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Abstract. Let ν be a countably additive vector measure defined on a σ-

algebra and taking values in a Banach space. In this paper we deal with the

following three properties for the Banach lattice L1(ν) of all ν-integrable real-

valued functions: the Dunford-Pettis property, the positive Schur property

and being lattice-isomorphic to an AL-space. We give new results and we also

provide alternative proofs of some already known ones.

1. Introduction

Let X be a Banach space with (topological) dual X∗, let (Ω,Σ) be a measurable

space and let ν : Σ → X be a (countably additive) vector measure. A Σ-measurable

function f : Ω → R is called ν-integrable if it is |x∗ν|-integrable for all x∗ ∈ X∗

and, for each A ∈ Σ, there is
∫
A
f dν ∈ X such that

x∗
(∫

A

f dν

)
=

∫
A

f d(x∗ν) for all x∗ ∈ X∗.

Here x∗ν is the signed measure obtained as the composition of ν with x∗ and |x∗ν|
denotes its variation. By identifying functions which coincide except to a ν-null set

(where A ∈ Σ is said to be ν-null if ν(B) = 0 for every B ∈ Σ with B ⊆ A), the set

L1(ν) of all (equivalence classes of) ν-integrable functions is a Banach lattice with

the ν-a.e. order and the norm

∥f∥L1(ν) := sup
x∗∈BX∗

∫
Ω

|f | d|x∗ν|.

Here BX∗ denotes the closed unit ball of X∗. Let us agree to say that L1(ν) is the

L1 space of the vector measure ν.

Every Banach lattice with order continuous norm and a weak unit is lattice-

isometric to the L1 space of a vector measure, [11, Theorem 8] (cf. [19, Propo-

sition 2.4]). Such a representation is not unique. For instance, the usual space

L1[0, 1] is equal to L1(νi) for each one of the following Xi-valued vector measures

νi defined on the Borel σ-algebra of [0, 1]:

• X1 := R and ν1(A) := λ(A) (the Lebesgue measure of A);
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• X2 := L1[0, 1] and ν2(A) := χA (the characteristic function of A);

• X3 := c0 and ν3(A) := (
∫
A
rn dλ)n∈N, where (rn)n∈N is the sequence of

Rademacher functions.

The structure of the space L1(ν) can be greatly conditioned by certain properties

of ν. For complete information on these spaces and their important role in Banach

lattices and operator theory, we refer the reader to the monograph [33] and the

papers [6, 14, 15, 28, 34, 36, 38].

The inclusion map

ιν : L1(|ν|) → L1(ν)

is a well-defined injective lattice-homomorphism, where |ν| is the variation of ν

(see, e.g., [33, Lemma 3.14]). If ιν is surjective, then it is a lattice-isomorphism and,

moreover, we have |ν|(Ω) < ∞. Curbera [12] addressed the question of when the L1

space of a vector measure is lattice-isomorphic to an AL-space. Recall that a Banach

lattice E is said to be an AL-space if its norm satisfies ∥x+y∥ = ∥x∥+∥y∥ whenever

x, y ∈ E are disjoint, which is equivalent to saying that E is lattice-isometric to the

usual space L1(µ) of a non-negative measure µ (see, e.g., [3, Theorem 4.27]). It turns

out that L1(ν) is lattice-isomorphic to an AL-space if and only if ιν is surjective,

[12, Proposition 2]. This is also equivalent to the fact that the integration operator

of ν, that is, the norm 1 operator

Iν : L1(ν) → X, Iν(f) :=

∫
Ω

f dν for all f ∈ L1(ν),

is cone absolutely summing (i.e., the series
∑∞

n=1 Iν(fn) is absolutely convergent

whenever
∑

n∈N fn is unconditionally convergent and fn ∈ L1(ν)+ for all n ∈ N),

[10, Proposition 3.1]. As usual, given a Banach lattice E, we denote by E+ its

positive cone, that is, E+ := {x ∈ E : x ≥ 0}. At this point we should stress that

if a Banach lattice is isomorphic (just as a Banach space) to an AL-space, then it

is lattice-isomorphic to an AL-space [1] (cf. [16, Proposition 2.1]).

An operator between Banach spaces is said to be Dunford-Pettis (or completely

continuous) if it maps weakly null sequences to norm null ones. The space L1(µ)

of a non-negative measure µ has the Dunford-Pettis property, that is, every weakly

compact operator from L1(µ) to an arbitrary Banach space is Dunford-Pettis (see,

e.g., [2, Theorem 5.4.5] or [3, Theorem 5.85]). In general, this is not true for the L1

space of a vector measure. Indeed, reflexive infinite-dimensional Banach spaces fail

the Dunford-Pettis property and, as we have already mentioned, spaces like ℓp and

Lp[0, 1] for 1 < p < ∞ can be seen as L1 spaces of a vector measure. On the other

side, there are L1 spaces of a vector measure having the Dunford-Pettis property

which are not lattice-isomorphic to an AL-space, like c0. Curbera showed in [13,

Theorem 4] that L1(ν) has the Dunford-Pettis property if ν has σ-finite variation

and X has the Schur property (i.e., every weakly null sequence in X is norm null).

In fact, he proved that:

(i) L1(ν) has the positive Schur property whenever X has the Schur property.

(ii) If L1(ν) has the positive Schur property and ν has σ-finite variation, then

L1(ν) has the Dunford-Pettis property (cf. [6, Section 3.2]).
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Recall that a Banach lattice E is said to have the positive Schur property if every

weakly null sequence in E+ is norm null. Note that statement (i) can be deduced

at once from the fact that L1(ν) has the positive Schur property if and only if the

integration operator Iν is almost Dunford-Pettis (i.e., (Iν(fn))n∈N is norm null for

every weakly null sequence (fn)n∈N in L1(ν)+), see [6, Theorem 5.12].

The integration operator is undoubtedly a key point in the theory of L1 spaces

of a vector measure. Note that its properties depend on ν rather than on the space

L1(ν) itself. For instance, going back to the example at the beginning, we have:

• Iν1
is the functional given by Iν1

(f) =
∫
[0,1]

f dλ;

• Iν2
is the identity operator on L1[0, 1];

• Iν3 : L1[0, 1] → c0 is the operator given by Iν3(f) = (
∫
[0,1]

rnf dλ)n∈N,

which is strictly singular but fails to be weakly compact.

It is known that L1(ν) is lattice-isomorphic to an AL-space whenever Iν is compact

(see [30, Theorem 1], cf. [32, Theorem 2.2] and [7, Theorem 3.3]), absolutely p-

summing for 1 ≤ p < ∞ (see [31, Theorem 2.2]) or, more generally, Dunford-Pettis

and Asplund (see [35, Theorem 3.3]). Recall that an operator between Banach

spaces is said to be Asplund if it factors through a Banach space which is Asplund

(i.e., all of its separable subspaces have separable dual). In particular, L1(ν) is

lattice-isomorphic to an AL-space if Iν is Dunford-Pettis and X is Asplund, [7,

Theorem 1.3]. This is a partial answer to the following question posed by Okada,

Ricker and Rodŕıguez-Piazza [31]:

Question 1.1. Suppose that Iν is Dunford-Pettis and that X contains no subspace

isomorphic to ℓ1. Is L1(ν) lattice-isomorphic to an AL-space?

