A NOTE ON SUMMABILITY IN BANACH SPACES

JOSÉ RODRÍGUEZ

ABSTRACT. Let Z and X be Banach spaces. Suppose that X is Asplund. Let \mathcal{M} be a bounded set of operators from Z to X with the following property: a bounded sequence $(z_n)_{n\in\mathbb{N}}$ in Z is weakly null if, for each $M \in \mathcal{M}$, the sequence $(M(z_n))_{n\in\mathbb{N}}$ is weakly null. Let $(z_n)_{n\in\mathbb{N}}$ be a sequence in Z such that: (a) for each $n \in \mathbb{N}$, the set $\{M(z_n) : M \in \mathcal{M}\}$ is relatively norm compact; (b) for each sequence $(M_n)_{n\in\mathbb{N}}$ in \mathcal{M} , the series $\sum_{n=1}^{\infty} M_n(z_n)$ is weakly unconditionally Cauchy. We prove that if $T \in \mathcal{M}$ is Dunford-Pettis and $\inf_{n\in\mathbb{N}} ||T(z_n)|| ||z_n||^{-1} > 0$, then the series $\sum_{n=1}^{\infty} T(z_n)$ is absolutely convergent. As an application, we provide another proof of the fact that a countably additive vector measure taking values in an Asplund Banach space has finite variation whenever its integration operator is Dunford-Pettis.

1. INTRODUCTION

Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu : \Sigma \to X$ be a countably additive vector measure. A Σ -measurable function $f : \Omega \to \mathbb{R}$ is said to be ν -integrable if: (a) f is $|x^*\nu|$ -integrable for all $x^* \in X^*$; (b) for each $A \in \Sigma$ there is $\int_A f \, d\nu \in X$ such that $x^* \left(\int_A f \, d\nu\right) = \int_A f \, d(x^*\nu)$ for all $x^* \in X^*$. By identifying ν -a.e. equal functions, the set $L_1(\nu)$ of all (equivalence classes of) ν -integrable functions is a Banach lattice with the ν -a.e. order and the norm

$$||f||_{L_1(\nu)} := \sup_{x^* \in B_{X^*}} \int_{\Omega} |f| \, d|x^*\nu|.$$

We refer to [14] for basic information on these spaces, which play a relevant role in Banach lattices and operator theory. The *integration operator* of ν is the (norm one) operator $I_{\nu} : L_1(\nu) \to X$ defined by

$$I_{\nu}(f) := \int_{\Omega} f \, d\nu \quad \text{for all } f \in L_1(\nu).$$

Certain properties of I_{ν} have strong consequences on the structure of $L_1(\nu)$. For instance, ν has finite variation and the inclusion operator $\iota_{\nu} : L_1(|\nu|) \to L_1(\nu)$ is a lattice-isomorphism in each of the following cases:

- (i) I_{ν} is compact, [11, Theorem 1] (cf. [13, Theorem 2.2] and [3, Theorem 3.3]);
- (ii) I_{ν} is absolutely *p*-summing for some $1 \le p < \infty$, [12, Theorem 2.2];

²⁰²⁰ Mathematics Subject Classification. 46B15, 46G10.

Key words and phrases. Absolutely convergent series; Dunford-Pettis operator; vector measure; Schauder basis.

The research was supported by grants PID2021-122126NB-C32 (funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe", EU) and 21955/PI/22 (funded by *Fundación Séneca - ACyT Región de Murcia*).

JOSÉ RODRÍGUEZ

(iii) I_{ν} is Dunford-Pettis and Asplund, [16, Theorem 3.3].

Note that case (iii) generalizes both (i) and (ii) because weakly compact operators are Asplund. The proof of (iii) given in [16] (cf. [15, Section 3.3]) is based on the Davis-Figiel-Johnson-Pełczyński factorization procedure and the following result obtained in [3, Theorem 1.3]:

Theorem 1.1. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu : \Sigma \to X$ be a countably additive vector measure. If I_{ν} is Dunford-Pettis and X is Asplund, then ν has finite variation.

The particular case of Theorem 1.1 when X has an unconditional Schauder basis and no subspace isomorphic to ℓ_1 had been proved earlier in [12, Theorem 1.2]. The question of whether the statement of Theorem 1.1 holds for arbitrary Banach spaces not containing subspaces isomorphic to ℓ_1 seems to be still open.

In this note we elaborate an abstract framework that allows to provide a simpler proof of Theorem 1.1. The following concept will be important along this way. Given two Banach spaces Z and X, we denote by $\mathcal{L}(Z, X)$ the Banach space of all operators from Z to X, equipped with the operator norm.

Definition 1.2. Let Z and X be Banach spaces. We say that a set $\mathcal{M} \subseteq \mathcal{L}(Z, X)$ has the Rainwater property if the following holds: a bounded sequence $(z_n)_{n \in \mathbb{N}}$ in Z is weakly null if, for each $M \in \mathcal{M}$, the sequence $(M(z_n))_{n \in \mathbb{N}}$ is weakly null.

The Rainwater-Simons theorem (see, e.g., [6, Theorem 3.134]) states that, for an arbitrary Banach space Z, any James boundary of Z has the Rainwater property (with $X = \mathbb{R}$). More generally, James boundaries are (I)-generating, [7, Theorem 2.3], and all (I)-generating sets have the Rainwater property, see [9].

