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Providing QoS Through Machine-Learning-Driven
Adaptive Multimedia Applications

Pedro M. Ruiz, Juan A. Botía, and Antonio Gómez-Skarmeta

Abstract—We investigate the optimization of the quality of ser-
vice (QoS) offered by real-time multimedia adaptive applications
through machine learning algorithms. These applications are able
to adapt in real time their internal settings (i.e., video sizes, audio
and video codecs, among others) to the unpredictably changing ca-
pacity of the network. Traditional adaptive applications just select
a set of settings to consume less than the available bandwidth. We
propose a novel approach in which the selected set of settings is
the one which offers a better user-perceived QoS among all those
combinations which satisfy the bandwidth restrictions. We use a
genetic algorithm to decide when to trigger the adaptation process
depending on the network conditions (i.e., loss-rate, jitter, etc.). Ad-
ditionally, the selection of the new set of settings is done according
to a set of rules which model the user-perceived QoS. These rules
are learned using the SLIPPER rule induction algorithm over a
set of examples extracted from scores provided by real users. We
will demonstrate that the proposed approach guarantees a good
user-perceived QoS even when the network conditions are con-
stantly changing.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords..

I. INTRODUCTION

THE UTILIZATION of real-time adaptive applications for
internetworking multimedia over future wireless and mo-

bile networks is something already agreed in the wireless re-
search community. These networks are formed by a variety of
heterogeneous wireless technologies causing an unpredictably
capacity-changing network scenario. In these scenarios, the net-
work-layer quality of service (QoS) mechanisms cannot guar-
antee a stable service because most of the variability is due to
the wireless channel itself. Adaptive multimedia applications,
being able to dynamically change their settings to adapt to the
available network resources can alleviate the problems caused
by such unpredictable variations in the network conditions.

The way in which QoS-aware adaptive applications in the
literature auto-configure themselves is commonly driven by
low-level QoS parameters such as the bandwidth, jitter, delays,
packet losses, etc. Their objective is finding a set of settings
(audio and video codecs, video sizes, etc.) reducing the data
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rates to those that the network can support. However, in the
author’s opinion, such adaptations should also take into account
parameters directly related to the quality which is actually
perceived by the user when such settings are used. In fact,
the definition of Quality of Service (QoS) given in the ITU-T
recommendation ITU-E.800 [1] clearly defines it as ”the
collective effect of service performance, which determines the
degree of satisfaction of a user of a service. It is characterized
by a combination of service performance factors such as
operability, accessibility, retainability and integrity.”

The adaptation approaches in the literature present simple
adaptation algorithms which offer suboptimal solutions to the
problem of selecting the application settings which better ful-
fill the user’s expectations. Given a concrete network condi-
tion, there are many different settings that the application can
change to consume less than the available bandwidth (e.g., re-
ducing video sizes, changing video or audio codecs, reducing
the quantization factor in the video codec, etc.). These adapta-
tion algorithms just pick one from these combinations of set-
tings satisfying the bandwidth restriction.

However, from the user’s point of view, all of these possible
combinations of settings do not offer the same quality. We will
show that our proposal of real-time adaptive applications chal-
lenged with the notion of user-perceived QoS can lead to better
adaptation algorithms being able to maintain a good level of sat-
isfaction even when the network conditions are constantly and
unpredictably changing.

Our proposed adaptation algorithm combines a genetic al-
gorithm to decide under which network conditions the settings
need to be changed and a model of the user-perceived QoS al-
lowing the applications to select the new combination of settings
which maximizes the user’s satisfaction for that particular net-
work conditions. Modeling the user-perceived QoS requires the
characterization of the subjective components which define a
user perception of QoS and its relation with the different param-
eters which define the behavior of the real-time multimedia ap-
plication (i.e., codecs, rates, etc.). Given the difficulty to model
the user-perceived QoS analytically, we have used the SLIPPER
rule induction algorithm to generate a set of rules which models
the user-perceived QoS. These rules has been extracted applying
the algorithm to a large number of learning examples which
have been evaluated and scored by real users. This user-per-
ceived QoS model is then used by the application to choose
which specific settings to use whenever it is told to self-adapt.

