Almost isometries of non-reversible metrics with applications to stationary spacetimes

Miguel Ángel Javaloyes (Universidad de Murcia) (joint work with L. Lichtenfelz and P. Piccione)

Partially supported by MICINN/FEDER project MTM2009-10418 and Fundación Séneca project 04540/GERM/06, Spain

XVII Escola de Geometria Diferencial, Manaus, July 11-20 (2012)

My collaborators

LEANDRO LICHTENFELZ
NOTRE DAME UNIVERSITY (USA)

PAOLO PICCIONE
UNIVERSIDADE DE SAO PAULO (BRASIL)

Outline

The talk will consist in three parts:

- 1) Almost isometries of quasi-metrics (abstract setting)
- 2) Almost isometries of Finsler metrics
- 3) Applications to stationary spacetimes (Fermat metrics)

First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function $d: X \times X \to \mathbb{R}$ is a *quasi-metric* if

- (i) $d(x,y) \ge 0$ for every $x,y \in X$ and d(x,y) = 0 if and only if x = y,
- (ii) $d(x,y) + d(y,z) \ge d(x,z)$ (triangle inequality).

First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function $d: X \times X \to \mathbb{R}$ is a *quasi-metric* if

- (i) $d(x,y) \ge 0$ for every $x,y \in X$ and d(x,y) = 0 if and only if x = y,
- (ii) $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:

- $B_d^+(x,r) = \{ y \in X : d(x,y) < r \}$ (forward balls)
- $B_d^-(x,r) = \{ y \in X : d(y,x) < r \}$ (backward balls) respectively, for $x \in X$ and r > 0.

First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function $d: X \times X \to \mathbb{R}$ is a *quasi-metric* if

- (i) $d(x,y) \ge 0$ for every $x,y \in X$ and d(x,y) = 0 if and only if x = y,
- (ii) $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:

- $B_d^+(x,r) = \{ y \in X : d(x,y) < r \}$ (forward balls)
- $B_d^-(x,r) = \{ y \in X : d(y,x) < r \}$ (backward balls) respectively, for $x \in X$ and r > 0.

Definition

A pair (X, d) will be called a *quasi-metric space* endowed with the topology induced by the family $B_d^+(x, r) \cap B_d^-(x, r)$, $x \in M$ and r > 0.

Let us observe that this topology coincides with the topology generated by (the balls of) the symmetrized metric $\widetilde{d}(x,y) = \frac{1}{2}(d(x,y) + d(y,x))$.

Quasi-metrics

Quasi-metrics spaces have been studied by many mathematicians:

- Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930, Wilson 1931, Busemann 1944
- and also by a spanish mathematician: Julio Rey Pastor 1940

Rey Pastor (1888-1962)

Quasi-metrics

Quasi-metrics spaces have been studied by many mathematicians:

- Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930, Wilson 1931, Busemann 1944
- and also by a spanish mathematician: Julio Rey Pastor 1940

Out seminar in the university of Murcia is called "Rey Pastor" after him

Rey Pastor (1888-1962)

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha:[a,b]\subseteq\mathbb{R}\to X$ as

$$\ell(\alpha) = \sup_{\mathcal{P}} \sum_{1=1}^{r} d(\alpha(s_i), \alpha(s_{i+1})),$$

where \mathcal{P} is the set of partitions $a = s_1 < s_2 < \ldots < s_{r+1} = b$, $r \in \mathbb{N}$.

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha:[a,b]\subseteq\mathbb{R}\to X$ as

$$\ell(\alpha) = \sup_{\mathcal{P}} \sum_{1=1}^{r} d(\alpha(s_i), \alpha(s_{i+1})),$$

where \mathcal{P} is the set of partitions $a = s_1 < s_2 < \ldots < s_{r+1} = b$, $r \in \mathbb{N}$.

- We say that α is *rectifiable* when $\ell(\alpha)$ is finite.
- Moreover, we say that a curve γ in X from p to q is a *minimizing geodesic* if $\ell(\gamma) = d(p,q)$.

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha:[a,b]\subseteq\mathbb{R}\to X$ as

$$\ell(\alpha) = \sup_{\mathcal{P}} \sum_{1=1}^{r} d(\alpha(s_i), \alpha(s_{i+1})),$$

where \mathcal{P} is the set of partitions $a = s_1 < s_2 < \ldots < s_{r+1} = b$, $r \in \mathbb{N}$.

- We say that α is *rectifiable* when $\ell(\alpha)$ is finite.
- Moreover, we say that a curve γ in X from p to q is a *minimizing geodesic* if $\ell(\gamma) = d(p,q)$.

Definition

Let us define the *triangular function* $T: X \times X \times X \to [0, +\infty[$ of a quasi-metric space (X, d) as T(x, y, z) = d(x, y) + d(y, z) - d(x, z) for every $x, y, z \in X$.

Evidently, T is continuous.

Proposition

A curve $\alpha: [a,b] \subseteq \mathbb{R} \to X$ is a minimizing geodesic of a quasi-metric space (X,d) iff $T(\alpha(s_1),\alpha(s_2),\alpha(s_3))=0$ for every $a\leq s_1 < s_2 < s_3 \leq b$.

Proposition

A curve $\alpha: [a,b] \subseteq \mathbb{R} \to X$ is a minimizing geodesic of a quasi-metric space (X,d) iff $T(\alpha(s_1),\alpha(s_2),\alpha(s_3))=0$ for every $a \leq s_1 < s_2 < s_3 \leq b$.

