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Abstract. Let Z and X be Banach spaces. Suppose that X is Asplund. Let

M be a bounded set of operators from Z to X with the following property:

a bounded sequence (zn)n∈N in Z is weakly null if, for each M ∈ M, the

sequence (M(zn))n∈N is weakly null. Let (zn)n∈N be a sequence in Z such

that: (a) for each n ∈ N, the set {M(zn) : M ∈ M} is relatively norm

compact; (b) for each sequence (Mn)n∈N in M, the series
∑∞

n=1 Mn(zn) is

weakly unconditionally Cauchy. We prove that if T ∈ M is Dunford-Pettis

and infn∈N ∥T (zn)∥∥zn∥−1 > 0, then the series
∑∞

n=1 T (zn) is absolutely

convergent. As an application, we provide another proof of the fact that a

countably additive vector measure taking values in an Asplund Banach space

has finite variation whenever its integration operator is Dunford-Pettis.

1. Introduction

Let X be a Banach space, let (Ω,Σ) be a measurable space and let ν : Σ → X

be a countably additive vector measure. A Σ-measurable function f : Ω → R is

said to be ν-integrable if: (a) f is |x∗ν|-integrable for all x∗ ∈ X∗; (b) for each

A ∈ Σ there is
∫
A
f dν ∈ X such that x∗ (∫

A
f dν

)
=
∫
A
f d(x∗ν) for all x∗ ∈ X∗.

By identifying ν-a.e. equal functions, the set L1(ν) of all (equivalence classes of)

ν-integrable functions is a Banach lattice with the ν-a.e. order and the norm

∥f∥L1(ν) := sup
x∗∈BX∗

∫
Ω

|f | d|x∗ν|.

We refer to [14] for basic information on these spaces, which play a relevant role

in Banach lattices and operator theory. The integration operator of ν is the (norm

one) operator Iν : L1(ν) → X defined by

Iν(f) :=

∫
Ω

f dν for all f ∈ L1(ν).

Certain properties of Iν have strong consequences on the structure of L1(ν). For

instance, ν has finite variation and the inclusion operator ιν : L1(|ν|) → L1(ν) is a

lattice-isomorphism in each of the following cases:

(i) Iν is compact, [11, Theorem 1] (cf. [13, Theorem 2.2] and [3, Theorem 3.3]);

(ii) Iν is absolutely p-summing for some 1 ≤ p < ∞, [12, Theorem 2.2];
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(iii) Iν is Dunford-Pettis and Asplund, [16, Theorem 3.3].

Note that case (iii) generalizes both (i) and (ii) because weakly compact operators

are Asplund. The proof of (iii) given in [16] (cf. [15, Section 3.3]) is based on the

Davis-Figiel-Johnson-Pe lczyński factorization procedure and the following result

obtained in [3, Theorem 1.3]:

Theorem 1.1. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν : Σ → X be a countably additive vector measure. If Iν is Dunford-Pettis and X is

Asplund, then ν has finite variation.

The particular case of Theorem 1.1 when X has an unconditional Schauder basis

and no subspace isomorphic to ℓ1 had been proved earlier in [12, Theorem 1.2]. The

question of whether the statement of Theorem 1.1 holds for arbitrary Banach spaces

not containing subspaces isomorphic to ℓ1 seems to be still open.

In this note we elaborate an abstract framework that allows to provide a simpler

proof of Theorem 1.1. The following concept will be important along this way.

Given two Banach spaces Z and X, we denote by L(Z,X) the Banach space of all

operators from Z to X, equipped with the operator norm.

Definition 1.2. Let Z and X be Banach spaces. We say that a set M ⊆ L(Z,X)

has the Rainwater property if the following holds: a bounded sequence (zn)n∈N in Z

is weakly null if, for each M ∈ M, the sequence (M(zn))n∈N is weakly null.

The Rainwater-Simons theorem (see, e.g., [6, Theorem 3.134]) states that, for an

arbitrary Banach space Z, any James boundary of Z has the Rainwater property

(with X = R). More generally, James boundaries are (I)-generating, [7, Theo-

rem 2.3], and all (I)-generating sets have the Rainwater property, see [9].