The main result of this note is the following:

Theorem 1.3. Let Z and X be Banach spaces. Suppose that X is Asplund. Let \mathcal{M} be a bounded subset of $\mathcal{L}(Z, X)$ having the Rainwater property. Let $(z_n)_{n \in \mathbb{N}}$ be a sequence in Z such that:

- (a) for each $n \in \mathbb{N}$, the set $\{M(z_n) : M \in \mathcal{M}\}$ is relatively norm compact;
- (b) for each sequence $(M_n)_{n \in \mathbb{N}}$ in \mathcal{M} , the series $\sum_{n=1}^{\infty} M_n(z_n)$ is weakly unconditionally Cauchy.

Let $T \in \mathcal{M}$ such that:

- (c) T is Dunford-Pettis;
- (d) $\inf_{n \in \mathbb{N}} ||T(z_n)|| ||z_n||^{-1} > 0.$

Then the series $\sum_{n=1}^{\infty} T(z_n)$ is absolutely convergent.

The paper is organized as follows. Section 2 is devoted to proving Theorem 1.3. In Section 3 we focus on the L_1 space of a vector measure and we get Theorem 1.1 as an application of Theorem 1.3.

Terminology. All our Banach spaces are real. By an *operator* we mean a continuous linear map between Banach spaces. An operator is called *Dunford-Pettis* if it maps weakly null sequences to norm null ones. By a *subspace* of a Banach space we mean

 $\mathbf{2}$

a closed linear subspace. Let Z be a Banach space. We denote its norm by $\|\cdot\|_Z$ or simply $\|\cdot\|$. Given a set $C \subseteq Z$, we write $\|C\| := \sup\{\|z\| : z \in C\}$. The closed unit ball of Z is denoted by B_Z . The subspace of Z generated by a set $H \subseteq Z$ is denoted by $\overline{\operatorname{span}}(H)$. We write Z^* for the dual of Z. A set $B \subseteq B_{Z^*}$ is said to be a James boundary of Z if for every $z \in Z$ there is $z^* \in B$ such that $||z|| = z^*(z)$. The space Z is said to be Asplund if every separable subspace of Z has separable dual.

2. Main result

Let X be a Banach space with a Schauder basis $(e_n)_{n \in \mathbb{N}}$. For each $k \in \mathbb{N}$, we have an operator $P_k: X \to X$ defined by $P_k(x) := \sum_{n=1}^k e_n^*(x) e_n$ for all $x \in X$, where $(e_n^*)_{n \in \mathbb{N}}$ is the sequence in X^* of biorthogonal functionals associated with $(e_n)_{n \in \mathbb{N}}$. The operators of this form are called the *partial sum operators* on X associated with $(e_n)_{n \in \mathbb{N}}$. They satisfy $\sup_{k \in \mathbb{N}} ||P_k|| < \infty$.

The following lemma uses some ideas of the proof of [15, Lemma 3.4].

Lemma 2.1. Let X be a Banach space with a Schauder basis and let $(P_k)_{k \in \mathbb{N}}$ be the associated sequence of partial sum operators on X. Write $\alpha := \sup_{k \in \mathbb{N}} \|P_k\|$. Let $(K_n)_{n\in\mathbb{N}}$ be a sequence of relatively norm compact subsets of X and let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X such that $x_n \in K_n$ for all $n \in \mathbb{N}$. Suppose that:

- (a) the series $\sum_{n=1}^{\infty} x_n$ is not absolutely convergent;
- (b) $\sum_{n=1}^{\infty} \|P_k(\overline{K_n})\| < \infty$ for every $k \in \mathbb{N}$.

Then there exist two strictly increasing sequences $(k_i)_{i\in\mathbb{N}}$ and $(l_i)_{i\in\mathbb{N}}$ in \mathbb{N} such that, if $w_j \in ||x_{l_j}||^{-1} K_{l_j}$ for all $j \in \mathbb{N}$, then:

- (i) $||w_j (P_{k_{j+1}} P_{k_j})(w_j)|| \le 2^{-j}$ for every $j \in \mathbb{N}$; (ii) $||w_j w_{j'}|| \ge \alpha^{-1} ||w_j|| 2^{-j}$ whenever j' > j.

Proof. We can assume without loss of generality that $x_n \neq 0$ for all $n \in \mathbb{N}$. Write $Q_k := \mathrm{id}_X - P_k$ for all $k \in \mathbb{N}$, where id_X stands for the identity operator on X. Since $||Q_k|| \leq 1 + \alpha$ for all $k \in \mathbb{N}$ and $||Q_k(x)|| \to 0$ as $k \to \infty$ for every $x \in X$, the sequence of operators $(Q_k)_{k\in\mathbb{N}}$ converges to 0 uniformly on each relatively norm compact subset of X.

