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The talk will consist in three parts:

1) Almost isometries of quasi-metrics (abstract setting)
2) Almost isometries of Finsler metrics

3) Applications to stationary spacetimes (Fermat metrics)
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First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function d : X x X — R is a quasi-metric if
(i) d(x,y) > 0 for every x,y € X and d(x,y) =0 if and only if x =y,
(it) d(x,y)+ d(y,z) > d(x, z) (triangle inequality).
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First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function d : X x X — R is a quasi-metric if
(i) d(x,y) > 0 for every x,y € X and d(x,y) =0 if and only if x =y,
(it) d(x,y)+ d(y,z) > d(x, z) (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:
o BS(x,r)={y € X :d(x,y) < r} (forward balls)
° B (x,r)={y € X:d(y,x) < r} (backward balls)

respectively, for x € X and r > 0.
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First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function d : X x X — R is a quasi-metric if
(i) d(x,y) > 0 for every x,y € X and d(x,y) =0 if and only if x =y,
(it) d(x,y)+ d(y,z) > d(x, z) (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:
o BS(x,r)={y € X :d(x,y) < r} (forward balls)
° B (x,r)={y € X:d(y,x) < r} (backward balls)

respectively, for x € X and r > 0.

Definition

A pair (X, d) will be called a quasi-metric space endowed with the
topology induced by the family Bj(x, r)NBy(x,r), x€ Mand r > 0.

Let us observe that this topology coincides with the topology generated by
(the balls of ) the symmetrized metric d(x,y) = 3 (d(x,y) + d(y.x)).
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Quasi-metrics

Quasi-metrics spaces have been studied by many
mathematicians:

@ Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930,
Wilson 1931, Busemann 1944

@ and also by a spanish mathematician: Julio Rey REY PASTOR (1888-1962)
Pastor 1940
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Quasi-metrics

Quasi-metrics spaces have been studied by many
mathematicians:
@ Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930,
Wilson 1931, Busemann 1944
@ and also by a spanish mathematician: Julio Rey
Pastor 1940

Out seminar in the university of Murcia is called “Rey
Pastor” after him
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Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve
a:la,b)CR — X as

la) = s;njp Z d(a(si), a(siy1)),

1=1

where P is the set of partitions a=s51 < s <...<s41=b, r e IN.
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Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve
a:la,b)CR — X as

r
() =sup Y _d(a(si), alsit1)),
P 1=
where P is the set of partitions a=s51 < s <...<s41=b, r e IN.
o We say that « is rectifiable when ¢(«) is finite.

@ Moreover, we say that a curve v in X from p to g is a minimizing
geodesic if £(v) = d(p, q).
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Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve
a:la,b)CR — X as

r
Ua) =sup ) d(a(si), a(si+1),
P 1=
where P is the set of partitions a=s51 < s <...<s41=b, r e IN.
o We say that « is rectifiable when ¢(«) is finite.
@ Moreover, we say that a curve v in X from p to g is a minimizing
geodesic if £(v) = d(p, q).

Definition

Let us define the triangular function T : X x X x X — [0, +oc[ of a
quasi-metric space (X, d) as T(x,y,z) =d(x,y) + d(y, z) — d(x, z) for
every x,y,z € X.

Evidently, T is continuous.
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Almost isometries

Proposition

A curve « : [a,b] C R — X is a minimizing geodesic of a quasi-metric
space (X, d) iff T(a(s1),a(s2),(s3)) =0 for every a < s; < sp < s3 < b.
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Almost isometries

Proposition

A curve « : [a,b] C R — X is a minimizing geodesic of a quasi-metric
space (X, d) iff T(a(s1),a(s2),(s3)) =0 for every a < s; < sp < s3 < b.

Definition

Let (X1, d1) and (X2, d2) be two quasi-metric spaces. A bijection
w : X1 — Xp is an almost isometry if it preserves the triangular function,
that is,

Ta(p(x), 0(y), ¢(2)) = Ti(x,y,2)

for every x,y,z € X1, where T; and T, are the triangular functions
associated respectively to (X1, di) and (X2, d2).
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Almost isometries

A curve « : [a,b] C R — X is a minimizing geodesic of a quasi-metric
space (X, d) iff T(a(s1),a(s2),(s3)) =0 for every a < s; < sp < s3 < b.

Let (X1, d1) and (X2, d2) be two quasi-metric spaces. A bijection
@ : X1 — Xy is an almost isometry if it preserves the triangular function,
that is,

T2((P(X)7 (,0(}/), SO(Z)) = Tl(X7y7 Z)

for every x,y,z € X1, where T; and T, are the triangular functions
associated respectively to (X1, di) and (X2, d2).