Definition

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A bijection $\varphi: X_1 \to X_2$ is an *almost isometry* if it preserves the triangular function, that is,

$$T_2(\varphi(x), \varphi(y), \varphi(z)) = T_1(x, y, z)$$

for every $x, y, z \in X_1$, where T_1 and T_2 are the triangular functions associated respectively to (X_1, d_1) and (X_2, d_2) .

Proposition

A curve $\alpha: [a,b] \subseteq \mathbb{R} \to X$ is a minimizing geodesic of a quasi-metric space (X,d) iff $T(\alpha(s_1),\alpha(s_2),\alpha(s_3))=0$ for every $a \leq s_1 < s_2 < s_3 \leq b$.

Definition

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A bijection $\varphi: X_1 \to X_2$ is an *almost isometry* if it preserves the triangular function, that is,

$$T_2(\varphi(x), \varphi(y), \varphi(z)) = T_1(x, y, z)$$

for every $x, y, z \in X_1$, where T_1 and T_2 are the triangular functions associated respectively to (X_1, d_1) and (X_2, d_2) .

Corollary

Almost isometries preserve minimizing geodesics.

Proposition

Given quasi-metric spaces (X_1, d_1) and (X_2, d_2) , a bijection $\varphi : X_1 \to X_2$ is an almost isometry iff $\exists f : X_2 \to \mathbb{R}$ such that for every $x, y \in X_1$:

$$d_2(\varphi(x),\varphi(y)) = d_1(x,y) + f(\varphi(x)) - f(\varphi(y))$$
 (1)

Proposition

Given quasi-metric spaces (X_1, d_1) and (X_2, d_2) , a bijection $\varphi : X_1 \to X_2$ is an almost isometry iff $\exists f : X_2 \to \mathbb{R}$ such that for every $x, y \in X_1$:

$$d_2(\varphi(x),\varphi(y)) = d_1(x,y) + f(\varphi(x)) - f(\varphi(y))$$
 (1)

Proof.

- \Rightarrow (the converse is straightforward)
 - Fix a point $x_0 \in X_1$ and define $f: X_2 \to \mathbb{R}$ as $f(z) = d_2(z, \varphi(x_0)) d_1(\varphi^{-1}(z), x_0)$ for every $z \in X_2$.

Proposition

Given quasi-metric spaces (X_1, d_1) and (X_2, d_2) , a bijection $\varphi : X_1 \to X_2$ is an almost isometry iff $\exists f : X_2 \to \mathbb{R}$ such that for every $x, y \in X_1$:

$$d_2(\varphi(x),\varphi(y)) = d_1(x,y) + f(\varphi(x)) - f(\varphi(y))$$
 (1)

Proof.

- ⇒ (the converse is straightforward)
 - Fix a point $x_0 \in X_1$ and define $f: X_2 \to \mathbb{R}$ as $f(z) = d_2(z, \varphi(x_0)) d_1(\varphi^{-1}(z), x_0)$ for every $z \in X_2$.
 - Given $x, y \in X_1$, as φ preserves the triangular function, we have

$$d_1(x,y) + d_1(y,x_0) - d_1(x,x_0) = d_2(\varphi(x),\varphi(y)) + d_2(\varphi(y),\varphi(x_0)) - d_2(\varphi(x),\varphi(x_0)),$$

which is equivalent to (1).

Some observations:

• In metric spaces, almost isometries are always isometries

Some observations:

- In metric spaces, almost isometries are always isometries
- If $\varphi:(X_1,d_1)\to (X_2,d_2)$ is an almost isometry, then

$$\varphi: (X_1, \widetilde{d}_1) \rightarrow (X_2, \widetilde{d}_2)$$

is an isometry, where

$$\widetilde{d}_1(x,y) = \frac{1}{2} (d_1(x,y) + d_1(y,x)),$$

 $\widetilde{d}_2(x,y) = \frac{1}{2} (d_2(x,y) + d_2(y,x)).$

Some observations:

- In metric spaces, almost isometries are always isometries
- If $\varphi: (X_1, d_1) \to (X_2, d_2)$ is an almost isometry, then

$$\varphi: (X_1, \widetilde{d}_1) \rightarrow (X_2, \widetilde{d}_2)$$

is an isometry, where

$$\widetilde{d}_1(x,y) = \frac{1}{2} (d_1(x,y) + d_1(y,x)),$$

 $\widetilde{d}_2(x,y) = \frac{1}{2} (d_2(x,y) + d_2(y,x)).$

• Moreover, φ is a homeomorphism and the functions $f: X_2 \to \mathbb{R}$ are continuous

Notation:

- Iso(X, d) is the group of isometries of (X, d)
- Iso(X, d) is the group of almost isometries of (X, d). It will be called the *extended isometry group* of (X, d).

Notation:

- Iso(X, d) is the group of isometries of (X, d)
- Iso(X, d) is the group of almost isometries of (X, d). It will be called the *extended isometry group* of (X, d).

Proposition

- With the above notation, $\operatorname{Iso}(X, d)$ and $\operatorname{Iso}(X, d)$ are topological groups endowed with the compact-open topology.
- If the topology induced by d is locally compact, then $\operatorname{Iso}(X,d)$ and $\operatorname{Iso}(X,d)$ are locally compact.