The main result of this note is the following:

Theorem 1.3. Let Z and X be Banach spaces. Suppose that X is Asplund. Let

M be a bounded subset of L(Z,X) having the Rainwater property. Let (zn)n∈N be

a sequence in Z such that:

(a) for each n ∈ N, the set {M(zn) : M ∈ M} is relatively norm compact;

(b) for each sequence (Mn)n∈N in M, the series
∑∞

n=1 Mn(zn) is weakly un-

conditionally Cauchy.

Let T ∈ M such that:

(c) T is Dunford-Pettis;

(d) infn∈N ∥T (zn)∥∥zn∥−1 > 0.

Then the series
∑∞

n=1 T (zn) is absolutely convergent.

The paper is organized as follows. Section 2 is devoted to proving Theorem 1.3.

In Section 3 we focus on the L1 space of a vector measure and we get Theorem 1.1

as an application of Theorem 1.3.

Terminology. All our Banach spaces are real. By an operator we mean a continuous

linear map between Banach spaces. An operator is called Dunford-Pettis if it maps

weakly null sequences to norm null ones. By a subspace of a Banach space we mean
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a closed linear subspace. Let Z be a Banach space. We denote its norm by ∥ · ∥Z
or simply ∥ · ∥. Given a set C ⊆ Z, we write ∥C∥ := sup{∥z∥ : z ∈ C}. The closed

unit ball of Z is denoted by BZ . The subspace of Z generated by a set H ⊆ Z is

denoted by span(H). We write Z∗ for the dual of Z. A set B ⊆ BZ∗ is said to be a

James boundary of Z if for every z ∈ Z there is z∗ ∈ B such that ∥z∥ = z∗(z). The

space Z is said to be Asplund if every separable subspace of Z has separable dual.

2. Main result

Let X be a Banach space with a Schauder basis (en)n∈N. For each k ∈ N, we have

an operator Pk : X → X defined by Pk(x) :=
∑k

n=1 e
∗
n(x)en for all x ∈ X, where

(e∗n)n∈N is the sequence in X∗ of biorthogonal functionals associated with (en)n∈N.

The operators of this form are called the partial sum operators on X associated

with (en)n∈N. They satisfy supk∈N ∥Pk∥ < ∞.

The following lemma uses some ideas of the proof of [15, Lemma 3.4].

Lemma 2.1. Let X be a Banach space with a Schauder basis and let (Pk)k∈N be

the associated sequence of partial sum operators on X. Write α := supk∈N ∥Pk∥.
Let (Kn)n∈N be a sequence of relatively norm compact subsets of X and let (xn)n∈N
be a sequence in X such that xn ∈ Kn for all n ∈ N. Suppose that:

(a) the series
∑∞

n=1 xn is not absolutely convergent;

(b)
∑∞

n=1 ∥Pk(Kn)∥ < ∞ for every k ∈ N.
Then there exist two strictly increasing sequences (kj)j∈N and (lj)j∈N in N such

that, if wj ∈ ∥xlj∥−1Klj for all j ∈ N, then:
(i) ∥wj − (Pkj+1

− Pkj
)(wj)∥ ≤ 2−j for every j ∈ N;

(ii) ∥wj − wj′∥ ≥ α−1∥wj∥ − 2−j whenever j′ > j.

Proof. We can assume without loss of generality that xn ̸= 0 for all n ∈ N. Write

Qk := idX − Pk for all k ∈ N, where idX stands for the identity operator on X.

Since ∥Qk∥ ≤ 1 + α for all k ∈ N and ∥Qk(x)∥ → 0 as k → ∞ for every x ∈ X, the

sequence of operators (Qk)k∈N converges to 0 uniformly on each relatively norm

compact subset of X.

We will construct by induction strictly increasing sequences (kj)j∈N and (l̃j)j∈N
in N in such a way that, for each j ∈ N, we have

(c)
∥∥∥Pkj

(Kl̃j+1
)
∥∥∥ ≤

∥xl̃j+1
∥

2j+1
and (d)

∥∥∥Qkj
(Kl̃j

)
∥∥∥ ≤

∥xl̃j
∥

2j
.

