
ON VECTOR MEASURES WITH VALUES IN c0(κ)

JOSÉ RODRÍGUEZ

Abstract. Let ν be a vector measure defined on a σ-algebra Σ and taking

values in a Banach space. We prove that if ν is homogeneous and L1(ν)

is non-separable, then there is a vector measure ν̃ : Σ → c0(κ) such that

L1(ν) = L1(ν̃) with equal norms, where κ is the density character of L1(ν).

This is a non-separable version of a result of [G.P. Curbera, Pacific J. Math.

162 (1994), no. 2, 287–303].

1. Introduction

Spaces of integrable functions with respect to a vector measure play an impor-

tant role in Banach lattices and operator theory. Every Banach lattice with order

continuous norm and a weak unit is lattice-isometric to the L1 space of some vector

measure, [2, Theorem 8] (cf. [6, Proposition 2.4]). Such a representation is not

unique, in the sense that a Banach lattice can be lattice-isometric to the L1 spaces

of completely different vector measures. The following result was proved in [3,

Theorem 1] (cf. [14, Theorem 5] for a different proof):

Theorem 1.1 (G. P. Curbera). Let ν be a vector measure defined on a σ-algebra Σ

and taking values in a Banach space. If ν is atomless and L1(ν) is separable, then

there is a vector measure ν̃ : Σ → c0 such that L1(ν) = L1(ν̃) with equal norms.

In general, this result is not valid for vector measures with atoms, as shown in [3,

pp. 294–295]. It is natural to ask about non-separable versions of Theorem 1.1 by

using c0(κ) as target space for a large enough cardinal κ. This question was posed

by Z. Lipecki at the conference “Integration, Vector Measures and Related Topics

VI” (Bed lewo, June 2014). In [19] we provided some partial answers by using a

certain superspace of c0(κ), namely, the so-called Pe lczyński-Sudakov space. In the

particular case κ = ℵ1 (the first uncountable cardinal), this is the Banach space

ℓc∞(ℵ1) of all bounded real-valued functions on ℵ1 with countable support.

In this note we refine the results of [19] by proving the following:

Theorem 1.2. Let ν be a vector measure defined on a σ-algebra Σ and taking

values in a Banach space. If ν is homogeneous and L1(ν) is non-separable, then
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(funded by Fundación Séneca - ACyT Región de Murcia).

1
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there is a vector measure ν̃ : Σ → c0(κ) such that L1(ν) = L1(ν̃) with equal norms,

where κ is the density character of L1(ν).

The proof of Theorem 1.2 uses some ideas of [19, Example 2.6]. There we showed

that, for an arbitrary uncountable cardinal κ and 1 < p < ∞, the Lp space of the

usual product probability measure on the Cantor cube {−1, 1}κ is equal to L1(ν)

for some c0(κ)-valued vector measure ν. We stress that one cannot arrive at the

same conclusion by using a c0-valued vector measure, see [17, Example 4.16].

The paper is organized as follows. In Section 2 we fix the terminology and

include some preliminary facts on L1 spaces of a vector measure. In Section 3

we prove Theorem 1.2 and a similar result for non-homogeneous vector measures

(Theorem 3.2). We finish the paper with further remarks on c0(κ)-valued vector

measures which might be of independent interest (Theorem 3.3).

2. Preliminaries

Our notation is standard as can be found in [5] and [16]. We write N = {1, 2, . . . }.

The density character of a topological space T , denoted by dens(T ), is the minimal

cardinality of a dense subset of T .

Given a non-empty set I, we denote by ΛI the σ-algebra on {−1, 1}I generated

by all the sets of the form

{x ∈ {−1, 1}I : x(i) = y(i) for all i ∈ J},

where J ⊆ I is finite and y ∈ {−1, 1}J . Every closed-and-open subset of {−1, 1}I
is a finite union of sets as above. The symbol λI stands for the usual product

probability measure on ({−1, 1}I ,ΛI). For each i ∈ I we denote by

πIi : {−1, 1}I → {−1, 1}

the ith-coordinate projection and, for each non-empty set J ⊆ I, we denote by

ρIJ : {−1, 1}I → {−1, 1}J

the canonical projection.

All our Banach spaces are real. The closed unit ball of a Banach space X is

denoted by BX and the dual of X is denoted by X∗. The symbol ∥ · ∥X stands for

the norm of X. Given a non-empty set Γ, we denote by c0(Γ) the Banach space of

all bounded functions φ : Γ → R such that {γ ∈ Γ : |φ(γ)| > ε} is finite for every

ε > 0, equipped with the supremum norm.