They showed that this is the case if, in addition, X has an unconditional Schauder

basis, [31, Theorem 1.2]. Note that any Banach space with an unconditional

Schauder basis and no subspace isomorphic to ℓ1 has separable dual (see, e.g.,

[2, Theorem 3.3.1]). To the best of our knowledge, Question 1.1 remains open.

In this paper we deal with L1 spaces of a vector measure with focus on the

property of being isomorphic to an AL-space, the positive Schur property and the

Dunford-Pettis property. Our aim is twofold: we include new results and we also

present alternative proofs of some already known ones which hopefully might led

to a better understanding of the theory. The structure of the paper is as follows.

In Section 2 we collect some known preliminary facts on L1 spaces of a vector

measure that will be needed later.

In Section 3 we revisit the aforementioned positive answer to Question 1.1 for

Asplund spaces (Corollary 3.8) and the related result for integration operators

which are Dunford-Pettis and Asplund (Corollary 3.11).

In Section 4 we show that the positive Schur property of L1(ν) can be charac-

terized by means of a Dunford-Pettis type property with respect to the so-called

“vector duality” induced by the integration operator, that is, the continuous bilinear

map

L1(ν) × L∞(ν) → X, (f, g) 7→ Iν(fg) =

∫
Ω

fg dν
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(Theorem 4.3). We also give another proof of the aforementioned result of [13]

stating that L1(ν) has the Dunford-Pettis property if it has the positive Schur

property and ν has σ-finite variation (Corollary 4.5). It seems to be an open

question whether the assumption on the variation can be dropped, namely:

Question 1.2. Suppose that L1(ν) has the positive Schur property. Does L1(ν)

have the Dunford-Pettis property?

Finally, in Example 4.6 we discuss a class of vector measures ν such that L1(ν)

has the positive Schur property and the Dunford-Pettis property, but fails to be

lattice-isomorphic to an AL-space, among other interesting properties.

2. Preliminaries

All Banach spaces considered in this paper are real. An operator is a continuous

linear map between Banach spaces. Given an operator T , its adjoint is denoted

by T ∗. By a subspace of a Banach space we mean a norm closed linear subspace.

Let Z be a Banach space. The norm of Z is denoted by ∥ · ∥Z , or simply ∥ · ∥, and

we write BZ := {z ∈ Z : ∥z∥ ≤ 1} (the closed unit ball of Z). The evaluation of

z∗ ∈ Z∗ at z ∈ Z is denoted by either z∗(z) or ⟨z∗, z⟩. By a projection from Z onto

a subspace Y ⊆ Z we mean an operator P : Z → Z such that P (Z) = Y and P is

the identity when restricted to Y . The subspace of Z generated by a set H ⊆ Z is

denoted by span(H).

In this section we gather, for the reader’s convenience, some known facts on L1

spaces of a vector measure. A basic reference on this topic is [33, Chapter 3].

Throughout this section X is a Banach space, (Ω,Σ) is a measurable space and

ν ∈ ca(Σ, X). As usual, we denote by ca(Σ, X) the set of all countably additive

X-valued vector measures defined on Σ. The range of ν is the set

R(ν) := {ν(A) : A ∈ Σ} ⊆ X.

The variation and semivariation of ν are denoted by |ν| and ∥ν∥, respectively. The

family of all ν-null sets is denoted by N (ν). By a Rybakov control measure of ν we

mean a finite non-negative measure of the form µ = |x∗ν| for some x∗ ∈ X∗ such

that N (µ) = N (ν) (see, e.g., [18, p. 268, Theorem 2]). Throughout this section µ

is a fixed Rybakov control measure of ν.

2.1. L∞ of a vector measure. A function f : Ω → R is called Σ-simple if it is a

linear combination of functions of the form χA, where A ∈ Σ. Clearly, all Σ-simple

functions are ν-integrable. The set of all Σ-simple functions is norm dense in L1(ν)

(see, e.g., [33, Theorem 3.7(ii)]), so one has

(2.1) Iν(L1(ν)) = span(R(ν)).

More generally, every ν-essentially bounded Σ-measurable function f : Ω → R is

ν-integrable. By identifying functions which coincide ν-a.e., the set L∞(ν) of all

(equivalence classes of) ν-essentially bounded Σ-measurable functions is a Banach
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lattice with the ν-a.e. order and the ν-essential supremum norm ∥ · ∥L∞(ν). Of

course, L∞(ν) is equal to the usual spaces L∞(|ν|) and L∞(µ). The inclusion map

jν : L∞(ν) → L1(ν)

is an injective operator. Moreover, it is weakly compact. Indeed, jν(BL∞(ν)) coin-

cides with the order interval [−χΩ, χΩ] in L1(ν), so it is weakly compact as L1(ν)

has order continuous norm (see, e.g., [3, Theorem 4.9]). Hence, Iν(jν(BL∞(ν)))

is weakly compact in X. We have the following characterization of relative norm

compactness of R(ν) (see, e.g., [33, Proposition 2.41]):

Proposition 2.1. The following statements are equivalent:

(i) R(ν) is relatively norm compact.

(ii) Iν(jν(BL∞(ν))) is norm compact.

2.2. Composition of a vector measure with an operator. We will use several

times the following fact (see, e.g., [33, Lemma 3.27]):

Proposition 2.2. Let T : X → Y be an operator between Banach spaces. Then:

(i) The composition ν̃ := T ◦ν : Σ → Y is a countably additive vector measure.

(ii) Every ν-integrable function is ν̃-integrable.

(iii) The inclusion map u : L1(ν) → L1(ν̃) is an operator and Iν̃ ◦ u = T ◦ Iν .

2.3. L-weakly compact sets and the positive Schur property. Let E be a

Banach lattice. Given a set W ⊆ E, we denote by Sol(W ) its solid hull, that is,

the set of all x ∈ E such that |x| ≤ |y| for some y ∈ W . It is known that if

W is relatively weakly compact, then every disjoint sequence in Sol(W ) is weakly

null (see, e.g., [3, Theorem 4.34]). The set W is said to be L-weakly compact if it

is bounded and every disjoint sequence in Sol(W ) is norm null. Every L-weakly

compact set is relatively weakly compact (see, e.g., [3, Theorem 5.55]), but the

converse does not hold in general. The following result is well-known (see [26,

Corollaries 2.3.5 and 3.6.8], [39, Theorem 1.16] and [41, Lemma 3]):

Proposition 2.3. Let E be a Banach lattice. The following statements are equiv-

alent:

(i) E has the positive Schur property.

(ii) Every disjoint weakly null sequence in E is norm null.

(iii) Every disjoint weakly null sequence in E+ is norm null.

(iv) Every relatively weakly compact subset of E is L-weakly compact.

