## Variational Compactness

### J. Orihuela<sup>1</sup>

<sup>1</sup>Department of Mathematics University of Murcia

First Meeting in Topology and Functional Analysis. On the occassion of Prof. J.Kakol 60<sup>th</sup> birthday. Universidad Miguel Hernandez. Elche 2013

Supported by



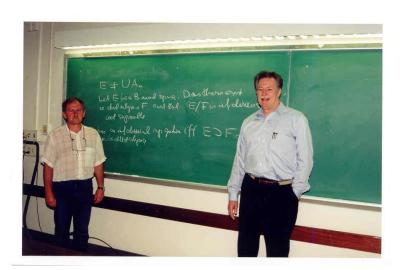






## A birthday Theorem

- P. Kenderov 2003
- J. Lindenstrauss 2006
- M. Valdivia 2010
- W. Schachermayer 2010
- J. Borwein 2011
- I. Karatzas 2012
- F. Delbaen 2012
- A. Defant 2013
- P. Kenderov 2013
- J. Kakol 2013
- More coming 2014....



### The coauthors

- M. Ruiz Galán and J.O. A coercive and nonlinear James's weak compactness theorem Nonlinear Analysis 75 (2012) 598-611.
- M. Ruiz Galán and J.O. Lebesgue Property for Convex Risk Meausures on Orlicz Spaces Math. Finan. Econ. 6(1) (2012) 15–35.
- B. Cascales, M. Ruiz Gal'an and J.O. Compactness, Optimality and Risk Computational and Analytical Mathematics. Conference in honour of J.M Borwein 60'th birthday. Chapter 10, Springer Verlag 2013, 153–208.
- B. Cascales and J. O. One side James' Theorem Preprint 2013.



### Contents

- Compactness and Optimization.
- Variational problems and reflexivity.
- One-side James' Theorem.
- Conic Godefroy's Theorem.
- Dual variational problems.

## One-Perturbation Variational Principle

Compact domain ⇒ lsc functions attain their minimum

### Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and  $\alpha: X \to (-\infty, +\infty]$  proper, lsc map s.t.  $\{\alpha \leq c\}$  is compact for all  $c \in \mathbb{R}$ . Then for any proper lsc map  $f: X \to (-\infty, +\infty]$  bounded from below, the function  $\alpha + f$  attains its minimum.

### Theorem (Borwein-Fabian-Revalski)

If X is metrizable and  $\alpha: X \to (-\infty, +\infty]$  is a proper function such that for all bounded continuous function  $f: X \to (-\infty, +\infty]$ , the function  $\alpha + f$  attains its minimum, then  $\alpha$  is a lsc map, bounded form below, whose sublevel sets  $\{\alpha \leq c\}$  are all compact

#### CMS Books in Mathematics

Jonathan M. Borwein Qiji J. Zhu

Techniques of Variational

Analysis

In a metric space X, the conditions imposed on the unique perturbation  $\varphi$  in Theorem 6.5.1 are also necessary.

**Theorem 6.5.2** Let  $\varphi \colon X \to \mathbb{R} \cup \{+\infty\}$  be a proper function on a metric space X. Suppose that for every bounded continuous function  $f \colon X \to \mathbb{R}$ , the function  $f + \varphi$  attains its minimum. Then  $\varphi$  is a lsc function, bounded from below, whose sublevel sets are all compact.



## Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

#### Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972, G. Rodé 1981, G. Godefroy 1987, V. Fonf, J. Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...



## Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

#### Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972, G. Rodé 1981, G. Godefroy 1987, V. Fonf, J. Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...

## Weak Compactness Theorem of R.C. James

#### Theorem

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

#### Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K

R.C. James 1964, 1972, J.D. Pryce 1964, S. Simons 1972, G. Rodé 1981, G. Godefroy 1987, V. Fonf, J. Lindenstrauss, B. Phelps 2000-03, M. Ruiz, S. Simons 2002, B. Cascales, I. Namioka, J.O. 2003, O. Kalenda 2007, the boundary problem ...

## The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E\*
- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$  if  $x \in K$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) \iota_K(x_0) \ge x^*(y x_0)$  for all  $y \in E$
- The minimization problem

$$\min\{\iota_K(\cdot)-X^*(\cdot)\}$$

on E for every  $x^* \in E^*$  has always solution if and only if the set K is weakly compact

When the minimization problem

$$\min\{\alpha(\cdot) + x^*(\cdot)\}\$$

on E has solution for all  $x^* \in E^*$  and a fixed proper function  $\alpha : E \to (-\infty, +\infty]$ ?



## The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E\*
- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$  if  $x \in K$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) \iota_K(x_0) \ge x^*(y x_0)$  for all  $y \in E$
- The minimization problem

$$\min\{\iota_K(\cdot) - x^*(\cdot)\}$$

on E for every  $x^* \in E^*$  has always solution if and only if the set K is weakly compact

When the minimization problem

$$\min\{\alpha(\cdot) + x^*(\cdot)\}\$$

on *E* has solution for all  $x^* \in E^*$  and a fixed proper function  $\alpha : E \to (-\infty, +\infty]$ ?