Set l̃1 := 1 and choose k1 ∈ N such that ∥Qk1(K1)∥ ≤ 1
2∥x1∥. Suppose that

kN , l̃N ∈ N are already chosen for some N ∈ N. By (a) and (b), there is l̃N+1 ∈ N
with l̃N+1 > l̃N such that ∥∥∥PkN

(Kl̃N+1
)
∥∥∥ ≤

∥xl̃N+1
∥

2N+1
.

Now, we take kN+1 ∈ N with kN+1 > kN such that∥∥∥QkN+1
(Kl̃N+1

)
∥∥∥ ≤

∥xl̃N+1
∥

2N+1
.
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This finishes the construction of (kj)j∈N and (l̃j)j∈N.

Define lj := l̃j+1 for all j ∈ N. Take (zj)j∈N ∈
∏

j∈N Klj and, for each j ∈ N,

define wj := ∥xlj∥−1zj . Then

∥wj − (Pkj+1 − Pkj )(wj)∥ = ∥Qkj+1(wj) + Pkj (wj)∥
≤ ∥Qkj+1

(wj)∥ + ∥Pkj
(wj)∥

(c)&(d)

≤ 1

2j+1
+

1

2j+1
=

1

2j

for every j ∈ N. This proves (i).

To check property (ii), take j′ > j in N. Then

∥wj − wj′∥ ≥ α−1∥Pkj+1
(wj − wj′)∥

= α−1∥wj −Qkj+1
(wj) − Pkj+1

(wj′)∥

≥ α−1
(
∥wj∥ − ∥Qkj+1

(wj)∥ − ∥Pkj+1
(wj′)∥

)
= α−1

(
∥wj∥ − ∥Qkj+1

(wj)∥ − ∥Pkj+1
(Pkj′ (wj′))∥

)
≥ α−1

(
∥wj∥ − ∥Qkj+1

(wj)∥ − α∥Pkj′ (wj′)∥
)

(α≥1)

≥ α−1∥wj∥ − ∥Qkj+1(wj)∥ − ∥Pkj′ (wj′)∥
(c)&(d)

≥ α−1∥wj∥ −
1

2j+1
− 1

2j′+1
≥ α−1∥wj∥ −

1

2j
.

The proof is finished. □

Corollary 2.2. Let X be a Banach space. Let (xn)n∈N be a sequence in X such

that
∑∞

n=1 xn is weakly unconditionally Cauchy and {∥xn∥−1xn : n ∈ N, xn ̸= 0}
is relatively norm compact. Then

∑∞
n=1 xn is absolutely convergent.

Proof. The subspace span({xn : n ∈ N}) ⊆ X is separable, so it embeds iso-

metrically into the Banach space C([0, 1]). Hence, we can assume without loss of

generality that X = C([0, 1]). Since this space has a Schauder basis, the conclusion

follows from Lemma 2.1(ii) by taking Kn := {xn} for all n ∈ N. Indeed, if (Pk)k∈N is

the sequence of partial sum operators on C([0, 1]) associated with a given Schauder

basis, then for each k ∈ N the series
∑∞

n=1 Pk(xn) is absolutely convergent, because

it is weakly unconditionally Cauchy and Pk(X) is finite-dimensional. □

Let X be a Banach space with a Schauder basis (en)n∈N. By a block sequence

with respect to (en)n∈N we mean a sequence (xj)j∈N in X for which there exist

a sequence (an)n∈N in R and a sequence (Ij)j∈N of non-empty finite subsets of N
such that max(Ij) < min(Ij+1) and xj =

∑
n∈Ij

anen for all j ∈ N. Recall that

the Schauder basis (en)n∈N is said to be shrinking if its sequence of biorthogonal

functionals (e∗n)n∈N satisfies X∗ = span({e∗n : n ∈ N}).

We can now prove our main result.

Proof of Theorem 1.3. Clearly, we can suppose that ∥M∥ ≤ 1 for every M ∈ M.

Let us consider the subspace Z0 := span({zn : n ∈ N}) ⊆ Z. The set of

restrictions {M |Z0
: M ∈ M} ⊆ BL(Z0,X) has the Rainwater property and fulfills
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conditions (a) and (b). Obviously, the restriction T |Z0 also satisfies conditions (c)

and (d). The subspace

X0 := span

(⋃
n∈N

{M(zn) : M ∈ M}

)
⊆ X

is separable (thanks to (a)) and we have M(Z0) ⊆ X0 for every M ∈ M. Since X

is Asplund and X0 is separable, X∗
0 is separable. Therefore, we can assume without

loss of generality that X∗ is separable.