Proposition 2.4 below characterizes L-weakly compact sets in the L1 space of a

vector measure. We first need to introduce some terminology. Given f ∈ L1(ν),

the map νf : Σ → X defined by

νf (A) := Iν(fχA) =

∫
A

f dν for all A ∈ Σ

is a countably additive vector measure by the Orlicz-Pettis theorem (see, e.g., [18,

p. 22, Corollary 4]). Note that ∥νf∥(A) = ∥fχA∥L1(ν) for all A ∈ Σ. Moreover, νf
is µ-continuous, that is, for every ε > 0 there is δ > 0 such that ∥νf (A)∥ ≤ ε for
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every A ∈ Σ with µ(A) ≤ δ (see, e.g., [18, p. 10, Theorem 1]). A set F ⊆ L1(ν) is

said to be equi-integrable if the set {νf : f ∈ F} is uniformly µ-continuous, that is,

for every ε > 0 there is δ > 0 such that

sup
f∈F

∥νf (A)∥ ≤ ε for every A ∈ Σ with µ(A) ≤ δ.

The following result can be found in [26, Proposition 3.6.2] and [33, Lemma 2.37]

within a more general framework.

Proposition 2.4. Let F ⊆ L1(ν) be a set. The following statements are equivalent:

(i) F is L-weakly compact.

(ii) F is bounded and equi-integrable.

(iii) F is approximately order bounded, i.e., for every ε > 0 there is ρ > 0 such

that F ⊆ jν(ρBL∞(ν)) + εBL1(ν).

We refer the reader to the recent works [4, 9, 22] for further results related to

the positive Schur property in Banach lattices.

2.4. Characterization of Dunford-Pettis integration operators. Proposi-

tion 2.6 below was first proved in [6, Theorem 5.8]. We include here a more direct

proof for the reader’s convenience. One part follows the argument used in [13,

Theorem 4] to show that L1(ν) has the positive Schur property if X has the Schur

property. The following auxiliary lemma will also be used later.

Lemma 2.5. Let (fn)n∈N be a sequence in L1(ν) such that the sequence (νfn(A))n∈N
is norm convergent for every A ∈ Σ. Then (fn)n∈N is equi-integrable.

Proof. This follows from the Vitali-Hahn-Saks theorem (see, e.g., [18, p. 24, Corol-

lary 10]) applied to the sequence of µ-continuous vector measures (νfn)n∈N. □

Proposition 2.6. The following statements are equivalent:

(i) L1(ν) has the positive Schur property and R(ν) is relatively norm compact.

(ii) Iν is Dunford-Pettis.

Proof. (i)⇒(ii): Let F ⊆ L1(ν) be a relatively weakly compact set. We will show

that Iν(F ) is relatively norm compact by checking that for each ε > 0 there is

a norm compact set Kε ⊆ X such that Iν(F ) ⊆ Kε + εBX . Fix ε > 0. Since

F is approximately order bounded (by Propositions 2.3 and 2.4), there is ρ > 0

such that F ⊆ jν(ρBL∞(ν)) + εBL1(ν). Therefore, Iν(F ) ⊆ Kε + εBX , where

Kε := Iν(jν(ρBL∞(ν))) is norm compact by Proposition 2.1.

(ii)⇒(i): Since jν(BL∞(ν)) is weakly compact in L1(ν) (see the paragraph pre-

ceding Proposition 2.1) and Iν is Dunford-Pettis, the set Iν(jν(BL∞(ν))) is norm

compact and so R(ν) is relatively norm compact (Proposition 2.1). To prove that

L1(ν) has the positive Schur property it suffices to check that every weakly con-

vergent sequence is equi-integrable (Propositions 2.3 and 2.4). Let (fn)n∈N be a

sequence in L1(ν) which converges weakly to some f ∈ L1(ν). Then for each A ∈ Σ

the sequence (fnχA)n∈N converges weakly to fχA in L1(ν) (bear in mind that the

map h 7→ hχA is an operator on L1(ν)). Since Iν is Dunford-Pettis, for each A ∈ Σ
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the sequence (Iν(fnχA))n∈N = (νfn(A))n∈N converges in norm to Iν(fχA) = νf (A).

Now, Lemma 2.5 applies to conclude that (fn)n∈N is equi-integrable. □

2.5. The “vector duality” induced by the integration operator. The fol-

lowing result (see, e.g., [33, Proposition 3.31]) shows, in particular, that we have a

continuous bilinear map

L1(ν) × L∞(ν) → X

defined by

(f, g) 7→ Iν(fg) =

∫
Ω

fg dν.

Proposition 2.7. Let f ∈ L1(ν). Then:

(i) For every g ∈ L∞(ν) the product fg ∈ L1(ν) and

∥fg∥L1(ν) ≤ ∥f∥L1(ν)∥g∥L∞(ν).

(ii) The norm of f in L1(ν) is

∥f∥L1(ν) = sup
g∈BL∞(ν)

∥Iν(fg)∥X .

There are some elements of L1(ν)∗ which admit a simple description and are

helpful for dealing with the weak topology of L1(ν). By Proposition 2.7, for each

(g, x∗) ∈ BL∞(ν) ×BX∗ we can define a functional γ(g,x∗) ∈ BL1(ν)∗ by the formula

γ(g,x∗)(f) := x∗(Iν(fg)) =

∫
Ω

fg d(x∗ν) for all f ∈ L1(ν),

and the set

Γν := {γ(g,x∗) : (g, x∗) ∈ BL∞(ν) ×BX∗} ⊆ BL1(ν)∗

is norming for L1(ν), that is,

(2.2) ∥f∥L1(ν) = sup
γ∈Γν

γ(f) for all f ∈ L1(ν).

Let σ(L1(ν),Γν) be the (locally convex Hausdorff) topology on L1(ν) of pointwise

convergence on Γν , which is weaker than the weak topology. Proposition 2.8 below

was first proved in [29, Proposition 17]. It was pointed out in [25, Section 4.7]

that it can also be seen as a corollary of the Rainwater-Simons theorem (see, e.g.,

[20, Theorem 3.134]) and the fact that Γν is a James boundary for L1(ν) (i.e., the

supremum in (2.2) is a maximum) whenever R(ν) is relatively norm compact. We

refer the reader to [6, Section 4] and [8, Section 2] for more information on this

topic.

Proposition 2.8. Suppose that R(ν) is relatively norm compact. Then every

bounded and σ(L1(ν),Γν)-convergent sequence in L1(ν) is weakly convergent.
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3. Dunford-Pettis integration operators

Let A be an operator ideal. Following [31], a Banach space X is said to be A-

variation admissible if for every measurable space (Ω,Σ) and for every ν ∈ ca(Σ, X)

such that Iν ∈ A, we have |ν|(Ω) < ∞. The interest of this concept is based on the

following result, [31, Proposition 1.1], which provides a tool for proving that L1 is

lattice-isomorphic to an AL-space under some additional assumptions.

Proposition 3.1. Let A be an operator ideal and let X be a Banach space. If

X is A-variation admissible, then for every measurable space (Ω,Σ) and for every

ν ∈ ca(Σ, X) such that Iν ∈ A, the inclusion map ιν : L1(|ν|) → L1(ν) is a

lattice-isomorphism.