## The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E\*
- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$  if  $x \in K$  and  $+\infty$  otherwise
- $x^* \in E^*$  attains its supremum on K at  $x_0 \in K \Leftrightarrow \iota_k(y) \iota_K(x_0) \ge x^*(y x_0)$  for all  $y \in E$
- The minimization problem

$$\min\{\iota_K(\cdot)-x^*(\cdot)\}$$

on E for every  $x^* \in E^*$  has always solution if and only if the set K is weakly compact

When the minimization problem

$$\min\{\alpha(\cdot) + x^*(\cdot)\}$$

on *E* has solution for all  $x^* \in E^*$  and a fixed proper function  $\alpha : E \to (-\infty, +\infty]$ ?



# Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

### Theorem (M. Ruiz and J. O.)

Let E be a Banach space,  $\alpha: E \to (-\infty, +\infty]$  proper, (lower semicontinuous) function with

$$\lim_{\|x\|\to\infty}\frac{\alpha(x)}{\|x\|}=+\infty$$

Suppose that there is  $c \in \mathbb{R}$  such that the level set  $\{\alpha \leq c\}$  fails to be (relatively) weakly compact. Then there is  $x^* \in E^*$  such

$$\inf_{\mathbf{x}\in E}\{\langle \mathbf{x}, \mathbf{x}^*\rangle + \alpha(\mathbf{x})\}$$

is not attained.



## Minimizing $\{\alpha(x) + x^*(x) : x \in E\}$

### Theorem (M. Ruiz and J. O.)

Let E be a Banach space,  $\alpha: E \to (-\infty, +\infty]$  proper, (lower semicontinuous) function with

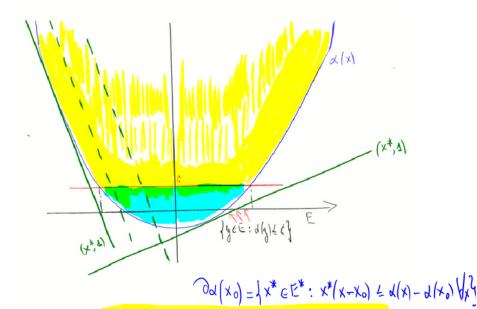
$$\lim_{\|x\|\to\infty}\frac{\alpha(x)}{\|x\|}=+\infty$$

Suppose that there is  $c \in \mathbb{R}$  such that the level set  $\{\alpha \leq c\}$  fails to be (relatively) weakly compact. Then there is  $x^* \in E^*$  such that,the infimum

$$\inf_{\mathbf{x}\in\mathbf{E}}\{\langle\mathbf{x},\mathbf{x}^*\rangle+\alpha(\mathbf{x})\}$$

is not attained.





$$\{\alpha \leq c\}$$
 not w.c. $\Rightarrow \exists x^* : \inf_{E} \{x^*(\cdot) + \alpha(\cdot)\}$  not attained

#### Lemma

Let A be a bounded but not relatively weakly compact subset of the Banach space E. If  $(a_n) \subset A$  is a sequence without weak cluster point in E, then there is  $(x_n^*) \subset B_{E^*}$ ,  $g_0 = \sum_{n=1}^\infty \lambda_n x_n^*$  with  $0 \le \lambda_n \le 1$  for all  $n \in \mathbb{N}$  and  $\sum_{n=1}^\infty \lambda_n = 1$  such that: for every  $h \in l^\infty(A)$ , with

$$\liminf_{n} x_{n}^{*}(a) \leq h(a) \leq \limsup_{n} x_{n}^{*}(a)$$

for all  $a \in A$ , we will have that  $g_0 + h$  doest not attain its minimum on A

$$\{\alpha \leq c\}$$
 not w.c. $\Rightarrow \exists x^* : \inf_{E} \{x^*(\cdot) + \alpha(\cdot)\}$  not attained

#### Lemma

Let A be a bounded but not relatively weakly compact subset of the Banach space E. If  $(a_n) \subset A$  is a sequence without weak cluster point in E, then there is  $(x_n^*) \subset B_{E^*}, g_0 = \sum_{n=1}^\infty \lambda_n x_n^*$  with  $0 \le \lambda_n \le 1$  for all  $n \in \mathbb{N}$  and  $\sum_{n=1}^\infty \lambda_n = 1$  such that: for every  $h \in I^\infty(A)$ , with

$$\liminf_n x_n^*(a) \le h(a) \le \limsup_n x_n^*(a)$$

for all  $a \in A$ , we will have that  $g_0 + h$  doest not attain its minimum on A

## Maximizing $\{x^*(x) - \alpha(x) : x \in E\}$

### Theorem (M. Ruiz, J. O. and J. Saint Raymond)

Let E be a Banach space,  $\alpha: E \to (-\infty, +\infty]$  proper, lower semicontinuous function, then we have:

- If  $\partial \alpha(E) = E^*$  then the level sets  $\{\alpha \leq c\}$  are weakly compact for all  $c \in \mathbb{R}$ .
- If  $\alpha$  has weakly compact level sets and the Fenchel-Legendre conjugate  $\alpha^*$  is finite, i.e.  $\sup\{x^*(x) \alpha(x) : x \in E\} < +\infty$  for all  $x^* \in E^*$ , then  $\partial \alpha(E) = E^*$

