Almost isometries of non-reversible metrics with applications to stationary spacetimes

Miguel Ángel Javaloyes (Universidad de Murcia) (joint work with L. Lichtenfelz and P. Piccione)

Partially supported by MICINN/FEDER project MTM2009-10418 and Fundación Séneca project 04540/GERM/06, Spain

XVII Escola de Geometria Diferencial, Manaus, July 11-20 (2012)

My collaborators

Leandro Lichtenfelz Notre Dame University (USA)

Paolo Piccione
Universidade de Sao Paulo (Brasil)

Outline

The talk will consist in three parts:

1) Almost isometries of quasi-metrics (abstract setting)
2) Almost isometries of Finsler metrics
3) Applications to stationary spacetimes (Fermat metrics)

First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function $d: X \times X \rightarrow \mathbb{R}$ is a quasi-metric if
(i) $d(x, y) \geq 0$ for every $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)+d(y, z) \geq d(x, z)$ (triangle inequality).

First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function $d: X \times X \rightarrow \mathbb{R}$ is a quasi-metric if (i) $d(x, y) \geq 0$ for every $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$, (ii) $d(x, y)+d(y, z) \geq d(x, z)$ (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:

- $B_{d}^{+}(x, r)=\{y \in X: d(x, y)<r\}$ (forward balls)
- $B_{d}^{-}(x, r)=\{y \in X: d(y, x)<r\}$ (backward balls) respectively, for $x \in X$ and $r>0$.

First part: Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function $d: X \times X \rightarrow \mathbb{R}$ is a quasi-metric if (i) $d(x, y) \geq 0$ for every $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)+d(y, z) \geq d(x, z)$ (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:

- $B_{d}^{+}(x, r)=\{y \in X: d(x, y)<r\}$ (forward balls)
- $B_{d}^{-}(x, r)=\{y \in X: d(y, x)<r\}$ (backward balls)
respectively, for $x \in X$ and $r>0$.

Definition

A pair (X, d) will be called a quasi-metric space endowed with the topology induced by the family $B_{d}^{+}(x, r) \cap B_{d}^{-}(x, r), x \in M$ and $r>0$.

Let us observe that this topology coincides with the topology generated by (the balls of) the symmetrized metric $\widetilde{d}(x, y)=\frac{1}{2}(d(x, y)+d(y, x))$.

[^0]
Quasi-metrics

Quasi-metrics spaces have been studied by many mathematicians:

- Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930, Wilson 1931, Busemann 1944
- and also by a spanish mathematician: Julio Rey

Rey Pastor (1888-1962) Pastor 1940

Quasi-metrics

Quasi-metrics spaces have been studied by many mathematicians:

- Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930, Wilson 1931, Busemann 1944
- and also by a spanish mathematician: Julio Rey Pastor 1940
Out seminar in the university of Murcia is called "Rey Pastor" after him

Rey Pastor (1888-1962)
(4) DEPARTAMENTO de MATEMÁTICAS Seminario REY PASTOR GEOMETRIA
On hypersurfaces with prescribed curvature and boundary in Riemannian manifolds.
Flávio França Cruz Universidade Regional do Cariri URCA (Brasil)

ㄴxay yugar

Miécroles 30 de majo de 2012, 1200 ho .
ras
ras
Sala EULER 0.01 (Planta baja)

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha:[a, b] \subseteq \mathbb{R} \rightarrow X$ as

$$
\ell(\alpha)=\sup _{\mathcal{P}} \sum_{1=1}^{r} d\left(\alpha\left(s_{i}\right), \alpha\left(s_{i+1}\right)\right),
$$

where \mathcal{P} is the set of partitions $a=s_{1}<s_{2}<\ldots<s_{r+1}=b, r \in \mathbb{N}$.

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha:[a, b] \subseteq \mathbb{R} \rightarrow X$ as

$$
\ell(\alpha)=\sup _{\mathcal{P}} \sum_{1=1}^{r} d\left(\alpha\left(s_{i}\right), \alpha\left(s_{i+1}\right)\right)
$$

where \mathcal{P} is the set of partitions $a=s_{1}<s_{2}<\ldots<s_{r+1}=b, r \in \mathbb{N}$.

- We say that α is rectifiable when $\ell(\alpha)$ is finite.
- Moreover, we say that a curve γ in X from p to q is a minimizing geodesic if $\ell(\gamma)=d(p, q)$.

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha:[a, b] \subseteq \mathbb{R} \rightarrow X$ as

$$
\ell(\alpha)=\sup _{\mathcal{P}} \sum_{1=1}^{r} d\left(\alpha\left(s_{i}\right), \alpha\left(s_{i+1}\right)\right),
$$

where \mathcal{P} is the set of partitions $a=s_{1}<s_{2}<\ldots<s_{r+1}=b, r \in \mathbb{N}$.

- We say that α is rectifiable when $\ell(\alpha)$ is finite.
- Moreover, we say that a curve γ in X from p to q is a minimizing geodesic if $\ell(\gamma)=d(p, q)$.

Definition

Let us define the triangular function $T: X \times X \times X \rightarrow[0,+\infty[$ of a quasi-metric space (X, d) as $T(x, y, z)=d(x, y)+d(y, z)-d(x, z)$ for every $x, y, z \in X$.

Evidently, T is continuous.

Almost isometries

Proposition

A curve $\alpha:[a, b] \subseteq \mathbb{R} \rightarrow X$ is a minimizing geodesic of a quasi-metric space (X, d) iff $T\left(\alpha\left(s_{1}\right), \alpha\left(s_{2}\right), \alpha\left(s_{3}\right)\right)=0$ for every $a \leq s_{1}<s_{2}<s_{3} \leq b$.