Let (Ω,Σ) be a measurable space. Given a Banach space X, we denote by

ca(Σ, X) the set of all X-valued vector measures defined on Σ. Unless stated

otherwise, our measures are meant to be countably additive.

Let ν ∈ ca(Σ, X). Given A ∈ Σ, we denote by νA the restriction of ν to

ΣA := {B ∈ Σ : B ⊆ A}

(which is a σ-algebra on A). The set A is called ν-null if ν(B) = 0 for every B ∈ ΣA
or, equivalently, ∥ν∥(A) = 0, where ∥ν∥ is the semivariation of ν. The family of all

ν-null sets is denoted by N (ν). We say that ν is atomless if for every A ∈ Σ \N (ν)

there is B ∈ ΣA such that neither B nor A \B is ν-null.
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By a Rybakov control measure of ν we mean a finite non-negative measure of the

form µ = |x∗ν| for some x∗ ∈ X∗ such that N (µ) = N (ν) (see, e.g., [5, p. 268,

Theorem 2]); here |x∗ν| is the variation of the signed measure x∗ν : Σ → R obtained

as the composition of ν with x∗.

A Σ-measurable function f : Ω → R is said to be ν-integrable if it is |x∗ν|-
integrable for all x∗ ∈ X∗ and, for each A ∈ Σ, there is

∫
A
f dν ∈ X such that

x∗
(∫

A

f dν

)
=

∫
A

f d(x∗ν) for all x∗ ∈ X∗.

By identifying functions which coincide ν-a.e., the set L1(ν) of all (equivalence

classes of) ν-integrable functions is a Banach lattice with the ν-a.e. order and the

norm

∥f∥L1(ν) := sup
x∗∈BX∗

∫
Ω

|f | d|x∗ν|.

We write sim(Σ) to denote the linear subspace of L1(ν) consisting of all (equiv-

alence classes of) simple functions, that is, linear combinations of characteristic

functions χA where A ∈ Σ. The set sim(Σ) is norm dense in L1(ν). As in the

case of finite non-negative measures, if L1(ν) is infinite-dimensional, then its den-

sity character coincides with the minimal cardinality of a set C ⊆ Σ satisfying that

infC∈C ∥ν∥(A△C) = 0 for all A ∈ Σ. We say that ν is homogeneous if it is atomless

and

dens(L1(ν)) = dens(L1(νA)) for every A ∈ Σ \ N (ν).

In this case, the cardinal dens(L1(ν)) is called the Maharam type of ν. It is easy to

check that: (i) dens(L1(ν)) = dens(L1(µ)) for any Rybakov control measure µ of ν;

(ii) ν is atomless (resp., homogeneous) if and only if some/any Rybakov control

measure of ν is atomless (resp., homogeneous).

As a Banach lattice, L1(ν) has order continuous norm and a weak unit (the

function χΩ). If µ is a Rybakov control measure of ν, then L1(ν) is a Köthe

function space over (Ω,Σ, µ) and we can consider its Köthe dual

L1(ν)′ := {g ∈ L1(µ) : fg ∈ L1(µ) for all f ∈ L1(ν)}.

For each g ∈ L1(ν)′ we have a functional φg ∈ L1(ν)∗ defined by

φg(f) :=

∫
Ω

fg dµ for all f ∈ L1(ν).

Since L1(ν) has order continuous norm, the equality

(2.1) L1(ν)∗ = {φg : g ∈ L1(ν)′}

holds (see, e.g., [13, p. 29]).

We will also need the following two auxiliary results, which can be found in [19,

Lemma 2.3] and [15, Lemma 3.6], respectively.

Lemma 2.1. Let Γ be a non-empty set and let Z be a closed subspace of ℓ∞(Γ).

For each γ ∈ Γ, denote by e∗γ ∈ Bℓ∞(Γ)∗ the γ-th coordinate projection. Let (Ω,Σ)
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be a measurable space and let ν ∈ ca(Σ, Z). Then

∥f∥L1(ν) = sup
γ∈Γ

∫
Ω

|f | d|e∗γν| for every f ∈ L1(ν).

Lemma 2.2. Let X and Y be Banach spaces, let (Ω,Σ) be a measurable space and

let ν ∈ ca(Σ, X) and ν̃ ∈ ca(Σ, Y ) such that N (ν) = N (ν̃). Suppose that there is a

constant c > 0 such that ∥f∥L1(ν) ≤ c∥f∥L1(ν̃) for every f ∈ sim(Σ). Then L1(ν̃)

embeds continuously into L1(ν) with norm ≤ c.