The next proposition is elementary.

Proposition 3.2. Let A be an operator ideal and let X and Y be Banach spaces.

(i) If X and Y are isomorphic, then X is A-variation admissible if and only

if Y is A-variation admissible.

(ii) If X is A-variation admissible, then every subspace of X is A-variation

admissible.

Proof. Let (Ω,Σ) be a measurable space.

(i) If T : X → Y is an isomorphism and ν ∈ ca(Σ, X), then we can apply

Proposition 2.2 to deduce that a function is ν-integrable if and only if it is ν̃-

integrable, where we write ν̃ := T ◦ ν ∈ ca(Σ, Y ), and that the identity map

u : L1(ν) → L1(ν̃) is an isomorphism satisfying Iν̃ ◦ u = T ◦ Iν . Hence, Iν ∈ A if

and only if Iν̃ ∈ A. Moreover, we have ∥T−1∥−1 · |ν|(Ω) ≤ |ν̃|(Ω) ≤ ∥T∥ · |ν|(Ω).

(ii) Let Z ⊆ X be a subspace and let i : Z → X be the inclusion operator. Fix

ν ∈ ca(Σ, Z) such that Iν ∈ A and define ν̃ := i ◦ ν ∈ ca(Σ, X). Then a function

is ν-integrable if and only if it is ν̃-integrable, the identity map u : L1(ν) → L1(ν̃)

is an isometry and Iν̃ = i ◦ Iν ◦ u−1 ∈ A (Proposition 2.2). Since X is A-variation

admissible, we have |ν|(Ω) = |ν̃|(Ω) < ∞. □

In this section we focus on the operator ideal Acc of all Dunford-Pettis operators.

Our main goal is to provide a somehow simpler proof of the fact that Asplund spaces

are Acc-variation admissible, [7, Theorem 1.3], see Corollary 3.8 below.

Part (i) of the following result was already pointed out in [31]:

Proposition 3.3. Let X be a Banach space.

(i) If X is Acc-variation admissible, then X contains no subspace isomorphic

to ℓ1.

(ii) If every separable subspace of X is Acc-variation admissible, then X is

Acc-variation admissible.

Proof. (i) By Proposition 3.2, its suffices to check that ℓ1 is not Acc-variation ad-

missible. Since ℓ1 is infinite-dimensional, the Dvoretzky-Rogers theorem (see, e.g.,

[17, Theorem 1.2]) ensures the existence of an unconditionally convergent series∑∞
n=1 xn in ℓ1 which is not absolutely convergent. Now, define ν : P(N) → ℓ1 by
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ν(A) :=
∑

n∈A xn for all A ∈ P(N) (the power set of N). Then ν ∈ ca(P(N), ℓ1)

satisfies |ν|(P(N)) =
∑∞

n=1 ∥xn∥ = ∞, while Iν is Dunford-Pettis by the Schur

property of ℓ1 (see, e.g., [2, Theorem 2.3.6]). Hence, ℓ1 is not Acc-variation admis-

sible.

(ii) Let (Ω,Σ) be a measurable space and let ν ∈ ca(Σ, X) such that Iν is

Dunford-Pettis. Then R(ν) is relatively norm compact (Proposition 2.6), so it is

separable. Hence, the subspace Z := span(R(ν)) = Iν(L1(ν)) (see (2.1) at page 4)

is separable. Then Z is Acc-variation admissible by assumption. Since ν takes

values in Z and Iν is Dunford-Pettis, we deduce that |ν|(Ω) < ∞. □

3.1. Schauder decompositions and the variation of a vector measure. Let

X be a Banach space. A Schauder decomposition of X is a sequence (Xn)n∈N of

(non-zero) subspaces of X such that each x ∈ X can be written in a unique way

as a convergent series of the form x =
∑∞

n=1 xn, where xn ∈ Xn for all n ∈ N.

In this case, for each n ∈ N there is a projection Sn from X onto Xn such that

x =
∑∞

n=1 Sn(x) for all x ∈ X. For each k ∈ N, the operator Pk :=
∑k

n=1 Sn is

a projection from X onto the subspace
⊕k

n=1 Xn, we have supk∈N ∥Pk∥ < ∞ and

the formula |||x||| = supk∈N ∥Pk(x)∥ defines an equivalent norm on X. Note that

Pk′ ◦Pk = Pk ◦Pk′ = Pmin{k,k′} for all k, k′ ∈ N and ∥Pk(x)−x∥ → 0 as k → ∞ for

every x ∈ X. Of course, if X has a Schauder basis (en)n∈N, then the sequence of

1-dimensional subspaces generated by each en is a Schauder decomposition of X.

The following lemma will be a key tool for proving Theorem 3.6 below.

Lemma 3.4. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν ∈ ca(Σ, X). Suppose that:

• |ν|(Ω) = ∞ and R(ν) is relatively norm compact.

• X has a Schauder decomposition (Xn)n∈N such that |Pk ◦ ν|(Ω) < ∞ for

all k ∈ N, where Pk is the associated projection from X onto
⊕k

n=1 Xn.

Then there exist a sequence (Bj)j∈N of pairwise disjoint elements of Σ \ N (ν), a

strictly increasing sequence (kj)j∈N in N and ε > 0 in such a way that the functions

fj := 1
∥ν∥(Bj)

χBj
∈ L1(ν) and the projections Rj := Pkj+1

− Pkj
satisfy:

(i) ∥Iν(fjg) −Rj(Iν(fjg))∥ ≤ 2−j for all g ∈ BL∞(ν) and j ∈ N.
(ii) There is j0 ∈ N such that ∥Iν(fj) − Iν(fj′)∥ ≥ ε for all distinct j, j′ ≥ j0.

Proof. Write Qk := idX − Pk for all k ∈ N (where idX stands for the identity

operator on X). Since supk∈N ∥Qk∥ < ∞ and ∥Qk(x)∥ → 0 as k → ∞ for every

x ∈ X, the sequence (Qk)k∈N converges to 0 uniformly on each norm compact subset

of X. By renorming, we can assume without loss of generality that ∥Pk∥ = 1 for

all k ∈ N.

Since |ν|(Ω) = ∞, there is a sequence (Cl)l∈N of pairwise disjoint elements of

Σ \ N (ν) such that
∑∞

l=1 ∥ν(Cl)∥ = ∞, [27, Corollary 2]. Fix ρ > 2 and, for each

l ∈ N, take Al ∈ Σ \ N (ν) such that Al ⊆ Cl and ρ∥ν(Al)∥ ≥ ∥ν∥(Cl). Then∑∞
l=1 ∥ν(Al)∥ = ∞ and

(3.1) ∥ν(Al)∥ ≥ ρ−1∥ν∥(Al) for all l ∈ N.
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Claim. There exist two strictly increasing sequences (kj)j∈N and (lj)j∈N in N
such that for every j ∈ N we have:

(α) ∥Pkj
(Iν(χAlj+1

g))∥ ≤ 2−j−1∥ν∥(Alj+1
) for all g ∈ BL∞(ν);

(β) ∥Qkj
(Iν(χAlj

g))∥ ≤ 2−j∥ν∥(Alj ) for all g ∈ BL∞(ν).