We will construct by induction strictly increasing sequences $(k_i)_{i \in \mathbb{N}}$ and $(l_i)_{i \in \mathbb{N}}$ in \mathbb{N} in such a way that, for each $j \in \mathbb{N}$, we have

(c)
$$\left\| P_{k_j}(K_{\tilde{l}_{j+1}}) \right\| \le \frac{\|x_{\tilde{l}_{j+1}}\|}{2^{j+1}}$$
 and (d) $\left\| Q_{k_j}(K_{\tilde{l}_j}) \right\| \le \frac{\|x_{\tilde{l}_j}\|}{2^j}$.

Set $l_1 := 1$ and choose $k_1 \in \mathbb{N}$ such that $\|Q_{k_1}(K_1)\| \leq \frac{1}{2} \|x_1\|$. Suppose that $k_N, \tilde{l}_N \in \mathbb{N}$ are already chosen for some $N \in \mathbb{N}$. By (a) and (b), there is $l_{N+1} \in \mathbb{N}$ with $\tilde{l}_{N+1} > \tilde{l}_N$ such that

$$\left\| P_{k_N}(K_{\tilde{l}_{N+1}}) \right\| \le \frac{\|x_{\tilde{l}_{N+1}}\|}{2^{N+1}}.$$

Now, we take $k_{N+1} \in \mathbb{N}$ with $k_{N+1} > k_N$ such that

$$\left\| Q_{k_{N+1}}(K_{\tilde{l}_{N+1}}) \right\| \le \frac{\|x_{\tilde{l}_{N+1}}\|}{2^{N+1}}$$

This finishes the construction of $(k_j)_{j \in \mathbb{N}}$ and $(l_j)_{j \in \mathbb{N}}$.

Define $l_j := \tilde{l}_{j+1}$ for all $j \in \mathbb{N}$. Take $(z_j)_{j \in \mathbb{N}} \in \prod_{j \in \mathbb{N}} K_{l_j}$ and, for each $j \in \mathbb{N}$, define $w_j := ||x_{l_j}||^{-1} z_j$. Then

$$||w_{j} - (P_{k_{j+1}} - P_{k_{j}})(w_{j})|| = ||Q_{k_{j+1}}(w_{j}) + P_{k_{j}}(w_{j})||$$

$$\leq ||Q_{k_{j+1}}(w_{j})|| + ||P_{k_{j}}(w_{j})||$$

$$\stackrel{(c)\&(d)}{\leq} \frac{1}{2^{j+1}} + \frac{1}{2^{j+1}} = \frac{1}{2^{j}}$$

for every $j \in \mathbb{N}$. This proves (i).

To check property (ii), take j' > j in \mathbb{N} . Then

$$\begin{aligned} \|w_{j} - w_{j'}\| &\geq \alpha^{-1} \|P_{k_{j+1}}(w_{j} - w_{j'})\| \\ &= \alpha^{-1} \|w_{j} - Q_{k_{j+1}}(w_{j}) - P_{k_{j+1}}(w_{j'})\| \\ &\geq \alpha^{-1} \Big(\|w_{j}\| - \|Q_{k_{j+1}}(w_{j})\| - \|P_{k_{j+1}}(w_{j'})\| \Big) \\ &= \alpha^{-1} \Big(\|w_{j}\| - \|Q_{k_{j+1}}(w_{j})\| - \|P_{k_{j+1}}(P_{k_{j'}}(w_{j'}))\| \Big) \\ &\geq \alpha^{-1} \Big(\|w_{j}\| - \|Q_{k_{j+1}}(w_{j})\| - \alpha \|P_{k_{j'}}(w_{j'})\| \Big) \\ &\stackrel{(\alpha \geq 1)}{\geq} \alpha^{-1} \|w_{j}\| - \|Q_{k_{j+1}}(w_{j})\| - \|P_{k_{j'}}(w_{j'})\| \\ &\stackrel{(c)\&(d)}{\geq} \alpha^{-1} \|w_{j}\| - \frac{1}{2^{j+1}} - \frac{1}{2^{j'+1}} \geq \alpha^{-1} \|w_{j}\| - \frac{1}{2^{j}}. \end{aligned}$$
roof is finished.

The proof is finished.

Corollary 2.2. Let X be a Banach space. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that $\sum_{n=1}^{\infty} x_n$ is weakly unconditionally Cauchy and $\{\|x_n\|^{-1}x_n : n \in \mathbb{N}, x_n \neq 0\}$ is relatively norm compact. Then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.

Proof. The subspace $\overline{\text{span}}(\{x_n : n \in \mathbb{N}\}) \subseteq X$ is separable, so it embeds isometrically into the Banach space C([0,1]). Hence, we can assume without loss of generality that X = C([0, 1]). Since this space has a Schauder basis, the conclusion follows from Lemma 2.1(ii) by taking $K_n := \{x_n\}$ for all $n \in \mathbb{N}$. Indeed, if $(P_k)_{k \in \mathbb{N}}$ is the sequence of partial sum operators on C([0,1]) associated with a given Schauder basis, then for each $k \in \mathbb{N}$ the series $\sum_{n=1}^{\infty} P_k(x_n)$ is absolutely convergent, because it is weakly unconditionally Cauchy and $P_k(X)$ is finite-dimensional.