A result of Zippin [18] (cf. [5, Chapter 5]) states that every Banach space

with separable dual embeds isomorphically into a Banach space with a shrinking

Schauder basis. Therefore, we can assume further that X has a shrinking Schauder

basis, say (en)n∈N. Let (Pk)k∈N be the sequence of partial sum operators on X

associated with (en)n∈N.

For each n ∈ N, write xn := T (zn) ∈ X and consider the relatively norm compact

set

Kn := {M(zn) : M ∈ M} ⊆ X.

Observe that for each k ∈ N we have
∑∞

n=1 ∥Pk(Kn)∥ < ∞. Indeed, for every

n ∈ N we choose Mn ∈ M such that

(2.1) ∥Pk(Kn)∥ ≤ ∥Pk(Mn(zn))∥ +
1

2n
.

Since
∑∞

n=1 Mn(zn) is weakly unconditionally Cauchy (by condition (b)) and Pk(X)

is finite-dimensional, the series
∑∞

n=1 Pk(Mn(zn)) is absolutely convergent and so

inequality (2.1) yields
∑∞

n=1 ∥Pk(Kn)∥ < ∞, as claimed.

Suppose, by contradiction, that
∑∞

n=1 xn is not absolutely convergent and apply

Lemma 2.1. Let (kj)j∈N and (lj)j∈N be as in Lemma 2.1. Define

Rj := Pkj+1
− Pkj

∈ L(X,X) and uj := ∥xlj∥−1zlj ∈ Z for all j ∈ N.

Write β := infn∈N ∥T (zn)∥∥zn∥−1 > 0. Fix M ∈ M and define

wM
j := M(uj) = ∥xlj∥−1M(zlj ) ∈ ∥xlj∥−1Klj for all j ∈ N.

Note that ∥uj∥ ≤ β−1 and so ∥wM
j ∥ ≤ ∥M∥β−1 ≤ β−1 for all j ∈ N. Observe

that (Rj(w
M
j ))j∈N is a block sequence with respect to (en)n∈N which is bounded,

because the sequence (wM
j )j∈N is bounded and ∥Rj∥ ≤ 2 supk∈N ∥Pk∥ < ∞ for all

j ∈ N. Since (en)n∈N is shrinking, we deduce that (Rj(w
M
j ))j∈N is weakly null (see,

e.g., [1, Proposition 3.2.7]). Since

∥wM
j −Rj(w

M
j )∥ ≤ 1

2j
for all j ∈ N

(by part (i) of Lemma 2.1), we conclude that (wM
j )j∈N is weakly null as well.

As M ∈ M is arbitrary, the Rainwater property of M implies that the sequence

(uj)j∈N is weakly null in Z. This is a contradiction, because T is Dunford-Pettis

and ∥T (uj)∥ = 1 for every j ∈ N. □
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A sequence (xn)n∈N in a Banach space is said to be an ℓ1-sequence if it is bounded

and there is a constant c > 0 such that∥∥∥∥∥
N∑

n=1

anxn

∥∥∥∥∥ ≥ c

N∑
n=1

|an|

for every N ∈ N and for all a1, . . . , aN ∈ R. That is, (xn)n∈N is an ℓ1-sequence if

and only if it is a basic sequence which is equivalent to the usual Schauder basis

of ℓ1 (see, e.g., [1, Section 1.3]).

Corollary 2.3. Let Z and X be Banach spaces. Suppose that X is Asplund. Let

M be a bounded subset of L(Z,X) having the Rainwater property. Let (en)n∈N be

a seminormalized basic sequence in Z such that:

(a) for each n ∈ N, the set {M(en) : M ∈ M} is relatively norm compact;

(b) for each sequence (an)n∈N in R such that the series
∑∞

n=1 anen is convergent

and for each sequence (Mn)n∈N in M, the series
∑∞

n=1 anMn(en) is weakly

unconditionally Cauchy.