N

Corollary

Almost isometries preserve minimizing geodesics.
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Almost isometries

Proposition

Given quasi-metric spaces (X1, d1) and (Xz, d>), a bijection ¢ : X1 — Xy is
an almost isometry iff 3 f : Xo — R such that for every x,y € Xi:

da(0(x), p(y)) = di(x,y) + f(@(x)) — £ ((y)) (1)
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Almost isometries

Given quasi-metric spaces (X1, d1) and (Xz, d>), a bijection ¢ : X1 — Xy is
an almost isometry iff 3 f : Xo — R such that for every x,y € Xi:

da(0(x), p(y)) = di(x,y) + f(@(x)) — £ ((y)) (1)

v

Proof.

= (the converse is straightforward)

@ Fix a point xp € Xi and define f : X — R as
f(z) = da(z,0(x0)) — di(¢p~(2), x0) for every z € X,.
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Almost isometries

Given quasi-metric spaces (X1, d1) and (Xz, d>), a bijection ¢ : X1 — Xy is
an almost isometry iff 3 f : Xo — R such that for every x,y € Xi:

da(0(x), p(y)) = di(x,y) + f(@(x)) — £ ((y)) (1)

v

Proof.

= (the converse is straightforward)

@ Fix a point xg € X7 and define f : X, — R as
f(z) = da(z,0(x0)) — di(¢p~(2), x0) for every z € X,.
o Given x,y € Xj, as @ preserves the triangular function, we have
di(x,y) + di(y, x0) — c1(x;, o)
= da((x), (y)) + da(0(y), e(x0)) — da2((x), ¢(x0)).

which is equivalent to (1).
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Almost isometries

Some observations:

@ In metric spaces, almost isometries are always isometries
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Almost isometries

Some observations:

@ In metric spaces, almost isometries are always isometries

o If p: (X1,d1) = (Xo, da) is an almost isometry, then
(X1, dh) = (Xo, )
is an isometry, where

gl(xay) =
gz(x,y) =

(di(x,y) + dily, x)),
(da(x,y) + da(y, x)).

Nl= N[=
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Almost isometries

Some observations:

@ In metric spaces, almost isometries are always isometries
o If p: (X1,d1) = (Xo, da) is an almost isometry, then

(X1, dh) = (Xa, db)
is an isometry, where

(di(x,y) + dily, x)),
(da(x,y) + da(y, x)).

gl(xay) =
gz(x,y) =

Nl= N[=

@ Moreover, ¢ is a homeomorphism and the functions f : X — R are
continuous
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Almost isometries

Notation:
e Iso(X,d) is the group of isometries of (X, d)
o Iso(X,d) is the group of almost isometries of (X, d). It will be called
the extended isometry group of (X, d).
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Almost isometries

Notation:
e Iso(X,d) is the group of isometries of (X, d)
e Iso(X, d) is the group of almost isometries of (X, d). It will be called

the extended isometry group of (X, d).

Proposition
o With the above notation, Iso(X,d) and Iso(X,d) are topological
groups endowed with the compact-open topology.
@ If the topology induced by d is locally compact, then fsB(X, d) and
Iso(X, d) are locally compact.
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Almost isometries

Notation:
e Iso(X,d) is the group of isometries of (X, d)
o Iso(X, d) is the group of almost isometries of (X, d). It will be called
the extended isometry group of (X, d).

o With the above notation, Iso(X,d) and Iso(X,d) are topological
groups endowed with the compact-open topology.

@ If the topology induced by d is locally compact, then fsB(X, d) and
Iso(X, d) are locally compact.

The proof follows from the inclusions:

Iso(X, d) C Iso(X, d) C Iso(X, d).
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Local almost isometries

Definition

Let (X1,d1) and (X2, d2) be two quasi-metric spaces. A map ¢ : X; — Xz
is a local almost isometry if Vx € X1, 3 U C X1, V C X5 open subsets,
with x € U, such that ¢|y : U — V is an almost isometry.
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Local almost isometries

Definition

Let (X1,d1) and (X2, d2) be two quasi-metric spaces. A map ¢ : X; — Xz
is a local almost isometry if Vx € X1, 3 U C X1, V C X5 open subsets,
with x € U, such that ¢|y : U — V is an almost isometry.

o define d; as the infimum of the lengths of curves between two points.
We say that (X, d) is a length space when d; = d.