3. Results

Given a probability space (Ω,Σ, µ), we consider the equivalence relation on Σ

defined by A ∼ B if and only if µ(A△B) = 0. The set Σ/N (µ) of equivalence

classes becomes a measure algebra with the usual Boolean algebra operations and

the functional defined by µ•(A•) := µ(A) for all A ∈ Σ, where A• ∈ Σ/N (µ) is the

equivalence class of A. We refer to [9] for more information on measure algebras.

We now proceed with the proof of our main result.

Proof of Theorem 1.2. We divide the proof into several steps.

Step 1. Let (Ω,Σ) be the underlying measurable space and let µ be a Rybakov

control measure of ν. Suppose without loss of generality that µ(Ω) = 1. Since µ is

homogeneous and has Maharam type κ, Maharam’s theorem (see, e.g., [9, Section 3]

or [12, §14]) ensures that the measure algebras of µ and λκ are isomorphic, that is,

there is a Boolean algebra isomorphism

θ : Σ/N (µ) → Λκ/N (λκ)

such that λ•κ ◦ θ = µ•. This isomorphism induces a lattice isometry

Φ : L1(µ) → L1(λκ)

such that for every f ∈ L1(µ) we have

(3.1)

∫
Ω

f dµ =

∫
{−1,1}κ

Φ(f) dλκ

and

(3.2) Φ(fχA) = Φ(f)χC whenever A ∈ Σ and C ∈ Λκ satisfy θ(A•) = C•.

Step 2. It is well known that for an arbitrary Banach space Y the inequalities

dens(Y ∗,weak∗) ≤ dens(BY ∗ ,weak∗) ≤ dens(Y )

hold. If, in addition, Y is weakly compactly generated, then they turn out to be

equalities (see, e.g., [7, Theorem 13.3]). Therefore, since L1(ν) is weakly compactly

generated, [2, Theorem 2] (cf. [1, p. 193]), we have

dens(BL1(ν)∗ ,weak∗) = dens(L1(ν)) = κ.

Let H ⊆ BL1(ν)∗ be a weak∗-dense subset of BL1(ν)∗ with cardinality κ. Let us

write H = {φhα : α < κ} where hα ∈ L1(ν)′ for all α < κ (see equality (2.1) at

page 3). Then

∥f∥L1(ν) = sup
α<κ

φhα(f) for all f ∈ L1(ν).
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Since |hα| ∈ L1(ν)′ and φ|hα| ∈ BL1(ν)∗ for all α < κ, the previous equality yields

(3.3) ∥f∥L1(ν) = sup
α<κ

φ|hα|(|f |) for all f ∈ L1(ν).

Fix α < κ. Then hα ∈ L1(µ) and so we can consider Φ(hα) ∈ L1(λκ). Hence,

there exist a countable set Iα ⊆ κ and h̃α ∈ L1(λIα) such that

(3.4) Φ(hα) = h̃α ◦ ρκIα
(see, e.g., [10, 254Q]).

Let ψ : κ → κ be an injective map such that ψ(α) ̸∈ Iα for all α < κ. Note

that such a map can be constructed by transfinite induction. Indeed, take α < κ

and suppose that ψ(β) is already defined for all β < α. Then {ψ(β) : β < α} ∪ Iα
has cardinality strictly less than κ (bear in mind that κ is uncountable and Iα is

countable). Hence, we can pick ψ(α) ∈ κ \ {ψ(β) : β < α} ∪ Iα.

Step 3. Fix α < κ. We write

πκψ(α) = χCψ(α)
− χ{−1,1}κ\Cψ(α)

,

where Cψ(α) := (πκψ(α))
−1({1}) ∈ Λκ. Then

Φ−1(πκψ(α)) = χAψ(α)
− χΩ\Aψ(α)