Indeed, we proceed by induction. Set l1 := 1 and consider

K1 :=
{
Iν(χA1

g) : g ∈ BL∞(ν)

}
⊆ X.

Since R(ν) is relatively norm compact, so is K1 (Proposition 2.1) and therefore we

can pick k1 ∈ N such that

sup
x∈K1

∥Qk1(x)∥ ≤ ∥ν∥(A1)

2
.

Hence, (β) holds for j = 1. Suppose now that kN , lN ∈ N are already chosen for

some N ∈ N. Since ν̃ := PkN
◦ν satisfies |ν̃|(Ω) < ∞ and

∑∞
l=1 ∥ν∥(Al) = ∞, there

is lN+1 ∈ N with lN+1 > lN such that

(3.2) |ν̃|(AlN+1
) ≤ 2−N−1∥ν∥(AlN+1

).

Observe that for each g ∈ BL∞(ν) we have

∥PkN
(Iν(χAlN+1

g))∥ (∗)
= ∥Iν̃(χAlN+1

g)∥ ≤ ∥χAlN+1
g∥L1(ν̃)

(∗∗)
≤ ∥χAlN+1

∥L1(ν̃)

= ∥ν̃∥(AlN+1
) ≤ |ν̃|(AlN+1

)
(3.2)

≤ 2−N−1∥ν∥(AlN+1
),

where (∗) and (∗∗) follow from Propositions 2.2 and 2.7(i), respectively. Hence,

(α) holds for j = N . Now, we consider the relatively norm compact subset of X

defined by

KN+1 :=
{
Iν(χAlN+1

g) : g ∈ BL∞(ν)

}
(apply Proposition 2.1 again) and we choose kN+1 ∈ N with kN+1 > kN such that

sup
x∈KN+1

∥QkN+1
(x)∥ ≤ 2−N−1∥ν∥(AlN+1

).

Therefore, (β) holds for j = N + 1. This finishes the proof of the Claim.

For each j ∈ N, define Bj := Alj+1
and let fj and Rj be as in the statement. To

check property (i), take j ∈ N and g ∈ BL∞(ν). Then (α) and (β) imply

∥Iν(fjg) −Rj(Iν(fjg))∥ = ∥Qkj+1
(Iν(fjg)) + Pkj

(Iν(fjg))∥
≤ ∥Qkj+1

(Iν(fjg))∥ + ∥Pkj
(Iν(fjg))∥

≤ 1

2j+1
+

1

2j+1
=

1

2j
.
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Finally, we will check that (ii) holds for an arbitrary 0 < ε < ρ−1. Choose j0 ∈ N
large enough such that ρ−1 − 2−j0 ≥ ε. Take j′ > j ≥ j0 in N. Then

∥Iν(fj) − Iν(fj′)∥ ≥ ∥Pkj+1
(Iν(fj) − Iν(fj′))∥

(because ∥Pkj+1
∥ = 1)

= ∥Iν(fj) −Qkj+1
(Iν(fj)) − Pkj+1

(Iν(fj′))∥
≥ ∥Iν(fj)∥ − ∥Qkj+1(Iν(fj))∥ − ∥Pkj+1(Iν(fj′))∥
= ∥Iν(fj)∥ − ∥Qkj+1

(Iν(fj))∥ − ∥Pkj+1
(Pkj′ (Iν(fj′)))∥

(because Pkj+1 ◦ Pkj′ = Pkj+1)

≥ ρ−1 − ∥Qkj+1
(Iν(fj))∥ − ∥Pkj′ (Iν(fj′))∥

(by (3.1) and ∥Pkj+1
∥ = 1)

≥ ρ−1 − 1

2j+1
− 1

2j′+1

(by (α) and (β) with g = χΩ)

> ρ−1 − 1

2j0
≥ ε.

The proof is finished. □

3.2. Asplund spaces are Acc-variation admissible. Let (Xn)n∈N be a Schauder

decomposition of a Banach space X. By a block sequence with respect to (Xn)n∈N
we mean a sequence (xj)j∈N in X for which there is a sequence (Ij)j∈N of non-

empty finite subsets of N such that max(Ij) < min(Ij+1) and xj ∈
⊕

n∈Ij
Xn for

all j ∈ N. We say that (Xn)n∈N is shrinking if ∥P ∗
k (x∗) − x∗∥ → 0 as k → ∞ for

every x∗ ∈ X∗, where Pk is the associated projection from X onto
⊕k

n=1 Xn. When

X has a Schauder basis (en)n∈N and each Xn is the subspace generated by en, then

(Xn)n∈N is shrinking if and only if (en)n∈N is shrinking in the usual sense.

The following fact belongs to the folklore and can be proved as in the case of

Schauder bases (see, e.g., [2, Proposition 3.2.7]).

Proposition 3.5. Let (Xn)n∈N be a Schauder decomposition of a Banach space X.

The following statements are equivalent:

(i) (Xn)n∈N is shrinking.

(ii) Every bounded block sequence with respect to (Xn)n∈N is weakly null.

Theorem 3.6. Let X be a Banach space having a shrinking Schauder decom-

position (Xn)n∈N such that Xn is finite-dimensional for all n ∈ N. Then X is

Acc-variation admissible. In particular, every Banach space having a shrinking

Schauder basis is Acc-variation admissible.

Proof. Let (Ω,Σ) be a measurable space and let ν ∈ ca(Σ, X) such that Iν is

Dunford-Pettis. Then R(ν) is relatively norm compact (Proposition 2.6). Fix

k ∈ N and denote by Pk the associated projection from X onto
⊕k

n=1 Xn. Since⊕k
n=1 Xn is finite-dimensional, we have |Pk ◦ ν|(Ω) < ∞. By renorming, we can

assume that ∥Pk∥ = 1 for all k ∈ N.
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Suppose, by contradiction, that |ν|(Ω) = ∞. Let (fj)j∈N and (Rj)j∈N be as

in Lemma 3.4. Since (Iν(fj))j∈N is not norm convergent (by property (ii) in

Lemma 3.4) and Iν is Dunford-Pettis, the sequence (fj)j∈N is not weakly con-

vergent in L1(ν). In addition, ∥fj∥L1(ν) = 1 for all j ∈ N. By Proposition 2.8,

there is g ∈ BL∞(ν) such that the sequence (Iν(fjg))j∈N is not weakly null in X.

Then (Rj(Iν(fjg)))j∈N is a bounded block sequence with respect to (Xn)n∈N which

cannot be weakly null, by property (i) in Lemma 3.4. This contradicts that (Xn)n∈N
is shrinking (Proposition 3.5). □

The last ingredient of our proof that Asplund spaces are Acc-variation admissible

is the following deep result of Zippin [43] (cf. [21, Theorem III.1] and [40]):

Theorem 3.7 (Zippin). Every Banach space having separable dual is isomorphic

to a subspace of a Banach space having a shrinking Schauder basis.

Corollary 3.8. Every Asplund space is Acc-variation admissible.