Notation:

- Iso(X, d) is the group of isometries of (X, d)
- $\operatorname{Iso}(X,d)$ is the group of almost isometries of (X,d). It will be called the *extended isometry group* of (X,d).

Proposition

- With the above notation, $\operatorname{Iso}(X, d)$ and $\operatorname{Iso}(X, d)$ are topological groups endowed with the compact-open topology.
- If the topology induced by d is locally compact, then $\widetilde{\mathrm{Iso}}(X,d)$ and $\overline{\mathrm{Iso}}(X,d)$ are locally compact.

Proof.

The proof follows from the inclusions:

$$\operatorname{Iso}(X,d) \subseteq \widetilde{\operatorname{Iso}}(X,d) \subseteq \operatorname{Iso}(X,\widetilde{d}).$$

Local almost isometries

Definition

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A map $\varphi: X_1 \to X_2$ is a *local almost isometry* if $\forall x \in X_1$, $\exists \ U \subseteq X_1$, $V \subseteq X_2$ open subsets, with $x \in U$, such that $\varphi|_U: U \to V$ is an almost isometry.

Local almost isometries

Definition

Let (X_1,d_1) and (X_2,d_2) be two quasi-metric spaces. A map $\varphi: X_1 \to X_2$ is a *local almost isometry* if $\forall x \in X_1$, $\exists \ U \subseteq X_1$, $V \subseteq X_2$ open subsets, with $x \in U$, such that $\varphi|_U: U \to V$ is an almost isometry.

- define d_l as the infimum of the lengths of curves between two points. We say that (X, d) is a *length space* when $d_l = d$.
- We say that a quasi-metric space is weakly finitely compact if $B^+(x,r) \cap B^-(x,r)$ are precompact $\forall x \in X$ and r > 0.

Local almost isometries

Definition

Let (X_1,d_1) and (X_2,d_2) be two quasi-metric spaces. A map $\varphi:X_1\to X_2$ is a *local almost isometry* if $\forall x\in X_1$, $\exists~U\subseteq X_1$, $V\subseteq X_2$ open subsets, with $x\in U$, such that $\varphi|_U:U\to V$ is an almost isometry.

- define d_l as the infimum of the lengths of curves between two points. We say that (X, d) is a *length space* when $d_l = d$.
- We say that a quasi-metric space is weakly finitely compact if $B^+(x,r) \cap B^-(x,r)$ are precompact $\forall x \in X$ and r > 0.

Theorem

Let $\varphi:(X_1,d_1)\to (X_2,d_2)$ be a local almost isometry. Assume that (X_1,d_1) and (X_2,d_2) are length spaces, d_1 is weakly finitely compact and X_2 is locally arc-connected and simply connected. Then φ is an almost isometry.

DEFINITION: $F:TM \to [0,+\infty)$ continuous and

Paul Finsler (1894-1970)

DEFINITION: $F: TM \rightarrow [0, +\infty)$ continuous and

Paul Finsler (1894-1970)

DEFINITION: $F: TM \rightarrow [0, +\infty)$ continuous and

- Positively homogeneous of degree one $F(\lambda v) = \lambda F(v)$ for all $\lambda > 0$

Paul Finsler (1894-1970)

DEFINITION: $F: TM \rightarrow [0, +\infty)$ continuous and

- Positively homogeneous of degree one $F(\lambda v) = \lambda F(v)$ for all $\lambda > 0$
- Fiberwise strongly convex square:

 $g_v(w,z) = \frac{\partial^2}{\partial t \partial s} F(v + tw + sz)^2|_{t=s=0} = \text{Hess}(F^2)_v(w,z)$

for every
$$w, z \in T_{\pi(v)}M$$
. Then $g_v(w, w) > 0$ for every $0 \neq w \in T_{\pi(v)}M$.

DEFINITION: $F: TM \rightarrow [0, +\infty)$ continuous and

- Positively homogeneous of degree one $F(\lambda v) = \lambda F(v)$ for all $\lambda > 0$
- Siberwise strongly convex square:

$$g_{\nu}(w,z) = \frac{\partial^2}{\partial t \partial s} F(v + tw + sz)^2|_{t=s=0} = \operatorname{Hess}(F^2)_{\nu}(w,z)$$

for every $w, z \in T_{\pi(v)}M$. Then $g_v(w, w) > 0$ for every $0 \neq w \in T_{\pi(v)}M$.

It can be showed that this implies:

DEFINITION: $F: TM \rightarrow [0, +\infty)$ continuous and

- Positively homogeneous of degree one $F(\lambda v) = \lambda F(v)$ for all $\lambda > 0$
- Fiberwise strongly convex square:

Paul Finsler (1894-1970)

$$g_{\nu}(w,z) = \frac{\partial^2}{\partial t \partial s} F(v + tw + sz)^2|_{t=s=0} = \operatorname{Hess}(F^2)_{\nu}(w,z)$$

for every $w, z \in T_{\pi(v)}M$. Then $g_v(w, w) > 0$ for every $0 \neq w \in T_{\pi(v)}M$.

It can be showed that this implies:

• F is positive in $TM \setminus \{0\}$ and F^2 is C^1 on TM.