@ We say that a quasi-metric space is weakly finitely compact if
B*(x,r) N B~ (x,r) are precompact Vx € X and r > 0.
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Local almost isometries

Definition

Let (X1,d1) and (X2, d2) be two quasi-metric spaces. A map ¢ : X; — Xz
is a local almost isometry if Vx € X1, 3 U C X1, V C X5 open subsets,
with x € U, such that ¢|y : U — V is an almost isometry.

o define d; as the infimum of the lengths of curves between two points.
We say that (X, d) is a length space when d; = d.

@ We say that a quasi-metric space is weakly finitely compact if
B*(x,r) N B~ (x,r) are precompact Vx € X and r > 0.

Let ¢ : (X1,d1) — (X2, d2) be a local almost isometry. Assume that

(X1, d1) and (X2, do) are length spaces, di is weakly finitely compact and
X is locally arc-connected and simply connected. Then ¢ is an almost
isometry.
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Second Part: Almost isometries of Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and

PauL FINSLER (1894-1970)
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Second Part: Almost isometries of Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and
@ C>®in TM\ {0}

PauL FINSLER (1894-1970)
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Second Part: Almost isometries of Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and
@ C>®in TM\ {0}

@ Positively homogeneous of degree one
F(Av) = AF(v) forall A >0

PauL FINSLER (1894-1970)
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Second Part: Almost isometries of Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and
Q@ C>®in TM\ {0}
@ Positively homogeneous of degree one
F(Av) = AF(v) forall A >0

© Fiberwise strongly convex square:

2 PAUL FINSLER (1894-1970)

0
gv(w,z) = ETEP F(v+tw4sz)?|i=s=0 = Hess(F?),(w, z)

for every w,z € T (,yM. Then g,(w, w) > 0 for
every 0 # w € T, )M.
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Second Part: Almost isometries of Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and
Q@ C>®in TM\ {0}
@ Positively homogeneous of degree one
F(Av) = AF(v) forall A >0

© Fiberwise strongly convex square:

2 PAUL FINSLER (1894-1970)

0 2 — 2
= 5oge F(vitwtsz)e—so = Hess(F), (w. 2)

gv(w, 2)

for every w,z € T (,yM. Then g,(w, w) > 0 for
every 0 # w € T, )M.

It can be showed that this implies:
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Second Part: Almost isometries of Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and
Q@ C>®in TM\ {0}
@ Positively homogeneous of degree one
F(Av) = AF(v) forall A >0

© Fiberwise strongly convex square:

2 PAUL FINSLER (1894-1970)

0 2 — 2
= 5oge F(vitwtsz)e—so = Hess(F), (w. 2)

gv(w, 2)

for every w,z € T (,yM. Then g,(w, w) > 0 for
every 0 # w € T, )M.
It can be showed that this implies:
e F is positive in TM \ {0} and F?is C! on TM.
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Second Part: Almost isometries of Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and
Q@ C>®in TM\ {0}
@ Positively homogeneous of degree one
F(Av) = AF(v) forall A >0

© Fiberwise strongly convex square:

2 PAUL FINSLER (1894-1970)

0 2 — 2
= 5oge F(vitwtsz)e—so = Hess(F), (w. 2)

gv(w, 2)

for every w,z € T (,yM. Then g,(w, w) > 0 for
every 0 # w € T, )M.
It can be showed that this implies:
e F is positive in TM \ {0} and F?is C! on TM.
@ Triangle inequality holds in the fibers
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Non-symmetric “distance”

@ We can define the length of a curve: lg(v) = fab F(¥)ds
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Non-symmetric “distance”

@ We can define the length of a curve: lg(v) = fab F(¥)ds

@ and then the distance between two points:
dist(p, q) = inf e coo(p,q) €F (V)
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Non-symmetric “distance”

@ We can define the length of a curve: lg(v) = fab F(¥)ds

@ and then the distance between two points:
dist(p, q) = inf e coo(p,q) €F (V)
@ dist is non-symmetric because F is non-reversible
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Non-symmetric “distance”

@ We can define the length of a curve: {r(y) = fab F(¥)ds
@ and then the distance between two points:

diSt(p, q) = inf,yeCoo(p7q) EF(’)/)
@ dist is non-symmetric because F is non-reversible

o the length of a curve t — (t) is different from the length of its
reverse t — y(—t)!!
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Non-symmetric “distance”

@ We can define the length of a curve: {r(y) = fab F(¥)ds
@ and then the distance between two points:

diSt(p, q) = inf,yeCoo(p7q) EF(’)/)
@ dist is non-symmetric because F is non-reversible

o the length of a curve t — (t) is different from the length of its
reverse t — y(—t)!!