,

where Aψ(α) is some element of Σ with θ(A•
ψ(α)) = C•

ψ(α). Since |Φ−1(πκψ(α))| = χΩ

and φhα ∈ BL1(ν)∗ , we have

gα := hαΦ−1(πκψ(α)) ∈ L1(ν)′

with φgα ∈ BL1(ν)∗ and so∣∣∣ ∫
A

gα dµ
∣∣∣ = |φgα(χA)| ≤ ∥χA∥L1(ν)∥φgα∥L1(ν)∗ ≤ ∥χA∥L1(ν) = ∥ν∥(A)

for every A ∈ Σ. Hence, we have

ν̃(A) :=

(∫
A

gα dµ

)
α<κ

∈ ℓ∞(κ)

and

(3.5) ∥ν̃(A)∥ℓ∞(κ) ≤ ∥ν∥(A)

for every A ∈ Σ. Clearly, ν̃ : Σ → ℓ∞(κ) is finitely additive. Since ∥ν∥(A) → 0

as µ(A) → 0 (see, e.g., [5, p. 10, Theorem 1]), inequality (3.5) ensures that ν̃ is

countably additive, that is, ν̃ ∈ ca(Σ, ℓ∞(κ)).

Step 4. Let C ⊆ {−1, 1}κ be an arbitrary closed-and-open set (in particular,

C ∈ Λκ) and let A ∈ Σ such that θ(A•) = C•. We claim that for every sequence

(αn)n∈N of pairwise distinct elements of κ we have
∫
A
gαn dµ = 0 for n large enough.

Indeed, since C is closed-and-open, there exist a finite set I ⊆ κ and a set

B ⊆ {−1, 1}I such that C = B×{−1, 1}κ\I . For each n ∈ N we define Jn := I∪Iαn
and, bearing in mind (3.4), we write

(3.6) Φ(hαn)χC = ĥαn ◦ ρκJn
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for some ĥαn ∈ L1(λJn). Since I is finite, ψ is injective and the αn’s are pairwise

distinct, there is n0 ∈ N such that for every n ≥ n0 we have ψ(αn) ̸∈ Jn, thus

(3.7)

∫
{−1,1}κ\Jn

π
κ\Jn
ψ(αn)

dλκ\Jn = 0

and so∫
A

gαn dµ =

∫
Ω

hαn(χAψ(αn)∩A − χA\Aψ(αn)
) dµ

(3.1) & (3.2)
=

∫
{−1,1}κ

Φ(hαn)(χCψ(αn)∩C − χC\Cψ(αn)
) dλκ

=

∫
{−1,1}κ

Φ(hαn)χC π
κ
ψ(αn)

dλκ

(3.6)
=

∫
{−1,1}κ

(
ĥαn ◦ ρκJn

) (
π
κ\Jn
ψ(αn)

◦ ρκκ\Jn
)
dλκ

(*)
=

(∫
{−1,1}Jn

ĥαn dλJn

)(∫
{−1,1}κ\Jn

π
κ\Jn
ψ(αn)

dλκ\Jn

)
(3.7)
= 0,

where equality (*) follows from Fubini’s theorem.

Step 5. We claim that

ν̃(A) ∈ c0(κ) for every A ∈ Σ

and so ν̃ ∈ ca(Σ, c0(κ)).

Indeed, fix A ∈ Σ and ε > 0. Choose δ > 0 such that

∥ν̃(B)∥ℓ∞(κ) ≤
ε

2
for every B ∈ Σ with µ(B) ≤ δ

(see Step 3). Take C ∈ Λκ such that θ(A•) = C•. There is a closed-and-open set

Cε ⊆ {−1, 1}κ such that λκ(C△Cε) ≤ δ. Take Aε ∈ Σ such that θ(A•
ε) = C•

ε . By

Step 4, we have ν̃(Aε) ∈ c0(κ). Since µ(A△Aε) = λκ(C△Cε) ≤ δ, we have

∥ν̃(A) − ν̃(Aε)∥ℓ∞(κ) = ∥ν̃(A \Aε) − ν̃(Aε \A)∥ℓ∞(κ)

≤ ∥ν̃(A \Aε)∥ℓ∞(κ) + ∥ν̃(Aε \A)∥ℓ∞(κ) ≤ ε.

As ε > 0 is arbitrary, ν̃(Aε) ∈ c0(κ) and c0(κ) is a closed subspace of ℓ∞(κ), it

follows that ν̃(A) ∈ c0(κ). This proves the claim.

Step 6. Fix f ∈ sim(Σ). By Lemma 2.1 and the very definition of ν̃, we have

∥f∥L1(ν̃) = sup
α<κ

∫
Ω

|fgα| dµ = sup
α<κ

∫
Ω

|fhα| dµ = sup
α<κ

φ|hα|(|f |)
(3.3)
= ∥f∥L1(ν).

