DUNFORD-PETTIS TYPE PROPERTIES IN L_1 OF A VECTOR MEASURE

JOSÉ RODRÍGUEZ

ABSTRACT. Let ν be a countably additive vector measure defined on a σ -algebra and taking values in a Banach space. In this paper we deal with the following three properties for the Banach lattice $L_1(\nu)$ of all ν -integrable real-valued functions: the Dunford-Pettis property, the positive Schur property and being lattice-isomorphic to an AL-space. We give new results and we also provide alternative proofs of some already known ones.

1. Introduction

Let X be a Banach space with (topological) dual X^* , let (Ω, Σ) be a measurable space and let $\nu: \Sigma \to X$ be a (countably additive) vector measure. A Σ -measurable function $f: \Omega \to \mathbb{R}$ is called ν -integrable if it is $|x^*\nu|$ -integrable for all $x^* \in X^*$ and, for each $A \in \Sigma$, there is $\int_A f \, d\nu \in X$ such that

$$x^* \left(\int_A f \, d\nu \right) = \int_A f \, d(x^*\nu)$$
 for all $x^* \in X^*$.

Here $x^*\nu$ is the signed measure obtained as the composition of ν with x^* and $|x^*\nu|$ denotes its variation. By identifying functions which coincide except to a ν -null set (where $A \in \Sigma$ is said to be ν -null if $\nu(B) = 0$ for every $B \in \Sigma$ with $B \subseteq A$), the set $L_1(\nu)$ of all (equivalence classes of) ν -integrable functions is a Banach lattice with the ν -a.e. order and the norm

$$\|f\|_{L_1(\nu)} := \sup_{x^* \in B_{X^*}} \int_{\Omega} |f| \, d|x^*\nu|.$$

Here B_{X^*} denotes the closed unit ball of X^* . Let us agree to say that $L_1(\nu)$ is the L_1 space of the vector measure ν .

Every Banach lattice with order continuous norm and a weak unit is lattice-isometric to the L_1 space of a vector measure, [11, Theorem 8] (cf. [19, Proposition 2.4]). Such a representation is not unique. For instance, the usual space $L_1[0,1]$ is equal to $L_1(\nu_i)$ for each one of the following X_i -valued vector measures ν_i defined on the Borel σ -algebra of [0,1]:

• $X_1 := \mathbb{R}$ and $\nu_1(A) := \lambda(A)$ (the Lebesgue measure of A);

²⁰²⁰ Mathematics Subject Classification. 46E30, 46G10.

Key words and phrases. Dunford-Pettis operator; AL-space; positive Schur property; Asplund space; vector measure.

The research was supported by grants PID2021-122126NB-C32 (funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe", EU) and 21955/PI/22 (funded by Fundación Séneca - ACyT Región de Murcia).

- $X_2 := L_1[0,1]$ and $\nu_2(A) := \chi_A$ (the characteristic function of A);
- $X_3 := c_0$ and $\nu_3(A) := (\int_A r_n d\lambda)_{n \in \mathbb{N}}$, where $(r_n)_{n \in \mathbb{N}}$ is the sequence of Rademacher functions.

The structure of the space $L_1(\nu)$ can be greatly conditioned by certain properties of ν . For complete information on these spaces and their important role in Banach lattices and operator theory, we refer the reader to the monograph [33] and the papers [6, 14, 15, 28, 34, 36, 38].

The inclusion map

$$\iota_{\nu}: L_1(|\nu|) \to L_1(\nu)$$

is a well-defined injective lattice-homomorphism, where $|\nu|$ is the variation of ν (see, e.g., [33, Lemma 3.14]). If ι_{ν} is surjective, then it is a lattice-isomorphism and, moreover, we have $|\nu|(\Omega) < \infty$. Curbera [12] addressed the question of when the L_1 space of a vector measure is lattice-isomorphic to an AL-space. Recall that a Banach lattice E is said to be an AL-space if its norm satisfies ||x+y|| = ||x|| + ||y|| whenever $x, y \in E$ are disjoint, which is equivalent to saying that E is lattice-isometric to the usual space $L_1(\mu)$ of a non-negative measure μ (see, e.g., [3, Theorem 4.27]). It turns out that $L_1(\nu)$ is lattice-isomorphic to an AL-space if and only if ι_{ν} is surjective, [12, Proposition 2]. This is also equivalent to the fact that the integration operator of ν , that is, the norm 1 operator

$$I_{\nu}: L_1(\nu) \to X, \quad I_{\nu}(f):=\int_{\Omega} f \, d\nu \quad \text{for all } f \in L_1(\nu),$$

is cone absolutely summing (i.e., the series $\sum_{n=1}^{\infty} I_{\nu}(f_n)$ is absolutely convergent whenever $\sum_{n\in\mathbb{N}} f_n$ is unconditionally convergent and $f_n\in L_1(\nu)^+$ for all $n\in\mathbb{N}$), [10, Proposition 3.1]. As usual, given a Banach lattice E, we denote by E^+ its positive cone, that is, $E^+:=\{x\in E:x\geq 0\}$. At this point we should stress that if a Banach lattice is isomorphic (just as a Banach space) to an AL-space, then it is lattice-isomorphic to an AL-space [1] (cf. [16, Proposition 2.1]).

An operator between Banach spaces is said to be Dunford-Pettis (or $completely\ continuous$) if it maps weakly null sequences to norm null ones. The space $L_1(\mu)$ of a non-negative measure μ has the Dunford- $Pettis\ property$, that is, every weakly compact operator from $L_1(\mu)$ to an arbitrary Banach space is Dunford-Pettis (see, e.g., [2, Theorem 5.4.5] or [3, Theorem 5.85]). In general, this is not true for the L_1 space of a vector measure. Indeed, reflexive infinite-dimensional Banach spaces fail the Dunford-Pettis property and, as we have already mentioned, spaces like ℓ_p and $L_p[0,1]$ for $1 can be seen as <math>L_1$ spaces of a vector measure. On the other side, there are L_1 spaces of a vector measure having the Dunford-Pettis property which are not lattice-isomorphic to an AL-space, like c_0 . Curbera showed in [13, Theorem 4] that $L_1(\nu)$ has the Dunford-Pettis property if ν has σ -finite variation and X has the Schur property (i.e., every weakly null sequence in X is norm null). In fact, he proved that:

- (i) $L_1(\nu)$ has the positive Schur property whenever X has the Schur property.
- (ii) If $L_1(\nu)$ has the positive Schur property and ν has σ -finite variation, then $L_1(\nu)$ has the Dunford-Pettis property (cf. [6, Section 3.2]).

Recall that a Banach lattice E is said to have the positive Schur property if every weakly null sequence in E^+ is norm null. Note that statement (i) can be deduced at once from the fact that $L_1(\nu)$ has the positive Schur property if and only if the integration operator I_{ν} is almost Dunford-Pettis (i.e., $(I_{\nu}(f_n))_{n\in\mathbb{N}}$ is norm null for every weakly null sequence $(f_n)_{n\in\mathbb{N}}$ in $L_1(\nu)^+$), see [6, Theorem 5.12].

The integration operator is undoubtedly a key point in the theory of L_1 spaces of a vector measure. Note that its properties depend on ν rather than on the space $L_1(\nu)$ itself. For instance, going back to the example at the beginning, we have:

- I_{ν_1} is the functional given by $I_{\nu_1}(f) = \int_{[0,1]} f \, d\lambda$;
- I_{ν_2} is the identity operator on $L_1[0,1]$;
- $I_{\nu_3}: L_1[0,1] \to c_0$ is the operator given by $I_{\nu_3}(f) = (\int_{[0,1]} r_n f \, d\lambda)_{n \in \mathbb{N}}$, which is strictly singular but fails to be weakly compact.

It is known that $L_1(\nu)$ is lattice-isomorphic to an AL-space whenever I_{ν} is compact (see [30, Theorem 1], cf. [32, Theorem 2.2] and [7, Theorem 3.3]), absolutely p-summing for $1 \leq p < \infty$ (see [31, Theorem 2.2]) or, more generally, Dunford-Pettis and Asplund (see [35, Theorem 3.3]). Recall that an operator between Banach spaces is said to be Asplund if it factors through a Banach space which is Asplund (i.e., all of its separable subspaces have separable dual). In particular, $L_1(\nu)$ is lattice-isomorphic to an AL-space if I_{ν} is Dunford-Pettis and X is Asplund, [7, Theorem 1.3]. This is a partial answer to the following question posed by Okada, Ricker and Rodríguez-Piazza [31]:

Question 1.1. Suppose that I_{ν} is Dunford-Pettis and that X contains no subspace isomorphic to ℓ_1 . Is $L_1(\nu)$ lattice-isomorphic to an AL-space?

They showed that this is the case if, in addition, X has an unconditional Schauder basis, [31, Theorem 1.2]. Note that any Banach space with an unconditional Schauder basis and no subspace isomorphic to ℓ_1 has separable dual (see, e.g., [2, Theorem 3.3.1]). To the best of our knowledge, Question 1.1 remains open.

In this paper we deal with L_1 spaces of a vector measure with focus on the property of being isomorphic to an AL-space, the positive Schur property and the Dunford-Pettis property. Our aim is twofold: we include new results and we also present alternative proofs of some already known ones which hopefully might led to a better understanding of the theory. The structure of the paper is as follows.

In Section 2 we collect some known preliminary facts on L_1 spaces of a vector measure that will be needed later.

In Section 3 we revisit the aforementioned positive answer to Question 1.1 for Asplund spaces (Corollary 3.8) and the related result for integration operators which are Dunford-Pettis and Asplund (Corollary 3.11).