In the author’s opinion, one of the most significant intended
contribution of this research is the possibility to model the sub-
jective user-perceived QoS for real-time multimedia sessions
using a rule induction algorithm over an user-created set of
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Fig. 1. Overall adaptation architecture.

scores. This is particularly interesting for adaptive applications
and services, which can make use of this model to offer a
higher perceptual quality to the user. Consequently, as we
will demonstrate in our experiments, the user will experience
a better quality when using this kind of user-aware adaptive
applications than using the traditional ones.

The reminder of the paper is organized as follows. Section II
presents some related work. Section III describes the architec-
ture for adaptive applications. In Section IV, we present the
optimization through genetic algorithms of the adaptation trig-
gering. Section V explains the modeling of the user perception
using the rule induction algorithm. Finally, Section VI shows
some empirical results derived from the use of our adaptive ap-
plication approach over an ad hoc network, which is one of the
most challenging wireless scenarios regarding the variability of
the network conditions.

II. RELATED WORK

The idea of adaptive applications has already been used in
many papers ([2], [3]) to improve end-to-end QoS in fixed net-
works. However, these results cannot be directly extrapolated
to wireless networks, in which packet losses are not only due to
congestion. In wireless links, there are many other factors which
are not under control and influence the instantaneous link layer
capacity.

For different kinds of wireless networks there are also in-
teresting papers in the literature ([4]–[8]) demonstrating that
adaptive applications are able to perform better than traditional
multimedia applications even when the network conditions are
bad. These papers use adaptation mechanisms allowing the ap-
plications to self-adapt their internal settings (e.g., changing
coding schemes, frame rates, video sizes, etc.) to reduce their
data rates to those that the network can support in that precise
moment. However, the relation between user-perceived QoS and
the data-rate required to achieve that QoS is not linear (e.g., an
user could prefer a bigger video encoded using less resolution
than an smaller one using high resolution even when the latter
requires more bandwidth). Hence, the predefined actions used
in these approaches are not able to get the better user-perceived
QoS. Maximizing the user-perceived QoS requires modeling the
user QoS perception. In our case, we apply machine learning to
produce a rule set representing the user.

The use of machine learning approaches to solve specific is-
sues in wireless networks has demonstrated to be effective. For
example, Steinbach [9] and Brown [10] optimize power con-
sumption of wireless interface cards by reinforcement learning
[11]. Tong [12] uses reinforcement learning to minimize the
probability of congestion and the probability of a call blocking.
Banerjee [14] applies genetic algorithms [15] to perform QoS
routing (i.e., finding paths in a network satisfying some band-
width and delay constraints). A similar problem is solved by
White [16] using the ants colony metaphor. Tang [17] applies a
genetic algorithm to decide, in a video on demand application,
both location and replication level of multimedia files into an
array of disks. This is a multiobjective problem in which both
storage consumption and blocking probability are minimized.
Finally, Zhang [18] uses data mining [19] to improve security
on ad hoc wireless networks. Using RIPPER [20], a decision
rules induction algorithm, it obtains a classification model to
detect fraudulent routing updates. In our case, we will apply a
combination of a genetic algorithm with a more recent rule in-
duction algorithm called SLIPPER [21] to the specific problem
of maximizing user-perceived QoS in real-time adaptive multi-
media applications.

III. ADAPTIVE APPLICATION ARCHITECTURE

Traditional multimedia applications are a combination of one
or more components (e.g., audio, video, etc.) which use the RTP
[22] protocol to transport multimedia data. These applications
can use the RTCP [22] protocol to receive some feedback from
the applications at the other end, but their adaptation capabili-
ties are very limited and usually they cannot adapt at all. In order
to support real adaptive applications, we add some components
to the architecture of a traditional real-time multimedia applica-
tions. These new components are in charge of the signaling of
QoS information, and the provision of the intelligence to keep
the user-perceived QoS at an acceptable level. So, the overall
architecture, as shown in Fig. 1, consists of the following com-
ponents:

• multimedia application components;
• QoS signaling mechanism;
• adaptation logic.
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The QoS signaling mechanism is the protocol in charge of
sending and receiving reports describing the network conditions
from the other end. When such a report is received, it is passed
to the adaptation logic so that it can decide which internal set-
tings the application has to use to adapt to the current network
conditions while providing a good user-perceived QoS.