Let X be a Banach space with a Schauder basis $(e_n)_{n \in \mathbb{N}}$. By a block sequence with respect to $(e_n)_{n\in\mathbb{N}}$ we mean a sequence $(x_j)_{j\in\mathbb{N}}$ in X for which there exist a sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} and a sequence $(I_j)_{j\in\mathbb{N}}$ of non-empty finite subsets of \mathbb{N} such that $\max(I_j) < \min(I_{j+1})$ and $x_j = \sum_{n \in I_j} a_n e_n$ for all $j \in \mathbb{N}$. Recall that the Schauder basis $(e_n)_{n\in\mathbb{N}}$ is said to be *shrinking* if its sequence of biorthogonal functionals $(e_n^*)_{n \in \mathbb{N}}$ satisfies $X^* = \overline{\operatorname{span}}(\{e_n^* : n \in \mathbb{N}\}).$

We can now prove our main result.

Proof of Theorem 1.3. Clearly, we can suppose that $||M|| \leq 1$ for every $M \in \mathcal{M}$.

Let us consider the subspace $Z_0 := \overline{\text{span}}(\{z_n : n \in \mathbb{N}\}) \subseteq Z$. The set of restrictions $\{M|_{Z_0} : M \in \mathcal{M}\} \subseteq B_{\mathcal{L}(Z_0,X)}$ has the Rainwater property and fulfills

4

conditions (a) and (b). Obviously, the restriction $T|_{Z_0}$ also satisfies conditions (c) and (d). The subspace

$$X_0 := \overline{\operatorname{span}}\left(\bigcup_{n \in \mathbb{N}} \{M(z_n) : M \in \mathcal{M}\}\right) \subseteq X$$

is separable (thanks to (a)) and we have $M(Z_0) \subseteq X_0$ for every $M \in \mathcal{M}$. Since X is Asplund and X_0 is separable, X_0^* is separable. Therefore, we can assume without loss of generality that X^* is separable.

A result of Zippin [18] (cf. [5, Chapter 5]) states that every Banach space with separable dual embeds isomorphically into a Banach space with a shrinking Schauder basis. Therefore, we can assume further that X has a shrinking Schauder basis, say $(e_n)_{n \in \mathbb{N}}$. Let $(P_k)_{k \in \mathbb{N}}$ be the sequence of partial sum operators on X associated with $(e_n)_{n \in \mathbb{N}}$.

For each $n \in \mathbb{N}$, write $x_n := T(z_n) \in X$ and consider the relatively norm compact set

$$K_n := \{ M(z_n) : M \in \mathcal{M} \} \subseteq X.$$

Observe that for each $k \in \mathbb{N}$ we have $\sum_{n=1}^{\infty} ||P_k(K_n)|| < \infty$. Indeed, for every $n \in \mathbb{N}$ we choose $M_n \in \mathcal{M}$ such that

(2.1)
$$||P_k(K_n)|| \le ||P_k(M_n(z_n))|| + \frac{1}{2^n}.$$

Since $\sum_{n=1}^{\infty} M_n(z_n)$ is weakly unconditionally Cauchy (by condition (b)) and $P_k(X)$ is finite-dimensional, the series $\sum_{n=1}^{\infty} P_k(M_n(z_n))$ is absolutely convergent and so inequality (2.1) yields $\sum_{n=1}^{\infty} \|P_k(K_n)\| < \infty$, as claimed.

Suppose, by contradiction, that $\sum_{n=1}^{\infty} x_n$ is not absolutely convergent and apply Lemma 2.1. Let $(k_j)_{j \in \mathbb{N}}$ and $(l_j)_{j \in \mathbb{N}}$ be as in Lemma 2.1. Define

$$R_j := P_{k_{j+1}} - P_{k_j} \in \mathcal{L}(X, X)$$
 and $u_j := ||x_{l_j}||^{-1} z_{l_j} \in Z$ for all $j \in \mathbb{N}$.

Write $\beta := \inf_{n \in \mathbb{N}} ||T(z_n)|| ||z_n||^{-1} > 0$. Fix $M \in \mathcal{M}$ and define

$$w_j^M := M(u_j) = \|x_{l_j}\|^{-1} M(z_{l_j}) \in \|x_{l_j}\|^{-1} K_{l_j}$$
 for all $j \in \mathbb{N}$.

Note that $||u_j|| \leq \beta^{-1}$ and so $||w_j^M|| \leq ||M||\beta^{-1} \leq \beta^{-1}$ for all $j \in \mathbb{N}$. Observe that $(R_j(w_j^M))_{j\in\mathbb{N}}$ is a block sequence with respect to $(e_n)_{n\in\mathbb{N}}$ which is bounded, because the sequence $(w_j^M)_{j\in\mathbb{N}}$ is bounded and $||R_j|| \leq 2 \sup_{k\in\mathbb{N}} ||P_k|| < \infty$ for all $j \in \mathbb{N}$. Since $(e_n)_{n\in\mathbb{N}}$ is shrinking, we deduce that $(R_j(w_j^M))_{j\in\mathbb{N}}$ is weakly null (see, e.g., [1, Proposition 3.2.7]). Since

$$\|w_j^M - R_j(w_j^M)\| \le \frac{1}{2^j} \quad \text{for all } j \in \mathbb{N}$$

(by part (i) of Lemma 2.1), we conclude that $(w_j^M)_{j \in \mathbb{N}}$ is weakly null as well.