In Section 4 we show that the positive Schur property of $L_1(\nu)$ can be characterized by means of a Dunford-Pettis type property with respect to the so-called "vector duality" induced by the integration operator, that is, the continuous bilinear map

$$L_1(\nu) \times L_{\infty}(\nu) \to X, \qquad (f,g) \mapsto I_{\nu}(fg) = \int_{\Omega} fg \, d\nu$$

(Theorem 4.3). We also give another proof of the aforementioned result of [13] stating that $L_1(\nu)$ has the Dunford-Pettis property if it has the positive Schur property and ν has σ -finite variation (Corollary 4.5). It seems to be an open question whether the assumption on the variation can be dropped, namely:

Question 1.2. Suppose that $L_1(\nu)$ has the positive Schur property. Does $L_1(\nu)$ have the Dunford-Pettis property?

Finally, in Example 4.6 we discuss a class of vector measures ν such that $L_1(\nu)$ has the positive Schur property and the Dunford-Pettis property, but fails to be lattice-isomorphic to an AL-space, among other interesting properties.

2. Preliminaries

All Banach spaces considered in this paper are real. An operator is a continuous linear map between Banach spaces. Given an operator T, its adjoint is denoted by T^* . By a subspace of a Banach space we mean a norm closed linear subspace. Let Z be a Banach space. The norm of Z is denoted by $\|\cdot\|_Z$, or simply $\|\cdot\|$, and we write $B_Z := \{z \in Z : \|z\| \le 1\}$ (the closed unit ball of Z). The evaluation of $z^* \in Z^*$ at $z \in Z$ is denoted by either $z^*(z)$ or $\langle z^*, z \rangle$. By a projection from Z onto a subspace $Y \subseteq Z$ we mean an operator $P: Z \to Z$ such that P(Z) = Y and P is the identity when restricted to Y. The subspace of Z generated by a set $H \subseteq Z$ is denoted by $\overline{\operatorname{span}}(H)$.

In this section we gather, for the reader's convenience, some known facts on L_1 spaces of a vector measure. A basic reference on this topic is [33, Chapter 3].

Throughout this section X is a Banach space, (Ω, Σ) is a measurable space and $\nu \in \operatorname{ca}(\Sigma, X)$. As usual, we denote by $\operatorname{ca}(\Sigma, X)$ the set of all countably additive X-valued vector measures defined on Σ . The range of ν is the set

$$\mathcal{R}(\nu) := {\{\nu(A) : A \in \Sigma\} \subseteq X.}$$

The variation and semivariation of ν are denoted by $|\nu|$ and $||\nu||$, respectively. The family of all ν -null sets is denoted by $\mathcal{N}(\nu)$. By a *Rybakov control measure* of ν we mean a finite non-negative measure of the form $\mu = |x^*\nu|$ for some $x^* \in X^*$ such that $\mathcal{N}(\mu) = \mathcal{N}(\nu)$ (see, e.g., [18, p. 268, Theorem 2]). Throughout this section μ is a fixed Rybakov control measure of ν .

2.1. L_{∞} of a vector measure. A function $f:\Omega\to\mathbb{R}$ is called Σ -simple if it is a linear combination of functions of the form χ_A , where $A\in\Sigma$. Clearly, all Σ -simple functions are ν -integrable. The set of all Σ -simple functions is norm dense in $L_1(\nu)$ (see, e.g., [33, Theorem 3.7(ii)]), so one has

(2.1)
$$\overline{I_{\nu}(L_1(\nu))} = \overline{\operatorname{span}}(\mathcal{R}(\nu)).$$

More generally, every ν -essentially bounded Σ -measurable function $f:\Omega\to\mathbb{R}$ is ν -integrable. By identifying functions which coincide ν -a.e., the set $L_{\infty}(\nu)$ of all (equivalence classes of) ν -essentially bounded Σ -measurable functions is a Banach

lattice with the ν -a.e. order and the ν -essential supremum norm $\|\cdot\|_{L_{\infty}(\nu)}$. Of course, $L_{\infty}(\nu)$ is equal to the usual spaces $L_{\infty}(|\nu|)$ and $L_{\infty}(\mu)$. The inclusion map

$$j_{\nu}: L_{\infty}(\nu) \to L_{1}(\nu)$$

is an injective operator. Moreover, it is weakly compact. Indeed, $j_{\nu}(B_{L_{\infty}(\nu)})$ coincides with the order interval $[-\chi_{\Omega}, \chi_{\Omega}]$ in $L_1(\nu)$, so it is weakly compact as $L_1(\nu)$ has order continuous norm (see, e.g., [3, Theorem 4.9]). Hence, $I_{\nu}(j_{\nu}(B_{L_{\infty}(\nu)}))$ is weakly compact in X. We have the following characterization of relative norm compactness of $\mathcal{R}(\nu)$ (see, e.g., [33, Proposition 2.41]):

Proposition 2.1. The following statements are equivalent:

- (i) $\mathcal{R}(\nu)$ is relatively norm compact.
- (ii) $I_{\nu}(j_{\nu}(B_{L_{\infty}(\nu)}))$ is norm compact.
- 2.2. Composition of a vector measure with an operator. We will use several times the following fact (see, e.g., [33, Lemma 3.27]):

Proposition 2.2. Let $T: X \to Y$ be an operator between Banach spaces. Then:

- (i) The composition $\tilde{\nu} := T \circ \nu : \Sigma \to Y$ is a countably additive vector measure.
- (ii) Every ν -integrable function is $\tilde{\nu}$ -integrable.
- (iii) The inclusion map $u: L_1(\nu) \to L_1(\tilde{\nu})$ is an operator and $I_{\tilde{\nu}} \circ u = T \circ I_{\nu}$.
- 2.3. L-weakly compact sets and the positive Schur property. Let E be a Banach lattice. Given a set $W \subseteq E$, we denote by Sol(W) its *solid hull*, that is, the set of all $x \in E$ such that $|x| \leq |y|$ for some $y \in W$. It is known that if W is relatively weakly compact, then every disjoint sequence in Sol(W) is weakly null (see, e.g., [3, Theorem 4.34]). The set W is said to be L-weakly compact if it is bounded and every disjoint sequence in Sol(W) is norm null. Every L-weakly compact set is relatively weakly compact (see, e.g., [3, Theorem 5.55]), but the converse does not hold in general. The following result is well-known (see [26, Corollaries 2.3.5 and 3.6.8], [39, Theorem 1.16] and [41, Lemma 3]):

Proposition 2.3. Let E be a Banach lattice. The following statements are equivalent:

- (i) E has the positive Schur property.
- (ii) Every disjoint weakly null sequence in E is norm null.
- (iii) Every disjoint weakly null sequence in E^+ is norm null.
- (iv) Every relatively weakly compact subset of E is L-weakly compact.

Proposition 2.4 below characterizes L-weakly compact sets in the L_1 space of a vector measure. We first need to introduce some terminology. Given $f \in L_1(\nu)$, the map $\nu_f : \Sigma \to X$ defined by

$$u_f(A) := I_{\nu}(f\chi_A) = \int_A f \, d\nu \quad \text{for all } A \in \Sigma$$

is a countably additive vector measure by the Orlicz-Pettis theorem (see, e.g., [18, p. 22, Corollary 4]). Note that $\|\nu_f\|(A) = \|f\chi_A\|_{L_1(\nu)}$ for all $A \in \Sigma$. Moreover, ν_f is μ -continuous, that is, for every $\varepsilon > 0$ there is $\delta > 0$ such that $\|\nu_f(A)\| \le \varepsilon$ for

every $A \in \Sigma$ with $\mu(A) \leq \delta$ (see, e.g., [18, p. 10, Theorem 1]). A set $F \subseteq L_1(\nu)$ is said to be *equi-integrable* if the set $\{\nu_f : f \in F\}$ is *uniformly* μ -continuous, that is, for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\sup_{f \in F} \|\nu_f(A)\| \le \varepsilon \quad \text{for every } A \in \Sigma \text{ with } \mu(A) \le \delta.$$

The following result can be found in [26, Proposition 3.6.2] and [33, Lemma 2.37] within a more general framework.

Proposition 2.4. Let $F \subseteq L_1(\nu)$ be a set. The following statements are equivalent:

- (i) F is L-weakly compact.
- (ii) F is bounded and equi-integrable.
- (iii) F is approximately order bounded, i.e., for every $\varepsilon > 0$ there is $\rho > 0$ such that $F \subseteq j_{\nu}(\rho B_{L_{\infty}(\nu)}) + \varepsilon B_{L_{1}(\nu)}$.

We refer the reader to the recent works [4, 9, 22] for further results related to the positive Schur property in Banach lattices.

2.4. Characterization of Dunford-Pettis integration operators. Proposition 2.6 below was first proved in [6, Theorem 5.8]. We include here a more direct proof for the reader's convenience. One part follows the argument used in [13, Theorem 4] to show that $L_1(\nu)$ has the positive Schur property if X has the Schur property. The following auxiliary lemma will also be used later.

Lemma 2.5. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $L_1(\nu)$ such that the sequence $(\nu_{f_n}(A))_{n\in\mathbb{N}}$ is norm convergent for every $A \in \Sigma$. Then $(f_n)_{n\in\mathbb{N}}$ is equi-integrable.

Proof. This follows from the Vitali-Hahn-Saks theorem (see, e.g., [18, p. 24, Corollary 10]) applied to the sequence of μ -continuous vector measures $(\nu_{f_n})_{n\in\mathbb{N}}$.

Proposition 2.6. The following statements are equivalent:

- (i) $L_1(\nu)$ has the positive Schur property and $\mathcal{R}(\nu)$ is relatively norm compact.
- (ii) I_{ν} is Dunford-Pettis.