Let T ∈ M such that:

(c) T is Dunford-Pettis;

(d) infn∈N ∥T (en)∥∥en∥−1 > 0.

Then (en)n∈N is an ℓ1-sequence.

Proof. Let (an)n∈N be a sequence in R. Then
∑∞

n=1 |an|∥en∥ < ∞ if (and only if)

the series
∑∞

n=1 anen is convergent. To check this, we can assume without loss of

generality that an ̸= 0 for all n ∈ N. Now, Theorem 1.3 (applied to zn := anen)

ensures that if
∑∞

n=1 anen is convergent, then we have
∑∞

n=1 |an|∥T (en)∥ < ∞ and

so
∑∞

n=1 |an|∥en∥ < ∞ (by (d)). This shows that (∥en∥−1en)n∈N is an ℓ1-sequence.

Since (en)n∈N is seminormalized, it is an ℓ1-sequence as well. □

We finish this section with a few remarks on sets of operators having the Rain-

water property and some examples. The first one is an immediate consequence of

the aforementioned Rainwater-Simons theorem (see, e.g., [6, Theorem 3.134]).

Corollary 2.4. Let Z and X be Banach spaces and let M ⊆ BL(Z,X). The follow-

ing statements are equivalent and imply that M has the Rainwater property:

(i) the set
⋃

M∈M M∗(BX∗) ⊆ BZ∗ is a James boundary of Z;

(ii) for every z ∈ Z there is M ∈ M such that ∥z∥ = ∥M(z)∥.

Definition 2.5. Let Z and X be Banach spaces. We say that a set M ⊆ BL(Z,X)

has the James boundary property if it satisfies conditions (i)-(ii) of Corollary 2.4.

Example 2.6. Let X be a Banach space and let E be a Banach space with a nor-

malized 1-unconditional Schauder basis (en)n∈N. Let Z be the E-sum of countably

many copies of X, that is, Z is the Banach space of all sequences (xn)n∈N in X

such that the series
∑∞

n=1 ∥xn∥en converges in E, equipped with the norm

∥(xn)n∈N∥Z :=

∥∥∥∥∥
∞∑

n=1

∥xn∥ en

∥∥∥∥∥
E

.
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Let M ⊆ BL(Z,X) be the set of all coordinate projections.

(i) If E∗ is separable, then M has the Rainwater property (see, e.g., [17,

Lemma 3.22]).

(ii) If E = c0, then M has the James boundary property.

(iii) If E = ℓp for some 1 < p < ∞, then M has the Rainwater property but

fails to have the James boundary property (unless X = {0}). Indeed, bear

in mind that c0 does not contain subspaces isomorphic to ℓp (see, e.g., [1,

Corollary 2.1.6]).

It is natural to wonder when a single operator has the Rainwater property. An

obvious necessary condition is that such an operator must be injective. In fact:

Remark 2.7. Let Z and X be Banach spaces and let M ⊆ L(Z,X) be a set having

the Rainwater property. Then
⋂

M∈M kerM = {0}. Indeed, if z ∈
⋂

M∈M kerM ,

then the Rainwater property of M implies that the constant sequence (z, z, . . . ) is

weakly null in Z, which is equivalent to saying that z = 0.

Let Z and X be Banach spaces. An operator T : Z → X is called tauberian

if its second adjoint satisfies (T ∗∗)−1(X) ⊆ Z. This is equivalent to saying that a

bounded set C ⊆ Z is relatively weakly compact if (and only if) T (C) is relatively

weakly compact (see, e.g., [8, Corollary 2.2.5]). As a consequence, we have:

Remark 2.8. Let Z and X be Banach spaces and let T ∈ L(Z,X) be injective.

(a) If T is tauberian, then {T} has the Rainwater property.

(b) If {T} has the Rainwater property and Z is weakly sequentially complete,

then T is tauberian.

In part (b) of the previous remark, the additional assumption on Z cannot be

dropped in general:

Example 2.9. Let T : c0 → ℓ1 be the injective operator defined by

T ((an)n∈N) := (2−nan)n∈N for all (an)n∈N ∈ c0.