DEFINITION: $F: TM \rightarrow [0, +\infty)$ continuous and

- Positively homogeneous of degree one $F(\lambda v) = \lambda F(v)$ for all $\lambda > 0$
- Fiberwise strongly convex square:

 $g_v(w,z) = \frac{\partial^2}{\partial t \partial s} F(v + tw + sz)^2|_{t=s=0} = \text{Hess}(F^2)_v(w,z)$

for every
$$w,z\in T_{\pi(v)}M$$
. Then $g_v(w,w)>0$ for

every $0 \neq w \in T_{\pi(v)}M$. It can be showed that this implies:

- F is positive in $TM \setminus \{0\}$ and F^2 is C^1 on TM.
- Triangle inequality holds in the fibers

Non-symmetric "distance"

• We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$

Non-symmetric "distance"

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $\operatorname{dist}(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_F(\gamma)$

Non-symmetric "distance"

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $\operatorname{dist}(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_F(\gamma)$
- dist is non-symmetric because F is non-reversible

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $\operatorname{dist}(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_{F}(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(-t)!!$

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $\operatorname{dist}(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_{F}(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(-t)!!$

We have to distinguish between forward and backward:

• balls $B^+(p,r) = \{x \in M : \operatorname{dist}(p,x) < r\}$ and

$$B^-(p,r) = \{x \in M : \operatorname{dist}(x,p) < r\}$$

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $\operatorname{dist}(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_F(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(-t)!!$

We have to distinguish between forward and backward:

• balls $B^+(p, r) = \{x \in M : dist(p, x) < r\}$ and

$$B^-(p,r) = \{x \in M : \operatorname{dist}(x,p) < r\}$$

Cauchy sequence

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $\operatorname{dist}(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_F(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(-t)!!$

We have to distinguish between forward and backward:

• balls $B^+(p, r) = \{x \in M : dist(p, x) < r\}$ and

$$B^{-}(p,r) = \{x \in M : \operatorname{dist}(x,p) < r\}$$

- Cauchy sequence
- topological completeness

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $\operatorname{dist}(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_F(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(-t)!!$

We have to distinguish between forward and backward:

• balls $B^+(p, r) = \{x \in M : dist(p, x) < r\}$ and

$$B^-(p,r) = \{x \in M : \operatorname{dist}(x,p) < r\}$$

- Cauchy sequence
- topological completeness
- geodesical completeness

• Randers metrics in a manifold M is a function $R: TM \to \mathbb{R}$ defined as:

$$R(v) = \sqrt{h(v, v)} + \omega(v)$$

where h is Riemannian and ω a 1-form with $\|\omega\|_h < 1 \ \forall x \in M$,

G. Randers and A. Einstein

• Randers metrics in a manifold M is a function $R: TM \to \mathbb{R}$ defined as:

$$R(v) = \sqrt{h(v, v)} + \omega(v)$$

where h is Riemannian and ω a 1-form with $\|\omega\|_h < 1 \ \forall x \in M$,

• are basic examples of non-reversible Finsler metrics: $R(-v) \neq R(v)$.

G. Randers and A. Einstein

• Randers metrics in a manifold M is a function $R: TM \to \mathbb{R}$ defined as:

$$R(v) = \sqrt{h(v, v)} + \omega(v)$$

where h is Riemannian and ω a 1-form with $\|\omega\|_h < 1 \ \forall x \in M$,

- are basic examples of non-reversible Finsler metrics: $R(-v) \neq R(v)$.
- Named after the norwegian physicist Gunnar Randers (1914-1992):
 - Randers, G.: On an asymmetrical metric in the fourspace of General Relativity. Phys. Rev. (2) **59**, 195–199 (1941)

G. Randers and A. Einstein

Zermelo metrics

Given a Riemannian metric g, Zermelo metric:

$$Z(v) = \sqrt{\frac{1}{\alpha}g(v,v) + \frac{1}{\alpha^2}g(W,v)^2} - \frac{1}{\alpha}g(W,v),$$

where $\alpha = 1 - g(W, W)$.

Zermelo metrics

Given a Riemannian metric g, **7ermelo** metric:

$$Z(v) = \sqrt{\frac{1}{\alpha}g(v,v) + \frac{1}{\alpha^2}g(W,v)^2} - \frac{1}{\alpha}g(W,v),$$

where $\alpha = 1 - g(W, W)$.

It is of Randers type

Zermelo metrics

Given a Riemannian metric g, **7ermelo** metric:

$$Z(v) = \sqrt{\frac{1}{\alpha}g(v,v) + \frac{1}{\alpha^2}g(W,v)^2} - \frac{1}{\alpha}g(W,v),$$

where $\alpha = 1 - g(W, W)$.

It is of Randers type

Geodesics minimize time in the presence of a wind or current W.

Matsumoto metrics

Given a Riemannian metric g, and a one-form β

$$M(v) = \frac{g(v, v)}{\sqrt{g(v, v)} - \beta(v)}$$

Sierra Nevada (near Granada)

Matsumoto metrics

Given a Riemannian metric g, and a one-form β

$$M(v) = \frac{g(v, v)}{\sqrt{g(v, v)} - \beta(v)}$$

It is strongly convex if $\sqrt{g(v,v)} \ge 2\beta(v)$

Sierra Nevada (near Granada)

Matsumoto metrics

Given a Riemannian metric g, and a one-form β

$$M(v) = \frac{g(v, v)}{\sqrt{g(v, v)} - \beta(v)}$$

It is strongly convex if $\sqrt{g(v,v)} \ge 2\beta(v)$

Geodesics minimize time in the presence of a slope

Sierra Nevada (near Granada)