Proof. (i) \Rightarrow (ii): Let $F \subseteq L_1(\nu)$ be a relatively weakly compact set. We will show that $I_{\nu}(F)$ is relatively norm compact by checking that for each $\varepsilon > 0$ there is a norm compact set $K_{\varepsilon} \subseteq X$ such that $I_{\nu}(F) \subseteq K_{\varepsilon} + \varepsilon B_X$. Fix $\varepsilon > 0$. Since F is approximately order bounded (by Propositions 2.3 and 2.4), there is $\rho > 0$ such that $F \subseteq j_{\nu}(\rho B_{L_{\infty}(\nu)}) + \varepsilon B_{L_1(\nu)}$. Therefore, $I_{\nu}(F) \subseteq K_{\varepsilon} + \varepsilon B_X$, where $K_{\varepsilon} := I_{\nu}(j_{\nu}(\rho B_{L_{\infty}(\nu)}))$ is norm compact by Proposition 2.1.

(ii) \Rightarrow (i): Since $j_{\nu}(B_{L_{\infty}(\nu)})$ is weakly compact in $L_1(\nu)$ (see the paragraph preceding Proposition 2.1) and I_{ν} is Dunford-Pettis, the set $I_{\nu}(j_{\nu}(B_{L_{\infty}(\nu)}))$ is norm compact and so $\mathcal{R}(\nu)$ is relatively norm compact (Proposition 2.1). To prove that $L_1(\nu)$ has the positive Schur property it suffices to check that every weakly convergent sequence is equi-integrable (Propositions 2.3 and 2.4). Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $L_1(\nu)$ which converges weakly to some $f \in L_1(\nu)$. Then for each $A \in \Sigma$ the sequence $(f_n\chi_A)_{n\in\mathbb{N}}$ converges weakly to $f\chi_A$ in $L_1(\nu)$ (bear in mind that the map $h \mapsto h\chi_A$ is an operator on $L_1(\nu)$). Since I_{ν} is Dunford-Pettis, for each $A \in \Sigma$

the sequence $(I_{\nu}(f_n\chi_A))_{n\in\mathbb{N}} = (\nu_{f_n}(A))_{n\in\mathbb{N}}$ converges in norm to $I_{\nu}(f\chi_A) = \nu_f(A)$. Now, Lemma 2.5 applies to conclude that $(f_n)_{n\in\mathbb{N}}$ is equi-integrable.

2.5. The "vector duality" induced by the integration operator. The following result (see, e.g., [33, Proposition 3.31]) shows, in particular, that we have a continuous bilinear map

$$L_1(\nu) \times L_{\infty}(\nu) \to X$$

defined by

$$(f,g) \mapsto I_{\nu}(fg) = \int_{\Omega} fg \, d\nu.$$

Proposition 2.7. Let $f \in L_1(\nu)$. Then:

(i) For every $g \in L_{\infty}(\nu)$ the product $fg \in L_1(\nu)$ and

$$||fg||_{L_1(\nu)} \le ||f||_{L_1(\nu)} ||g||_{L_\infty(\nu)}.$$

(ii) The norm of f in $L_1(\nu)$ is

$$||f||_{L_1(\nu)} = \sup_{g \in B_{L_\infty(\nu)}} ||I_\nu(fg)||_X.$$

There are some elements of $L_1(\nu)^*$ which admit a simple description and are helpful for dealing with the weak topology of $L_1(\nu)$. By Proposition 2.7, for each $(g, x^*) \in B_{L_{\infty}(\nu)} \times B_{X^*}$ we can define a functional $\gamma_{(g, x^*)} \in B_{L_1(\nu)^*}$ by the formula

$$\gamma_{(g,x^*)}(f) := x^*(I_{\nu}(fg)) = \int_{\Omega} fg \, d(x^*\nu) \quad \text{for all } f \in L_1(\nu),$$

and the set

$$\Gamma_{\nu} := \{ \gamma_{(q,x^*)} : (q,x^*) \in B_{L_{\infty}(\nu)} \times B_{X^*} \} \subseteq B_{L_1(\nu)^*}$$

is norming for $L_1(\nu)$, that is,

(2.2)
$$||f||_{L_1(\nu)} = \sup_{\gamma \in \Gamma_{\nu}} \gamma(f) \quad \text{for all } f \in L_1(\nu).$$

Let $\sigma(L_1(\nu), \Gamma_{\nu})$ be the (locally convex Hausdorff) topology on $L_1(\nu)$ of pointwise convergence on Γ_{ν} , which is weaker than the weak topology. Proposition 2.8 below was first proved in [29, Proposition 17]. It was pointed out in [25, Section 4.7] that it can also be seen as a corollary of the Rainwater-Simons theorem (see, e.g., [20, Theorem 3.134]) and the fact that Γ_{ν} is a James boundary for $L_1(\nu)$ (i.e., the supremum in (2.2) is a maximum) whenever $\mathcal{R}(\nu)$ is relatively norm compact. We refer the reader to [6, Section 4] and [8, Section 2] for more information on this topic.

Proposition 2.8. Suppose that $\mathcal{R}(\nu)$ is relatively norm compact. Then every bounded and $\sigma(L_1(\nu), \Gamma_{\nu})$ -convergent sequence in $L_1(\nu)$ is weakly convergent.

3. Dunford-Pettis integration operators

Let \mathcal{A} be an operator ideal. Following [31], a Banach space X is said to be \mathcal{A} -variation admissible if for every measurable space (Ω, Σ) and for every $\nu \in \operatorname{ca}(\Sigma, X)$ such that $I_{\nu} \in \mathcal{A}$, we have $|\nu|(\Omega) < \infty$. The interest of this concept is based on the following result, [31, Proposition 1.1], which provides a tool for proving that L_1 is lattice-isomorphic to an AL-space under some additional assumptions.

Proposition 3.1. Let \mathcal{A} be an operator ideal and let X be a Banach space. If X is \mathcal{A} -variation admissible, then for every measurable space (Ω, Σ) and for every $\nu \in \operatorname{ca}(\Sigma, X)$ such that $I_{\nu} \in \mathcal{A}$, the inclusion map $\iota_{\nu} : L_1(|\nu|) \to L_1(\nu)$ is a lattice-isomorphism.

The next proposition is elementary.

Proposition 3.2. Let A be an operator ideal and let X and Y be Banach spaces.

- (i) If X and Y are isomorphic, then X is A-variation admissible if and only if Y is A-variation admissible.
- (ii) If X is A-variation admissible, then every subspace of X is A-variation admissible.

Proof. Let (Ω, Σ) be a measurable space.

- (i) If $T: X \to Y$ is an isomorphism and $\nu \in \operatorname{ca}(\Sigma, X)$, then we can apply Proposition 2.2 to deduce that a function is ν -integrable if and only if it is $\tilde{\nu}$ -integrable, where we write $\tilde{\nu} := T \circ \nu \in \operatorname{ca}(\Sigma, Y)$, and that the identity map $u: L_1(\nu) \to L_1(\tilde{\nu})$ is an isomorphism satisfying $I_{\tilde{\nu}} \circ u = T \circ I_{\nu}$. Hence, $I_{\nu} \in \mathcal{A}$ if and only if $I_{\tilde{\nu}} \in \mathcal{A}$. Moreover, we have $||T^{-1}||^{-1} \cdot |\nu|(\Omega) \leq |\tilde{\nu}|(\Omega) \leq ||T|| \cdot |\nu|(\Omega)$.
- (ii) Let $Z \subseteq X$ be a subspace and let $i: Z \to X$ be the inclusion operator. Fix $\nu \in \operatorname{ca}(\Sigma, Z)$ such that $I_{\nu} \in \mathcal{A}$ and define $\tilde{\nu} := i \circ \nu \in \operatorname{ca}(\Sigma, X)$. Then a function is ν -integrable if and only if it is $\tilde{\nu}$ -integrable, the identity map $u: L_1(\nu) \to L_1(\tilde{\nu})$ is an isometry and $I_{\tilde{\nu}} = i \circ I_{\nu} \circ u^{-1} \in \mathcal{A}$ (Proposition 2.2). Since X is \mathcal{A} -variation admissible, we have $|\nu|(\Omega) = |\tilde{\nu}|(\Omega) < \infty$.

In this section we focus on the operator ideal \mathcal{A}_{cc} of all Dunford-Pettis operators. Our main goal is to provide a somehow simpler proof of the fact that Asplund spaces are \mathcal{A}_{cc} -variation admissible, [7, Theorem 1.3], see Corollary 3.8 below.

Part (i) of the following result was already pointed out in [31]:

Proposition 3.3. Let X be a Banach space.

- (i) If X is A_{cc} -variation admissible, then X contains no subspace isomorphic to ℓ_1 .
- (ii) If every separable subspace of X is A_{cc} -variation admissible, then X is A_{cc} -variation admissible.

