∩ E⊥

with x∗∗∗(x∗∗
0 ) = α > 0

The separability of E , Ascoli’s and Bipolar Theorems
permit to construct a sequence (x∗

n ) ⊂ BE∗ such that:
1 limn→∞ x∗

n (x) = 0 for all x ∈ E
2 x∗

n (x
∗∗

0 ) > α/2 for all n ∈ N

Then

0 = sup
k∈K

{ lim
n→∞

x∗
n (k)} = sup

k∈K
{lim sup

n→∞
x∗

n (k)} ≥

≥ inf
{

sup
κ∈K

w∗

w(κ) : w ∈ co{x∗
n : n ∈ N}

}

≥ α/2 > 0
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Weak Compactness through I-generation

Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and K ⊂ E a closed
convex and bounded subset. They are equivalent:

1 K is weakly compact.
2 For any covering K ⊂ ∪∞

n=1Dn by an increasing sequence
of closed convex subsets Dn ⊂ K , we have

∪∞
n Dn

w∗
‖·‖

= K
w∗

.

The proof uses Krein Milman and Bishop Phelps theorems
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I-generation ⇒ Weak Compactness

Take {xn : n ∈ N} norm dense in K

Bm := co({xn : n ≤ m})
‖·‖

is finite dimensional closed
compact set

Dm := Bm + δBE∗∗ for δ > 0 fixed

Since K ⊂
⋃∞

m=1 Dm, the I-generation says that

∞
⋃

m

Dm
w∗

‖·‖

= K
w∗

.

So (
⋃∞

m Bm) + 2δBE∗∗ ⊃ K
w∗

.

Finally
⋂

δ>0(
⋃∞

m Bm) + 2δBE∗∗ = K
‖·‖

= K = K
w∗

.
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Simons versus Fonf-Lindenstrauss

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)

Let E be a Banach space, K ⊂ E∗ be w∗−compact convex,
B ⊂ K , TFAE:

1 For any covering B ⊂ ∪∞
n=1Dn by an increasing sequence

of convex subsets Dn ⊂ K , we have

∪∞
n Dn

w∗
‖·‖

= K .

2 supf∈B (lim supk f (xk )) = supg∈K (lim supk g(xk ))
for every sequence {xk} ⊂ BX .

3 supf∈B (lim supk f (xk )) ≥ inf∑λi=1,λi≥0(supg∈K g(
∑

λixi))
for every sequence {xk} ⊂ BX .
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Simon’s inequality on unbounded sets

Theorem

Let E be a Banach space, {x∗
n} ⊂ BE∗ ,

C = {

∞
∑

n=1

λnx∗
n : λn ≥ 0,

∞
∑

n=1

λn = 1}

and B a subset of E (not necessarely bounded) such that

For every x∗ ∈ C there is b0 ∈ B with

x∗(b0) = inf{x∗(b) : b ∈ B}

Then we have:

infb∈B lim infn→∞ x∗
n (b) ≤ supx∗∈C infb∈B x∗(b)

If D = B
σ(E∗∗ ,E∗)

we have
infb∈B lim infn→∞ x∗

n (b) = infy∈D lim infn→∞ x∗
n (y)
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C = {

∞
∑

n=1

λnx∗
n : λn ≥ 0,

∞
∑

n=1

λn = 1}

and B a subset of E (not necessarely bounded) such that

For every x∗ ∈ C there is b0 ∈ B with

x∗(b0) = inf{x∗(b) : b ∈ B}

Then we have:
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A nonlinear James Theorem

Theorem ( Birthday’s Theorem)

Let E be a Banach space with BE∗ sequentially compact in the
σ(E∗,E)-topology. Let

V : E → R ∪ {+∞}

be a proper, convex and lower semicontinuous map. If for every
x∗ ∈ E∗ the minimization problem

inf{V (y) + x∗(y) : y ∈ E}

is attained at some point of E, then every level set

{y ∈ E : V (y) ≤ c}

is weakly compact for every c ∈ R. When Dom(V ) is bounded
the reverse implication is always true.
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Weak solutions are necessary in non reflexive spaces

Corollary

Let E be a Banach space with BE∗ sequentially compact in the
σ(E∗,E)-topology. Let

V : E → R ∪ {+∞}

be a proper, convex and lower semicontinuous map. If

∂V (E) = E∗

and the Dom(V ) has non empty interior, then E is a reflexive
Banach space.
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Questions we answer

Birthday’s Theorem partially answer a question of B.
Calvert, S. Fitzpatrick and S. Simons.

B. Calvert and S. Fitzpatrick proved, in a 1985 paper, that
when the subdifferential of a proper convex and lower
semicontinuous map V , with non void interior of its
domain, is such that ∂V (E) = E∗, then the Banach space
E must be reflexive.

S. Simons showed a strong gap in the way they proved the
result.

The authors presented an Erratum in 2000 and the paper
drastically reduce to partial results only.
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Open Problem

Conjecture: Birthday’s Theorem is valid in every Banach
space.
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To Walter with admiration : MY CONGRATULATIONS
with...

Cultivo la rosa blanca

tanto en Julio como en Enero,

para el amigo sincero

que me da su mano franca.

Y para el cruel que arranca

el corazón con que vivo,

cardo ni oruga cultivo

cultivo la rosa blanca

THANK YOU!!!!
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