### Risk meausures

#### Definition

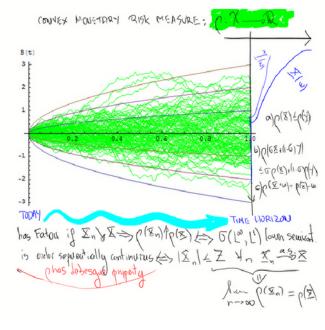
A monetary utility function is a concave non-decreasing map

$$U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to [-\infty, +\infty)$$

with  $dom(U) = \{X : U(X) \in \mathbb{R}\} \neq \emptyset$  and

$$U(X+c)=U(X)+c, \text{ for } X\in\mathbb{L}^{\infty}, c\in\mathbb{R}$$

Defining  $\rho(X)=-U(X)$  the above definition of monetary utility function yields the definition of a convex risk measure.Both  $U,\rho$  are called coherent if  $U(0)=0,\ U(\lambda X)=\lambda U(X)$  for all  $\lambda>0,X\in\mathbb{L}^\infty$ 



# Representing risk measures

#### Theorem

A convex (resp. coherent) risk measure  $\rho : \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$  admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \mathbf{ba}, \mu \ge 0 \mu(\Omega) = 1\}$$

(resp.

$$\rho(X) = \sup\{\mu(-X) : \mu \in \mathcal{S} \subseteq \{\mu \in \mathbf{ba}, \mu \geq 0, \mu(\Omega) = 1\}\})$$
 If in addition  $\rho$  is  $\sigma(\mathbb{L}^{\infty}, \mathbb{L}^{1})$ -lower semicontinuous we have:

$$\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X) - \alpha(\mathbb{Q}) : \mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\}$$

(resp.

$$\rho(X) = \sup\{\mathbb{E}_{\mathbb{Q}}(-X)) : \mathbb{Q} \in \{\mathbb{Q} << \mathbb{P} \text{ and } \mathbb{E}_{\mathbb{P}}(d\mathbb{Q}/d\mathbb{P}) = 1\}\})$$

# Minimizing $\{\alpha(Y) + \mathbb{E}(X \cdot Y) : Y \in \mathbb{L}^1\}$

### Theorem (Jouini-Schachermayer-Touzi)

Let  $U: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$  be a monetary utility function with the Fatou property and  $U^*: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$  its Fenchel-Legendre transform. They are equivalent:

- **1**  $\{U^* \leq c\}$  is  $\sigma(\mathbb{L}^1, \mathbb{L}^\infty)$ -compact subset for all  $c \in \mathbb{R}$
- **2** For every  $X \in \mathbb{L}^{\infty}$  the infimum in the equality

$$U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},$$

is attained

§ For every uniformly bounded sequence  $(X_n)$  tending a.s. to X we have

$$\lim_{n\to\infty}U(X_n)=U(X).$$



## Order Continuity of Risk Measures

### Theorem (Lebesgue Risk Measures on Orlicz spaces)

Let  $\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$  be a finite convex risk measure on  $L^{\Psi}$  with  $\alpha : (\mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})^* \to (-\infty, +\infty]$  a penalty function  $w^*$ -lower semicontinuos. T.F.A.E.:

- (i) For all  $c \in \mathbb{R}$ ,  $\alpha^{-1}((-\infty, c])$  is a relatively weakly compact subset of  $\mathbb{M}^{\Psi^*}(\Omega, \mathcal{F}, \mathbb{P})$ .
- (ii) For every  $X \in \mathbb{L}^{\Psi}(\Omega, \mathcal{F}, \mathbb{P})$ , the supremum in the equality

$$\rho(X) = \sup_{Y \in \mathbb{M}^{\Psi^*}} \{ \mathbb{E}_{\mathbb{P}}[-XY] - \alpha(Y) \}$$

is attained.

(iii)  $\rho$  is sequentially order continuous



## Applications to nonlinear variational problems

### Theorem (Reflexivity frame)

Let E be a real Banach space and

$$\alpha: E \longrightarrow \mathbb{R} \cup \{+\infty\}$$

a a function such that  $dom(\alpha)$  has nonempty interior and for all  $x^* \in E^*$  there exists  $x_0 \in E$  with

$$\alpha(x_0) + x^*(x_0) = \inf_{x \in E} \{\alpha(x) + x^*(x)\}$$

Then E is reflexive.



- Fix an open ball  $B \subseteq dom(\alpha)$
- $B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty, p])}^{\sigma(E, E^*)}$
- Baire Category Theorem  $\Rightarrow$  there is  $q \in \mathbb{N}$ :

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

- There is G open in E such that  $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$
- $\overline{\alpha^{-1}((-\inf,q])}^{\sigma(E,E^*)}$  weakly compact  $\Rightarrow$  G contains an open relatively weakly compact ball
- B<sub>E</sub> is weakly compact



- Fix an open ball  $B \subseteq dom(\alpha)$
- $B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty,p])}^{\sigma(E,E^*)}$
- Baire Category Theorem  $\Rightarrow$  there is  $q \in \mathbb{N}$ :

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

- There is G open in E such that  $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$
- $\overline{\alpha^{-1}((-\inf,q])}^{\sigma(E,E^*)}$  weakly compact  $\Rightarrow$  G contains an open relatively weakly compact ball
- B<sub>E</sub> is weakly compact