Proof. (i) By Proposition 3.2, its suffices to check that ℓ_1 is not \mathcal{A}_{cc} -variation admissible. Since ℓ_1 is infinite-dimensional, the Dvoretzky-Rogers theorem (see, e.g., [17, Theorem 1.2]) ensures the existence of an unconditionally convergent series $\sum_{n=1}^{\infty} x_n$ in ℓ_1 which is not absolutely convergent. Now, define $\nu : \mathcal{P}(\mathbb{N}) \to \ell_1$ by

- $\nu(A) := \sum_{n \in A} x_n$ for all $A \in \mathcal{P}(\mathbb{N})$ (the power set of \mathbb{N}). Then $\nu \in \operatorname{ca}(\mathcal{P}(\mathbb{N}), \ell_1)$ satisfies $|\nu|(\mathcal{P}(\mathbb{N})) = \sum_{n=1}^{\infty} ||x_n|| = \infty$, while I_{ν} is Dunford-Pettis by the Schur property of ℓ_1 (see, e.g., [2, Theorem 2.3.6]). Hence, ℓ_1 is not \mathcal{A}_{cc} -variation admissible.
- (ii) Let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$ such that I_{ν} is Dunford-Pettis. Then $\mathcal{R}(\nu)$ is relatively norm compact (Proposition 2.6), so it is separable. Hence, the subspace $Z := \overline{\operatorname{span}}(\mathcal{R}(\nu)) = \overline{I_{\nu}(L_1(\nu))}$ (see (2.1) at page 4) is separable. Then Z is \mathcal{A}_{cc} -variation admissible by assumption. Since ν takes values in Z and I_{ν} is Dunford-Pettis, we deduce that $|\nu|(\Omega) < \infty$.
- 3.1. Schauder decompositions and the variation of a vector measure. Let X be a Banach space. A Schauder decomposition of X is a sequence $(X_n)_{n\in\mathbb{N}}$ of (non-zero) subspaces of X such that each $x\in X$ can be written in a unique way as a convergent series of the form $x=\sum_{n=1}^\infty x_n$, where $x_n\in X_n$ for all $n\in\mathbb{N}$. In this case, for each $n\in\mathbb{N}$ there is a projection S_n from X onto X_n such that $x=\sum_{n=1}^\infty S_n(x)$ for all $x\in X$. For each $k\in\mathbb{N}$, the operator $P_k:=\sum_{n=1}^k S_n$ is a projection from X onto the subspace $\bigoplus_{n=1}^k X_n$, we have $\sup_{k\in\mathbb{N}}\|P_k\|<\infty$ and the formula $|||x|||=\sup_{k\in\mathbb{N}}\|P_k(x)\|$ defines an equivalent norm on X. Note that $P_{k'}\circ P_k=P_k\circ P_{k'}=P_{\min\{k,k'\}}$ for all $k,k'\in\mathbb{N}$ and $\|P_k(x)-x\|\to 0$ as $k\to\infty$ for every $x\in X$. Of course, if X has a Schauder basis $(e_n)_{n\in\mathbb{N}}$, then the sequence of 1-dimensional subspaces generated by each e_n is a Schauder decomposition of X.

The following lemma will be a key tool for proving Theorem 3.6 below.

Lemma 3.4. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$. Suppose that:

- $|\nu|(\Omega) = \infty$ and $\mathcal{R}(\nu)$ is relatively norm compact.
- X has a Schauder decomposition $(X_n)_{n\in\mathbb{N}}$ such that $|P_k \circ \nu|(\Omega) < \infty$ for all $k \in \mathbb{N}$, where P_k is the associated projection from X onto $\bigoplus_{n=1}^k X_n$.

Then there exist a sequence $(B_j)_{j\in\mathbb{N}}$ of pairwise disjoint elements of $\Sigma\setminus\mathcal{N}(\nu)$, a strictly increasing sequence $(k_j)_{j\in\mathbb{N}}$ in \mathbb{N} and $\varepsilon>0$ in such a way that the functions $f_j:=\frac{1}{\|\nu\|(B_j)}\chi_{B_j}\in L_1(\nu)$ and the projections $R_j:=P_{k_{j+1}}-P_{k_j}$ satisfy:

- (i) $||I_{\nu}(f_{j}g) R_{j}(I_{\nu}(f_{j}g))|| \le 2^{-j} \text{ for all } g \in B_{L_{\infty}(\nu)} \text{ and } j \in \mathbb{N}.$
- (ii) There is $j_0 \in \mathbb{N}$ such that $||I_{\nu}(f_j) I_{\nu}(f_{j'})|| \ge \varepsilon$ for all distinct $j, j' \ge j_0$.

Proof. Write $Q_k := \mathrm{id}_X - P_k$ for all $k \in \mathbb{N}$ (where id_X stands for the identity operator on X). Since $\sup_{k \in \mathbb{N}} \|Q_k\| < \infty$ and $\|Q_k(x)\| \to 0$ as $k \to \infty$ for every $x \in X$, the sequence $(Q_k)_{k \in \mathbb{N}}$ converges to 0 uniformly on each norm compact subset of X. By renorming, we can assume without loss of generality that $\|P_k\| = 1$ for all $k \in \mathbb{N}$.

Since $|\nu|(\Omega) = \infty$, there is a sequence $(C_l)_{l \in \mathbb{N}}$ of pairwise disjoint elements of $\Sigma \setminus \mathcal{N}(\nu)$ such that $\sum_{l=1}^{\infty} \|\nu(C_l)\| = \infty$, [27, Corollary 2]. Fix $\rho > 2$ and, for each $l \in \mathbb{N}$, take $A_l \in \Sigma \setminus \mathcal{N}(\nu)$ such that $A_l \subseteq C_l$ and $\rho \|\nu(A_l)\| \ge \|\nu\|(C_l)$. Then $\sum_{l=1}^{\infty} \|\nu(A_l)\| = \infty$ and

(3.1)
$$\|\nu(A_l)\| \ge \rho^{-1} \|\nu\|(A_l)$$
 for all $l \in \mathbb{N}$.

Claim. There exist two strictly increasing sequences $(k_j)_{j\in\mathbb{N}}$ and $(l_j)_{j\in\mathbb{N}}$ in \mathbb{N} such that for every $j\in\mathbb{N}$ we have:

$$(\alpha) \ \|P_{k_j}(I_{\nu}(\chi_{A_{l_{j+1}}}g))\| \leq 2^{-j-1}\|\nu\|(A_{l_{j+1}}) \text{ for all } g \in B_{L_{\infty}(\nu)};$$

(
$$\beta$$
) $||Q_{k_j}(I_{\nu}(\chi_{A_{l_j}}g))|| \le 2^{-j}||\nu||(A_{l_j})$ for all $g \in B_{L_{\infty}(\nu)}$.

Indeed, we proceed by induction. Set $l_1 := 1$ and consider

$$K_1 := \{ I_{\nu}(\chi_{A_1} g) : g \in B_{L_{\infty}(\nu)} \} \subseteq X.$$

Since $\mathcal{R}(\nu)$ is relatively norm compact, so is K_1 (Proposition 2.1) and therefore we can pick $k_1 \in \mathbb{N}$ such that

$$\sup_{x \in K_1} \|Q_{k_1}(x)\| \le \frac{\|\nu\|(A_1)}{2}.$$

Hence, (β) holds for j=1. Suppose now that $k_N, l_N \in \mathbb{N}$ are already chosen for some $N \in \mathbb{N}$. Since $\tilde{\nu} := P_{k_N} \circ \nu$ satisfies $|\tilde{\nu}|(\Omega) < \infty$ and $\sum_{l=1}^{\infty} \|\nu\|(A_l) = \infty$, there is $l_{N+1} \in \mathbb{N}$ with $l_{N+1} > l_N$ such that

$$|\tilde{\nu}|(A_{l_{N+1}}) \le 2^{-N-1} ||\nu||(A_{l_{N+1}}).$$

Observe that for each $g \in B_{L_{\infty}(\nu)}$ we have

$$||P_{k_{N}}(I_{\nu}(\chi_{A_{l_{N+1}}}g))|| \stackrel{(*)}{=} ||I_{\tilde{\nu}}(\chi_{A_{l_{N+1}}}g)|| \leq ||\chi_{A_{l_{N+1}}}g||_{L_{1}(\tilde{\nu})} \stackrel{(**)}{\leq} ||\chi_{A_{l_{N+1}}}||_{L_{1}(\tilde{\nu})}$$

$$= ||\tilde{\nu}||(A_{l_{N+1}}) \leq |\tilde{\nu}|(A_{l_{N+1}}) \stackrel{(3.2)}{\leq} 2^{-N-1}||\nu||(A_{l_{N+1}}),$$

where (*) and (**) follow from Propositions 2.2 and 2.7(i), respectively. Hence, (α) holds for j = N. Now, we consider the relatively norm compact subset of X defined by

$$K_{N+1} := \left\{ I_{\nu}(\chi_{A_{l_{N+1}}}g) : g \in B_{L_{\infty}(\nu)} \right\}$$

(apply Proposition 2.1 again) and we choose $k_{N+1} \in \mathbb{N}$ with $k_{N+1} > k_N$ such that

$$\sup_{x \in K_{N+1}} \|Q_{k_{N+1}}(x)\| \le 2^{-N-1} \|\nu\| (A_{l_{N+1}}).$$

Therefore, (β) holds for j = N + 1. This finishes the proof of the *Claim*.

For each $j \in \mathbb{N}$, define $B_j := A_{l_{j+1}}$ and let f_j and R_j be as in the statement. To check property (i), take $j \in \mathbb{N}$ and $g \in B_{L_{\infty}(\nu)}$. Then (α) and (β) imply

$$\begin{aligned} \|I_{\nu}(f_{j}g) - R_{j}(I_{\nu}(f_{j}g))\| &= \|Q_{k_{j+1}}(I_{\nu}(f_{j}g)) + P_{k_{j}}(I_{\nu}(f_{j}g))\| \\ &\leq \|Q_{k_{j+1}}(I_{\nu}(f_{j}g))\| + \|P_{k_{j}}(I_{\nu}(f_{j}g))\| \\ &\leq \frac{1}{2^{j+1}} + \frac{1}{2^{j+1}} = \frac{1}{2^{j}}. \end{aligned}$$

Finally, we will check that (ii) holds for an arbitrary $0 < \varepsilon < \rho^{-1}$. Choose $j_0 \in \mathbb{N}$ large enough such that $\rho^{-1} - 2^{-j_0} \ge \varepsilon$. Take $j' > j \ge j_0$ in \mathbb{N} . Then

$$||I_{\nu}(f_{j}) - I_{\nu}(f_{j'})|| \geq ||P_{k_{j+1}}(I_{\nu}(f_{j}) - I_{\nu}(f_{j'}))||$$

$$(because ||P_{k_{j+1}}|| = 1)$$

$$= ||I_{\nu}(f_{j}) - Q_{k_{j+1}}(I_{\nu}(f_{j})) - P_{k_{j+1}}(I_{\nu}(f_{j'}))||$$

$$\geq ||I_{\nu}(f_{j})|| - ||Q_{k_{j+1}}(I_{\nu}(f_{j}))|| - ||P_{k_{j+1}}(I_{\nu}(f_{j'}))||$$

$$= ||I_{\nu}(f_{j})|| - ||Q_{k_{j+1}}(I_{\nu}(f_{j}))|| - ||P_{k_{j+1}}(P_{k_{j'}}(I_{\nu}(f_{j'})))||$$

$$(because P_{k_{j+1}} \circ P_{k_{j'}} = P_{k_{j+1}})$$

$$\geq \rho^{-1} - ||Q_{k_{j+1}}(I_{\nu}(f_{j}))|| - ||P_{k_{j'}}(I_{\nu}(f_{j'}))||$$

$$(by (3.1) \text{ and } ||P_{k_{j+1}}|| = 1)$$

$$\geq \rho^{-1} - \frac{1}{2^{j+1}} - \frac{1}{2^{j'+1}}$$

$$(by (\alpha) \text{ and } (\beta) \text{ with } g = \chi_{\Omega})$$

$$> \rho^{-1} - \frac{1}{2^{j_0}} \geq \varepsilon.$$

The proof is finished.