We have to distinguish between forward and backward:
e balls B (p,r) = {x € M : dist(p,x) < r} and

B~ (p,r) ={x € M : dist(x,p) < r}
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Non-symmetric “distance”

@ We can define the length of a curve: lg(v) = fab F(¥)ds

@ and then the distance between two points:
dist(p, q) = inf e coo(p,q) €F (V)
@ dist is non-symmetric because F is non-reversible

o the length of a curve t — (t) is different from the length of its
reverse t — y(—t)!!

We have to distinguish between forward and backward:
e balls B (p,r) = {x € M : dist(p,x) < r} and

B~ (p,r) ={x € M : dist(x,p) < r}

@ Cauchy sequence
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Non-symmetric “distance”

@ We can define the length of a curve: lg(v) = fab F(¥)ds

@ and then the distance between two points:
dist(p, q) = inf e coo(p,q) €F (V)
@ dist is non-symmetric because F is non-reversible

o the length of a curve t — (t) is different from the length of its
reverse t — y(—t)!!

We have to distinguish between forward and backward:
e balls B (p,r) = {x € M : dist(p,x) < r} and

B~ (p,r) ={x € M : dist(x,p) < r}

@ Cauchy sequence

@ topological completeness

M. A. Javaloyes (UM) Almost isometries of non-reversible metrics



Non-symmetric “distance”

@ We can define the length of a curve: lg(v) = fab F(¥)ds

@ and then the distance between two points:
dist(p, q) = inf e coo(p,q) €F (V)
@ dist is non-symmetric because F is non-reversible

o the length of a curve t — (t) is different from the length of its
reverse t — y(—t)!!

We have to distinguish between forward and backward:
e balls B (p,r) = {x € M : dist(p,x) < r} and
B~ (p,r) ={x € M : dist(x,p) < r}

@ Cauchy sequence
@ topological completeness

@ geodesical completeness
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Randers metrics

@ Randers metrics in a manifold M is a
function R : TM — R defined as:

R(v) = v/ h(v,v) +w(v)

where h is Riemannian and w a 1-form with
lwllp <1VxeM,

Scanned at the American
Institute of Physics

G. RANDERS AND A. EINSTEIN
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Randers metrics

@ Randers metrics in a manifold M is a
function R : TM — R defined as:

R(v) = v/ h(v,v) +w(v)
where h is Riemannian and w a 1-form with
lwllp <1VxeM,

@ are basic examples of non-reversible Finsler
metrics: R(—v) # R(v).

Scanned at the American
Institute of Physics

G. RANDERS AND A. EINSTEIN
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Randers metrics

@ Randers metrics in a manifold M is a
function R : TM — R defined as:

R(v) = v/ h(v,v) +w(v)
where h is Riemannian and w a 1-form with
lwllp <1VxeM,
@ are basic examples of non-reversible Finsler
metrics: R(—v) # R(v).
@ Named after the norwegian physicist Gunnar
Randers (1914-1992):

[§ Randers, G.: On an asymmetrical metric
in the fourspace of General Relativity.
Phys. Rev. (2) 59, 195-199 (1941)

G. RANDERS AND A. EINSTEIN
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Zermelo metrics

Given a Riemannian metric g,
Zermelo metric:

2) =/ 2av )+ Haw.v-Lew ),

where a =1 — g(W, W).

MEETING OF WATERS
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Zermelo metrics

Given a Riemannian metric g,
Zermelo metric:

2) =/ 2av )+ Haw.v-Lew ),

where a =1 — g(W, W).

It is of Randers type

MEETING OF WATERS
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Zermelo metrics

Given a Riemannian metric g,
Zermelo metric:

2) =/ 2av )+ Haw.v-Lew ),

where a =1 — g(W, W).
It is of Randers type

Geodesics minimize time in the
presence of a wind or current
Ww.