- Fix an open ball  $B \subseteq dom(\alpha)$
- $B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty,p])}^{\sigma(E,E^*)}$
- Baire Category Theorem  $\Rightarrow$  there is  $q \in \mathbb{N}$ :

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

- There is G open in E such that  $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$
- $\overline{\alpha^{-1}((-\inf,q])}^{\sigma(E,E^*)}$  weakly compact  $\Rightarrow$  G contains an open relatively weakly compact ball
- B<sub>E</sub> is weakly compact



- Fix an open ball  $B \subseteq dom(\alpha)$
- $B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty,p])}^{\sigma(E,E^*)}$
- Baire Category Theorem  $\Rightarrow$  there is  $q \in \mathbb{N}$ :

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

- There is G open in E such that  $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$
- $\overline{\alpha^{-1}((-\inf,q])}^{\sigma(E,E^*)}$  weakly compact  $\Rightarrow$  G contains an open relatively weakly compact ball
- B<sub>E</sub> is weakly compact



- Fix an open ball  $B \subseteq dom(\alpha)$
- $B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty, p])}^{\sigma(E, E^*)}$
- Baire Category Theorem  $\Rightarrow$  there is  $q \in \mathbb{N}$ :

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

- There is G open in E such that  $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$
- $\overline{\alpha^{-1}((-\inf,q])}^{\sigma(E,E^*)}$  weakly compact  $\Rightarrow$  G contains an open relatively weakly compact ball
- B<sub>E</sub> is weakly compact



$$[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}$$

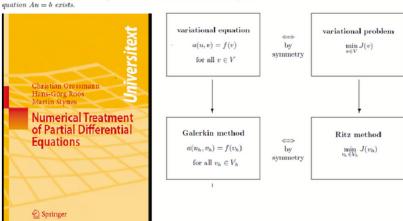
- Fix an open ball  $B \subseteq dom(\alpha)$
- $B = \bigcup_{p=1}^{+\infty} B \cap \overline{\alpha^{-1}((-\infty,p])}^{\sigma(E,E^*)}$
- Baire Category Theorem  $\Rightarrow$  there is  $q \in \mathbb{N}$ :

$$B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$$

- There is G open in E such that  $\emptyset \neq B \cap G \subset B \cap \overline{\alpha^{-1}((-\infty,q])}^{\sigma(E,E^*)}$
- $\overline{\alpha^{-1}((-\inf,q])}^{\sigma(E,E^*)}$  weakly compact  $\Rightarrow$  G contains an open relatively weakly compact ball
- B<sub>E</sub> is weakly compact



Corollary 2.101 (Main Theorem on Monotone Operators). Let X be : real, reflexive Banach space, and let  $A: X \to X^*$  be a monotone, hemiconinuous, bounded, and coercive operator, and  $b \in X^*$ . Then a solution of the mation Au = b exists.



## Applications to nonlinear variational problems

Given an operator  $\Phi: E \longrightarrow E^*$  it is said to be *monotone* provided that

for all 
$$x, y \in E$$
,  $(\Phi x - \Phi y)(x - y) \ge 0$ ,

and *symmetric* if for all  $x, y \in E$ ,  $\langle \Phi(x), y \rangle = \langle \Phi(y), x \rangle$ 

### Corollary

A real Banach space E is reflexive whenever there exists a monotone, symmetric and surjective operator  $\Phi: E \longrightarrow E^*$ 

#### Question

Let E be a real Banach space and  $\Phi: E \to 2^{E^*}$  a monotone multivalued map with non void interior domain.

$$[\Phi(E) = E^*] \Rightarrow E = E^{**}?$$



## Applications to nonlinear variational problems

Given an operator  $\Phi: E \longrightarrow E^*$  it is said to be *monotone* provided that

for all 
$$x, y \in E$$
,  $(\Phi x - \Phi y)(x - y) \ge 0$ ,

and *symmetric* if for all  $x, y \in E$ ,  $\langle \Phi(x), y \rangle = \langle \Phi(y), x \rangle$ 

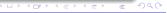
### Corollary

A real Banach space E is reflexive whenever there exists a monotone, symmetric and surjective operator  $\Phi: E \longrightarrow E^*$ 

#### Question

Let E be a real Banach space and  $\Phi: E \to 2^{E^*}$  a monotone multivalued map with non void interior domain.

$$[\Phi(E) = E^*] \Rightarrow E = E^{**}?$$



## Sup-limsup Theorem

### Theorem (Simons)

Let  $\Gamma$  be a set and  $(z_n)_n$  a uniformly bounded sequence in  $\ell^{\infty}(\Gamma)$ . If  $\Lambda$  is a subset of  $\Gamma$  such that for every sequence of positive numbers  $(\lambda_n)_n$  with  $\sum_{n=1}^{\infty} \lambda_n = 1$  there exists  $b \in \Lambda$  such that

$$\sup\{\sum_{n=1}^{\infty}\lambda_nz_n(y):y\in\Gamma\}=\sum_{n=1}^{\infty}\lambda_nz_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$