As $M \in \mathcal{M}$ is arbitrary, the Rainwater property of \mathcal{M} implies that the sequence $(u_j)_{j \in \mathbb{N}}$ is weakly null in Z. This is a contradiction, because T is Dunford-Pettis and $||T(u_j)|| = 1$ for every $j \in \mathbb{N}$.

A sequence $(x_n)_{n \in \mathbb{N}}$ in a Banach space is said to be an ℓ_1 -sequence if it is bounded and there is a constant c > 0 such that

$$\left\|\sum_{n=1}^{N} a_n x_n\right\| \ge c \sum_{n=1}^{N} |a_n|$$

for every $N \in \mathbb{N}$ and for all $a_1, \ldots, a_N \in \mathbb{R}$. That is, $(x_n)_{n \in \mathbb{N}}$ is an ℓ_1 -sequence if and only if it is a basic sequence which is equivalent to the usual Schauder basis of ℓ_1 (see, e.g., [1, Section 1.3]).

Corollary 2.3. Let Z and X be Banach spaces. Suppose that X is Asplund. Let \mathcal{M} be a bounded subset of $\mathcal{L}(Z, X)$ having the Rainwater property. Let $(e_n)_{n \in \mathbb{N}}$ be a seminormalized basic sequence in Z such that:

- (a) for each $n \in \mathbb{N}$, the set $\{M(e_n) : M \in \mathcal{M}\}$ is relatively norm compact;
- (b) for each sequence $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} such that the series $\sum_{n=1}^{\infty} a_n e_n$ is convergent and for each sequence $(M_n)_{n \in \mathbb{N}}$ in \mathcal{M} , the series $\sum_{n=1}^{\infty} a_n M_n(e_n)$ is weakly unconditionally Cauchy.

Let $T \in \mathcal{M}$ such that:

- (c) T is Dunford-Pettis;
- (d) $\inf_{n \in \mathbb{N}} ||T(e_n)|| ||e_n||^{-1} > 0.$

Then $(e_n)_{n \in \mathbb{N}}$ is an ℓ_1 -sequence.

Proof. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Then $\sum_{n=1}^{\infty} |a_n| ||e_n|| < \infty$ if (and only if) the series $\sum_{n=1}^{\infty} a_n e_n$ is convergent. To check this, we can assume without loss of generality that $a_n \neq 0$ for all $n \in \mathbb{N}$. Now, Theorem 1.3 (applied to $z_n := a_n e_n$) ensures that if $\sum_{n=1}^{\infty} a_n e_n$ is convergent, then we have $\sum_{n=1}^{\infty} |a_n| ||T(e_n)|| < \infty$ and so $\sum_{n=1}^{\infty} |a_n| ||e_n|| < \infty$ (by (d)). This shows that $(||e_n||^{-1}e_n)_{n\in\mathbb{N}}$ is an ℓ_1 -sequence. Since $(e_n)_{n\in\mathbb{N}}$ is seminormalized, it is an ℓ_1 -sequence as well.

We finish this section with a few remarks on sets of operators having the Rainwater property and some examples. The first one is an immediate consequence of the aforementioned Rainwater-Simons theorem (see, e.g., [6, Theorem 3.134]).

Corollary 2.4. Let Z and X be Banach spaces and let $\mathcal{M} \subseteq B_{\mathcal{L}(Z,X)}$. The following statements are equivalent and imply that \mathcal{M} has the Rainwater property:

- (i) the set $\bigcup_{M \in \mathcal{M}} M^*(B_{X^*}) \subseteq B_{Z^*}$ is a James boundary of Z;
- (ii) for every $z \in Z$ there is $M \in \mathcal{M}$ such that ||z|| = ||M(z)||.

Definition 2.5. Let Z and X be Banach spaces. We say that a set $\mathcal{M} \subseteq B_{\mathcal{L}(Z,X)}$ has the James boundary property if it satisfies conditions (i)-(ii) of Corollary 2.4.

Example 2.6. Let X be a Banach space and let E be a Banach space with a normalized 1-unconditional Schauder basis $(e_n)_{n \in \mathbb{N}}$. Let Z be the E-sum of countably many copies of X, that is, Z is the Banach space of all sequences $(x_n)_{n \in \mathbb{N}}$ in X such that the series $\sum_{n=1}^{\infty} ||x_n|| e_n$ converges in E, equipped with the norm

$$||(x_n)_{n\in\mathbb{N}}||_Z := \left\|\sum_{n=1}^{\infty} ||x_n|| e_n\right\|_E.$$

Let $\mathcal{M} \subseteq B_{\mathcal{L}(Z,X)}$ be the set of all coordinate projections.

- (i) If E* is separable, then M has the Rainwater property (see, e.g., [17, Lemma 3.22]).
- (ii) If $E = c_0$, then \mathcal{M} has the James boundary property.
- (iii) If $E = \ell_p$ for some $1 , then <math>\mathcal{M}$ has the Rainwater property but fails to have the James boundary property (unless $X = \{0\}$). Indeed, bear in mind that c_0 does not contain subspaces isomorphic to ℓ_p (see, e.g., [1, Corollary 2.1.6]).