Let us define the symmetrized Finsler metric of F as

$$\hat{F}(v) = \frac{1}{2} \big[F(v) + F(-v) \big]$$

for every $v \in TM$. The sum of Finsler metrics is a Finsler metric:

 $\rm M.~A.~J.~AND~M.~S\acute{A}NCHEZ,~\emph{On the definition and examples of}$ Finsler metrics, Arxiv 2011

Let us define the symmetrized Finsler metric of F as

$$\hat{F}(v) = \frac{1}{2} \big[F(v) + F(-v) \big]$$

for every $v \in TM$. The sum of Finsler metrics is a Finsler metric:

M. A. J. AND M. SÁNCHEZ, On the definition and examples of Finsler metrics, Arxiv 2011

Lemma

If $\varphi:(M_1,F_1) \to (M_2,F_2)$ is an almost isometry then

$$\varphi: (M_1, \hat{F}_1) \rightarrow (M_2, \hat{F}_2)$$

is an isometry and φ is smooth.

Proof.

- \bullet To see that φ is an isometry prove that preserves the length of curves
- ullet φ is smooth because it is an isometry of a Riemannian average metric

Proposition

- If \exists an almost isometry $\varphi: (M_1, F_1) \to (M_2, F_2)$, then there exists a smooth $f: M_2 \to \mathbb{R}$ such that $\varphi^*(F_1) = F_2 + \mathrm{d}f$.
- Conversely, if $\varphi^*(F_1) = F_2 + \mathrm{d}f$, the map φ is an almost isometry.

Proposition

- If \exists an almost isometry $\varphi: (M_1, F_1) \to (M_2, F_2)$, then there exists a smooth $f: M_2 \to \mathbb{R}$ such that $\varphi^*(F_1) = F_2 + \mathrm{d}f$.
- Conversely, if $\varphi^*(F_1) = F_2 + df$, the map φ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group $\widetilde{\mathrm{Iso}}(M, F)$ is a closed subgroup of $\mathrm{Iso}(M, \hat{F})$. In particular, $\widetilde{\mathrm{Iso}}(M, F)$ is a Lie group.

Proposition

- If \exists an almost isometry $\varphi: (M_1, F_1) \to (M_2, F_2)$, then there exists a smooth $f: M_2 \to \mathbb{R}$ such that $\varphi^*(F_1) = F_2 + \mathrm{d}f$.
- Conversely, if $\varphi^*(F_1) = F_2 + df$, the map φ is an almost isometry.

Proposition

Let (M,F) be a Finsler manifold. Then the extended isometry group $\widetilde{\mathrm{Iso}}(M,F)$ is a closed subgroup of $\mathrm{Iso}(M,\hat{F})$. In particular, $\widetilde{\mathrm{Iso}}(M,F)$ is a Lie group.

Proof.

Use that $\widetilde{\mathrm{Iso}}(M,F)\subset \mathrm{Iso}(M,\hat{F})$

Corollary

Let (M,R) be a Randers manifold and $\varphi:M\to M$ an almost isometry for R. Then φ is an isometry for h.

Corollary

Let (M,R) be a Randers manifold and $\varphi:M\to M$ an almost isometry for R. Then φ is an isometry for h.

Proof.

Just observe that the symmetrized Finsler metric of R is given by $\hat{R}(v) = \sqrt{h(v,v)}$ for $v \in TM$.

Third part: applications to stationary spacetimes

 $(S \times \mathbb{R}, I)$ is a standard stationary spacetime

S is naturally endowed with a Randers metric F called the Fermat metric

• A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$\mathcal{L}_{K}g = \lambda g,$$

for some function $\lambda: M \to \mathbb{R}$

• A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$\mathcal{L}_{K}g = \lambda g,$$

for some function $\lambda: M \to \mathbb{R}$.

ullet Standard Conformastationary means that $M=S imes\mathbb{R}$ and

$$g((v,\tau),(v,\tau)) = \varphi(g_0(v,v) + 2\omega(v)\tau - \tau^2),$$

in
$$(x,t) \in S \times \mathbb{R}$$
, where $(v,\tau) \in T_x S \times \mathbb{R}$, $\varphi : S \times \mathbb{R} \to (0,+\infty)$

• and g_0 is a Riemannian metric on S and ω a 1-form on S.

• A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$\mathcal{L}_{K}g = \lambda g,$$

for some function $\lambda: M \to \mathbb{R}$

ullet Standard Conformastationary means that $M=S imes\mathbb{R}$ and

$$g((v,\tau),(v,\tau)) = \varphi(g_0(v,v) + 2\omega(v)\tau - \tau^2),$$

in
$$(x,t) \in S \times \mathbb{R}$$
, where $(v,\tau) \in T_x S \times \mathbb{R}$, $\varphi : S \times \mathbb{R} \to (0,+\infty)$

- and g_0 is a Riemannian metric on S and ω a 1-form on S.
- In this case, ∂_t is a timelike conformal field.

• A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$\mathcal{L}_{K}g = \lambda g,$$

for some function $\lambda: M \to \mathbb{R}$

ullet Standard Conformastationary means that $M=S imes\mathbb{R}$ and

$$g((v,\tau),(v,\tau)) = \varphi(g_0(v,v) + 2\omega(v)\tau - \tau^2),$$

in
$$(x,t) \in S \times \mathbb{R}$$
, where $(v,\tau) \in T_x S \times \mathbb{R}$, $\varphi : S \times \mathbb{R} \to (0,+\infty)$

- and g_0 is a Riemannian metric on S and ω a 1-form on S.
- In this case, ∂_t is a timelike conformal field.