3.2. Asplund spaces are \mathcal{A}_{cc} -variation admissible. Let $(X_n)_{n\in\mathbb{N}}$ be a Schauder decomposition of a Banach space X. By a block sequence with respect to $(X_n)_{n\in\mathbb{N}}$ we mean a sequence $(x_j)_{j\in\mathbb{N}}$ in X for which there is a sequence $(I_j)_{j\in\mathbb{N}}$ of nonempty finite subsets of \mathbb{N} such that $\max(I_j) < \min(I_{j+1})$ and $x_j \in \bigoplus_{n\in I_j} X_n$ for all $j\in\mathbb{N}$. We say that $(X_n)_{n\in\mathbb{N}}$ is shrinking if $\|P_k^*(x^*) - x^*\| \to 0$ as $k\to\infty$ for every $x^*\in X^*$, where P_k is the associated projection from X onto $\bigoplus_{n=1}^k X_n$. When X has a Schauder basis $(e_n)_{n\in\mathbb{N}}$ and each X_n is the subspace generated by e_n , then $(X_n)_{n\in\mathbb{N}}$ is shrinking if and only if $(e_n)_{n\in\mathbb{N}}$ is shrinking in the usual sense.

The following fact belongs to the folklore and can be proved as in the case of Schauder bases (see, e.g., [2, Proposition 3.2.7]).

Proposition 3.5. Let $(X_n)_{n\in\mathbb{N}}$ be a Schauder decomposition of a Banach space X. The following statements are equivalent:

- (i) $(X_n)_{n\in\mathbb{N}}$ is shrinking.
- (ii) Every bounded block sequence with respect to $(X_n)_{n\in\mathbb{N}}$ is weakly null.

Theorem 3.6. Let X be a Banach space having a shrinking Schauder decomposition $(X_n)_{n\in\mathbb{N}}$ such that X_n is finite-dimensional for all $n\in\mathbb{N}$. Then X is \mathcal{A}_{cc} -variation admissible. In particular, every Banach space having a shrinking Schauder basis is \mathcal{A}_{cc} -variation admissible.

Proof. Let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$ such that I_{ν} is Dunford-Pettis. Then $\mathcal{R}(\nu)$ is relatively norm compact (Proposition 2.6). Fix $k \in \mathbb{N}$ and denote by P_k the associated projection from X onto $\bigoplus_{n=1}^k X_n$. Since $\bigoplus_{n=1}^k X_n$ is finite-dimensional, we have $|P_k \circ \nu|(\Omega) < \infty$. By renorming, we can assume that $||P_k|| = 1$ for all $k \in \mathbb{N}$.

Suppose, by contradiction, that $|\nu|(\Omega) = \infty$. Let $(f_j)_{j \in \mathbb{N}}$ and $(R_j)_{j \in \mathbb{N}}$ be as in Lemma 3.4. Since $(I_{\nu}(f_j))_{j \in \mathbb{N}}$ is not norm convergent (by property (ii) in Lemma 3.4) and I_{ν} is Dunford-Pettis, the sequence $(f_j)_{j \in \mathbb{N}}$ is not weakly convergent in $L_1(\nu)$. In addition, $||f_j||_{L_1(\nu)} = 1$ for all $j \in \mathbb{N}$. By Proposition 2.8, there is $g \in B_{L_{\infty}(\nu)}$ such that the sequence $(I_{\nu}(f_jg))_{j \in \mathbb{N}}$ is not weakly null in X. Then $(R_j(I_{\nu}(f_jg)))_{j \in \mathbb{N}}$ is a bounded block sequence with respect to $(X_n)_{n \in \mathbb{N}}$ which cannot be weakly null, by property (i) in Lemma 3.4. This contradicts that $(X_n)_{n \in \mathbb{N}}$ is shrinking (Proposition 3.5).

The last ingredient of our proof that Asplund spaces are \mathcal{A}_{cc} -variation admissible is the following deep result of Zippin [43] (cf. [21, Theorem III.1] and [40]):

Theorem 3.7 (Zippin). Every Banach space having separable dual is isomorphic to a subspace of a Banach space having a shrinking Schauder basis.

Corollary 3.8. Every Asplund space is A_{cc} -variation admissible.

Proof. By Proposition 3.3(ii), it suffices to prove that every Banach space having separable dual is \mathcal{A}_{cc} -admissible. Since every Banach space having a shrinking Schauder basis is \mathcal{A}_{cc} -variation admissible (Theorem 3.6), the conclusion follows from Theorem 3.7 and Proposition 3.2(ii).

3.3. An application of the Davis-Figiel-Johnson-Pełczyński factorization. We begin by recalling the refinement of the DFJP factorization developed by Lima, Nygaard and Oja in [23]. Let Z and X be Banach spaces, let $T: Z \to X$ be a (non-zero) operator and consider the set

$$K := \frac{1}{\|T\|} \overline{T(B_Z)} \subseteq B_X.$$

Fix $a \in (1, \infty)$ and write

$$f(a) := \left(\sum_{n=1}^{\infty} \frac{a^n}{(a^n + 1)^2}\right)^{1/2}.$$

For each $n \in \mathbb{N}$, let $\|\cdot\|_n$ be the Minkowski functional of $K_n := a^{n/2}K + a^{-n/2}B_X$, that is,

$$||x||_n := \inf\{t > 0 : x \in tK_n\}$$
 for all $x \in X$.

The following theorem can be found in [23, Lemmas 1.1 and 2.1, Theorem 2.2], with the exception of part (vi), which can be obtained similarly as for the usual DFJP factorization (see, e.g., [5, §3]).

Theorem 3.9. Under the previous assumptions, the following statements hold:

(i) $Y:=\{x\in X:\ \sum_{n=1}^\infty \|x\|_n^2<\infty\}$ is a Banach space with the norm

$$||x||_Y := \left(\sum_{n=1}^{\infty} ||x||_n^2\right)^{1/2}.$$

(ii) $K \subseteq f(a)B_Y$ and the identity map $J: Y \to X$ is an operator.

(iii) T factors as

$$(3.3) Z \xrightarrow{T} X$$

where S is an operator.

(iv) J is a norm-to-norm homeomorphism when restricted to K. In fact:

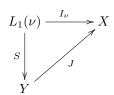
$$||x||_Y^2 \le \left(\frac{1}{4} + \frac{1}{\ln a}\right)||x||$$
 for all $x \in K$.

Therefore, if T is Dunford-Pettis, then S is Dunford-Pettis as well.

- (v) If T is weakly compact, then Y is reflexive.
- (vi) If T is Asplund, then Y is Asplund.
- (vii) If a is the unique element of $(1, \infty)$ satisfying f(a) = 1, then ||S|| = ||T|| and ||J|| = 1. In this case, (3.3) is called the DFJP-LNO factorization of T.

In [28] the DFJP-LNO factorization was applied to the integration operator of a vector measure. Our next proposition gathers some of the results obtained in [28, Theorems 3.7 and 4.5]:

Proposition 3.10. Let X be a Banach space, let (Ω, Σ) be a measurable space, let $\nu \in \operatorname{ca}(\Sigma, X)$ and let



be the DFJP-LNO factorization of I_{ν} . Define $\tilde{\nu}: \Sigma \to Y$ by $\tilde{\nu}(A) := S(\chi_A)$ for all $A \in \Sigma$. Then:

- (i) $\tilde{\nu} \in \operatorname{ca}(\Sigma, Y)$, $\nu = J \circ \tilde{\nu}$ and $\mathcal{N}(\nu) = \mathcal{N}(\tilde{\nu})$.
- (ii) $L_1(\tilde{\nu}) = L_1(\nu)$, with $||f||_{L_1(\nu)} = ||f||_{L_1(\tilde{\nu})}$ for all $f \in L_1(\nu)$, and $S = I_{\tilde{\nu}}$.
- (iii) $\tilde{\nu}$ has finite (resp., σ -finite) variation whenever ν does.

Corollary 3.11. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$. If I_{ν} is Asplund and Dunford-Pettis, then $|\nu|(\Omega) < \infty$ and the inclusion map $\iota_{\nu} : L_1(|\nu|) \to L_1(\nu)$ is a lattice-isomorphism.