It is natural to wonder when a single operator has the Rainwater property. An obvious necessary condition is that such an operator must be injective. In fact:

Remark 2.7. Let Z and X be Banach spaces and let $\mathcal{M} \subseteq \mathcal{L}(Z, X)$ be a set having the Rainwater property. Then $\bigcap_{M \in \mathcal{M}} \ker M = \{0\}$. Indeed, if $z \in \bigcap_{M \in \mathcal{M}} \ker M$, then the Rainwater property of \mathcal{M} implies that the constant sequence (z, z, ...) is weakly null in Z, which is equivalent to saying that z = 0.

Let Z and X be Banach spaces. An operator $T : Z \to X$ is called *tauberian* if its second adjoint satisfies $(T^{**})^{-1}(X) \subseteq Z$. This is equivalent to saying that a bounded set $C \subseteq Z$ is relatively weakly compact if (and only if) T(C) is relatively weakly compact (see, e.g., [8, Corollary 2.2.5]). As a consequence, we have:

Remark 2.8. Let Z and X be Banach spaces and let $T \in \mathcal{L}(Z, X)$ be injective.

- (a) If T is tauberian, then $\{T\}$ has the Rainwater property.
- (b) If $\{T\}$ has the Rainwater property and Z is weakly sequentially complete, then T is tauberian.

In part (b) of the previous remark, the additional assumption on Z cannot be dropped in general:

Example 2.9. Let $T: c_0 \to \ell_1$ be the injective operator defined by

 $T((a_n)_{n\in\mathbb{N}}) := (2^{-n}a_n)_{n\in\mathbb{N}} \quad for \ all \ (a_n)_{n\in\mathbb{N}} \in c_0.$

Then $\{T\}$ has the Rainwater property, but T is not tauberian. Indeed, any tauberian operator maps the closed unit ball of the domain space to a closed set (see, e.g., [8, Theorem 2.1.7]). However, $T(B_{c_0})$ is not closed. For instance, it is easy to check that $x = (2^{-n})_{n \in \mathbb{N}} \in \ell_1$ satisfies $x \in \overline{T(B_{c_0})} \setminus T(B_{c_0})$.

The previous example is a particular case of a more general construction:

Proposition 2.10. Let Z and X be Banach spaces and let $\mathcal{M} \subseteq \mathcal{L}(Z, X)$ be a countable set having the Rainwater property. Let E be a Banach space with a normalized 1-unconditional Schauder basis $(e_n)_{n \in \mathbb{N}}$ and let Y be the E-sum of countably many copies of X. Then there is an injective operator $T : Z \to Y$ such that $\{T\}$ has the Rainwater property.

Proof. Enumerate $\mathcal{M} = \{M_n : n \in \mathbb{N}\}$. If we multiply each M_n by a non-zero constant, the resulting set also has the Rainwater property. So, we can assume that the series $\sum_{n=1}^{\infty} \|M_n\| e_n$ converges E. Now, the map $T : Z \to Y$ defined by $T(z) := (M_n(z))_{n \in \mathbb{N}}$ for all $z \in Z$ satisfies the requirements. \Box

JOSÉ RODRÍGUEZ

3. Application to the L_1 space of a vector measure

Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu : \Sigma \to X$ be a countably additive vector measure. The variation and semivariation of ν are denoted by $|\nu|$ and $||\nu||$, respectively. Given $x^* \in X^*$, we denote by $x^*\nu : \Sigma \to \mathbb{R}$ the composition of ν with x^* and we denote by $|x^*\nu|$ its variation. We say that $A \in \Sigma$ is ν -null if $||\nu||(A) = 0$ or, equivalently, $\nu(B) = 0$ for every $B \in \Sigma$ contained in A. The subset of Σ consisting of all ν -null sets is denoted by $\mathcal{N}(\nu)$.

Every ν -essentially bounded Σ -measurable function $f: \Omega \to \mathbb{R}$ is ν -integrable. By identifying ν -a.e. equal functions, the set $L_{\infty}(\nu)$ of all (equivalence classes of) ν -essentially bounded Σ -measurable functions is a Banach lattice with the ν -a.e. order and the ν -essential supremum norm $\|\cdot\|_{L_{\infty}(\nu)}$. For each $g \in L_{\infty}(\nu)$, we denote by $M_g: L_1(\nu) \to X$ the operator defined by

$$M_g(f) := \int_{\Omega} fg \, d\nu \quad \text{for all } f \in L_1(\nu),$$

which satisfies $||M_g|| \leq ||g||_{L_{\infty}(\nu)}$. It is known that

(3.1)
$$||f||_{L_1(\nu)} = \sup_{g \in B_{L_\infty(\nu)}} ||M_g(f)|| \text{ for all } f \in L_1(\nu)$$

(see, e.g., [14, Proposition 3.31]).

The following lemma can be found in [12, Lemma 3.3] and [2, Corollary 4.2]. Note that part (ii) follows at once from part (i) and (3.1). It is worth pointing out that in (ii) the set $B_{L_{\infty}(\nu)}$ can be replaced by its extreme points, that is, the subset $\{\chi_A - \chi_{\Omega\setminus A} : A \in \Sigma\}$, see [4, Corollary 2.4].