Then {T} has the Rainwater property, but T is not tauberian. Indeed, any tauberian

operator maps the closed unit ball of the domain space to a closed set (see, e.g., [8,

Theorem 2.1.7]). However, T (Bc0) is not closed. For instance, it is easy to check

that x = (2−n)n∈N ∈ ℓ1 satisfies x ∈ T (Bc0) \ T (Bc0).

The previous example is a particular case of a more general construction:

Proposition 2.10. Let Z and X be Banach spaces and let M ⊆ L(Z,X) be

a countable set having the Rainwater property. Let E be a Banach space with

a normalized 1-unconditional Schauder basis (en)n∈N and let Y be the E-sum of

countably many copies of X. Then there is an injective operator T : Z → Y such

that {T} has the Rainwater property.

Proof. Enumerate M = {Mn : n ∈ N}. If we multiply each Mn by a non-zero

constant, the resulting set also has the Rainwater property. So, we can assume

that the series
∑∞

n=1 ∥Mn∥en converges E. Now, the map T : Z → Y defined by

T (z) := (Mn(z))n∈N for all z ∈ Z satisfies the requirements. □
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3. Application to the L1 space of a vector measure

Let X be a Banach space, let (Ω,Σ) be a measurable space and let ν : Σ → X

be a countably additive vector measure. The variation and semivariation of ν are

denoted by |ν| and ∥ν∥, respectively. Given x∗ ∈ X∗, we denote by x∗ν : Σ → R
the composition of ν with x∗ and we denote by |x∗ν| its variation. We say that

A ∈ Σ is ν-null if ∥ν∥(A) = 0 or, equivalently, ν(B) = 0 for every B ∈ Σ contained

in A. The subset of Σ consisting of all ν-null sets is denoted by N (ν).

Every ν-essentially bounded Σ-measurable function f : Ω → R is ν-integrable.

By identifying ν-a.e. equal functions, the set L∞(ν) of all (equivalence classes of)

ν-essentially bounded Σ-measurable functions is a Banach lattice with the ν-a.e.

order and the ν-essential supremum norm ∥·∥L∞(ν). For each g ∈ L∞(ν), we denote

by Mg : L1(ν) → X the operator defined by

Mg(f) :=

∫
Ω

fg dν for all f ∈ L1(ν),

which satisfies ∥Mg∥ ≤ ∥g∥L∞(ν). It is known that

(3.1) ∥f∥L1(ν) = sup
g∈BL∞(ν)

∥Mg(f)∥ for all f ∈ L1(ν)

(see, e.g., [14, Proposition 3.31]).

The following lemma can be found in [12, Lemma 3.3] and [2, Corollary 4.2].

Note that part (ii) follows at once from part (i) and (3.1). It is worth pointing out

that in (ii) the set BL∞(ν) can be replaced by its extreme points, that is, the subset

{χA − χΩ\A : A ∈ Σ}, see [4, Corollary 2.4].

Lemma 3.1. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν : Σ → X be a countably additive vector measure such that the set {ν(A) : A ∈ Σ}
is relatively norm compact. Then:

(i) for each f ∈ L1(ν), the set {Mg(f) : g ∈ BL∞(ν)} is norm compact;

(ii) the set {Mg : g ∈ BL∞(ν)} has the James boundary property.

In particular, {Mg : g ∈ BL∞(ν)} has the Rainwater property.

Lemma 3.2. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν : Σ → X be a countably additive vector measure. Let (fn)n∈N be sequence of

pairwise disjoint non-zero elements of L1(ν). Then (fn)n∈N is a 1-unconditional

basic sequence in L1(ν).

Proof. It suffices to check that

(3.2)

∥∥∥∥∥
n∑

k=1

akfk

∥∥∥∥∥
L1(ν)

≤

∥∥∥∥∥
m∑

k=1

bkfk

∥∥∥∥∥
L1(ν)

for all sequences (ak)k∈N and (bk)k∈N in R such that |ak| ≤ |bk| for every k ∈ N
and for all n ≤ m in N (see, e.g., [1, Propositions 1.1.9 and 3.1.3]). Fix x∗ ∈ BX∗ .
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Since the fk’s are pairwise disjoint, we have∫
Ω

∣∣∣∣∣
n∑

k=1

akfk

∣∣∣∣∣ d|x∗ν| =

n∑
k=1

|ak|
∫
Ω

|fk| d|x∗ν|

≤
m∑

k=1

|bk|
∫
Ω

|fk| d|x∗ν| =

∫
Ω

∣∣∣∣∣
m∑

k=1

bkfk

∣∣∣∣∣ d|x∗ν| ≤

∥∥∥∥∥
m∑

k=1

bkfk

∥∥∥∥∥
L1(ν)

.