Proof. By Proposition 3.3(ii), it suffices to prove that every Banach space having

separable dual is Acc-admissible. Since every Banach space having a shrinking

Schauder basis is Acc-variation admissible (Theorem 3.6), the conclusion follows

from Theorem 3.7 and Proposition 3.2(ii). □

3.3. An application of the Davis-Figiel-Johnson-Pe lczyński factorization.

We begin by recalling the refinement of the DFJP factorization developed by Lima,

Nygaard and Oja in [23]. Let Z and X be Banach spaces, let T : Z → X be a

(non-zero) operator and consider the set

K :=
1

∥T∥
T (BZ) ⊆ BX .

Fix a ∈ (1,∞) and write

f(a) :=

( ∞∑
n=1

an

(an + 1)2

)1/2

.

For each n ∈ N, let ∥ · ∥n be the Minkowski functional of Kn := an/2K + a−n/2BX ,

that is,

∥x∥n := inf{t > 0 : x ∈ tKn} for all x ∈ X.

The following theorem can be found in [23, Lemmas 1.1 and 2.1, Theorem 2.2],

with the exception of part (vi), which can be obtained similarly as for the usual

DFJP factorization (see, e.g., [5, §3]).

Theorem 3.9. Under the previous assumptions, the following statements hold:

(i) Y := {x ∈ X :
∑∞

n=1 ∥x∥2n < ∞} is a Banach space with the norm

∥x∥Y :=

( ∞∑
n=1

∥x∥2n

)1/2

.

(ii) K ⊆ f(a)BY and the identity map J : Y → X is an operator.
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(iii) T factors as

(3.3) Z
T //

S

��

X

Y

J

>>

where S is an operator.

(iv) J is a norm-to-norm homeomorphism when restricted to K. In fact:

∥x∥2Y ≤
(1

4
+

1

ln a

)
∥x∥ for all x ∈ K.

Therefore, if T is Dunford-Pettis, then S is Dunford-Pettis as well.

(v) If T is weakly compact, then Y is reflexive.

(vi) If T is Asplund, then Y is Asplund.

(vii) If a is the unique element of (1,∞) satisfying f(a) = 1, then ∥S∥ = ∥T∥
and ∥J∥ = 1. In this case, (3.3) is called the DFJP-LNO factorization of T .

In [28] the DFJP-LNO factorization was applied to the integration operator of a

vector measure. Our next proposition gathers some of the results obtained in [28,

Theorems 3.7 and 4.5]:

Proposition 3.10. Let X be a Banach space, let (Ω,Σ) be a measurable space, let

ν ∈ ca(Σ, X) and let

L1(ν)
Iν //

S

��

X

Y

J

==

be the DFJP-LNO factorization of Iν . Define ν̃ : Σ → Y by ν̃(A) := S(χA) for all

A ∈ Σ. Then:

(i) ν̃ ∈ ca(Σ, Y ), ν = J ◦ ν̃ and N (ν) = N (ν̃).

(ii) L1(ν̃) = L1(ν), with ∥f∥L1(ν) = ∥f∥L1(ν̃) for all f ∈ L1(ν), and S = Iν̃ .

(iii) ν̃ has finite (resp., σ-finite) variation whenever ν does.

Corollary 3.11. Let X be a Banach space, let (Ω,Σ) be a measurable space and

let ν ∈ ca(Σ, X). If Iν is Asplund and Dunford-Pettis, then |ν|(Ω) < ∞ and the

inclusion map ιν : L1(|ν|) → L1(ν) is a lattice-isomorphism.

Proof. Let Y , J and ν̃ be as in Proposition 3.10. Since Iν̃ is Dunford-Pettis and

Y is Asplund (Theorem 3.9, parts (iv) and (vi)), we can apply Corollary 3.8 to get

|ν̃|(Ω) < ∞, hence |ν|(Ω) = |J ◦ ν̃|(Ω) ≤ |ν̃|(Ω) < ∞. This shows that every Banach

space is A-variation admissible, where A denotes the operator ideal of all Asplund

and Dunford-Pettis operators. The last statement follows from Proposition 3.1. □
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4. Dunford-Pettis type properties

4.1. A remark on equimeasurability. Let (Ω,Σ, µ) be a finite measure space.

A set H ⊆ L∞(µ) is said to be equimeasurable if for every ε > 0 there is A ∈ Σ

with µ(Ω \ A) ≤ ε such that {hχA : h ∈ H} is relatively norm compact in L∞(µ).

Theorem 4.1 below is a particular case of [5, Theorem 5.5.4]. We include a direct

proof for the sake of completeness.

Theorem 4.1. Let (Ω,Σ, µ) be a finite measure space. If H ⊆ L∞(µ) is relatively

weakly compact, then it is equimeasurable.

Proof. By the Davis-Figiel-Johnson-Pe lczyński factorization (see, e.g., [3, Theo-

rem 5.37]), there exist a reflexive Banach space Y and an operator T : Y → L∞(µ)

such that T (BY ) ⊇ H. Let i : L1(µ) → L∞(µ)∗ be the inclusion operator and let

S := T ∗ ◦ i : L1(µ) → Y ∗. Since Y ∗ is reflexive, S is representable, that is, there is

g ∈ L∞(µ, Y ∗) such that

S(f) = (Bochner)-

∫
Ω

fg dµ for all f ∈ L1(µ)

(see, e.g., [18, p. 75, Theorem 12]).

Fix ε > 0. Since g is strongly µ-measurable, Egorov’s theorem ensures the

existence of A ∈ Σ with µ(Ω \ A) ≤ ε and a sequence gn : Ω → Y ∗ of Σ-simple

Y ∗-valued functions such that

(4.1) ∥g(t) − gn(t)∥ ≤ 1

n
for every t ∈ A and for every n ∈ N.

For each n ∈ N, let us consider the operator Sn : L1(µ) → Y ∗ defined by

Sn(f) = (Bochner)-

∫
A

fgn dµ for all f ∈ L1(µ).

Note that Sn is a finite-rank operator, because gn is the sum of finitely many

functions of the form y∗χB , where y∗ ∈ Y ∗ and B ∈ Σ. Hence, Sn is compact.

Moreover, if PA : L1(µ) → L1(µ) is the projection defined by PA(f) := fχA for all

f ∈ L1(µ), then the operator S ◦ PA : L1(µ) → Y ∗ satisfies

∥S ◦ PA − Sn∥ = sup
f∈BL1(µ)

∥∥∥∥(Bochner)-

∫
A

f(g − gn) dµ

∥∥∥∥ (4.1)

≤ 1

n
.

It follows that (Sn)n∈N converges to S ◦ PA in the operator norm. In particular,

S ◦ PA is compact and, therefore, (S ◦ PA)∗ : Y → L∞(µ) is compact as well (by

Schauder’s theorem).

For every y ∈ Y and for every f ∈ L1(µ) we have

⟨(S ◦ PA)∗(y), f⟩ = ⟨y, (S ◦ PA)(f)⟩ = ⟨y, T ∗(i(fχA))⟩

= ⟨T (y), fχA⟩ =

∫
A

fT (y) dy = ⟨T (y)χA, f⟩.