A. Qos Signaling Mechanism

The QoS signaling is a key point of the adaptation architec-
ture as it is the only feedback that the source has from the other
end. It is basically an end-to-end transport mechanism for sig-
naling data; no special protocol is needed. In fact, it may be
enough with a TCP/UDP socket between sides, or even a stan-
dard protocol like Session Initiation Protocol (SIP [23]). The
QoS signaling module calculates the loss-rate and mean delay
experienced by the data packets in the network. This informa-
tion is carried in a special signaling packet called “QoS Report”,
which is sent back to the source. A sequence number is used
to deal with delayed QoS Reports. The rate at which QoS Re-
ports are sent has to represent a good tradeoff between highly
dynamic adaptation and a reduced traffic load. At the moment
in our implementation it is fixed at one QoS report per second.
However, the use of adaptive rates is being investigated. A QoS
report message presents the structure shown in Fig. 2.

An additional issue is that the QoS report packet itself has
to traverse the network back to the server, and the probability
of it actually making it there on time is inversely proportional
to its importance. That is, a feedback packet is most important
when it carries information about a congested network and it
is not important when it is just saying that all is going well.
Some experiments performed in [24] demonstrate that a UDP
transport is much more appropriate to carry the feedback than
a transport using TCP. The loss of QoS report messages may
cause the applications not to have updated information on the
network status. There are basically two approaches to overcome
this problem: prioritizing QoS Reports or allowing the applica-
tions to detect such losses. As the former approach requires a
tight coupling with the network layer, we have found easier to
make the receivers send periodic reports toward the sources. In
this way, whenever network problems come up, the adaptation
logic at the sender can detect missing reports. This information
can be used by the adaptation logic to implement some heuris-
tics based on that information (e.g., downgrading the bandwidth
consumption when a certain number of QoS Reports are lost).

B. Adaptation Logic

The adaptation logic can be seen as a function which uses the
QoS Reports and additional local information to decide which
settings need to be configured in each of the different multi-
media components. The adaptation logic solves the problem of
adapting multimedia flows to the characteristics of the different
networks or terminals.

In general, most of the bad effects perceived by the user are
due to packet losses. The most important input for the Adap-
tation Logic will be the end-to-end percentage of packet losses
per reporting period. Problems due to a high jitter (defined as
delay variation) may also reduce the perceived quality but this
problem can usually be avoided with a proper buffer manage-

Fig. 2. Components of a QoS report message.

ment up to a certain delay threshold. In our case, given the in-
teractive nature of the videoconference service under consider-
ation, packets arriving their destination later than this maximum
delay are considered as packet losses. Our proposed adaptation
algorithm, which is presented in Fig. 3, takes these objective
facts into account. Hence, the parameters which drive the adap-
tation algorithm are the loss-rate to downgrade, 0% consecutive
QoS Reports to upgrade and missing reports to downgrade.

Given a concrete network conditions, there is not an unique
set of application settings (frame rates, sampling rates, audio
and video codecs, video sizes, etc.) allowing the multimedia
application to adapt its data rate to the available bandwidth.
Traditional adaptive applications usually select one of the fea-
sible combinations which reduce the loss-rate without taking
into consideration the user-perceived QoS. In the ideal case, the
application logic should select from all these feasible combi-
nations the one which produces the best user-perceived QoS.
Finding such an optimal set of settings requires the adaptation
logic to use a model of the objective and subjective user-per-
ceived QoS. This is something that we have accomplished (see
Section V) applying a rule-induction algorithm to a user-created
set of scores and preferences. As a result, a rule set modeling the
objective and subjective user perception is produced.

C. Adaptation Capabilities

We have extended ISABEL-Lite (see Fig. 4), a reduced ver-
sion of the ISABEL [25] application, to dynamically (and in real
time) adapt its behavior to the available resources. The most im-
portant adaptation capabilities implemented are as follows.

1) Coding schemes. The application may handle
contents encoded in several standards such
as MPEG/H.261/H.263/MJPEG for video, or
GSM/G.722/G.711 for audio. The application chooses
among them at the user request or based on the
information received from lower layers.

2) Sampling rate. Transmitting at a lower frame (or sam-
pling) rate means saving bandwidth, and a fair quality is
often achieved at less than 24 fps.

3) Component size. In scarce bandwidth environments the
user will prefer seeing smaller videos than bad quality
ones in which most of the frames are lost.

4) Component use. In very constrained bandwidth scenarios,
the user may prefer using some components instead of
using all of them with a poor quality.

5) Buffering. Intelligent and dynamically adaptable buffers
alleviates the effects of jitter and delay in adverse network
conditions. However, there is an upper delay bound (typ-
ically 500 ms) which is imposed by the interactive nature
of the application.