A conformastationary spacetime is standard whenever it is distinguishing and the timelike conformal vector field is complete:

M. A. J. AND M. SÁNCHEZ, A note on the existence of standard splittings for conformally stationary spacetimes, Classical Quantum Gravity, 25 (2008), pp. 168001, 7

• First established by Herman Weyl in 1917 for static spacetimes

H. Weyl → (1885-1955)

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927

H. Weyl → (1885-1955)

T. Levi-Civita → (1873-1941)

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927
- It appears in classical books as Landau-Lifshitz "The classical theory of fields" 1962

H. Weyl → (1885-1955)

T. Levi-Civita → (1873-1941)

LEV LANDAU (1908-1968)

E. Lifshitz (1915-1985)

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927
- It appears in classical books as Landau-Lifshitz "The classical theory of fields" 1962
- I. Kovner gave a version of Fermat principle for an arbitrary spacetime in 1990

H. Weyl → (1885-1955)

T. LEVI-CIVITA → (1873-1941)

LEV LANDAU (1908-1968)

E. Lifshitz → (1915-1985)

I. Kovner

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927
- It appears in classical books as Landau-Lifshitz "The classical theory of fields" 1962
- I. Kovner gave a version of Fermat principle for an arbitrary spacetime in 1990
- Volker Perlick gave a rigorous proof of this general principle in the same year (1990)

H. Weyl → (1885-1955)

T. Levi-Civita → (1873-1941)

LEV LANDAU
→ (1908-1968)

E. Lifshitz → (1915-1985)

I. Kovner

V. Perlick \rightarrow (Born in 1956)

Fermat principle in standard stationary spacetimes

 Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves
- If you consider as observer $s \to L_1(s) = (x_1, s)$ in $(S \times \mathbb{R}, g)$, given a lightlike curve $\gamma = (x, t)$, the arrival time $\operatorname{AT}(\gamma)$ is

 $t(b) {=} t(a) {+} \textstyle \int_a^b \Bigl(\omega(\dot{x}) {+} \sqrt{g_0(\dot{x}, \dot{x}) {+} \omega(\dot{x})^2} \Bigr) \mathrm{d}s.$

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves
- If you consider as observer $s \to L_1(s) = (x_1, s)$ in $(S \times \mathbb{R}, g)$, given a lightlike curve $\gamma = (x, t)$, the arrival time $\operatorname{AT}(\gamma)$ is

$$t(b)=t(a)+\int_a^b \left(\omega(\dot{x})+\sqrt{g_0(\dot{x},\dot{x})+\omega(\dot{x})^2}\right)\mathrm{d}s.$$

• because $g_0(\dot{x},\dot{x})+2\omega(\dot{x})\dot{t}-\dot{t}^2=0$ $(g(\dot{\gamma},\dot{\gamma})=0)$

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves
- If you consider as observer $s \to L_1(s) = (x_1, s)$ in $(S \times \mathbb{R}, g)$, given a lightlike curve $\gamma = (x, t)$, the arrival time $\operatorname{AT}(\gamma)$ is

$$t(b) \! = \! t(a) \! + \! \int_a^b \! \left(\omega(\dot{x}) \! + \! \sqrt{g_0(\dot{x}, \! \dot{x}) \! + \! \omega(\dot{x})^2} \right) \! \mathrm{d}s.$$

- because $g_0(\dot{x},\dot{x})+2\omega(\dot{x})\dot{t}-\dot{t}^2=0$ $(g(\dot{\gamma},\dot{\gamma})=0)$
- ullet Let us define the Fermat (Finslerian) metric in S as

$$F(v) = \omega(v) + \sqrt{g_0(v,v) + \omega(v)^2},$$

Pierre de Fermat (1601-1665)

References

E. Caponio, M. A. J., and A. Masiello, *On the energy functional on Finsler manifolds and applications to stationary spacetimes*, Math. Ann., 351 (2011), pp. 365–392.

E. CAPONIO, M. A. J., AND M. SÁNCHEZ, *On the interplay between Lorentzian Causality and Finsler metrics of Randers type*, Rev. Mat. Iberoamericana, 27 (2011), pp. 919–952.

References

- E. CAPONIO, M. A. J., AND A. MASIELLO, On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann., 351 (2011), pp. 365–392.
- E. CAPONIO, M. A. J., AND M. SÁNCHEZ, On the interplay between Lorentzian Causality and Finsler metrics of Randers type, Rev. Mat. Iberoamericana, 27 (2011), pp. 919–952.

For a review see:

M. A. J., Conformally standard stationary spacetimes and Fermat metrics, arXiv:1201.1841v1 [math.DG], to appear in Proceedings of GeLoGra 2011.