Lemma 3.1. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu : \Sigma \to X$ be a countably additive vector measure such that the set $\{\nu(A) : A \in \Sigma\}$ is relatively norm compact. Then:

- (i) for each $f \in L_1(\nu)$, the set $\{M_g(f) : g \in B_{L_{\infty}(\nu)}\}$ is norm compact;
- (ii) the set $\{M_g : g \in B_{L_{\infty}(\nu)}\}$ has the James boundary property.

In particular, $\{M_g : g \in B_{L_{\infty}(\nu)}\}\$ has the Rainwater property.

Lemma 3.2. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu : \Sigma \to X$ be a countably additive vector measure. Let $(f_n)_{n \in \mathbb{N}}$ be sequence of pairwise disjoint non-zero elements of $L_1(\nu)$. Then $(f_n)_{n \in \mathbb{N}}$ is a 1-unconditional basic sequence in $L_1(\nu)$.

Proof. It suffices to check that

(3.2)
$$\left\|\sum_{k=1}^{n} a_k f_k\right\|_{L_1(\nu)} \le \left\|\sum_{k=1}^{m} b_k f_k\right\|_{L_1(\nu)}$$

for all sequences $(a_k)_{k \in \mathbb{N}}$ and $(b_k)_{k \in \mathbb{N}}$ in \mathbb{R} such that $|a_k| \leq |b_k|$ for every $k \in \mathbb{N}$ and for all $n \leq m$ in \mathbb{N} (see, e.g., [1, Propositions 1.1.9 and 3.1.3]). Fix $x^* \in B_{X^*}$. Since the f_k 's are pairwise disjoint, we have

$$\begin{split} \int_{\Omega} \left| \sum_{k=1}^{n} a_{k} f_{k} \right| \, d|x^{*}\nu| &= \sum_{k=1}^{n} |a_{k}| \int_{\Omega} |f_{k}| \, d|x^{*}\nu| \\ &\leq \sum_{k=1}^{m} |b_{k}| \int_{\Omega} |f_{k}| \, d|x^{*}\nu| = \int_{\Omega} \left| \sum_{k=1}^{m} b_{k} f_{k} \right| \, d|x^{*}\nu| \leq \left\| \sum_{k=1}^{m} b_{k} f_{k} \right\|_{L_{1}(\nu)}. \end{split}$$

By taking the supremum when x^* runs over all B_{X^*} , we get (3.2).

We can now prove Theorem 1.1 by using Corollary 2.3.

Proof of Theorem 1.1. It suffices to show that $\sum_{n=1}^{\infty} \|\nu(C_n)\| < \infty$ for every sequence $(C_n)_{n \in \mathbb{N}}$ of pairwise disjoint elements of $\Sigma \setminus \mathcal{N}(\nu)$ (see, e.g., [10, Corollary 2]).

Fix $\rho > 2$ and $n \in \mathbb{N}$. We can take $A_n \in \Sigma \setminus \mathcal{N}(\nu)$ such that $A_n \subseteq C_n$ and $\rho \|\nu(A_n)\| \ge \|\nu\|(C_n)$. Define $f_n := \|\nu\|(C_n)^{-1}\chi_{A_n} \in L_1(\nu)$ and note that

(3.3)
$$\frac{1}{\rho} \le \frac{\|\nu(A_n)\|}{\|\nu\|(C_n)} \le \|f_n\|_{L_1(\nu)} = \frac{\|\nu\|(A_n)}{\|\nu\|(C_n)} \le 1.$$

Hence, $(f_n)_{n \in \mathbb{N}}$ is a seminormalized 1-unconditional basic sequence in $L_1(\nu)$ (apply Lemma 3.2).

We will show that $(f_n)_{n\in\mathbb{N}}$ is an ℓ_1 -sequence via Corollary 2.3 applied to the operator $T := M_{\chi_{\Omega}} = I_{\nu}$ and the family $\mathcal{M} := \{M_g : g \in B_{L_{\infty}(\nu)}\}$. Since I_{ν} is Dunford-Pettis, the set $\{\nu(A) : A \in \Sigma\}$ is relatively norm compact (see [2, Theorem 5.8], cf. [15, Proposition 2.6]). Hence, \mathcal{M} has the Rainwater property and condition (a) of Corollary 2.3 holds (apply Lemma 3.1). Condition (d) holds because

$$\|I_{\nu}(f_n)\|_X\|f_n\|_{L_1(\nu)}^{-1} = \frac{\|\nu(A_n)\|}{\|\nu\|(A_n)} \ge \frac{\|\nu(A_n)\|}{\|\nu\|(C_n)} \stackrel{(3.3)}{\ge} \frac{1}{\rho} \quad \text{for all } n \in \mathbb{N}.$$