Therefore (S ◦ PA)∗(y) = T (y)χA for all y ∈ Y . It follows that

{hχA : h ∈ H} ⊆ {T (y)χA : y ∈ BY } = (S ◦ PA)∗(BY )

and so {hχA : h ∈ H} is relatively norm compact in L∞(µ). □
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4.2. A Dunford-Pettis type property for L1 of a vector measure. Recall

that a Banach space Z has the Dunford-Pettis property if and only if z∗n(zn) → 0 as

n → ∞ for all weakly null sequences (zn)n∈N and (z∗n)n∈N in Z and Z∗, respectively

(see, e.g., [2, Theorem 5.4.4]).

We next show that the L1 space of an arbitrary vector measure enjoys a Dunford-

Pettis type property with respect to the “vector duality” induced by the integration

operator (Subsection 2.5).

Theorem 4.2. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν ∈ ca(Σ, X). Let (fn)n∈N be a sequence in L1(ν) and let (gn)n∈N be a weakly null

sequence in L∞(ν).

(i) If (fn)n∈N is weakly null, then (Iν(fngn))n∈N is weakly null.

(ii) If (fn)n∈N is bounded and equi-integrable, then (Iν(fngn))n∈N is norm null.

Proof. (i) Fix x∗ ∈ X∗. Let hx∗ ∈ L∞(|x∗ν|) be the Radon-Nikodým derivative of

x∗ν with respect to |x∗ν|. For each n ∈ N we have

(4.2) x∗(Iν(fngn)
)

=

∫
Ω

fngn d(x∗ν) =

∫
Ω

fnhx∗gn d|x∗ν|.

Since (fn)n∈N is weakly null in L1(ν) and the inclusion map L1(ν) → L1(|x∗ν|) is an

operator, (fn)n∈N is weakly null in L1(|x∗ν|) and so the same holds for (fnhx∗)n∈N.

In the same way, (gn)n∈N is weakly null in L∞(|x∗ν|), so we can apply the Dunford-

Pettis property of L1(|x∗ν|) and (4.2) to conclude that x∗(Iν(fngn)) → 0 as n → ∞.

Since x∗ ∈ X∗ is arbitrary, (Iν(fngn))n∈N is weakly null.

(ii) Define α := supn∈N ∥fn∥L1(ν) and β := supn∈N ∥gn∥L∞(ν). Let µ be a Ry-

bakov control measure of ν. Fix ε > 0. Since (fn)n∈N is equi-integrable, we can

choose δ > 0 such that

(4.3) sup
f∈F

∥fχB∥L1(ν) ≤ ε for every B ∈ Σ with µ(B) ≤ δ.

By Theorem 4.1, the set {gn : n ∈ N} is equimeasurable, so there is A ∈ Σ with

µ(Ω \ A) ≤ δ such that {gnχA : n ∈ N} is relatively norm compact in L∞(ν).

Since the sequence (gnχA)n∈N is weakly null in L∞(ν) (bear in mind that the map

g 7→ gχA is an operator on L∞(ν)), we conclude that (gnχA)n∈N is norm null

in L∞(ν). Choose n0 ∈ N such that

(4.4) sup
n≥n0

∥gnχA∥L∞(ν) ≤ ε.

Now, for every f ∈ F and for every n ∈ N with n ≥ n0 we have∥∥Iν(fgn)
∥∥ ≤

∥∥Iν(fgnχΩ\A)
∥∥+

∥∥Iν(fgnχA)
∥∥

(Prop. 2.7(i))

≤ ∥fχΩ\A∥L1(ν)∥gn∥L∞(ν) + ∥f∥L1(ν)∥gnχA∥L∞(ν)

(4.3) & (4.4)

≤ (β + α)ε.

As ε > 0 is arbitrary, the sequence (Iν(fngn))n∈N is norm null. □
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4.3. The positive Schur property as a Dunford-Pettis type property. As

a natural outcome of our previous work we get the following characterization:

Theorem 4.3. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν ∈ ca(Σ, X). The following statements are equivalent:

(i) L1(ν) has the positive Schur property.

(ii) For all weakly null sequences (fn)n∈N and (gn)n∈N in L1(ν) and L∞(ν),

respectively, the sequence (Iν(fngn))n∈N is norm null.

Proof. (i)⇒(ii): This follows from Theorem 4.2, because the positive Schur property

of L1(ν) is equivalent to the fact that every relatively weakly compact subset of

L1(ν) is equi-integrable (Propositions 2.3 and 2.4).

(ii)⇒(i): By Propositions 2.3 and 2.4, it suffices to prove that every disjoint

weakly null sequence (fn)n∈N in L1(ν) is equi-integrable. Let (An)n∈N be a sequence

of pairwise disjoint elements of Σ such that fnχAn = fn for all n ∈ N. Observe that

(χAn
)n∈N is weakly null in L∞(ν). Indeed, we can assume without loss of generality

that An ̸∈ N (ν) for all n ∈ N. Then (χAn
)n∈N is a basic sequence in L∞(ν) which is

equivalent to the usual basis of c0. In particular, (χAn
)n∈N is weakly null in L∞(ν).

Fix A ∈ Σ. Define f̃n := fnχA for all n ∈ N. Note that

(4.5) Iν(f̃nχAn
) = Iν(f̃n) = νfn(A) for all n ∈ N.

Since (f̃n)n∈N is weakly null in L1(ν) (because (fn)n∈N is weakly null and the

map h 7→ hχA is an operator on L1(ν)) and (χAn
)n∈N is weakly null in L∞(ν),

condition (ii) and (4.5) imply that the sequence (νfn(A))n∈N is norm null. As

A ∈ Σ is arbitrary, we can apply Lemma 2.5 to conclude that (fn)n∈N is equi-

integrable. □

Of course, Theorems 4.2 and 4.3 provide another point of view for the positive

Schur property of the L1 space of a vector measure taking values in a Banach space

with the Schur property, [13, proof of Theorem 4].

4.4. Vector measures with σ-finite variation. The analysis of the Dunford-

Pettis property is simpler for L1 spaces of a vector measure with σ-finite variation.

Proposition 4.4. Let X be a Banach space, let (Ω,Σ) be a measurable space and

let ν ∈ ca(Σ, X) with σ-finite variation. If (fn)n∈N is a bounded and equi-integrable

sequence in L1(ν) and (φn)n∈N is a weakly null sequence in L1(ν)∗, then φn(fn) → 0

as n → ∞.

Proof. The sequence (fn)n∈N is approximately order bounded (Proposition 2.4).

Hence, we can assume without loss of generality that fn ∈ jν(BL∞(ν)) for all n ∈ N.

Define α := supn∈N ∥φn∥L1(ν)∗ . Let (Am)m∈N be an increasing sequence in Σ such

that Ω =
⋃

m∈N Am and |ν|(Am) < ∞ for all m ∈ N. Fix ε > 0. Choose m ∈ N
large enough such that

(4.6) ∥ν∥(Ω \Am) ≤ ε.