IV. TRIGGERING THE ADAPTATION PROCEDURE

There are two key decisions which define the adaptation
strategy: when and how to do it. In this section, we will focus on
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Fig. 3. Diagram of the adaptation logic.

Fig. 4. Snapshot from our ISABEL-lite adaptive application.

the optimization of the when using a genetic algorithm whereas
the how to do it strongly depends on the user perceptions of
QoS, and we will study it in Section IV.

Fig. 3 illustrates the adaptation algorithm. As it can be seen,
the real behavior of that adaptation highly depends on three dif-
ferent parameters: the loss percentage to downgrade, the number

of consecutive 0% reports received before upgrading and finally
the amount of QoS Reports lost which provoke a downgrading.
Taking into account our empirical experiences with the applica-
tion, we initially fixed the the initial values for this parameters
to the values shown in the middle column of Table I.

In some other papers like [26], we have demonstrated the
goodness of the adaptive applications approach as well as this
concrete adaptation algorithm. As long as trying all the values
for these parameters to guess the better combination would re-
quire a lot of time and it is a reduced optimization problem, we
have used a genetic algorithm to calculate their optimal values.
This allows us to easily fine-tune and complement the adapta-
tion rules learned by SLIPPER.

After extensive tuning of the GA parameters, we found that
a population of 30 individuals, a probability of crossover of 0.6
and 0.02 as the mutation probability were good values for our
problem.

In our case, the fitness function is derived from our exper-
tise and experiments with real users about the relative effect of
the packet losses and the codec in the “user perceived QoS”.
These experiments indicate that most of the bad quality per-
ception is due to packet losses rather than the codec quality it-
self. So, the fitness function will behave so that the higher the
packet loss-rate the lower the fitness and the higher the codec
quality the higher the fitness. Hence, in (1), the fitness value
is calculated as the weighted sum of two different functions:
one depending on the codec quality and the other on the packet
loss-rate. To gather the information required to calculate the fit-
ness for each specific experiment, the whole RTP [22] session
is logged and processed. The log contains for each packet the
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TABLE I
ADAPTIVE BEHAVIORS TO BE TESTED

TABLE II
AUDIO CODECS USED IN THE TRIALS

codec that has been used to encode the transported data. In ad-
dition, each second the loss-rate (in percentage) is stored in the
log file

(1)

Let be the experiment duration in seconds and PPS the
number of packets that the application sends per second (that in
our case equals 33). Then, the total number of packets during
the experiments are exactly . For each packet , the
function gives discrete values between 0 and 10 000
depending on the codec used to encode the data which is trans-
ported in the packet (e.g., for the codecs used in our exper-
iments these values are , ,

and ). This values has been set according
to the relative perceptual quality of these codecs according to the
user evaluations. So, the first part of the fitness function gives a
value between 0 and representing the quality
of the codecs used during the experiment.

In addition, the function is a function which
gives a value between 0 and 100 representing the packet loss
rate (in percentage) for the one-second interval number .
The reason for this second term being squared is because the
bad quality perception at higher packet-loss rates increases
exponentially rather than linearly [2]. Finally, as this second
term is calculated once a second instead of once per packet,
it is multiplied by . Thus, this second term of the fitness
function will return values in the same range that the first term

(i.e., between 0 and ). Finally, in order to give
higher impact to the packet loss-rate, it is sensible to use the
constants and . These values have been
analytically set to reflect the typical user’s perceptual quality
preferences [2]. That is, that an experiment using the highest
quality codec all the session with high packet losses cannot get
a better fitness than an experiment with a lower quality codec
in which packet losses are minimal.

The results from the genetic algorithm are in Table I in the
column labeled GA values. The column labeled as Human-Set
values represents the manually configured parameters. Addi-
tionally, to demonstrate the improvements of the genetic algo-
rithm we also use in our tests one of the individuals before being
evolved (i.e., will have random values by default). This one is
also shown in Table I in the column labeled as 1st Genotype
Values.