MEETING OF WATERS
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Matsumoto metrics

Given a Riemannian metric g,
and a one-form (8

M(v) = g(v,v)

ve(v,v)—p(v)

SIERRA NEVADA (NEAR GRANADA)
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Matsum metrics

Given a Riemannian metric g,
and a one-form (8

M(v) = g(v,v)

ve(v,v)—p(v)

It is strongly convex if

\/m Z 2,8(V) SIERRA NEVADA (NEAR GRANDA)
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Matsumoto metrics

Given a Riemannian metric g,
and a one-form (8

M) = 8 Y)

ve(v,v)—p(v)

It is strongly convex if

\/m Z 2ﬁ(v) SIERRA NEVADA (NAR GRANDA)

Geodesics minimize time in the
presence of a slope
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Finsler metrics

Let us define the symmetrized Finsler metric of F as
F(v) = L[F(v) + F(-v)]
for every v € TM. The sum of Finsler metrics is a Finsler metric:

[ M. A. J. AND M. SANCHEZ, On the definition and examples of
Finsler metrics, Arxiv 2011

M. A. Javaloyes (UM) Almost isometries of non-reversible metrics



Finsler metrics

Let us define the symmetrized Finsler metric of F as
F(v) = %[F(v) + F(—v)]
for every v € TM. The sum of Finsler metrics is a Finsler metric:

[ M. A. J. AND M. SANCHEZ, On the definition and examples of
Finsler metrics, Arxiv 2011

Lemma

If ¢ : (M1, F1) — (M2, F2) is an almost isometry then
¢ (My, F1) = (M2, F)

is an isometry and ¢ is smooth.

Proof.
@ To see that ¢ is an isometry prove that preserves the length of curves

| N\

@  is smooth because it is an isometry of a Riemannian average metric
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Finsler metrics

Proposition

e If 3 an almost isometry ¢ : (M1, F1) — (M2, F»), then there exists a
smooth f : My — R such that ¢*(F1) = F, + df.

o Conversely, if o*(F1) = Fa + df, the map ¢ is an almost isometry.
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Finsler metrics

Proposition

e If 3 an almost isometry ¢ : (M1, F1) — (M2, F»), then there exists a
smooth f : My — R such that ¢*(F1) = F, + df.

o Conversely, if o*(F1) = Fa + df, the map ¢ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group
Iso(M, F) is a closed subgroup of Iso(M, F). In particular, Iso(M, F) is a
Lie group.

M. A. Javaloyes (UM) Almost isometries of non-reversible metrics



Finsler metrics

Proposition

e If 3 an almost isometry ¢ : (My, F1) — (M2, F2), then there exists a
smooth f : My — R such that ¢*(F1) = F, + df.

o Conversely, if o*(F1) = Fp + df, the map ¢ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group
Iso(M, F) is a closed subgroup of Iso(M, F). In particular, Iso(M, F) is a
Lie group.

| A\

Proof.
Use that Iso(M, F) C Iso(M, F) O

.
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Randers metrics

Let (M, R) be a Randers manifold and ¢ : M — M an almost isometry for
R. Then ¢ is an isometry for h.
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Randers metrics

Corollary

Let (M, R) be a Randers manifold and ¢ : M — M an almost isometry for
R. Then ¢ is an isometry for h.

v

Proof.

Just observe that the symmetrized Finsler metric of R is given by

R(v) = \/h(v, V) for v € TM. O
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Third part: applications to stationary spacetimes

(S xR, /) is a standard sta-
tionary spacetime

L =Observer

lightlike geodesic (x, t)
N

S is naturally endowed with
N a Randers metric F called
i the Fermat metric
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Conformally Standard Stationary Spacetimes

o A spacetime (M, g) is Conformastationary if it admits a timelike
Conformal field K, that is, a timelike vector field satisfying

Lkg = Ag,

for some function A\ : M — R
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Conformally Standard Stationary Spacetimes

o A spacetime (M, g) is Conformastationary if it admits a timelike
Conformal field K, that is, a timelike vector field satisfying

Lkg = Ag,

for some function A: M - R
@ Standard Conformastationary means that M =S x R and

g((v, 7—)7 (V7T)) - gp(go(v, V) + 2"‘)(\/)7_ - 7—2)7

in (x,t) € S xR, where (v,7) € TS X R, ¢: S xR — (0,+00)
@ and gp is a Riemannian metric on S and w a 1-form on S.
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Conformally Standard Stationary Spacetimes

o A spacetime (M, g) is Conformastationary if it admits a timelike
Conformal field K, that is, a timelike vector field satisfying

Lkg = Ag,
for some function A: M - R
@ Standard Conformastationary means that M =S x R and
g((v,7), (v,7)) = ¢(go(v, v) + 2w (v)T — 72),

in (x,t) € S xR, where (v,7) € TS X R, ¢: S xR — (0,+00)
@ and gp is a Riemannian metric on S and w a 1-form on S.
@ In this case, 0; is a timelike conformal field.

