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Riemannian Bumpy theorem

A closed geodesic γ is degenerate when admits a
Jacobi field 6= λγ̇ that closes in a finite number of
laps.

A metric is said bumpy if all its closed geodesics
are nondegenerate.

Theorem

The C k -Riemannian bumpy metrics form a generic
subset in the set of C k -Riemmannian metrics.

generic: countable intersection of open dense
subsets

The first “proof” appears in

R. Abraham, Bumpy metrics, in Global Analysis
1970, pp. 1–3.
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Correctness of the proof

Abraham’s proof seems to be incomplete

Klingenberg in his book “Lectures on closed
geodesics” gives another proof (1978).

Anosov finds a gap in the proof by
Klingenberg and finally gives a complete
proof in

D. V. Anosov, Generic properties of closed
geodesics, Izv. Akad. Nauk SSSR Ser. Mat.
46 (1982), no. 4, 675–709, 896.
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Further applications

the Bumpy theorem is a Keystone in other
results about genericity of geodesic flows

W. Klingenberg and F. Takens,
Generic properties of geodesic flows, Math.
Ann. 197 (1972), pp. 323–334.

G. Contreras-Barandiarán, G.
Paternain, Genericity of geodesic flows
with positive topological entropy on S2, J.
Diff. Geom. 61 (2002), 1–49.
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The semi-Riemannian case

Closed geodesics can be studied from two
viewpoints:

Considering all the geodesics and studying
when they close (dynamical approach)

Considering all the closed curves and
studying when they are geodesics
(variational approach)

In the Riemannian case Anosov used a dynamical
approach and some ingenious ideas

The dynamical approach does not apply in
the semi-Riemmanian version (for example
the unit tangent bundle is not meaningful)
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Variational genericity theorem

Following the ideas of B. White (Indiana Univ. Math.
J. 1991) a general genericity theorem can be
established.
In the paper

L. Biliotti, M. A. Javaloyes, P. Piccione,
Genericity of nondegenerate critical points and
Morse geodesic functionals, to appear in Indiana
Univ. Math. Journal.

the genericity variational theorem was used to prove
genericity of metrics having all the geodesics joining
two given points non-degenerate.
In the bumpy theorem several problems appear:

1) there is an equivariant (only continuous) S1-action

2) a certain transversality condition is not satisfied in
the iterates of a geodesic
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Programme of work

1) The first problem will be overcome obtaining a S1-equivariant
genericity theorem

2) The second problem will be avoided by considering just the open
subsets of prime closed curves

3) Seps 1) and 2) will give a weak bumpy theorem

4) To conclude the “authentic” semi-Riemannian bumpy theorem we will
use Anosov’s ideas
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Our main tool: the Genericity theorem

X separable Banach manifold and Y a separable Hilbert manifold
and Π : X × Y → X the projection.

Theorem

Let f : A ⊂ X × Y → R be C 2. Assume that for every (x0, y0) ∈ A
with ∂f

∂y (x0, y0) = 0 it holds:

∂2f
∂y2 (x0, y0) is (self-adjoint)-Fredholm in Ty0Y

for all v ∈ ker
[

∂2f
∂y2 (x0, y0) \ {0}

]
, ∃ w ∈ Tx0X such that

∂2f

∂y∂x
(x0, y0)(v ,w) 6= 0 (Transversality condition)

For x ∈ Π(A) set Ax = {y ∈ Y : (x , y) ∈ A}. Then, the set of
x ∈ X such that Ax 3 y → f (x , y) ∈ R is a Morse function is
generic in Π(A).
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Genericity theorem in the closed geodesic problem

To apply the variational genericity theorem in the closed geodesic
problem in M we must choose:

X = {space of symmetric bilinear forms in M of class C k}
Y = Λ = {closed curves of Sobolev class H1 in M}
A = Met(M, i ; k)× Λ, where Met(M, i ; k) are the metric
tensors of index i .

f (g , γ) = Eg (γ) =
∫ 1
0 g(γ̇, γ̇)ds

First problem: closed geodesics are always degenerate critical
points of the energy functional.

In fact there exists an S1-equivariant action on Λ:
S1 × Λ 3 (θ, y)→ (s → y(θs)) ∈ Λ

Eg is invariant by this action!!
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A G -equivariant genericity theorem

We want nondegenericity just in a transversal submanifold to
the orbit of S1.

Assume that there is a G -action of class C 1 on Y (G a
Lie group) and the orbits have the same dimension

Let Dy be the tangent space to the orbit in y ∈ Y

If f : Y → R is G -equivariant (f (g · y) = f (y)), we say
that it is a G -Morse function when H f (y) is
non-degenerate in some complement of Dy .

Observe that if one point in the orbit is a critical point
all the points in the orbit are critical
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G -equivariant genericity theorem

X separable Banach manifold and Y a separable Hilbert manifold
and Π : X × Y → X the projection.

Theorem

Let f : A ⊂ X × Y → R be C 2 and G -equivariant in Y . Assume
that for every (x0, y0) ∈ A with ∂f

∂y (x0, y0) = 0 it holds:

∂2f
∂y2 (x0, y0) is (self-adjoint)-Fredholm in Ty0Y

for all v ∈ ker
[

∂2f
∂y2 (x0, y0)

]
\ Dy0 , ∃ w ∈ Tx0X such that

∂2f

∂y∂x
(x0, y0)(v ,w) 6= 0 (Transversality condition)

For x ∈ Π(A) set Ax = {y ∈ Y : (x , y) ∈ A}. Then, the set of
x ∈ X such that Ax 3 y → f (x , y) ∈ R is a G-Morse function is
generic in Π(A).