## Sup-limsup Theorem

### Theorem (Simons)

Let  $\Gamma$  be a set and  $(z_n)_n$  a uniformly bounded sequence in  $\ell^{\infty}(\Gamma)$ . If  $\Lambda$  is a subset of  $\Gamma$  such that for every sequence of positive numbers  $(\lambda_n)_n$  with  $\sum_{n=1}^{\infty} \lambda_n = 1$  there exists  $b \in \Lambda$  such that

$$\sup\{\sum_{n=1}^{\infty}\lambda_nz_n(y):y\in\Gamma\}=\sum_{n=1}^{\infty}\lambda_nz_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$



## Weak Compactness through Sup-limsup Theorem

#### Theorem

Let E be a separable Banach space and  $K \subset E$  a closed convex and bounded subset. They are equivalent:

- K is weakly compact.
- **2** For every sequence  $(x_n^*) \subset B_{E^*}$  we have

$$\sup_{k \in K} \{\limsup_{n \to \infty} x_n^*(k)\} = \sup_{\kappa \in \overline{K}^{w^*}} \{\limsup_{n \to \infty} x_n^*(\kappa)\}$$

- If K is not weakly compact there is  $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$  with  $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us  $x^{***} \in B_{E^{***}} \cap E^{\perp}$  with  $x^{***}(x_0^{**}) = \alpha > 0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence  $(x_n^*) \subset B_{E^*}$  such that:
  - $\lim_{n\to\infty} x_n^*(x) = 0 \text{ for all } x\in E$
  - 2  $X_n^*(X_0^{**}) > \alpha/2$  for all  $n \in \mathbb{N}$
- Then

$$0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_n^*(k) \} = \sup_{k \in K} \{ \lim_{n \to \infty} \sup_{n \to \infty} x_n^*(k) \} \ge$$

$$\sup_{k \in K} \{ \lim \sup_{n \to \infty} x_n^*(v^{**}) \} = \lim \sup_{k \in K} x_n^*(x_0^{**}) \ge \alpha/2 > 0$$

$$= \sup_{v^{**} \in \overline{K}^{w^*}} \{\limsup_{n \to \infty} x_n^*(v^{**})\} = \limsup_{n \to \infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$$



- If K is not weakly compact there is  $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$  with  $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us  $x^{***} \in B_{E^{***}} \cap E^{\perp}$  with  $x^{***}(x_0^{**}) = \alpha > 0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence  $(x_n^*) \subset B_{E^*}$  such that:
  - $\lim_{n\to\infty} x_n^*(x) = 0 \text{ for all } x \in E$
  - 2  $X_n^*(X_0^{**}) > \alpha/2$  for all  $n \in \mathbb{N}$
- Then

$$0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_n^*(k) \} = \sup_{k \in K} \{ \lim_{n \to \infty} \sup_{k \to \infty} x_n^*(k) \} \ge$$

$$= \sup_{v^{**} \in \overline{K}^{w^*}} \{ \limsup_{n \to \infty} x_n^*(v^{**}) \} = \limsup_{n \to \infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$$



- If K is not weakly compact there is  $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$  with  $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us  $x^{***} \in B_{E^{***}} \cap E^{\perp}$  with  $x^{***}(x_0^{**}) = \alpha > 0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence  $(x_n^*) \subset B_{E^*}$  such that:

  - ②  $x_n^*(x_0^{**}) > \alpha/2$  for all  $n \in \mathbb{N}$
- Then

$$0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_n^*(k) \} = \sup_{k \in K} \{ \limsup_{n \to \infty} x_n^*(k) \} \ge$$

$$= \sup_{v^{**} \in \overline{K}^{w^*}} \{ \limsup_{n \to \infty} x_n^*(v^{**}) \} = \limsup_{n \to \infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$$



- If K is not weakly compact there is  $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$  with  $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us  $x^{***} \in B_{E^{***}} \cap E^{\perp}$  with  $x^{***}(x_0^{**}) = \alpha > 0$
- The separability of E, Ascoli's and Bipolar Theorems permit to construct a sequence  $(x_n^*) \subset B_{E^*}$  such that:
  - $\lim_{n\to\infty} x_n^*(x) = 0 \text{ for all } x\in E$
  - $x_n^*(x_0^{**}) > \alpha/2$  for all  $n \in \mathbb{N}$
- Then

$$0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_n^*(k) \} = \sup_{k \in K} \{ \lim_{n \to \infty} \sup_{n \to \infty} x_n^*(k) \} \ge$$
$$= \sup_{v^{**} \in \overline{K}^{w^*}} \{ \lim_{n \to \infty} \sup_{n \to \infty} x_n^*(v^{**}) \} = \lim_{n \to \infty} \sup_{n \to \infty} x_n^*(x_0^{**}) \ge \alpha/2 > 0$$



## Weak Compactness through I-generation

#### Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and  $K \subset E$  a closed convex and bounded subset. They are equivalent:

- K is weakly compact.
- ② For any covering  $K \subset \bigcup_{n=1}^{\infty} D_n$  by an increasing sequence of closed convex subsets  $D_n \subset K$ , we have

$$\overline{\bigcup_{n}^{\infty}\overline{D_{n}}^{w^{*}}}^{\|\cdot\|}=\overline{K}^{w^{*}}.$$