Define µ(A) := |ν|(A∩Am) for all A ∈ Σ, so that µ is a finite non-negative measure.

Consider the inclusion operator ι : L1(µ) → L1(ν) (see, e.g., [33, Lemma 3.14]) and
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ι∗ : L1(ν)∗ → L∞(µ). Define gn := ι∗(φn) ∈ L∞(µ) for all n ∈ N, so that (gn)n∈N
is weakly null in L∞(µ).

The sequence (fnχAm
)n∈N is bounded and equi-integrable in L1(µ) and

⟨gn, fnχAm
⟩ =

∫
Am

fngn dµ = φn(fnχAm
) for all n ∈ N.

Therefore, the Dunford-Pettis property of L1(µ) (cf. Theorem 4.2(ii)) ensures that

φn(fnχAm
) → 0 as n → ∞. Take n0 ∈ N such that

|φn(fnχAm
)| ≤ ε whenever n ≥ n0.

Since

|φn(fnχΩ\Am
)| ≤ α∥fnχΩ\Am

∥L1(ν) ≤ α∥ν∥(Ω \Am) ≤ αε for all n ∈ N

(by Proposition 2.7(i) and (4.6)), we have

|φn(fn)| ≤ |φn(fnχAm)| + |φn(fnχΩ\Am
)| ≤ (1 + α)ε whenever n ≥ n0.

This shows that φn(fn) → 0 as n → ∞. □

By putting together Propositions 2.3, 2.4 and 4.4, we get the already mentioned

result from [13]:

Corollary 4.5. Let X be a Banach space, let (Ω,Σ) be a measurable space and let

ν ∈ ca(Σ, X) with σ-finite variation. If L1(ν) has the positive Schur property, then

it has the Dunford-Pettis property.

Let E be a Banach space with a normalized 1-unconditional Schauder basis,

say (en)n∈N. The E-sum of countably many copies of L1[0, 1] is the Banach lat-

tice Z of all sequences (hn)n∈N in L1[0, 1] such that the series
∑∞

n=1 ∥hn∥L1[0,1] en
converges unconditionally in E, equipped with the norm

∥(hn)n∈N∥Z :=

∥∥∥∥∥
∞∑

n=1

∥hn∥L1[0,1] en

∥∥∥∥∥
E

and the coordinatewise order. If E has the the Schur property, then Z has the

positive Schur property, but it is not lattice-isomorphic to an AL-space unless E is

isomorphic to ℓ1, [42, Section 3].

The following construction provides more examples of Banach lattices with such

features:

Example 4.6. Let X be a Banach space and let
∑∞

n=1 xn be an unconditionally

convergent series in X with xn ̸= 0 for all n ∈ N. Let λ be the Lebesgue measure

on the σ-algebra Σ of all Borel subsets of [0, 1]. Write In := (2−n, 2−n+1] for all

n ∈ N. Then:

(i) The formula

ν(A) :=

∞∑
n=1

2nλ(A ∩ In)xn, A ∈ Σ,

defines a vector measure ν ∈ ca(Σ, X).

(ii) N (ν) = N (λ). Hence, ν is atomless and L1(ν) is separable.
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(iii) R(ν) is relatively norm compact.

(iv) |ν| is σ-finite and |ν|([0, 1]) =
∑∞

n=1 ∥xn∥.
(v) If

∑∞
n=1 xn is not absolutely convergent, then L1(ν) is not lattice-isomorphic

to an AL-space.

(vi) If X has the Schur property, then L1(ν) has the positive Schur property and

the Dunford-Pettis property.

(vii) If
∑∞

n=1 xn is not absolutely convergent and X has the Schur property,

then L1(ν) is not lattice-isomorphic to L1(ν̃) for any σ-algebra Σ̃ and any

ν̃ ∈ ca(Σ̃, c0) such that R(ν̃) is relatively norm compact.

Proof. Since
∑∞

n=1 xn is unconditionally convergent, for every (an)n∈N ∈ ℓ∞ the

series
∑∞

n=1 anxn is unconditionally convergent and the map

T : ℓ∞ → X, T ((an)n∈N) :=

∞∑
n=1

anxn,

is a compact operator (see, e.g., [17, Theorem 1.9]). This shows that the map ν

is well-defined and has relatively norm compact range (note that 2nλ(A ∩ In) ≤ 1

for all n ∈ N). Since the map Σ ∋ A 7→ 2nλ(A ∩ In)xn ∈ X is countably additive

for each n ∈ N, the Vitali-Hahn-Saks theorem (see, e.g., [18, p. 24, Corollary 10])

ensures that ν is countably additive. This proves parts (i) and (iii).

(ii) The equality N (ν) = N (λ) is obvious. Since λ is atomless, so is ν. Let C ⊆ Σ

be a countable set such that for every A ∈ Σ we have infC∈C λ(A△C) = 0. Then

for every A ∈ Σ we also have infC∈C ∥ν∥(A△C) = 0 (notice that ν is λ-continuous).

This implies that L1(ν) is separable, because the set of all Σ-simple functions is

norm dense in L1(ν).

(iv) It is easy to check that |ν|(A) =
∑∞

n=1 2nλ(A ∩ In)∥xn∥ for every A ∈ Σ.

(v) This follows from [12, Proposition 2] and (iv).

(vi) We already know that the Schur property of X implies that L1(ν) has the

positive Schur property, [13, proof of Theorem 4]. Now, (iv) and Corollary 4.5

ensure that L1(ν) has the Dunford-Pettis property.

(vii) Suppose, by contradiction, that there exist a σ-algebra Σ̃ and ν̃ ∈ ca(Σ̃, c0)

such that R(ν̃) is relatively norm compact and L1(ν) is lattice-isomorphic to L1(ν̃).

Then L1(ν̃) has the positive Schur property (by (vi)) and we can apply Proposi-

tion 2.6 to infer that the integration operator Iν̃ : L1(ν̃) → c0 is Dunford-Pettis.

Now, Proposition 3.1 and Theorem 3.6 (the usual basis of c0 is shrinking) imply

that L1(ν̃) is lattice-isomorphic to an AL-space, which contradicts (v). □

Remark 4.7. Part (vii) of Example 4.6 should be compared with [12, Theorem 1].

That result states that if X is a Banach space, (Ω,Σ) is a measurable space, the

vector measure ν ∈ ca(Σ, X) is atomless and L1(ν) is separable, then there is

ν̃ ∈ ca(Σ, c0) such that L1(ν) and L1(ν̃) are lattice-isometric (cf. [24, Theorem 5]

for another proof). For variants in the non-separable setting, see [36] and [37].

In [24, Theorem 5] it was claimed that if, in addition, R(ν) is relatively norm

compact, then ν̃ can be chosen so that R(ν̃) is relatively norm compact as well.

Unfortunately, this turns out to be false in general, as shown in Example 4.6(vii).
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[36] J. Rodŕıguez, On non-separable L1-spaces of a vector measure, Rev. R. Acad. Cienc. Exactas

F́ıs. Nat. Ser. A Mat. RACSAM 111 (2017), no. 4, 1039–1050.
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