Proof. Let Y, J and $\tilde{\nu}$ be as in Proposition 3.10. Since $I_{\tilde{\nu}}$ is Dunford-Pettis and Y is Asplund (Theorem 3.9, parts (iv) and (vi)), we can apply Corollary 3.8 to get $|\tilde{\nu}|(\Omega) < \infty$, hence $|\nu|(\Omega) = |J \circ \tilde{\nu}|(\Omega) \leq |\tilde{\nu}|(\Omega) < \infty$. This shows that every Banach space is A-variation admissible, where A denotes the operator ideal of all Asplund and Dunford-Pettis operators. The last statement follows from Proposition 3.1. \square

4. Dunford-Pettis type properties

4.1. A remark on equimeasurability. Let (Ω, Σ, μ) be a finite measure space. A set $H \subseteq L_{\infty}(\mu)$ is said to be *equimeasurable* if for every $\varepsilon > 0$ there is $A \in \Sigma$ with $\mu(\Omega \setminus A) \le \varepsilon$ such that $\{h\chi_A : h \in H\}$ is relatively norm compact in $L_{\infty}(\mu)$. Theorem 4.1 below is a particular case of [5, Theorem 5.5.4]. We include a direct proof for the sake of completeness.

Theorem 4.1. Let (Ω, Σ, μ) be a finite measure space. If $H \subseteq L_{\infty}(\mu)$ is relatively weakly compact, then it is equimeasurable.

Proof. By the Davis-Figiel-Johnson-Pelczyński factorization (see, e.g., [3, Theorem 5.37]), there exist a reflexive Banach space Y and an operator $T: Y \to L_{\infty}(\mu)$ such that $T(B_Y) \supseteq H$. Let $i: L_1(\mu) \to L_{\infty}(\mu)^*$ be the inclusion operator and let $S:=T^* \circ i: L_1(\mu) \to Y^*$. Since Y^* is reflexive, S is representable, that is, there is $g \in L_{\infty}(\mu, Y^*)$ such that

$$S(f) = (\text{Bochner}) - \int_{\Omega} fg \, d\mu \quad \text{for all } f \in L_1(\mu)$$

(see, e.g., [18, p. 75, Theorem 12]).

Fix $\varepsilon > 0$. Since g is strongly μ -measurable, Egorov's theorem ensures the existence of $A \in \Sigma$ with $\mu(\Omega \setminus A) \leq \varepsilon$ and a sequence $g_n : \Omega \to Y^*$ of Σ -simple Y^* -valued functions such that

(4.1)
$$||g(t) - g_n(t)|| \le \frac{1}{n}$$
 for every $t \in A$ and for every $n \in \mathbb{N}$.

For each $n \in \mathbb{N}$, let us consider the operator $S_n : L_1(\mu) \to Y^*$ defined by

$$S_n(f) = (\text{Bochner}) - \int_A f g_n \, d\mu \quad \text{for all } f \in L_1(\mu).$$

Note that S_n is a finite-rank operator, because g_n is the sum of finitely many functions of the form $y^*\chi_B$, where $y^*\in Y^*$ and $B\in\Sigma$. Hence, S_n is compact. Moreover, if $P_A:L_1(\mu)\to L_1(\mu)$ is the projection defined by $P_A(f):=f\chi_A$ for all $f\in L_1(\mu)$, then the operator $S\circ P_A:L_1(\mu)\to Y^*$ satisfies

$$||S \circ P_A - S_n|| = \sup_{f \in B_{L_1(\mu)}} \left\| (\text{Bochner}) - \int_A f(g - g_n) \, d\mu \right\| \stackrel{(4.1)}{\leq} \frac{1}{n}.$$

It follows that $(S_n)_{n\in\mathbb{N}}$ converges to $S\circ P_A$ in the operator norm. In particular, $S\circ P_A$ is compact and, therefore, $(S\circ P_A)^*:Y\to L_\infty(\mu)$ is compact as well (by Schauder's theorem).

For every $y \in Y$ and for every $f \in L_1(\mu)$ we have

$$\langle (S \circ P_A)^*(y), f \rangle = \langle y, (S \circ P_A)(f) \rangle = \langle y, T^*(i(f\chi_A)) \rangle$$
$$= \langle T(y), f\chi_A \rangle = \int_A fT(y) \, dy = \langle T(y)\chi_A, f \rangle.$$

Therefore $(S \circ P_A)^*(y) = T(y)\chi_A$ for all $y \in Y$. It follows that

$$\{h\chi_A: h \in H\} \subseteq \{T(y)\chi_A: y \in B_Y\} = (S \circ P_A)^*(B_Y)$$

and so $\{h\chi_A: h\in H\}$ is relatively norm compact in $L_\infty(\mu)$.

4.2. A Dunford-Pettis type property for L_1 of a vector measure. Recall that a Banach space Z has the Dunford-Pettis property if and only if $z_n^*(z_n) \to 0$ as $n \to \infty$ for all weakly null sequences $(z_n)_{n \in \mathbb{N}}$ and $(z_n^*)_{n \in \mathbb{N}}$ in Z and Z^* , respectively (see, e.g., [2, Theorem 5.4.4]).

We next show that the L_1 space of an arbitrary vector measure enjoys a Dunford-Pettis type property with respect to the "vector duality" induced by the integration operator (Subsection 2.5).

Theorem 4.2. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in $L_1(\nu)$ and let $(g_n)_{n \in \mathbb{N}}$ be a weakly null sequence in $L_{\infty}(\nu)$.

- (i) If $(f_n)_{n\in\mathbb{N}}$ is weakly null, then $(I_{\nu}(f_ng_n))_{n\in\mathbb{N}}$ is weakly null.
- (ii) If $(f_n)_{n\in\mathbb{N}}$ is bounded and equi-integrable, then $(I_{\nu}(f_ng_n))_{n\in\mathbb{N}}$ is norm null.

Proof. (i) Fix $x^* \in X^*$. Let $h_{x^*} \in L_{\infty}(|x^*\nu|)$ be the Radon-Nikodým derivative of $x^*\nu$ with respect to $|x^*\nu|$. For each $n \in \mathbb{N}$ we have

(4.2)
$$x^* (I_{\nu}(f_n g_n)) = \int_{\Omega} f_n g_n d(x^* \nu) = \int_{\Omega} f_n h_{x^*} g_n d|x^* \nu|.$$

Since $(f_n)_{n\in\mathbb{N}}$ is weakly null in $L_1(\nu)$ and the inclusion map $L_1(\nu) \to L_1(|x^*\nu|)$ is an operator, $(f_n)_{n\in\mathbb{N}}$ is weakly null in $L_1(|x^*\nu|)$ and so the same holds for $(f_nh_{x^*})_{n\in\mathbb{N}}$. In the same way, $(g_n)_{n\in\mathbb{N}}$ is weakly null in $L_\infty(|x^*\nu|)$, so we can apply the Dunford-Pettis property of $L_1(|x^*\nu|)$ and (4.2) to conclude that $x^*(I_\nu(f_ng_n)) \to 0$ as $n \to \infty$. Since $x^* \in X^*$ is arbitrary, $(I_\nu(f_ng_n))_{n\in\mathbb{N}}$ is weakly null.

(ii) Define $\alpha := \sup_{n \in \mathbb{N}} \|f_n\|_{L_1(\nu)}$ and $\beta := \sup_{n \in \mathbb{N}} \|g_n\|_{L_\infty(\nu)}$. Let μ be a Rybakov control measure of ν . Fix $\varepsilon > 0$. Since $(f_n)_{n \in \mathbb{N}}$ is equi-integrable, we can choose $\delta > 0$ such that

(4.3)
$$\sup_{f \in F} \|f\chi_B\|_{L_1(\nu)} \le \varepsilon \quad \text{for every } B \in \Sigma \text{ with } \mu(B) \le \delta.$$

By Theorem 4.1, the set $\{g_n : n \in \mathbb{N}\}$ is equimeasurable, so there is $A \in \Sigma$ with $\mu(\Omega \setminus A) \leq \delta$ such that $\{g_n\chi_A : n \in \mathbb{N}\}$ is relatively norm compact in $L_{\infty}(\nu)$. Since the sequence $(g_n\chi_A)_{n\in\mathbb{N}}$ is weakly null in $L_{\infty}(\nu)$ (bear in mind that the map $g \mapsto g\chi_A$ is an operator on $L_{\infty}(\nu)$), we conclude that $(g_n\chi_A)_{n\in\mathbb{N}}$ is norm null in $L_{\infty}(\nu)$. Choose $n_0 \in \mathbb{N}$ such that

$$\sup_{n>n_0} \|g_n \chi_A\|_{L_{\infty}(\nu)} \le \varepsilon.$$

Now, for every $f \in F$ and for every $n \in \mathbb{N}$ with $n \geq n_0$ we have

$$||I_{\nu}(fg_{n})|| \leq ||I_{\nu}(fg_{n}\chi_{\Omega\setminus A})|| + ||I_{\nu}(fg_{n}\chi_{A})|| \leq ||f\chi_{\Omega\setminus A}||_{L_{1}(\nu)} ||g_{n}||_{L_{\infty}(\nu)} + ||f||_{L_{1}(\nu)} ||g_{n}\chi_{A}||_{L_{\infty}(\nu)} \leq (4.3) & (4.4) \leq (\beta + \alpha)\varepsilon.$$

As $\varepsilon > 0$ is arbitrary, the sequence $(I_{\nu}(f_n g_n))_{n \in \mathbb{N}}$ is norm null.

4.3. The positive Schur property as a Dunford-Pettis type property. As a natural outcome of our previous work we get the following characterization:

Theorem 4.3. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$. The following statements are equivalent:

- (i) $L_1(\nu)$ has the positive Schur property.
- (ii) For all weakly null sequences $(f_n)_{n\in\mathbb{N}}$ and $(g_n)_{n\in\mathbb{N}}$ in $L_1(\nu)$ and $L_{\infty}(\nu)$, respectively, the sequence $(I_{\nu}(f_ng_n))_{n\in\mathbb{N}}$ is norm null.