In order to assess the goodness of the adaptation-driven by
the genetic algorithm, we have prepared a testbed scenario in-
cluding different types of bandwidth changes not only in data
rate but also in duration. On this testbed, we have worked with
four different types of applications:

1) traditional applications which are not able to adapt to the
network conditions;

2) adaptive application with human-set parameters;
3) adaptive application with nonevolved parameters;
4) adaptive application with parameters from the GA

To be sure that we are fair comparing the different kinds of
adaptive behaviors, instead of performing the trials over real
radio links or ad hoc networks, we have developed a link em-
ulation tool which is able to reproduce specific link properties
in user-configured periods of time. Additionally, we focus our
trials in audio transmission which is much more sensitive to
varying network conditions than other media. The trials have
been performed with our extended version of the ISABEL-Lite
commented before and shown in 4. The audio codecs used in
our trials are summarized in Table II.

The bandwidth changes and timings which are emulated in
order to assess the goodness of the different approaches are
shown in Fig. 5. They have been specifically selected to be rep-
resentative enough as long as they combine the different kinds
of reactions which can be found in real testbeds.

The previously commented applications have been tested in
this same scenario under the same emulated link conditions.
Each experiment has been repeated 20 times eliminating
extreme cases to be sure that the emulation is correct and no
anomalous values are produced among different simulations.
Fig. 6 shows the packet losses which are experienced under
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Fig. 5. Bandwidth changes emulated in the virtual link.

Fig. 6. Total packet losses with the different behaviors.

the three different adaptation schemes. As can be noticed,
the adaptation driven by the parameters found by the genetic
algorithm outperforms all the other approaches. The amount of
packet losses is reduced by a factor of ten. In fact, the GA-based
approach has 45% less packet losses than the human-configured
adaptation.

These results are also corroborated by the loss percentages
which are shown in Fig. 7. As it depicted in the figure, in low

bandwidth periods most of the packets sent by the nonadaptive
application are lost. However, for adaptive applications, only
the first strong bandwidth reduction seems to have an important
impact. In any case, this impact is reduced to less than a couple
of seconds. Again, the GA-adaptation approach demonstrates
that it is able to adapt better than the other approaches, with
packet loss rates rarely going over 18%.
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Fig. 7. Loss rate for the different approaches.

Fig. 8. Statistic histogram of loss-rate values.

The latter proposition gets clearly demonstrated in the his-
togram for the loss percentage distribution, which is shown in
Fig. 8. This figure shows how most of the values for the adap-
tive case are lower than 20% of packet losses—in fact the most
of the values are actually zero—while the nonadaptive applica-
tion has many points going beyond 70% and most of them in the
90%–100% range.

V. MODELING QOS BY RULE INDUCTION

In Section IV, we used a genetic algorithm to decide when to
trigger the QoS-upgrading and QoS-downgrading processes. In
this section we focus on how to perform these upgrades so that
the user-perceived QoS does not get compromised. In general,
there are different combinations of settings (e.g., codecs, frame
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rate, video size, etc.) which allow real-time adaptive multimedia
applications to adapt their bandwidth consumption to the net-
work conditions. However, all the different combinations are not
perceived with the same quality by an user. There is not a linear
relation between the bandwidth and the user-perceived QoS. For
example, given some specific network conditions, it might be
more desirable for an user having a bigger video size rather than
a higher frame rate even if both combinations consume the same
bandwidth. This evaluation of user-perceived QoS depends on
many subjective aspects and it is very complex to model. In this
section, we present an approach to model the user perception of
QoS, using a rule induction algorithm.

A. The Learning Data Set

In order to inductively model the QoS perception of an user,
we have to produce a learning data set containing examples of
evaluations under real networks conditions with specific multi-
media application settings. Network conditions have been emu-
lated using a multimedia reflector. This is a software tool placed
in the middle of a dedicated link between two communicating
nodes that will be in charge of simulating different levels of
available bandwidth and packet losses. Once more we have used
the ISABEL-like real-time multimedia application. This set-
tings must be understood in terms of audio and video codecs.
Audio and video codecs are in charge of capturing, coding,
sending, decoding and presenting audio and video data respec-
tively. Precisely, for the video we can also specify the size, the
number of frames per second sent and a quality factor.

In the process of giving the scores to complete the learning
tuples, we have tried to follow as much as possible the ITU rec-
ommendation ITU-P.800 [27] (also known as MOS recommen-
dation) which gives recommendations on how to do the QoS
evaluations, the use of values between 1 and 5 for scores, etc.
A total of 864 different combinations of applications settings
(in the ranges shown in Table III) have been tested, and scored
by users. The table also summarizes all attributes and the cor-
responding range of values, which compound the data set used
to model the user. The last row refers to the score given by the
user.