In particular, N (ν) = N (ν̃) and we can apply Lemma 2.2 twice to infer that

L1(ν) = L1(ν̃) with equal norms. The proof is finished. □

The following lemma will be useful when dealing with non-homogeneous vector

measures. Let us recall first a standard renorming for the L1 space of a vector

measure. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν ∈ ca(Σ, X). Then the formula

|||f |||L1(ν) := sup
A∈Σ

∥∥∥∥∫
A

f dν

∥∥∥∥
X

, f ∈ L1(ν),
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defines an equivalent norm on L1(ν) and, in fact, one has

(3.8) |||f |||L1(ν) ≤ ∥f∥L1(ν) ≤ 2|||f |||L1(ν) for all f ∈ L1(ν)

(see, e.g., [16, p. 112]).

Lemma 3.1. Let X, X1 and X2 be Banach spaces, let (Ω,Σ) be a measurable

space and let ν ∈ ca(Σ, X). Let A1, A2 ∈ Σ be disjoint with Ω = A1 ∪ A2 and let

νi ∈ ca(ΣAi , Xi) such that L1(νAi) = L1(νi) with equivalent norms for i ∈ {1, 2}.
Define ν̃ : Σ → X1 ⊕∞ X2 by

ν̃(A) := (ν1(A ∩A1), ν2(A ∩A2)) for all A ∈ Σ.

Then ν̃ ∈ ca(Σ, X1 ⊕∞ X2) and L1(ν) = L1(ν̃) with equivalent norms.

Proof. Write Z := X1 ⊕∞ X2. Clearly, ν̃ ∈ ca(Σ, Z). Let c and d be positive

constants such that

(3.9) c−1∥f |A1∥L1(ν1) ≤ ∥f |A1∥L1(νA1
) ≤ c∥f |A1

∥L1(ν1)

and

(3.10) d−1∥f |A2∥L1(ν2) ≤ ∥f |A2∥L1(νA2
) ≤ d∥f |A2∥L1(ν2)

for every f ∈ sim(Σ).

On the one hand, we have

(3.11) ∥f∥L1(ν) ≤ 2(c+ d)∥f∥L1(ν̃)

for every f ∈ sim(Σ). Indeed, note that

(3.12)

∫
A

f dν̃ =

(∫
A∩A1

f |A1 dν1,

∫
A∩A2

f |A2 dν2

)
for all A ∈ Σ

and so for each i ∈ {1, 2} we have

(3.13)

∥f |Ai∥L1(νi)

(3.8)

≤ 2 sup
A∈Σ

∥∥∥∥∫
A∩Ai

f |Ai dνi
∥∥∥∥
Xi

(3.12)

≤ 2 sup
A∈Σ

∥∥∥∥∫
A

f dν̃

∥∥∥∥
Z

(3.8)

≤ 2∥f∥L1(ν̃).

It follows that

∥f∥L1(ν) ≤ ∥fχA1∥L1(ν) + ∥fχA2∥L1(ν)

= ∥f |A1
∥L1(νA1

) + ∥f |A2
∥L1(νA2

)

(3.9) & (3.10)

≤ c∥f |A1
∥L1(ν1) + d∥f |A2

∥L1(ν2)

(3.13)

≤ 2(c+ d)∥f∥L1(ν̃).

This proves inequality (3.11).

On the other hand, we have

(3.14) ∥f∥L1(ν̃) ≤ 2 max{c, d}∥f∥L1(ν)
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for every f ∈ sim(Σ). Indeed, observe that

∥f∥L1(ν̃)

(3.8)

≤ 2 sup
A∈Σ

∥∥∥∥∫
A

f dν̃

∥∥∥∥
Z

(3.12)
= 2 sup

A∈Σ
max

{∥∥∥∥∫
A∩A1

f |A1 dν1

∥∥∥∥
X1

,

∥∥∥∥∫
A∩A2

f |A2 dν2

∥∥∥∥
X2

}
(3.8)

≤ 2 max{∥f |A1
∥L1(ν1), ∥f |A2

∥L1(ν2)}
(3.9) & (3.10)

≤ 2 max{c∥f |A1
∥L1(νA1

), d∥f |A2
∥L1(νA2

)}
≤ 2 max{c, d}∥f∥L1(ν),

as claimed.

Finally, inequalities (3.11) and (3.14) allow to apply Lemma 2.2 to deduce that

L1(ν) = L1(ν̃) with equivalent norms. □

Theorem 3.2. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν ∈ ca(Σ, X). If ν is atomless and L1(ν) has density character ℵk for some k ∈ N,
then there is ν̃ ∈ ca(Σ, c0(ℵk)) such that L1(ν) = L1(ν̃) with equivalent norms.