Proof. (i) \Rightarrow (ii): This follows from Theorem 4.2, because the positive Schur property of $L_1(\nu)$ is equivalent to the fact that every relatively weakly compact subset of $L_1(\nu)$ is equi-integrable (Propositions 2.3 and 2.4).

(ii) \Rightarrow (i): By Propositions 2.3 and 2.4, it suffices to prove that every disjoint weakly null sequence $(f_n)_{n\in\mathbb{N}}$ in $L_1(\nu)$ is equi-integrable. Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of pairwise disjoint elements of Σ such that $f_n\chi_{A_n} = f_n$ for all $n \in \mathbb{N}$. Observe that $(\chi_{A_n})_{n\in\mathbb{N}}$ is weakly null in $L_{\infty}(\nu)$. Indeed, we can assume without loss of generality that $A_n \notin \mathcal{N}(\nu)$ for all $n \in \mathbb{N}$. Then $(\chi_{A_n})_{n\in\mathbb{N}}$ is a basic sequence in $L_{\infty}(\nu)$ which is equivalent to the usual basis of c_0 . In particular, $(\chi_{A_n})_{n\in\mathbb{N}}$ is weakly null in $L_{\infty}(\nu)$.

Fix $A \in \Sigma$. Define $\tilde{f}_n := f_n \chi_A$ for all $n \in \mathbb{N}$. Note that

$$(4.5) I_{\nu}(\tilde{f}_n\chi_{A_n}) = I_{\nu}(\tilde{f}_n) = \nu_{f_n}(A) \text{for all } n \in \mathbb{N}.$$

Since $(\tilde{f}_n)_{n\in\mathbb{N}}$ is weakly null in $L_1(\nu)$ (because $(f_n)_{n\in\mathbb{N}}$ is weakly null and the map $h\mapsto h\chi_A$ is an operator on $L_1(\nu)$) and $(\chi_{A_n})_{n\in\mathbb{N}}$ is weakly null in $L_\infty(\nu)$, condition (ii) and (4.5) imply that the sequence $(\nu_{f_n}(A))_{n\in\mathbb{N}}$ is norm null. As $A\in\Sigma$ is arbitrary, we can apply Lemma 2.5 to conclude that $(f_n)_{n\in\mathbb{N}}$ is equiintegrable.

Of course, Theorems 4.2 and 4.3 provide another point of view for the positive Schur property of the L_1 space of a vector measure taking values in a Banach space with the Schur property, [13, proof of Theorem 4].

4.4. Vector measures with σ -finite variation. The analysis of the Dunford-Pettis property is simpler for L_1 spaces of a vector measure with σ -finite variation.

Proposition 4.4. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$ with σ -finite variation. If $(f_n)_{n \in \mathbb{N}}$ is a bounded and equi-integrable sequence in $L_1(\nu)$ and $(\varphi_n)_{n \in \mathbb{N}}$ is a weakly null sequence in $L_1(\nu)^*$, then $\varphi_n(f_n) \to 0$ as $n \to \infty$.

Proof. The sequence $(f_n)_{n\in\mathbb{N}}$ is approximately order bounded (Proposition 2.4). Hence, we can assume without loss of generality that $f_n\in j_{\nu}(B_{L_{\infty}(\nu)})$ for all $n\in\mathbb{N}$. Define $\alpha:=\sup_{n\in\mathbb{N}}\|\varphi_n\|_{L_1(\nu)^*}$. Let $(A_m)_{m\in\mathbb{N}}$ be an increasing sequence in Σ such that $\Omega=\bigcup_{m\in\mathbb{N}}A_m$ and $|\nu|(A_m)<\infty$ for all $m\in\mathbb{N}$. Fix $\varepsilon>0$. Choose $m\in\mathbb{N}$ large enough such that

Define $\mu(A) := |\nu|(A \cap A_m)$ for all $A \in \Sigma$, so that μ is a finite non-negative measure. Consider the inclusion operator $\iota : L_1(\mu) \to L_1(\nu)$ (see, e.g., [33, Lemma 3.14]) and $\iota^*: L_1(\nu)^* \to L_\infty(\mu)$. Define $g_n := \iota^*(\varphi_n) \in L_\infty(\mu)$ for all $n \in \mathbb{N}$, so that $(g_n)_{n \in \mathbb{N}}$ is weakly null in $L_\infty(\mu)$.

The sequence $(f_n\chi_{A_m})_{n\in\mathbb{N}}$ is bounded and equi-integrable in $L_1(\mu)$ and

$$\langle g_n, f_n \chi_{A_m} \rangle = \int_{A_m} f_n g_n \, d\mu = \varphi_n(f_n \chi_{A_m}) \quad \text{for all } n \in \mathbb{N}.$$

Therefore, the Dunford-Pettis property of $L_1(\mu)$ (cf. Theorem 4.2(ii)) ensures that $\varphi_n(f_n\chi_{A_m}) \to 0$ as $n \to \infty$. Take $n_0 \in \mathbb{N}$ such that

$$|\varphi_n(f_n\chi_{A_m})| \le \varepsilon$$
 whenever $n \ge n_0$.

Since

 $|\varphi_n(f_n\chi_{\Omega\setminus A_m})| \le \alpha ||f_n\chi_{\Omega\setminus A_m}||_{L_1(\nu)} \le \alpha ||\nu|| (\Omega\setminus A_m) \le \alpha\varepsilon$ for all $n\in\mathbb{N}$ (by Proposition 2.7(i) and (4.6)), we have

$$|\varphi_n(f_n)| \le |\varphi_n(f_n\chi_{A_m})| + |\varphi_n(f_n\chi_{\Omega\setminus A_m})| \le (1+\alpha)\varepsilon \quad \text{whenever } n \ge n_0.$$
 This shows that $\varphi_n(f_n) \to 0$ as $n \to \infty$.

By putting together Propositions 2.3, 2.4 and 4.4, we get the already mentioned result from [13]:

Corollary 4.5. Let X be a Banach space, let (Ω, Σ) be a measurable space and let $\nu \in \operatorname{ca}(\Sigma, X)$ with σ -finite variation. If $L_1(\nu)$ has the positive Schur property, then it has the Dunford-Pettis property.

Let E be a Banach space with a normalized 1-unconditional Schauder basis, say $(e_n)_{n\in\mathbb{N}}$. The E-sum of countably many copies of $L_1[0,1]$ is the Banach lattice Z of all sequences $(h_n)_{n\in\mathbb{N}}$ in $L_1[0,1]$ such that the series $\sum_{n=1}^{\infty} \|h_n\|_{L_1[0,1]} e_n$ converges unconditionally in E, equipped with the norm

$$\|(h_n)_{n\in\mathbb{N}}\|_Z := \left\|\sum_{n=1}^{\infty} \|h_n\|_{L_1[0,1]} e_n\right\|_{E}$$

and the coordinatewise order. If E has the the Schur property, then Z has the positive Schur property, but it is not lattice-isomorphic to an AL-space unless E is isomorphic to ℓ_1 , [42, Section 3].

The following construction provides more examples of Banach lattices with such features:

Example 4.6. Let X be a Banach space and let $\sum_{n=1}^{\infty} x_n$ be an unconditionally convergent series in X with $x_n \neq 0$ for all $n \in \mathbb{N}$. Let λ be the Lebesgue measure on the σ -algebra Σ of all Borel subsets of [0,1]. Write $I_n := (2^{-n}, 2^{-n+1}]$ for all $n \in \mathbb{N}$. Then:

(i) The formula

$$\nu(A) := \sum_{n=1}^{\infty} 2^n \lambda(A \cap I_n) x_n, \quad A \in \Sigma,$$

defines a vector measure $\nu \in \operatorname{ca}(\Sigma, X)$.

(ii) $\mathcal{N}(\nu) = \mathcal{N}(\lambda)$. Hence, ν is atomless and $L_1(\nu)$ is separable.

- (iii) $\mathcal{R}(\nu)$ is relatively norm compact.
- (iv) $|\nu|$ is σ -finite and $|\nu|([0,1]) = \sum_{n=1}^{\infty} ||x_n||$.
- (v) If $\sum_{n=1}^{\infty} x_n$ is not absolutely convergent, then $L_1(\nu)$ is not lattice-isomorphic to an AL-space.
- (vi) If X has the Schur property, then $L_1(\nu)$ has the positive Schur property and the Dunford-Pettis property.
- (vii) If $\sum_{n=1}^{\infty} x_n$ is not absolutely convergent and X has the Schur property, then $L_1(\nu)$ is not lattice-isomorphic to $L_1(\tilde{\nu})$ for any σ -algebra $\tilde{\Sigma}$ and any $\tilde{\nu} \in \operatorname{ca}(\tilde{\Sigma}, c_0)$ such that $\mathcal{R}(\tilde{\nu})$ is relatively norm compact.

Proof. Since $\sum_{n=1}^{\infty} x_n$ is unconditionally convergent, for every $(a_n)_{n\in\mathbb{N}} \in \ell_{\infty}$ the series $\sum_{n=1}^{\infty} a_n x_n$ is unconditionally convergent and the map

$$T: \ell_{\infty} \to X, \quad T((a_n)_{n \in \mathbb{N}}) := \sum_{n=1}^{\infty} a_n x_n,$$

is a compact operator (see, e.g., [17, Theorem 1.9]). This shows that the map ν is well-defined and has relatively norm compact range (note that $2^n\lambda(A\cap I_n)\leq 1$ for all $n\in\mathbb{N}$). Since the map $\Sigma\ni A\mapsto 2^n\lambda(A\cap I_n)x_n\in X$ is countably additive for each $n\in\mathbb{N}$, the Vitali-Hahn-Saks theorem (see, e.g., [18, p. 24, Corollary 10]) ensures that ν is countably additive. This proves parts (i) and (iii).