The data set can be considered to be balanced with the fol-
lowing distribution of examples by score: 241 (27.8%) exam-
ples with score 1, 83 (10.4%) for score 2, 181 (20.9%) examples
with score 3, 233 (26.9%) with 5 and, finally, 125 (14.46%) for
the highest score.

The problem of assessing the multimedia service quality per-
ceived by any user would be ideally solved with a function, let
it be denoted with , which, given a concrete user and a tuple of
values for the first seven parameters of Table III, asses exactly
the QoS value in that user would have given. How-
ever, we will obtain an approximation of for a single user
(i.e., the one that produced the data set mentioned above). The

function can be defined, as shown in (2) producing a score,
given specific network conditions and specific settings for the
multimedia application as follows:

(2)

B. The Learning Experiments

In order to perform the learning experiments which pursue
the needed, we have used a distributed machine learning tool
we have developed in our research group. It has been built from
a software architecture called METALA (META-Learning Ar-
chitecture) [28]. It is a set of software recommendations pro-
viding a methodological approach to perform typical inductive
machine learning tasks.

Learning experiments have been performed using SLIPPER
[21]. This algorithm does not directly use the classic search
bias of divide an conquer for rule induction. Instead, it bases
its strategy on boosting [29]. It uses a weak learner (i.e., a very
simple rule induction algorithm) which boost by modifying
learning instances probability each iteration to focus on in-
stances not correctly classified yet. In fact, we also tested IREP,

[30], and RIPPER [20]. Former algorithms which do
not use boosting and all of them under-performed SLIPPER.

Two configuration parameters must be set for SLIPPER. They
are the growing factor and the count of rounds to boost the
weak learner we mentioned above. The growing factor is the
proportion of instances from the data set used for growing a
rule, meanwhile the rest is left for pruning it. We used a 80%
of data for growing and the remaining 20% for pruning. Con-
cerning the value of the second parameter, let it be denoted with
, the higher its value (from 1 to ), the higher the model accu-

racy and its complexity. We developed experiments with values
in .

Results for all experiments appear represented in Figs. 9
and 10 for training and testing errors, respectively. At the
moment, attention must be paid only to the curves labeled with

. This corresponds with training and evaluation
errors on original data respectively. In these curves we have to
select a concrete point with an acceptable trade off between
classification error and model complexity. The experiment
with represents an example of such a trade-off. It has
12 decision rules. It must be noticed that a classification error
estimation of 42% is a high value, indeed. However, it must be
taken into account that it is not the same to classify a very good
combination of network conditions and multimedia application
(i.e., with a real quality of 5 for the user) as good (i.e., with a
4) than as very bad (i.e., with a 1).

We can see this fact more clearly having a look at the confu-
sion matrix for the mentioned model. It is the following:

where means that examples, labeled as where
classified as . In our particular problem, it is convenient not
only that, as much as possible, all non zero values were lo-
cated at the matrix diagonal but also that non zero values not
located at the diagonal were near to it. For example, the cell
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TABLE III
PARAMETERS CHANGED TO GENERATE USER’S SCORES

Fig. 9. Evolution of training errors for SLIPPER experiments.

Fig. 10. Evolution of evaluation errors for SLIPPER experiments.

value of means that seven examples, labeled with
the highest quality, have been classified by the model as cases
with the lowest quality. This seven particular cases have influ-
enced the misclassification error in the same way than the seven
values of which refer to cases with acceptable quality
and classified as very good. We have used this confusion matrix
to directly select noisy examples, to correct them and after that
to obtain again a new confusion matrix. Let be the number of

different classes, the total number of examples appearing at
the matrix and and the value of the confusion matrix for
the th row and th column. Then, the condensation, , for
is defined by

and reflects the concentration of values around its diagonal. This
measure will be used in order to characterize rules models be-
havior tuning as the data set is getting increasingly clean.

Results are shown again in Fig. 9 for training and Fig. 10 for
the evaluation errors. They appear at curves labeled with
in both figures. More curves appear, labeled with ,
and , , and represent successive corrections to
noisy data with examples classified as 1 when the real score was
4 and 3, respectively. Decision rules for the final data set are rep-
resented at the same figures with label . Notice the con-
siderable improvement in classification errors as the number of
noisy examples decrease. If we consider complexity, the number
of rules also (slightly) decreases when data is more and more
clean. This process is done iteratively because it implies no ef-
fort as METALA does all the work. The evolution on number
of rules for models is represented at Fig. 11. We can also check
that our measure for confusion matrix condensation behaves
as expected if we represent it like in Fig. 12. Finally, the model
we have selected from among the whole bunch of possible data
sets is the one presented below. It corresponds to the cleaned
data set and . It has a total of 12 rules. An instance is clas-
sified with a class if the sum of confidence value of all rules of
the class matching the instance is higher than the negative value.
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Fig. 11. Number of rules in models obtained from SLIPPER.