Proof. Let µ be a Rybakov control measure of ν. Then µ is atomless and L1(µ) has

density character ℵk. Therefore, there exists a finite partition {A1, . . . , An} of Ω

consisting of elements of Σ such that, for each i ∈ {1, . . . , n}, the restriction of µ

to ΣAi is homogeneous and has Maharam type ℵmi for some mi ∈ N∪{0} satisfying

m1 < m2 < . . . < mn = k (see, e.g., [9, Section 3] or [12, p. 122, Theorem 7]). Now,

for each i ∈ {1, . . . , n} we can apply either Theorem 1.1 or Theorem 1.2 to νAi in

order to get νi ∈ ca(ΣAi , c0(ℵmi)) such that L1(νAi) = L1(νi) with equal norms.

Let us consider the Banach space

Y :=

(
n⊕
i=1

c0(ℵmi)

)
∞

,

which is isometric to c0(ℵk). Finally, we can apply inductively Lemma 3.1 to get

ν̃ ∈ ca(Σ, Y ) such that L1(ν) = L1(ν̃) with equivalent norms. □

Let X be a Banach space, let (Ω,Σ) be a measurable space and let ν : Σ → X

be a map. The Orlicz-Pettis theorem (see, e.g., [5, p. 22, Corollary 4]) implies that

ν ∈ ca(Σ, X) if and only if the composition of ν with each x∗ ∈ X∗ is countably

additive. Diestel and Faires [4] (cf. [5, p. 23, Corollary 7]) proved that if X

contains no closed subspace isomorphic to ℓ∞ and ∆ ⊆ X∗ is a total set (i.e.,⋂
x∗∈∆ kerx∗ = {0}), then ν ∈ ca(Σ, X) if and only if the composition of ν with

each x∗ ∈ ∆ is countably additive. As an application, we get part (i) of the following

result, which also collects further properties of c0(κ)-valued vector measures.

Theorem 3.3. Let (Ω,Σ) be a measurable space and let ν : Σ → c0(κ) be a map,

where κ is a cardinal. For each α < κ, let e∗α ∈ c0(κ)∗ be the αth-coordinate

projection and let να : Σ → R be the composition of ν with e∗α. The following

statements hold:



ON VECTOR MEASURES WITH VALUES IN c0(κ) 9

(i) ν ∈ ca(Σ, c0(κ)) if and only if να ∈ ca(Σ,R) for all α < κ.

(ii) If ν ∈ ca(Σ, c0(κ)), then:

(ii.a) There is a countable set Γ ⊆ κ such that
⋂
α∈Γ N (να) ⊆ N (ν).

(ii.b) For each ε > 0 there is a countable partition κ =
⋃
n∈N Γn,ε such that

for every n ∈ N and for every A ∈ Σ the set {α ∈ Γn,ε : |να(A)| > ε}
has cardinality less than n.

Proof. (i) This follows from the aforementioned result of Diestel and Faires applied

to the total set ∆ := {e∗α : α < κ} ⊆ c0(κ)∗ (bear in mind that weakly compactly

generated Banach spaces, like c0(κ), contain no closed subspace isomorphic to ℓ∞).

(ii.a) Let µ be a Rybakov control measure of ν. Since c0(κ)∗ = ℓ1(κ), there is

φ ∈ ℓ1(κ) such that µ = |φ ◦ ν|. The set Γ := {α < κ : φ(α) ̸= 0} is countable

and (φ ◦ ν)(A) =
∑
α∈Γ φ(α)να(A) for every A ∈ Σ, the series being absolutely

convergent. Clearly, the inclusion
⋂
α∈Γ N (να) ⊆ N (µ) = N (ν) holds.

(ii.b) Let K ⊆ c0(κ) be the weak closure of the set {ν(A) : A ∈ Σ}. Then K is

weakly compact (see, e.g., [5, p. 14, Corollary 7]) and, in fact, it is uniform Eberlein

compact (i.e., it is homeomorphic to a weakly compact subset of a Hilbert space)

when equipped with the weak topology, [18, Corollary 2.3]. The conclusion follows

from Farmaki’s characterization of those compact subsets of sigma-products which

are uniform Eberlein compact, see [8] (cf. [11, Corollary 6.33(i)]). □
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