M. A. Javaloyes (UM) Almost isometries of non-reversible metrics 21 /31



Conformally Standard Stationary Spacetimes

o A spacetime (M, g) is Conformastationary if it admits a timelike
Conformal field K, that is, a timelike vector field satisfying

Lkg = Ag,

for some function A: M - R
@ Standard Conformastationary means that M =S x R and

g((v, 7—)7 (V7T)) - gp(go(v, V) + 2"‘)(\/)7_ - 7—2)7

in (x,t) € S xR, where (v,7) € T,S xR, ¢:SxR — (0,+00)
@ and gp is a Riemannian metric on S and w a 1-form on S.
@ In this case, 0; is a timelike conformal field.
A conformastationary spacetime is standard whenever it is
distinguishing and the timelike conformal vector field is complete:

[ M. A. J. AND M. SANCHEZ, A note on the existence of
standard splittings for conformally stationary spacetimes,
Classical Quantum Gravity, 25 (2008), pp. 168001, 7.

MIGUEL SANCHEZ
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Fermat principle in General Relativity

o First established by Herman Weyl in 1917 for static spacetimes

H. WEYL
—  (1885-1955)

M. A. Javaloyes (UM) Almost isometries of non-reversible metrics



Fermat principle in General Relativity

o First established by Herman Weyl in 1917 for static spacetimes

@ The stationary case is considered by Tulio Levi-Civita in 1927

H. WEYL T. LEVI-CIVITA
—  (1885-1955) — (1873-1941)
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Fermat principle in General Relativity

o First established by Herman Weyl in 1917 for static spacetimes

@ The stationary case is considered by Tulio Levi-Civita in 1927

@ It appears in classical books as Landau-Lifshitz “The classical theory
of fields” 1962

H. WEYL T. LEVI-CIVITA Lev LANDAU E. Lirsnirz
—  (1885-1955) — (1873-1941) — (1908-1968) — (1915-1985)
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Fermat principle in General Relativity

o First established by Herman Weyl in 1917 for static spacetimes

@ The stationary case is considered by Tulio Levi-Civita in 1927

@ It appears in classical books as Landau-Lifshitz “The classical theory
of fields” 1962

@ |. Kovner gave a version of Fermat principle for an arbitrary
spacetime in 1990

H. WEYL T. LEVI-CIVITA LEV LANDAU E. LIFSHITZ I. KOVNER
—  (1885-1955) — (1873-1941) — (1908-1968) — (1915-1985)
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Fermat principle in General Relativity

o First established by Herman Weyl in 1917 for static spacetimes

@ The stationary case is considered by Tulio Levi-Civita in 1927

@ It appears in classical books as Landau-Lifshitz “The classical theory
of fields” 1962

@ |. Kovner gave a version of Fermat principle for an arbitrary
spacetime in 1990

@ Volker Perlick gave a rigorous proof of this general principle in the
same year (1990)

¥ -

H. WEYL T. LEVI-CIVITA LEV LANDAU E. LIFSHITZ I. KOVNER V. PERLICK
—  (1885-1955) — (1873-1941) — (1908-1968) — (1915-1985) — (BORN IN 1956)
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Fermat principle in standard stationary spacetimes

@ Relativistic Fermat Principle: lightlike pregeodesics
are critical points of the arrival time function
corresponding to an observer in a suitable class of

lightlike curves

M. A. Javaloyes (UM) Almost isometries of non-reversible metrics



Fermat principle in standard stationary spacetimes

@ Relativistic Fermat Principle: lightlike pregeodesics iightiike curves
N

are critical points of the arrival time function
corresponding to an observer in a suitable class of
lightlike curves

@ If you consider as observer s — L;(s) = (x1,s) in
(S x R, g), given a lightlike curve v = (x, t), the
arrival time AT(~) is

t(b)=t(a)+ 2 (w(5)+/Bo(} X)Tw(¥)? ) ds.

PIERRE DE FERMAT (1601-1665)
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Fermat principle in standard stationary spacetimes

@ Relativistic Fermat Principle: lightlike pregeodesics iightiike curves
N

are critical points of the arrival time function
corresponding to an observer in a suitable class of
lightlike curves

@ If you consider as observer s — L;(s) = (x1,s) in
(S x R, g), given a lightlike curve v = (x, t), the
arrival time AT(~) is

t(b)=t(a)+ 2 (w(5)+/Bo(} X)Tw(¥)? ) ds.

e because go(x, x) + 2w(X)t — t2 =0 (g(%,%) = 0)

PIERRE DE FERMAT (1601-1665)
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Fermat principle in standard stationary spacetimes

@ Relativistic Fermat Principle: lightlike pregeodesics iightiike curves
N

are critical points of the arrival time function
corresponding to an observer in a suitable class of
lightlike curves