The rule set extracted by SLIPPER allows us to identify
which individual settings are most important for the user-per-
ception of QoS and which is the relation between them. For
example, the rules imply that the higher the frame rate the better
the quality, but the user prefers changing from a higher frame
rate to a lower one, provided that the video size is increased.
Although there are big differences in bandwidth consumption
between the different audio codecs, the rule set has identified
that provided that there are no losses in the network, the
better option is to use GSM only when the network resources
are scarce, and using G.722 is enough in our low-bandwidth
scenario to guarantee a good user-perception. This information
given by the rule set, has allowed us to generate a concrete
combination of settings, among which, the application will
change depending on the network conditions. The derivation of
these settings from the rules, guarantees a good user-perceived
QoS. This combination of settings is shown in Table IV.

Fig. 12. Evolution in the condensation level for successive refinements on the
data set.

TABLE IV
QUALITY STEPS FOR THE REAL-TIME ADAPTIVE APPLICATION

VI. EMPIRICAL RESULTS

In order to evaluate the effectiveness of our proposal, we have
set up a real wireless ad hoc testbed, on which we will compare
the performance of real-time videoconferencing both with tradi-
tional applications and with adaptive applications. The testbed
has been deployed in the basement of the CS Faculty at the Univ.
of Murcia (see Fig. 13). We use the Multicast MANET Ad hoc
Routing Protocol (MMARP [31]), which is a new Multicast ad
hoc routing protocol that we proposed. It supports both ad hoc
nodes as well as standard IP Multicast nodes. MMARP nodes
are numbered from 1 to 4, R is a standard-IP multicast receiver
and is a standard-IP multicast source. The source follows
(at walking speed) the path which is shown in Fig. 13 while it
runs a videoconference session with node .

The route has been specifically selected so that link breaks
and MMARP route changes take place during the videoconfer-
encing session. Furthermore, the signal strength changes due to
the variation of the distance to MMARP nodes and the number
of intermediate walls to traverse. This makes the available band-
width vary during the session.

The trials have been performed using our MMARP imple-
mentation for Linux. It is a user-space daemon which handles
MMARP packets before they are processed by the TCP/IP stack.
In addition, we have also extended the RTP-based ISABEL-lite
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Fig. 13. Map of the testbed scenario.

videoconferencing application to use our adaptive application
framework. The settings which are used by the application as
adaptation steps are those extracted from the rule set which
models the user-perception. This guarantees that the user-per-
ceived QoS will be maintained as a consequence of keeping the
loss-rate at a minimum. These settings are presented in Table IV.
In order to guarantee a fair comparison of both approaches,
the adaptive application starts with the quality step number 3,
which is the only one used by the nonadaptive application, and
is around the mean bandwidth which we calculated during the
whole session. The results which we present are extracted from
the RTP traces which are generated by the videoconferencing
application. We have used the same route, at the same speed
and in the same network conditions for the adaptive and non-
adaptive trials.

The results presented in Fig. 14 show that the use of adaptive
applications is able to reduce the overall packet losses both for
audio and video to approximately one third. As expected, the
differences are higher in the periods in which there is less band-
width available. This is also noticed in the variation of the delays
depicted in Fig. 15. In the same critical periods, the nonadaptive
approach is not able to control the growing of the end-to-end
delay, whereas the adaptive one is able to quickly restore the
original state.

The overall packet losses is a good reference to identify the
points of the trial in which the network conditions are most crit-
ical. This is identified by an increase in the slope of the total
packet loss curve. However, what really affects the user percep-
tion of QoS is the instantaneous loss-rate, which is what causes
the service disruptions. For example, Bolot [2] identifies an in-
stantaneous 20% of packet losses as the point in which an audio
flow can be considered of poor quality.