- (ii) The equality $\mathcal{N}(\nu) = \mathcal{N}(\lambda)$ is obvious. Since λ is atomless, so is ν . Let $\mathcal{C} \subseteq \Sigma$ be a countable set such that for every $A \in \Sigma$ we have $\inf_{C \in \mathcal{C}} \lambda(A \triangle C) = 0$. Then for every $A \in \Sigma$ we also have $\inf_{C \in \mathcal{C}} \|\nu\|(A \triangle C) = 0$ (notice that ν is λ -continuous). This implies that $L_1(\nu)$ is separable, because the set of all Σ -simple functions is norm dense in $L_1(\nu)$.
 - (iv) It is easy to check that $|\nu|(A) = \sum_{n=1}^{\infty} 2^n \lambda(A \cap I_n) ||x_n||$ for every $A \in \Sigma$.
 - (v) This follows from [12, Proposition 2] and (iv).
- (vi) We already know that the Schur property of X implies that $L_1(\nu)$ has the positive Schur property, [13, proof of Theorem 4]. Now, (iv) and Corollary 4.5 ensure that $L_1(\nu)$ has the Dunford-Pettis property.
- (vii) Suppose, by contradiction, that there exist a σ -algebra Σ and $\tilde{\nu} \in \operatorname{ca}(\Sigma, c_0)$ such that $\mathcal{R}(\tilde{\nu})$ is relatively norm compact and $L_1(\nu)$ is lattice-isomorphic to $L_1(\tilde{\nu})$. Then $L_1(\tilde{\nu})$ has the positive Schur property (by (vi)) and we can apply Proposition 2.6 to infer that the integration operator $I_{\tilde{\nu}}: L_1(\tilde{\nu}) \to c_0$ is Dunford-Pettis. Now, Proposition 3.1 and Theorem 3.6 (the usual basis of c_0 is shrinking) imply that $L_1(\tilde{\nu})$ is lattice-isomorphic to an AL-space, which contradicts (v).

Remark 4.7. Part (vii) of Example 4.6 should be compared with [12, Theorem 1]. That result states that if X is a Banach space, (Ω, Σ) is a measurable space, the vector measure $\nu \in \operatorname{ca}(\Sigma, X)$ is atomless and $L_1(\nu)$ is separable, then there is $\tilde{\nu} \in \operatorname{ca}(\Sigma, c_0)$ such that $L_1(\nu)$ and $L_1(\tilde{\nu})$ are lattice-isometric (cf. [24, Theorem 5] for another proof). For variants in the non-separable setting, see [36] and [37]. In [24, Theorem 5] it was claimed that if, in addition, $\mathcal{R}(\nu)$ is relatively norm compact, then $\tilde{\nu}$ can be chosen so that $\mathcal{R}(\tilde{\nu})$ is relatively norm compact as well. Unfortunately, this turns out to be false in general, as shown in Example 4.6(vii).

Acknowledgements. I would like to thank Z. Lipecki for valuable correspondence about Remark 4.7. The research was supported by grants PID2021-122126NB-C32 (funded by MCIN/AEI/10.13039/501100011033 and "ERDF A way of making Europe", EU) and 21955/PI/22 (funded by *Fundación Séneca - ACyT Región de Murcia*).

References

- Yu. A. Abramovich and P. Wojtaszczyk, The uniqueness of order in the spaces L_p[0, 1] and l_p, Mat. Zametki 18 (1975), no. 3, 313–325.
- [2] F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006.
- [3] C. D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006.
- [4] G. Botelho, Q. Bu, D. Ji, and K. Navoyan, The positive Schur property on positive projective tensor products and spaces of regular multilinear operators, Monatsh. Math. 197 (2022), no. 4, 565–578.
- [5] R. D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin, 1983.
- [6] J. M. Calabuig, S. Lajara, J. Rodríguez, and E. A. Sánchez-Pérez, Compactness in L¹ of a vector measure, Studia Math. 225 (2014), no. 3, 259–282.
- [7] J. M. Calabuig, J. Rodríguez, and E. A. Sánchez-Pérez, On completely continuous integration operators of a vector measure, J. Convex Anal. 21 (2014), no. 3, 811–818.
- [8] J. M. Calabuig, J. Rodríguez, and E. A. Sánchez-Pérez, Summability in L¹ of a vector measure, Math. Nachr. 290 (2017), no. 4, 507–519.
- [9] D. Chen, Quantitative positive Schur property in Banach lattices, Proc. Amer. Math. Soc. 151 (2023), no. 3, 1167–1178.
- [10] G. P. Curbera, The space of integrable functions with respect to a vector measure, Ph.D. Thesis, Universidad de Sevilla, 1992, https://hdl.handle.net/11441/76519.
- [11] G. P. Curbera, Operators into L^1 of a vector measure and applications to Banach lattices, Math. Ann. **293** (1992), no. 2, 317–330.
- [12] G. P. Curbera, When L¹ of a vector measure is an AL-space, Pacific J. Math. 162 (1994), no. 2, 287–303.
- [13] G. P. Curbera, Banach space properties of L¹ of a vector measure, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3797–3806.
- [14] G. P. Curbera and W. J. Ricker, On the Radon-Nikodym property in function spaces, Proc. Amer. Math. Soc. 145 (2017), no. 2, 617–626.
- [15] G. P. Curbera and W. J. Ricker, The weak Banach-Saks property for function spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 3, 657–671.
- [16] D. de Hevia, G. Martínez-Cervantes, A. Salguero-Alarcón, and P. Tradacete, A counterexample to the complemented subspace problem in Banach lattices, arXiv:2310.02196.
- [17] J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
- [18] J. Diestel and J. J. Uhl, Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977.
- [19] P. G. Dodds, B. de Pagter, and W. Ricker, Reflexivity and order properties of scalar-type spectral operators in locally convex spaces, Trans. Amer. Math. Soc. 293 (1986), no. 1, 355– 380.
- [20] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory. The basis for linear and nonlinear analysis, CMS Books in Mathematics, Springer, New York, 2011.
- [21] N. Ghoussoub, B. Maurey, and W. Schachermayer, *Slicings, selections and their applications*, Canad. J. Math. **44** (1992), no. 3, 483–504.

- [22] K. Leśnik, L. Maligranda, and J. Tomaszewski, Weakly compact sets and weakly compact pointwise multipliers in Banach function lattices, Math. Nachr. 295 (2022), no. 3, 574–592.
- [23] A. Lima, O. Nygaard, and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325–348.
- [24] Z. Lipecki, Semivariations of a vector measure, Acta Sci. Math. (Szeged) 76 (2010), no. 3-4, 411–425.
- [25] G. Manjabacas, Topologies associated to norming sets in Banach spaces, Ph.D. Thesis (Spanish), Universidad de Murcia, 1998, http://hdl.handle.net/10201/33837.
- [26] P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.
- [27] O. Nygaard and M. Põldvere, Families of vector measures of uniformly bounded variation, Arch. Math. (Basel) 88 (2007), no. 1, 57–61.
- [28] O. Nygaard and J. Rodríguez, Isometric factorization of vector measures and applications to spaces of integrable functions, J. Math. Anal. Appl. 508 (2022), no. 1, Paper No. 125857, 16 p.
- [29] S. Okada, The dual space of $L^1(\mu)$ for a vector measure μ , J. Math. Anal. Appl. 177 (1993), no. 2, 583–599.
- [30] S. Okada, W. J. Ricker, and L. Rodríguez-Piazza, Compactness of the integration operator associated with a vector measure, Studia Math. 150 (2002), no. 2, 133–149.
- [31] S. Okada, W. J. Ricker, and L. Rodríguez-Piazza, Operator ideal properties of vector measures with finite variation, Studia Math. 205 (2011), no. 3, 215–249.
- [32] S. Okada, W. J. Ricker, and L. Rodríguez-Piazza, Operator ideal properties of the integration map of a vector measure, Indag. Math. (N.S.) 25 (2014), no. 2, 315–340.
- [33] S. Okada, W. J. Ricker, and E. A. Sánchez Pérez, Optimal domain and integral extension of operators. Acting in function spaces, Operator Theory: Advances and Applications, vol. 180, Birkhäuser Verlag, Basel, 2008.
- [34] S. Okada, J. Rodríguez, and E. A. Sánchez-Pérez, On vector measures with values in ℓ_{∞} , Studia Math. **274** (2024), no. 2, 173–199.
- [35] J. Rodríguez, Factorization of vector measures and their integration operators, Colloq. Math. 144 (2016), no. 1, 115–125.
- [36] J. Rodríguez, On non-separable L¹-spaces of a vector measure, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 4, 1039–1050.
- [37] J. Rodríguez, On vector measures with values in $c_0(\kappa)$, preprint.
- [38] J. Rodríguez and A. Rueda Zoca, On weakly almost square Banach spaces, Proc. Edinb. Math. Soc. (2) 66 (2023), no. 4, 979–997.
- [39] J. A. Sánchez Henríquez, Operadores en retículos de Banach: aplicaciones, Ph.D. Thesis (Spanish), Universidad Complutense de Madrid, 1985.
- [40] Th. Schlumprecht, On Zippin's embedding theorem of Banach spaces into Banach spaces with bases, Adv. Math. 274 (2015), 833–880.
- [41] W. Wnuk, A note on the positive Schur property, Glasgow Math. J. 31 (1989), no. 2, 169–172.
- [42] W. Wnuk, Some characterizations of Banach lattices with the Schur property, Rev. Mat. Univ. Complutense Madr. 2 (1989), Suppl., 217–224.
- [43] M. Zippin, Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), no. 1, 371–379.

DPTO. DE MATEMÁTICAS, E.T.S. DE INGENIEROS INDUSTRIALES DE ALBACETE, UNIVERSIDAD DE CASTILLA-LA MANCHA, 02071 ALBACETE, SPAIN

Email address: jose.rodriguezruiz@uclm.es, joserr@um.es