The proof uses Krein Milman and Bishop Phelps theorems



### Fonf-Lindenstrauss = Simons

### Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space,  $K \subset E^*$  be  $w^*$ -compact convex,  $B \subset K$ , TFAE:

• For any covering  $B \subset \bigcup_{n=1}^{\infty} D_n$  by an increasing sequence of convex subsets  $D_n \subset K$ , we have

$$\overline{\bigcup_{n=1}^{\infty} \overline{D_n}^{w^*}}^{\|\cdot\|} = K.$$

- ②  $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$  for every sequence  $\{x_k\} \subset B_X$ .
- ③  $\sup_{f \in B} (\limsup_k f(x_k)) \ge \inf_{\sum \lambda_i = 1, \lambda_i \ge 0} (\sup_{g \in K} g(\sum \lambda_i x_i))$  for every sequence  $\{x_k\} \subset B_X$ .



### Fonf-Lindenstrauss = Simons

#### Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space,  $K \subset E^*$  be  $w^*$ -compact convex,  $B \subset K$ , TFAE:

• For any covering  $B \subset \bigcup_{n=1}^{\infty} D_n$  by an increasing sequence of convex subsets  $D_n \subset K$ , we have

$$\overline{\bigcup_{n=1}^{\infty} \overline{D_n}^{w^*}}^{\|\cdot\|} = K.$$

- ②  $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$  for every sequence  $\{x_k\} \subset B_X$ .
- ③  $\sup_{f \in B} (\limsup_k f(x_k)) \ge \inf_{\sum \lambda_i = 1, \lambda_i \ge 0} (\sup_{g \in K} g(\sum \lambda_i x_i))$  for every sequence  $\{x_k\} \subset B_X$ .



### Fonf-Lindenstrauss = Simons

#### Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space,  $K \subset E^*$  be  $w^*$ –compact convex,  $B \subset K$ , TFAE:

• For any covering  $B \subset \bigcup_{n=1}^{\infty} D_n$  by an increasing sequence of convex subsets  $D_n \subset K$ , we have

$$\overline{\bigcup_{n=1}^{\infty} \overline{D_n}^{w^*}} = K.$$

- ②  $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$  for every sequence  $\{x_k\} \subset B_X$ .
- **③**  $\sup_{f \in B} (\limsup_k f(x_k)) \ge \inf_{\sum \lambda_i = 1, \lambda_i \ge 0} (\sup_{g \in K} g(\sum \lambda_i x_i))$  for every sequence  $\{x_k\} \subset B_X$ .



### F. Delbaen problem

Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with  $0 \notin C$ . The following problem has been posed by F. Delbaen motivated by risk measures theory:

#### Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

#### Example (R. Haydon)

In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and  $0 \notin C$  such that every linear form  $x^* \in E^*$  such that  $x^*(C) > 0$  attains its minimum on C.

## F. Delbaen problem

Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with  $0 \notin C$ . The following problem has been posed by F. Delbaen motivated by risk measures theory:

#### Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

#### Example (R. Haydon)

In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and  $0 \notin C$  such that every linear form  $x^* \in E^*$  such that  $x^*(C) > 0$  attains its minimum on C.



## F. Delbaen problem

Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with  $0 \notin C$ . The following problem has been posed by F. Delbaen motivated by risk measures theory:

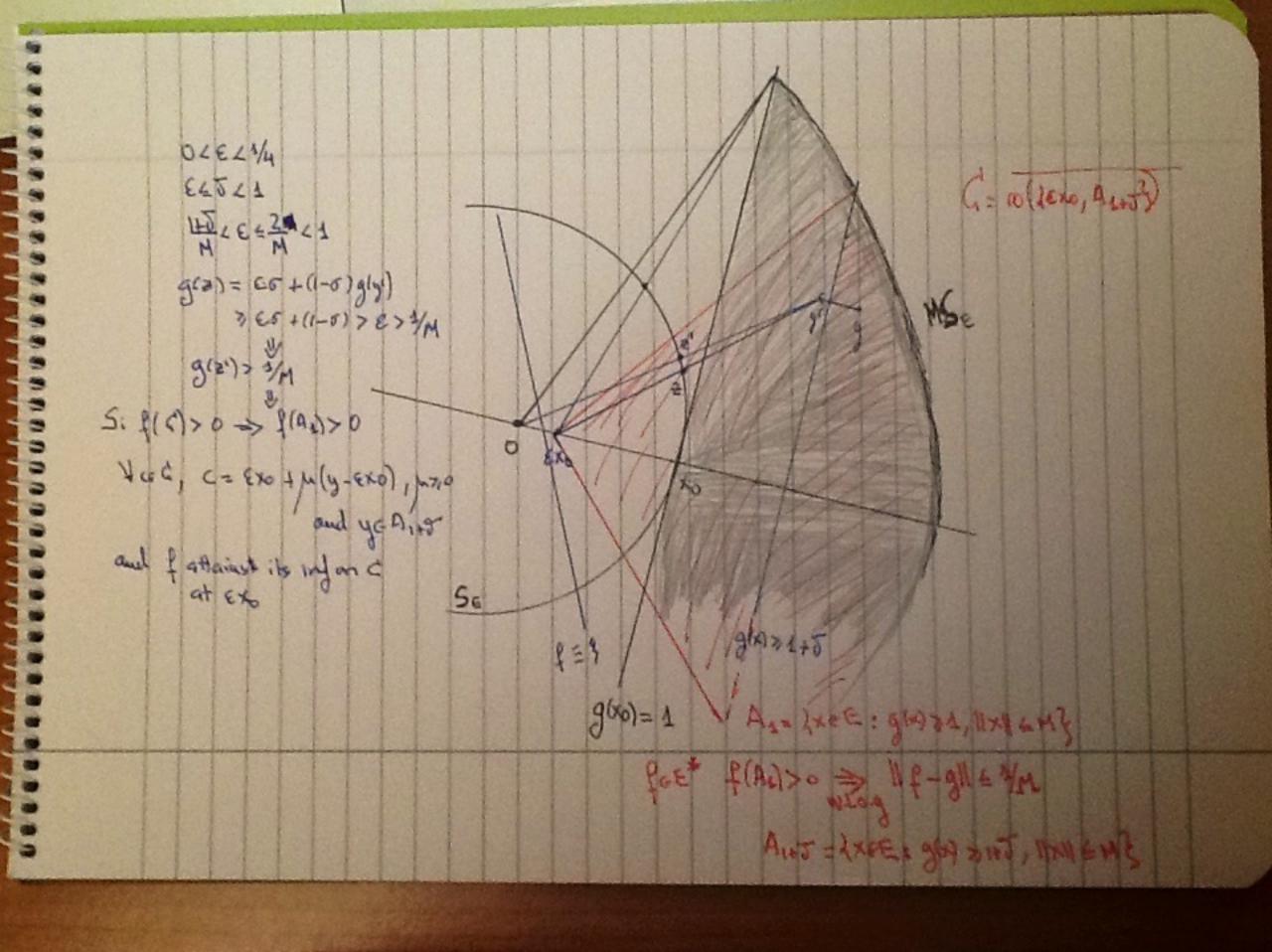
#### Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

#### Example (R. Haydon)

In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and  $0 \notin C$  such that every linear form  $x^* \in E^*$  such that  $x^*(C) > 0$  attains its minimum on C.





### Positive results

#### Theorem (Birthday's Theorem)

Let E be a separable Banach space. Let C be a closed, convex and bounded subset of  $E \setminus \{0\}$ ,  $D \subset C$  a relatively weakly compact set of directions such that, for every  $x^* \in E^*$ , we have that

$$\inf\{x^*(c):c\in C\}$$

is attained at some point of C whenever

$$x^*(d) > 0$$
 for every  $d \in D$ .

Then C is weakly compact.



### Positive results

#### Theorem (Birthday's Theorem)

Let E be a separable Banach space. Let C be a closed, convex and bounded subset of  $E \setminus \{0\}$ ,  $D \subset C$  a relatively weakly compact set of directions such that, for every  $x^* \in E^*$ , we have that

$$\inf\{x^*(c):c\in C\}$$

is attained at some point of C whenever

$$x^*(d) > 0$$
 for every  $d \in D$ .

Then C is weakly compact.



## **Unbounded Simon's inequality**

### Theorem (Simons's Theorem in $\mathbb{R}^{X}$ )

Let X be a nonempty set, let  $(f_n)$  be a pointwise bounded sequence in  $\mathbb{R}^X$  and let Y be a subset of X such that for every  $g \in \mathrm{co}_{\sigma_p}\{f_n \colon n \geq 1\}$  there exists  $y \in Y$  with

$$g(y)=\sup\{g(x):x\in X\}.$$

Then the following statements hold true:

$$\inf\{\sup_{x\in X}g(x):g\in\operatorname{co}_{\sigma_p}\{f_n\colon n\geq 1\}\}\leq \sup_{y\in Y}(\limsup_n f_n(y))\quad \ (1)$$

and

$$\sup_n \{ \limsup_n f_n(x) : x \in X \} = \sup_n \{ \limsup_n f_n(y) : y \in Y \}. \quad (2)$$



### Unbounded Rainwater's Theorem

#### Theorem (Unbounded Rainwater-Simons's theorem)

If E is a Banach space,  $B \subset C$  are nonempty subsets of  $E^*$  and  $(x_n)$  is a bounded sequence in E such that for every

$$x \in co_{\sigma}\{x_n : n \geq 1\}$$

there exists  $b^* \in B$  with  $\langle x, b^* \rangle = \sup\{\langle x, c^* \rangle : c^* \in C\}$ , then

$$\sup_{b^* \in B} \left( \limsup_{n} \langle x_n, b^* \rangle \right) = \sup_{c^* \in C} \left( \limsup_{n} \langle x_n, c^* \rangle \right).$$

As a consequence

$$\sigma(E,B) - \lim_{n} x_n = 0 \Rightarrow \sigma(E,C) - \lim_{n} x_n = 0.$$



### **Unbounded Godefroy's Theorem**

#### Theorem (Unbounded Godefroy's Theorem)

Let E a Banach space and B a nonempty subset of  $E^*$ . Let us assume there is a relatively weakly compact subset  $D \subset E^*$  such that:

- $0 \notin \overline{\operatorname{co}(B \cup D)}^{\|\cdot\|}$
- 2 For every  $x \in E$  with  $x(d^*) < 0$  for all  $d^* \in D$  we have  $\sup\{x(c^*) : c^* \in B\} = x(b^*)$  for some  $b^* \in B$ .
- **③** For every convex bounded subset  $L \subset E$  and every  $x^{**} \in \overline{L}^{\sigma(E^{**},B \cup \overline{D}^{w})}$  there is a sequence  $(x_n)$  in L such that  $\langle x^{**},z^{*}\rangle = \lim_{n}\langle x_n,z^{*}\rangle$  for every  $z^{*} \in B \cup \overline{D}^{w}$

Then

$$\overline{\operatorname{co}(B)}^{w^*} \subset \bigcup \{\overline{\operatorname{co}(B)}^{\|\cdot\|} + \lambda \overline{\operatorname{co}(D)}^{\|\cdot\|} : \lambda \in [0, +\infty)\}.$$



## Conic Godefroy's Theorem

#### Theorem (Conic Godefroy's Theorem)

Let E a Banach space and B a nonempty subset of  $E^*$ . Let us assume  $0 \notin \overline{\operatorname{co}(B)}^{\|\cdot\|}$  and fix  $D \subset B$ , a relatively weakly compact set so that:

- For every  $x \in E$  with  $x(d^*) > 0$  for every  $d^* \in D$ , we have  $\inf\{x(c^*) : c^* \in B\} = x(b^*) > 0$  for some  $b^* \in B$ .
- ② For every convex bounded subset  $L \subset E$ , and every  $x^{**} \in \overline{L}^{\sigma(E^{**},B \cup \overline{D}^{\mathsf{w}})}$ , there is a sequence  $(x_n)$  in L such that  $\langle x^{**},z^* \rangle = \lim_n \langle x_n,z^* \rangle$ , for every  $z^* \in B \cup \overline{D}^{\mathsf{w}}$ .

Then the norm closed convex truncated cone C generated by B, i.e.  $C:=\overline{\bigcup\{\lambda\mathrm{co}(B):\lambda\in[1+\infty)\}^{\|\cdot\|}}$ , is  $\mathbf{w}^*$ -closed.



#### Theorem

Let E be a separable Banach space without copies of  $\ell^1(\mathbb{N})$ ,

$$f: E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$$

norm lower semicontinuous, convex and proper map, such that

for all  $x \in E$ , x - f attains its supremum on  $E^*$ .

Then the map f is  $w^*$ -lower semicontinuous and for every  $\mu \in \mathbb{R}$ , the sublevel set  $f^{-1}((-\infty, \mu])$  is  $w^*$ -compact.



#### Theorem (Birhtday's Theorem for Jerzcy)

Let E be a Banach space,

$$f: E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$$

convex, proper and lower semicontinuous map with a weakly web-compact (for instance Lindelöf- $\Sigma$ ) epigraph, such that

for all  $x \in E$ , x - f attains its supremum on  $E^*$ .

Then f is w\*-lower semicontinuous and for every  $\mu \in \mathbb{R}$ , the sublevel set  $f^{-1}((-\infty, \mu])$  is w\*-compact.



#### Theorem (Birhtday's Theorem for Jerzcy)

Let E be a Banach space,

$$f: E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$$

convex, proper and lower semicontinuous map with a weakly web-compact (for instance Lindelöf- $\Sigma$ ) epigraph, such that

for all  $x \in E$ , x - f attains its supremum on  $E^*$ .

Then f is w\*-lower semicontinuous and for every  $\mu \in \mathbb{R}$ , the sublevel set  $f^{-1}((-\infty, \mu])$  is w\*-compact.



#### Theorem

Let E be a Banach space without copies of  $\ell^1(\mathbb{N})$ ,

$$f: E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$$

convex, proper and norm lower semicontinuous map with w\*-K-analytic epigraph, such that

for all  $x \in E$ , x - f attains its supremum on  $E^*$ .

Then f is w\*-lower semicontinuous and for every  $\mu \in \mathbb{R}$ , the sublevel set  $f^{-1}((-\infty, \mu])$  is w\*-compact.



- $\mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \subset \mathcal{X} \subset L^{0}(\Omega, \mathcal{F}, \mathbb{P})$  a solid vector subspace
- $\mathcal{X}_n^{\sim} = \{Z \in L^0 : XZ \in L^1\}$  its order continuous dual such that  $\langle \mathcal{X}, \mathcal{X}_n^{\sim} \rangle$  is a dual pair
- $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$  proper convex with the Fatou property (i.e. order lower semicontinuity)
- **CONJECTURE:** f is  $\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})$  lower semicontinuous
- Biagini-Fritelli: yes if we have C-property, 2009
- *C*-property tool:  $x \in \overline{A}^{\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})} \Rightarrow$  there is a sequence  $(a_n) \subset A$  and  $z_p \in \operatorname{co}(\{a_m : m \geq p\}), p = 1, 2, ...$  such that  $(z_n)$  order converges to x
- Owari, 2013: There is a gap in Biagini-Fritelli and problem remains open at this level of generality



- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.