L. Biliotti , M. A. Javaloyes, P. Piccione (*) On the semi-Riemannian bumpy theorem 12 / 19



Idea of the proof

This theorem can be reduced to the “non
G -equivariant version”

It is enough to show the existence of
countable submanifolds such that

are transversal to the orbits
intercept every orbit in at least one point

f restricted to such submanifolds satisfies
the conditions of the first theorem

f is G -Morse when all these restrictions are
Morse functions

the countable intersection of generic subsets
is generic
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Good submanifolds and the weak bumpy theorem

In the closed geodesic case the S1 is only continuous

To overcome this problem we need to introduce a good
submanifold S :

y is a critical point of Eg iff y is a critical point of Eg |S
if y is a critical point of Eg then Ty Λ is the direct sum of Ty S
and Dy

We prove the existence of a countable subset of good
submanifolds Sn such that they intercepts at least one the
orbits of C 2-curves.

The same extension as in G -equivariant genericity theorem
works.

But Transversality condition is satisfied just when consider
prime closed geodesics

In this way we obtain the genericity of metrics with all the
prime closed geodesics non-degenerate, that is, the weak
bumpy theorem
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Anosov’s ingenious ideas

Let us introduce the notation:

M(a, b) =
{
g ∈ Met(M, i ; k) : every closed g-geodesic γ

with Emin(γ) ≤ a and E(γ) ≤ b is nondegenerate
}
.

E is the energy for an auxiliary Riemannian metric gR . Emin

is the energy of the first iterate

the subset of bumpy metrics is the intersection

∩n∈NM(n, n)

to conclude the semi-Riemannian bumpy theorem it is
enough to show that every M(n, n) is generic in
Met(M, i ; k)
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Steps of the proof

1) M(a, b) is open in Met(M, i ; k) for every a ≤ b

Proof: take {gn} ∈ Met(M, i ; k) \M(a, b) and show that
limn→∞ gn = g∞ ∈ Met(M, i ; k) \M(a, b).

2) M(3
2a, 3

2a) ∩M(a, 2a) is dense in M(a, 2a)

Proof: here we use the weak bumpy theorem and that
M? ∩M(a, 2a) ⊂M(3

2a, 3
2a) ∩M(a, 2a)

3) M(a, 2a) is dense in M(a, a) Proof: a perturbation argument

4) M(3
2a, 3

2a) is dense in M(a, a) Proof: Step 2 and 3

5) M(b, b) is dense in M(a, a)

Proof: Apply step 4 to obtain: M(
(

3
2

)n
a,
(

3
2

)n
a) is dense in M(a, a)

6) M(b, b) is dense in Met(M, i ; k) for every b ∈ R
Proof: Step 5 and the fact that for a fix metric g all the closed geodesics
have gR -energy greater than ā > 0
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L. Biliotti , M. A. Javaloyes, P. Piccione (*) On the semi-Riemannian bumpy theorem 16 / 19



Steps of the proof

1) M(a, b) is open in Met(M, i ; k) for every a ≤ b

Proof: take {gn} ∈ Met(M, i ; k) \M(a, b) and show that
limn→∞ gn = g∞ ∈ Met(M, i ; k) \M(a, b).

2) M(3
2a, 3

2a) ∩M(a, 2a) is dense in M(a, 2a)

Proof: here we use the weak bumpy theorem and that
M? ∩M(a, 2a) ⊂M(3

2a, 3
2a) ∩M(a, 2a)

3) M(a, 2a) is dense in M(a, a) Proof: a perturbation argument

4) M(3
2a, 3

2a) is dense in M(a, a) Proof: Step 2 and 3

5) M(b, b) is dense in M(a, a)

Proof: Apply step 4 to obtain: M(
(

3
2

)n
a,
(

3
2

)n
a) is dense in M(a, a)

6) M(b, b) is dense in Met(M, i ; k) for every b ∈ R
Proof: Step 5 and the fact that for a fix metric g all the closed geodesics
have gR -energy greater than ā > 0
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Bumpy theorem in the C∞-topology

Introduce the notations:

Met∗N(M, i ; k) =
{
g ∈ Met(M, i ; k) : all closed g-geodesics γ with

E (γ) ≤ N are nondegenerate
}

and

Met∗(M, i ; k) =
{
g ∈ Met(M, i ; k) : all closed g-geodesics

are nondegenerate
}
.

Met∗(M, i ;∞) = ∩∞N=1Met∗N(M, i ;∞)

it is enough to prove that every Met∗N(M, i ;∞) is open
and dense in Met(M, i ;∞).
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Bumpy theorem in the C∞-topology

Met∗N(M, i ; k) is open in Met(M, i ; k) for k = 2, . . . ,∞
Proof: Again consider gn ∈ Met(M, i ; k) \Met∗N(M, i ; k), then
limn→∞ gn = g∞ ∈ Met(M, i ; k) \Met∗N(M, i ; k)

Met∗N(M, i ;∞) is dense in Met(M, i ;∞).

Proof:

1) Met∗(M, i ; k) is dense in Met(M, i ; k) (Bumpy theorem)

2) Met∗(M, i ; k) ⊂ Met∗N(M, i ; k) (trivial)

3) Met∗N(M, i ; k) is dense in Met(M, i ; k) (steps 1) and 2))

4) Met(M, i ;∞) ∩Met∗N(M, i ; k) = Met∗N(M, i ;∞) is dense in
Met(M, i ; k) for all k ≥ 2:

dense ∩ (open and dense) = dense

5) Step 4) implies that Met∗N(M, i ;∞) is dense in Met(M, i ;∞)
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