@ If you consider as observer s — L;(s) = (x1,s) in
(S xR, g), given a lightlike curve v = (x, t), the
arrival time AT(~) is

t(b)=t(a)+ f, (w()+ /o (x 1) +w(%)? ) ds.

e because go(x, X) + 2w(x)t — 2 =0 (g(5,%) = 0)
o Let us define the Fermat (Finslerian) metric in S as

F(v)=w(v)++/go(v,v)+w(v)?3,

PIERRE DE FERMAT (1601-1665)
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field
@ We say that a diffeomorphism ¢ : M — M is K-conformal if
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field
@ We say that a diffeomorphism ¢ : M — M is K-conformal if
o It is conformal, ¥, (g) = Ag, A # 0, (¢ is the pushforward) and
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field

@ We say that a diffeomorphism ¢ : M — M is K-conformal if
o It is conformal, ¥, (g) = Ag, A # 0, (¢ is the pushforward) and
o preserves K, 1.(K) = K
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field
@ We say that a diffeomorphism ¢ : M — M is K-conformal if
o It is conformal, ¥, (g) = Ag, A # 0, (¢ is the pushforward) and
o preserves K, 1.(K) =K
@ Now consider a normalized standard stationary spacetime (S x R, g)
with
g((v,7), (v, 7)) = go(v, v) + 2w(v)T — 72

ve TS and 7 € R.
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field
@ We say that a diffeomorphism ¢ : M — M is K-conformal if
o It is conformal, ¥, (g) = Mg, A # 0, (¢ is the pushforward) and
o preserves K, 1.(K) =K
@ Now consider a normalized standard stationary spacetime (S x R, g)
with
g((v,7), (v, 7)) = go(v, v) + 2w(v)T — 72

ve TS and 7 € R.

Theorem
Ify:(SxR,g)— (S xR,g) is a K-conformal map, then

w(Xv t) = (QD(X), t+ f(X))7
and ¢.(F) = F +df and ¢ : (S, h) — (S, h) is an isometry, where

h(v,v) = go(v,v) + w(v)2.
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K-conformal maps

Theorem

Ify:(SxR,g)— (SxR,g) is a K-conformal map, then
P(x,t) = (p(x),t+ f(x)) and p.(F) = F + df and ¢ : (S, h) — (S, h) is
an isometry, where

h(v,v) = go(v, v) + w(v)>.

Proof.

\D |
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K-conformal maps

Theorem

Ify:(SxR,g)— (SxR,g) is a K-conformal map, then
P(x,t) = (p(x),t+ f(x)) and p.(F) = F + df and ¢ : (S, h) — (S, h) is
an isometry, where

h(v,v) = go(v, v) + w(v)>.

Proof.
@ K-conformal implies that v maps orbits of 0; to orbits of 0, that is,

b(x, 1) = (p(x), t + £(x))

| \
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K-conformal maps

Theorem

Ify:(SxR,g)— (SxR,g) is a K-conformal map, then
P(x,t) = (p(x),t+ f(x)) and p.(F) = F + df and ¢ : (S, h) — (S, h) is
an isometry, where

h(v,v) = go(v, v) + w(v)>.

Proof.
@ K-conformal implies that v maps orbits of 0; to orbits of 0, that is,

b(x, 1) = (p(x), t + £(x))

@ As ¢ is conformal, maps lightlike pregeodesics to lightlike pregeodesics

| \
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K-conformal maps

Theorem

Ify:(SxR,g)— (SxR,g) is a K-conformal map, then
P(x,t) = (p(x),t+ f(x)) and p.(F) = F + df and ¢ : (S, h) — (S, h) is
an isometry, where

h(v,v) = go(v, v) + w(v)>.

| \

Proof.
@ K-conformal implies that v maps orbits of 0; to orbits of 0, that is,
P(x, t) = (p(x), t + f(x))
@ As ¢ is conformal, maps lightlike pregeodesics to lightlike pregeodesics

@ Then Fermat metric maps Fermat pregeodesics to Fermat
pregeodesics and £, () (7) = Lr(7y) + f(7(1)) — f(7(0))
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K-conformal maps

Theorem

Ify:(SxR,g)— (SxR,g) is a K-conformal map, then
P(x,t) = (p(x),t+ f(x)) and p.(F) = F + df and ¢ : (S, h) — (S, h) is
an isometry, where

h(v,v) = go(v, v) + w(v)>.

| \

Proof.