To check condition (b), let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} such that $\sum_{n=1}^{\infty} a_n f_n$ is convergent in $L_1(\nu)$ and let $(g_n)_{n\in\mathbb{N}}$ be a sequence in $B_{L_{\infty}(\nu)}$. Since the A_n 's are pairwise disjoint, we can find $g \in B_{L_{\infty}(\nu)}$ such that $g|_{A_n} = g_n|_{A_n}$ for every $n \in \mathbb{N}$. Since $(f_n)_{n\in\mathbb{N}}$ is an unconditional basic sequence, $\sum_{n=1}^{\infty} a_n f_n$ is unconditionally convergent. Then the series

$$\sum_{n=1}^{\infty} a_n M_{g_n}(f_n) = \sum_{n=1}^{\infty} a_n \int_{\Omega} f_n g_n \, d\nu = \sum_{n=1}^{\infty} a_n \int_{\Omega} f_n g \, d\nu = \sum_{n=1}^{\infty} M_g(a_n f_n)$$

is unconditionally convergent in X (because M_g is an operator) and, therefore, it is weakly unconditionally Cauchy. So, condition (b) of Corollary 2.3 holds too. From that result it follows that $(f_n)_{n \in \mathbb{N}}$ is an ℓ_1 -sequence.

Let c > 0 such that

$$\sum_{n=1}^{N} |a_n| \le c \left\| \sum_{n=1}^{N} a_n f_n \right\|_{L_1(\nu)}$$

for every $N \in \mathbb{N}$ and for all $a_1, \ldots, a_N \in \mathbb{R}$. The previous inequality applied to $a_n := \|\nu\|(C_n)$ yields

$$\sum_{n=1}^{N} \|\nu(C_n)\| \le \sum_{n=1}^{N} \|\nu\|(C_n)$$

$$\le c \left\|\sum_{n=1}^{N} \chi_{A_n}\right\|_{L_1(\nu)} = c \left\|\chi_{\bigcup_{n=1}^{N} A_n}\right\|_{L_1(\nu)} = c \left\|\nu\right\| \left(\bigcup_{n=1}^{N} A_n\right) \le c \left\|\nu\right\|(\Omega)$$

for every $N \in \mathbb{N}$. It follows that $\sum_{n=1}^{\infty} \|\nu(C_n)\| \leq c \|\nu\|(\Omega) < \infty$, as required. \Box

Acknowledgements. The research was supported by grants PID2021-122126NB-C32 (funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe", EU) and 21955/PI/22 (funded by *Fundación Séneca - ACyT Región de Murcia*).

References

- F. Albiac and N. J. Kalton, *Topics in Banach space theory*, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006.
- [2] J. M. Calabuig, S. Lajara, J. Rodríguez, and E. A. Sánchez-Pérez, Compactness in L¹ of a vector measure, Studia Math. 225 (2014), no. 3, 259–282.
- [3] J. M. Calabuig, J. Rodríguez, and E. A. Sánchez-Pérez, On completely continuous integration operators of a vector measure, J. Convex Anal. 21 (2014), no. 3, 811–818.
- [4] J. M. Calabuig, J. Rodríguez, and E. A. Sánchez-Pérez, Summability in L¹ of a vector measure, Math. Nachr. 290 (2017), no. 4, 507–519.
- [5] P. Dodos, Banach spaces and descriptive set theory: selected topics, Lecture Notes in Mathematics, vol. 1993, Springer-Verlag, Berlin, 2010.
- [6] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, CMS Books in Mathematics, Springer, New York, 2011.
- [7] V. P. Fonf and J. Lindenstrauss, Boundaries and generation of convex sets, Israel J. Math. 136 (2003), 157–172.
- [8] M. González and A. Martínez-Abejón, *Tauberian operators*, Operator Theory: Advances and Applications, vol. 194, Birkhäuser Verlag, Basel, 2010.
- [9] O. Nygaard, A remark on Rainwater's theorem, Ann. Math. Inform. 32 (2005), 125-127.
- [10] O. Nygaard and M. Põldvere, Families of vector measures of uniformly bounded variation, Arch. Math. (Basel) 88 (2007), no. 1, 57–61.
- [11] S. Okada, W. J. Ricker, and L. Rodríguez-Piazza, Compactness of the integration operator associated with a vector measure, Studia Math. 150 (2002), no. 2, 133–149.
- [12] S. Okada, W. J. Ricker, and L. Rodríguez-Piazza, Operator ideal properties of vector measures with finite variation, Studia Math. 205 (2011), no. 3, 215–249.
- [13] S. Okada, W. J. Ricker, and L. Rodríguez-Piazza, Operator ideal properties of the integration map of a vector measure, Indag. Math. (N.S.) 25 (2014), no. 2, 315–340.
- [14] S. Okada, W. J. Ricker, and E. A. Sánchez Pérez, Optimal domain and integral extension of operators. Acting in function spaces, Operator Theory: Advances and Applications, vol. 180, Birkhäuser Verlag, Basel, 2008.
- [15] J. Rodríguez, Dunford-Pettis type properties in L_1 of a vector measure, preprint, arXiv:2404.05419.
- [16] J. Rodríguez, Factorization of vector measures and their integration operators, Colloq. Math. 144 (2016), no. 1, 115–125.

10

- [17] J. Rodríguez, ϵ -weakly precompact sets in Banach spaces, Studia Math. 262 (2022), no. 3, 327–360.
- [18] M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), no. 1, 371–379.

Dpto. de Matemáticas, E.T.S. de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain

 $Email \ address: \ \verb"jose.rodriguezruiz@uclm.es"$