• Let (M,g) be a spacetime and K a Killing field

- Let (M,g) be a spacetime and K a Killing field
- ullet We say that a diffeomorphism $\psi: M o M$ is K-conformal if

- Let (M,g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \to M$ is K-conformal if
 - It is conformal, $\psi_*(g)=\lambda g$, $\lambda \neq 0$, $(\psi_*$ is the pushforward) and

- Let (M,g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \to M$ is K-conformal if
 - It is conformal, $\psi_*(g) = \lambda g$, $\lambda \neq 0$, $(\psi_*$ is the pushforward) and
 - preserves K, $\psi_*(K) = K$

- Let (M,g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \to M$ is K-conformal if
 - It is conformal, $\psi_*(g)=\lambda g$, $\lambda \neq 0$, $(\psi_*$ is the pushforward) and
 - preserves K, $\psi_*(K) = K$
- Now consider a normalized standard stationary spacetime $(S imes \mathbb{R}, g)$ with

$$g((v,\tau),(v,\tau))=g_0(v,v)+2\omega(v)\tau-\tau^2$$

 $v \in \mathit{TS} \text{ and } \tau \in \mathbb{R}.$

- Let (M,g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \to M$ is K-conformal if
 - It is conformal, $\psi_*(g) = \lambda g$, $\lambda \neq 0$, $(\psi_*$ is the pushforward) and
 - preserves K, $\psi_*(K) = K$
- Now consider a normalized standard stationary spacetime $(S imes \mathbb{R}, g)$ with

$$g((v,\tau),(v,\tau))=g_0(v,v)+2\omega(v)\tau-\tau^2$$

 $v \in TS$ and $\tau \in \mathbb{R}$.

Theorem

If $\psi: (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then

$$\psi(x,t) = (\varphi(x), t + f(x)),$$

and $\varphi_*(F) = F + df$ and $\varphi: (S,h) \to (S,h)$ is an isometry, where

$$h(v, v) = g_0(v, v) + \omega(v)^2$$
.

Theorem

If $\psi: (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then $\psi(x, t) = (\varphi(x), t + f(x))$ and $\varphi_*(F) = F + df$ and $\varphi: (S, h) \to (S, h)$ is an isometry, where

$$h(v,v)=g_0(v,v)+\omega(v)^2.$$

Theorem

If $\psi: (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then $\psi(x, t) = (\varphi(x), t + f(x))$ and $\varphi_*(F) = F + df$ and $\varphi: (S, h) \to (S, h)$ is an isometry, where

$$h(v,v)=g_0(v,v)+\omega(v)^2.$$

Proof.

• K-conformal implies that ψ maps orbits of ∂_t to orbits of ∂_t , that is, $\psi(x,t) = (\varphi(x), t + f(x))$

Theorem

If $\psi: (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then $\psi(x, t) = (\varphi(x), t + f(x))$ and $\varphi_*(F) = F + df$ and $\varphi: (S, h) \to (S, h)$ is an isometry, where

$$h(v,v)=g_0(v,v)+\omega(v)^2.$$

- K-conformal implies that ψ maps orbits of ∂_t to orbits of ∂_t , that is, $\psi(x,t)=(\varphi(x),t+f(x))$
- \bullet As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics

Theorem

If $\psi: (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then $\psi(x, t) = (\varphi(x), t + f(x))$ and $\varphi_*(F) = F + df$ and $\varphi: (S, h) \to (S, h)$ is an isometry, where

$$h(v,v)=g_0(v,v)+\omega(v)^2.$$

- K-conformal implies that ψ maps orbits of ∂_t to orbits of ∂_t , that is, $\psi(x,t) = (\varphi(x), t + f(x))$
- \bullet As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics
- Then Fermat metric maps Fermat pregeodesics to Fermat pregeodesics and $\ell_{\varphi_*(F)}(\gamma) = \ell_F(\gamma) + f(\gamma(1)) f(\gamma(0))$

Theorem

If $\psi: (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then $\psi(x, t) = (\varphi(x), t + f(x))$ and $\varphi_*(F) = F + df$ and $\varphi: (S, h) \to (S, h)$ is an isometry, where

$$h(v,v)=g_0(v,v)+\omega(v)^2.$$

- K-conformal implies that ψ maps orbits of ∂_t to orbits of ∂_t , that is, $\psi(x,t) = (\varphi(x), t + f(x))$
- \bullet As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics
- Then Fermat metric maps Fermat pregeodesics to Fermat pregeodesics and $\ell_{\varphi_*(F)}(\gamma) = \ell_F(\gamma) + f(\gamma(1)) f(\gamma(0))$
- This means that $\varphi_*(F)$ and F+df have the same geodesics and therefore they are equal

Lemma

 $\operatorname{Conf}_K(M,g)$ (here $M=\mathbb{R}\times S$) is a closed subgroup of $\operatorname{Conf}(M,g)$. Moreover the one-parameter subgroup K generated by K is closed and normal in $\operatorname{Conf}(M,g)$.

Lemma

 $\operatorname{Conf}_K(M,g)$ (here $M=\mathbb{R}\times S$) is a closed subgroup of $\operatorname{Conf}(M,g)$. Moreover the one-parameter subgroup K generated by K is closed and normal in Conf(M, g).

Proof.

• First part is obvious in the C^1 topology.

Lemma

 $\operatorname{Conf}_K(M,g)$ (here $M=\mathbb{R}\times S$) is a closed subgroup of $\operatorname{Conf}(M,g)$. Moreover the one-parameter subgroup K generated by K is closed and normal in $\operatorname{Conf}(M,g)$.

- First part is obvious in the C^1 topology.
- If $\psi \in \operatorname{Conf}_{K}(M,g)$ then $\psi(x,t) = (\varphi(x), t + f(x))$ with $\varphi \in \operatorname{Iso}(S,F)$

Lemma

 $\operatorname{Conf}_K(M,g)$ (here $M=\mathbb{R}\times S$) is a closed subgroup of $\operatorname{Conf}(M,g)$. Moreover the one-parameter subgroup $\mathcal K$ generated by K is closed and normal in $\operatorname{Conf}(M,g)$.