In Fig. 16, we compare the statistical histogram for the dis-
tribution of the audio loss-rate for both approaches. The same

statistical analysis is performed for the video flow in Fig. 17. For
example, for the audio flow, the adaptive application approach
is able to keep the loss-rate below 10% all the time. In fact, it
keeps the loss-rate below 5% during the 91% of the time. For
the video flow, the loss-rate is kept under the 5% the 64% of the
time, and its has been under the 10% the 78% of the time.

These figures clearly demonstrate that the adaptive ap-
plication approach on top of our MMARP implementation
has been able to offer a very good user-perceived QoS in a
scenario in which traditional multimedia applications offer a
highly variable quality. Furthermore, both for audio and video
flows the adaptive applications approach highly reduces the
loss-rate, demonstrating that adaptive applications are a good
approach for dealing with the changing network conditions
which characterize ad hoc networks.

Although both Figs. 16 and 17 demonstrate that the user-per-
ceived QoS is improved when using our novel machine learning
driven adaptation, and that is also supported by the validity of
the rules modeling the user’s QoS perception, we have con-
ducted an additional test with real users giving scores over these
network scenarios. As in the generation of the learning examples
(see Section IV), we have tried to follow the MOS ITU-recom-
mendation [27] as much a possible. Eight different users have
given their QoS evaluations with scores in between 1 and 5. The
higher the score the better the quality (i.e., 1 poor, 2 bad, 3

fair, 4 good, 5 excellent). Fig. 18 shows the mean evalua-
tion from these 8 users in different points of the path and finally
an overall QoS perception value. These points are identified by
the elapsed time since the starting. These specific instants have
been specifically selected in points in which the network condi-
tions are most critical.

As it is depicted in the figure, the machine-learning driven
adaptation logic clearly outperforms the traditional multimedia
adaptation because the proposed approach is able to maintain a
good QoS level even when the network resources are extremely
scarce and variable. As can be observed in Fig. 18, the mean
overall perception for our adaptive approach is around 3.87
which means that most of the users scored the overall QoS as
good. However, the nonadaptive approach has scored in average
1.87 which means that most of the users scored the overall
QoS as bad. In general, even in the individual evaluations,
the machine learning driven adaptation has rarely been scored
on average below the good QoS perception, and never below
the fair QoS perception. These results are extremely good
taking into account that mobile ad hoc networks are one of
the most extreme cases of limited bandwidth, link variability
and error-prone links. They fully support the conclusion that
machine learning driven adaptive multimedia applications offer
an excellent performance compared to traditional approaches.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a novel machine learning driven adapta-
tion approach for real-time adaptive multimedia applications.
This approach, which is based on a combination of a genetic
algorithm and the SLIPPER rule induction algorithm, has
demonstrated to outperform both traditional real-time multi-
media applications and manually-tuned adaptive multimedia
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Fig. 14. Variation of the total losses over time.

Fig. 15. Inter-arrival jitter over time.

applications. Both the genetic algorithm and the rule induction
algorithms have demonstrated to be effective when used both
separately and together. However, questions regarding the
relation between the QoS perceived by an user and the space
compound by the configuration parameters of a multimedia
application remain open. For example, what is the shape of
this multidimensional space? This is an important question in

machine learning. If this question is correctly answered, the
inductive bias [13] may be choosen to obtain a model which
best fits that space.

We have used a mobile ad hoc network testbed, to quantify the
goodness of this approach in mobile and wireless scenarios in
which the QoS cannot be guaranteed at the network layer. In ad-
dition to the adaptation of the data rates generated by the appli-
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Fig. 16. Histogram for audio loss-rate.

Fig. 17. Histogram for video loss-rate.

cations to the network conditions, our machine learning driven
adaptation approach has been able to offer a good user-per-
ceived QoS even in situations in which traditional applications
perform badly. These results are clearly supported by the evalu-
ations which the users have done on the overall performance in
the wireless ad hoc testbed.

As a future work, we are extending this adaptation to the net-
work conditions toward a fully ambient intelligence platform
[32]. The idea would be to support real-time adaptation not
only to the network conditions, but also to the user’s context
including preferences, terminal resources, terminal capabilities,
and user’s location, among other context information. We are
using the multiagent programming paradigm [33] for that. Cur-
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Fig. 18. User scores to during the path in the ad hoc testbed.

rently, we are definning the ontology which represents users,
multimedia applications capabilities, QoS, and network mon-
itoring parameters. Implementation is being done by using a
standard agent programming platform, JADE, running on a Java
virtual machine.
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