By taking the supremum when x∗ runs over all BX∗ , we get (3.2). □

We can now prove Theorem 1.1 by using Corollary 2.3.

Proof of Theorem 1.1. It suffices to show that
∑∞

n=1 ∥ν(Cn)∥ < ∞ for every se-

quence (Cn)n∈N of pairwise disjoint elements of Σ \ N (ν) (see, e.g., [10, Corol-

lary 2]).

Fix ρ > 2 and n ∈ N. We can take An ∈ Σ \ N (ν) such that An ⊆ Cn and

ρ∥ν(An)∥ ≥ ∥ν∥(Cn). Define fn := ∥ν∥(Cn)−1χAn
∈ L1(ν) and note that

(3.3)
1

ρ
≤ ∥ν(An)∥

∥ν∥(Cn)
≤ ∥fn∥L1(ν) =

∥ν∥(An)

∥ν∥(Cn)
≤ 1.

Hence, (fn)n∈N is a seminormalized 1-unconditional basic sequence in L1(ν) (apply

Lemma 3.2).

We will show that (fn)n∈N is an ℓ1-sequence via Corollary 2.3 applied to the

operator T := MχΩ = Iν and the family M := {Mg : g ∈ BL∞(ν)}. Since Iν
is Dunford-Pettis, the set {ν(A) : A ∈ Σ} is relatively norm compact (see [2,

Theorem 5.8], cf. [15, Proposition 2.6]). Hence, M has the Rainwater property

and condition (a) of Corollary 2.3 holds (apply Lemma 3.1). Condition (d) holds

because

∥Iν(fn)∥X∥fn∥−1
L1(ν)

=
∥ν(An)∥
∥ν∥(An)

≥ ∥ν(An)∥
∥ν∥(Cn)

(3.3)

≥ 1

ρ
for all n ∈ N.

To check condition (b), let (an)n∈N be a sequence in R such that
∑∞

n=1 anfn is

convergent in L1(ν) and let (gn)n∈N be a sequence in BL∞(ν). Since the An’s are

pairwise disjoint, we can find g ∈ BL∞(ν) such that g|An = gn|An for every n ∈ N.

Since (fn)n∈N is an unconditional basic sequence,
∑∞

n=1 anfn is unconditionally

convergent. Then the series

∞∑
n=1

anMgn(fn) =

∞∑
n=1

an

∫
Ω

fngn dν =

∞∑
n=1

an

∫
Ω

fng dν =

∞∑
n=1

Mg(anfn)

is unconditionally convergent in X (because Mg is an operator) and, therefore, it is

weakly unconditionally Cauchy. So, condition (b) of Corollary 2.3 holds too. From

that result it follows that (fn)n∈N is an ℓ1-sequence.

Let c > 0 such that
N∑

n=1

|an| ≤ c

∥∥∥∥∥
N∑

n=1

anfn

∥∥∥∥∥
L1(ν)
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for every N ∈ N and for all a1, . . . , aN ∈ R. The previous inequality applied to

an := ∥ν∥(Cn) yields

N∑
n=1

∥ν(Cn)∥ ≤
N∑

n=1

∥ν∥(Cn)

≤ c

∥∥∥∥∥
N∑

n=1

χAn

∥∥∥∥∥
L1(ν)

= c
∥∥∥χ⋃N

n=1 An

∥∥∥
L1(ν)

= c ∥ν∥

(
N⋃

n=1

An

)
≤ c ∥ν∥ (Ω)

for every N ∈ N. It follows that
∑∞

n=1 ∥ν(Cn)∥ ≤ c∥ν∥(Ω) < ∞, as required. □
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Murcia).

References

[1] F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics,

vol. 233, Springer, New York, 2006.
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