@ K-conformal implies that v maps orbits of 0; to orbits of 0, that is,
P(x, t) = (p(x), t + f(x))

@ As ¢ is conformal, maps lightlike pregeodesics to lightlike pregeodesics

@ Then Fermat metric maps Fermat pregeodesics to Fermat
pregeodesics and £, () (7) = Lr(7y) + f(7(1)) — f(7(0))

@ This means that ¢.(F) and F + df have the same geodesics and
therefore they are equal
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K-conformal maps

Lemma

Confk (M, g) (here M =R x S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and
normal in Conf(M, g).

Proof.
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K-conformal maps

Confk (M, g) (here M =R x S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and

normal in Conf(M, g).

Proof.

o First part is obvious in the C! topology.
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K-conformal maps

Lemma

Confk (M, g) (here M =R x S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and
normal in Conf(M, g).

Proof.
o First part is obvious in the C! topology.
o If v ngoan(M,g) then ¥(x, t) = (¢(x), t + f(x)) with
¢ € Iso(S, F)
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K-conformal maps

Lemma

Confk (M, g) (here M =R x S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and
normal in Conf(M, g).

Proof.
o First part is obvious in the C! topology.
o If v ngoan(M,g) then ¥(x, t) = (¢(x), t + f(x)) with
¢ € Iso(S, F)
o Moreover, ¥ 1(x, t) = (¢~ 1(x), t — f(¢~1(x)))

M. A. Javaloyes (UM) Almost isometries of non-reversible metrics 27 /31



K-conformal maps

Lemma

Confk (M, g) (here M =R x S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and
normal in Conf(M, g).

Proof.
o First part is obvious in the C! topology.
o If ¢ € Confy (M, g) then ¢(x,t) = (p(x), t + f(x)) with
o € Iso(S, F)
o Moreover, ¥ 1(x, t) = (¢~ 1(x), t — f(¢~1(x)))
o Then if KT : M — M is given by K (x,t) = (x,t+ T), it follows
that o KT o9y~ = KT (K is normal)
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K-conformal maps

The map 7 : Confx (M, g) — Iso(S, F) defined as (1)) = ¢ is a Lie group
homomorphism and 7 : Confx (M, g)/K — Iso(S, F) is an isomorphism.
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K-conformal maps

The map 7 : Confx (M, g) — Iso(S, F) defined as (1)) = ¢ is a Lie group
homomorphism and 7 : Confx (M, g)/K — Iso(S, F) is an isomorphism.

@ We just have to prove that 7 is one-to-one.
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K-conformal maps

The map 7 : Confx (M, g) — Iso(S, F) defined as (1)) = ¢ is a Lie group
homomorphism and 7 : Confx (M, g)/K — Iso(S, F) is an isomorphism.

| A

Proof.

@ We just have to prove that 7 is one-to-one.

@ Injective: if ¥ and 1o project on the same almost isometry map ¢,
then by last Prop. ¥1(x, t) = (p(x),t + f(x) + c¢1) and
a(x, 1) = (9(x), t+ F(x) + c2), 2 0 7" = K27 and [1] = [4)2]
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K-conformal maps

Proposition

The map 7 : Confx (M, g) — Iso(S, F) defined as (1)) = ¢ is a Lie group
homomorphism and 7 : Confx (M, g)/K — Iso(S, F) is an isomorphism.

| A

Proof.
@ We just have to prove that 7 is one-to-one.
@ Injective: if ¥ and 1o project on the same almost isometry map ¢,
then by last Prop. ¥1(x, t) = (p(x),t + f(x) + c¢1) and
pa(x, t) = (p(x), t + F(x) + c2), Y2 0 97" = K= and [¢h1] = [o]
@ Surjective: given an almost isometry ¢, we construct the map

b(x; 1) = (p(x), t + f(x))

Clearly, it preserves 0;. By Fermat principle, it maps lightlike
pregeodesics to lightlike pregeodesics, then it preserves the lightcone
and it must be conformal (by Dajcker-Nomizu [83]).
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Applications

Given a manifold S, for a generic set of data (go,w), the stationary metric
g = g(go,w) on M =S x R has discrete K-conformal group
Confx (M, g)/K.
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Applications

Given a manifold S, for a generic set of data (go,w), the stationary metric
g = g(go,w) on M =S x R has discrete K-conformal group
Confx (M, g)/K.

If S is compact, then Confx(S x R, g)/K and IASB(S, F) are compact Lie
groups.
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Open problems

@ Compute explicitly some extended isometry group

@ Which are the Finsler metrics with extended isometry group of
maximal dimension?
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