- First part is obvious in the C^1 topology.
- If $\psi \in \operatorname{Conf}_{K}(M,g)$ then $\psi(x,t) = (\varphi(x), t + f(x))$ with $\varphi \in \operatorname{Iso}(S,F)$
- Moreover, $\psi^{-1}(x,t) = (\varphi^{-1}(x), t f(\varphi^{-1}(x)))$

Lemma

 $\operatorname{Conf}_K(M,g)$ (here $M=\mathbb{R}\times S$) is a closed subgroup of $\operatorname{Conf}(M,g)$. Moreover the one-parameter subgroup $\mathcal K$ generated by K is closed and normal in $\operatorname{Conf}(M,g)$.

- First part is obvious in the C^1 topology.
- If $\psi \in \operatorname{Conf}_{K}(M,g)$ then $\psi(x,t) = (\varphi(x), t + f(x))$ with $\varphi \in \operatorname{\widetilde{Iso}}(S,F)$
- Moreover, $\psi^{-1}(x,t) = (\varphi^{-1}(x), t f(\varphi^{-1}(x)))$
- Then if $K^T: M \to M$ is given by $K^T(x,t) = (x,t+T)$, it follows that $\psi \circ K^T \circ \psi^{-1} = K^T$ (K is normal)

Proposition

The map $\pi: \mathrm{Conf}_{\mathcal{K}}(M,g) \to \widetilde{\mathrm{Iso}}(S,F)$ defined as $\pi(\psi) = \varphi$ is a Lie group homomorphism and $\overline{\pi}: \mathrm{Conf}_{\mathcal{K}}(M,g)/\mathcal{K} \to \widetilde{\mathrm{Iso}}(S,F)$ is an isomorphism.

Proposition

The map $\pi: \mathrm{Conf}_{\mathcal{K}}(M,g) \to \mathrm{Iso}(S,F)$ defined as $\pi(\psi) = \varphi$ is a Lie group homomorphism and $\overline{\pi}: \mathrm{Conf}_{\mathcal{K}}(M,g)/\mathcal{K} \to \widetilde{\mathrm{Iso}}(S,F)$ is an isomorphism.

Proof.

ullet We just have to prove that $ar{\pi}$ is one-to-one.

Proposition

The map $\pi: \mathrm{Conf}_{\mathcal{K}}(M,g) \to \mathrm{Iso}(S,F)$ defined as $\pi(\psi) = \varphi$ is a Lie group homomorphism and $\overline{\pi}: \mathrm{Conf}_{\mathcal{K}}(M,g)/\mathcal{K} \to \widetilde{\mathrm{Iso}}(S,F)$ is an isomorphism.

- We just have to prove that $\bar{\pi}$ is one-to-one.
- Injective: if ψ_1 and ψ_2 project on the same almost isometry map φ , then by last Prop. $\psi_1(x,t)=(\varphi(x),t+f(x)+c_1)$ and $\psi_2(x,t)=(\varphi(x),t+f(x)+c_2),\ \psi_2\circ\psi_1^{-1}=K^{c_2-c_1}$ and $[\psi_1]=[\psi_2]$

Proposition

The map $\pi: \mathrm{Conf}_{\mathcal{K}}(M,g) \to \mathrm{Iso}(S,F)$ defined as $\pi(\psi) = \varphi$ is a Lie group homomorphism and $\overline{\pi}: \mathrm{Conf}_{\mathcal{K}}(M,g)/\mathcal{K} \to \widetilde{\mathrm{Iso}}(S,F)$ is an isomorphism.

Proof.

- We just have to prove that $\bar{\pi}$ is one-to-one.
- Injective: if ψ_1 and ψ_2 project on the same almost isometry map φ , then by last Prop. $\psi_1(x,t)=(\varphi(x),t+f(x)+c_1)$ and $\psi_2(x,t)=(\varphi(x),t+f(x)+c_2),\ \psi_2\circ\psi_1^{-1}=K^{c_2-c_1}$ and $[\psi_1]=[\psi_2]$
- Surjective: given an almost isometry φ , we construct the map

$$\psi(x,t) = (\varphi(x), t + f(x))$$

Clearly, it preserves ∂_t . By Fermat principle, it maps lightlike pregeodesics to lightlike pregeodesics, then it preserves the lightcone and it must be conformal (by Dajcker-Nomizu [83]).

Applications

Corollary

Given a manifold S, for a generic set of data (g_0, ω) , the stationary metric $g = g(g_0, \omega)$ on $M = S \times \mathbb{R}$ has discrete K-conformal group $\operatorname{Conf}_K(M, g)/\mathcal{K}$.

Applications

Corollary

Given a manifold S, for a generic set of data (g_0, ω) , the stationary metric $g = g(g_0, \omega)$ on $M = S \times \mathbb{R}$ has discrete K-conformal group $\operatorname{Conf}_K(M, g)/\mathcal{K}$.

Corollary

If S is compact, then $\mathrm{Conf}_K(S \times \mathbb{R}, g)/\mathcal{K}$ and $\mathrm{Iso}(S, F)$ are compact Lie groups.

Open problems

- Compute explicitly some extended isometry group
- Which are the Finsler metrics with extended isometry group of maximal dimension?

You can find this talk in http://webs.um.es/imajava

Thanks a lot for this wonderful conference