Almost isometries

Proposition

A curve $\alpha:[a, b] \subseteq \mathbb{R} \rightarrow X$ is a minimizing geodesic of a quasi-metric space (X, d) iff $T\left(\alpha\left(s_{1}\right), \alpha\left(s_{2}\right), \alpha\left(s_{3}\right)\right)=0$ for every $a \leq s_{1}<s_{2}<s_{3} \leq b$.

Definition

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be two quasi-metric spaces. A bijection $\varphi: X_{1} \rightarrow X_{2}$ is an almost isometry if it preserves the triangular function, that is,

$$
T_{2}(\varphi(x), \varphi(y), \varphi(z))=T_{1}(x, y, z)
$$

for every $x, y, z \in X_{1}$, where T_{1} and T_{2} are the triangular functions associated respectively to $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$.

Almost isometries

Proposition

A curve $\alpha:[a, b] \subseteq \mathbb{R} \rightarrow X$ is a minimizing geodesic of a quasi-metric space (X, d) iff $T\left(\alpha\left(s_{1}\right), \alpha\left(s_{2}\right), \alpha\left(s_{3}\right)\right)=0$ for every $a \leq s_{1}<s_{2}<s_{3} \leq b$.

Definition

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be two quasi-metric spaces. A bijection $\varphi: X_{1} \rightarrow X_{2}$ is an almost isometry if it preserves the triangular function, that is,

$$
T_{2}(\varphi(x), \varphi(y), \varphi(z))=T_{1}(x, y, z)
$$

for every $x, y, z \in X_{1}$, where T_{1} and T_{2} are the triangular functions associated respectively to $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$.

Corollary

Almost isometries preserve minimizing geodesics.

Almost isometries

Proposition

Given quasi-metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, a bijection $\varphi: X_{1} \rightarrow X_{2}$ is an almost isometry iff $\exists f: X_{2} \rightarrow \mathbb{R}$ such that for every $x, y \in X_{1}$:

$$
\begin{equation*}
d_{2}(\varphi(x), \varphi(y))=d_{1}(x, y)+f(\varphi(x))-f(\varphi(y)) \tag{1}
\end{equation*}
$$

Almost isometries

Proposition

Given quasi-metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, a bijection $\varphi: X_{1} \rightarrow X_{2}$ is an almost isometry iff $\exists f: X_{2} \rightarrow \mathbb{R}$ such that for every $x, y \in X_{1}$:

$$
\begin{equation*}
d_{2}(\varphi(x), \varphi(y))=d_{1}(x, y)+f(\varphi(x))-f(\varphi(y)) \tag{1}
\end{equation*}
$$

Proof.

\Rightarrow (the converse is straightforward)

- Fix a point $x_{0} \in X_{1}$ and define $f: X_{2} \rightarrow \mathbb{R}$ as $f(z)=d_{2}\left(z, \varphi\left(x_{0}\right)\right)-d_{1}\left(\varphi^{-1}(z), x_{0}\right)$ for every $z \in X_{2}$.

Almost isometries

Proposition

Given quasi-metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, a bijection $\varphi: X_{1} \rightarrow X_{2}$ is an almost isometry iff $\exists f: X_{2} \rightarrow \mathbb{R}$ such that for every $x, y \in X_{1}$:

$$
\begin{equation*}
d_{2}(\varphi(x), \varphi(y))=d_{1}(x, y)+f(\varphi(x))-f(\varphi(y)) \tag{1}
\end{equation*}
$$

Proof.

\Rightarrow (the converse is straightforward)

- Fix a point $x_{0} \in X_{1}$ and define $f: X_{2} \rightarrow \mathbb{R}$ as

$$
f(z)=d_{2}\left(z, \varphi\left(x_{0}\right)\right)-d_{1}\left(\varphi^{-1}(z), x_{0}\right) \text { for every } z \in X_{2}
$$

- Given $x, y \in X_{1}$, as φ preserves the triangular function, we have

$$
\begin{aligned}
d_{1}(x, y)+ & d_{1}\left(y, x_{0}\right)-d_{1}\left(x, x_{0}\right) \\
& =d_{2}(\varphi(x), \varphi(y))+d_{2}\left(\varphi(y), \varphi\left(x_{0}\right)\right)-d_{2}\left(\varphi(x), \varphi\left(x_{0}\right)\right)
\end{aligned}
$$

which is equivalent to (1).

Almost isometries

Some observations:

- In metric spaces, almost isometries are always isometries

Almost isometries

Some observations:

- In metric spaces, almost isometries are always isometries
- If $\varphi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ is an almost isometry, then

$$
\varphi:\left(X_{1}, \widetilde{d}_{1}\right) \rightarrow\left(X_{2}, \widetilde{d}_{2}\right)
$$

is an isometry, where

$$
\begin{aligned}
& \widetilde{d}_{1}(x, y)=\frac{1}{2}\left(d_{1}(x, y)+d_{1}(y, x)\right) \\
& \widetilde{d}_{2}(x, y)=\frac{1}{2}\left(d_{2}(x, y)+d_{2}(y, x)\right)
\end{aligned}
$$

Almost isometries

Some observations:

- In metric spaces, almost isometries are always isometries
- If $\varphi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ is an almost isometry, then

$$
\varphi:\left(X_{1}, \widetilde{d}_{1}\right) \rightarrow\left(X_{2}, \widetilde{d}_{2}\right)
$$

is an isometry, where

$$
\begin{aligned}
& \widetilde{d}_{1}(x, y)=\frac{1}{2}\left(d_{1}(x, y)+d_{1}(y, x)\right), \\
& \widetilde{d}_{2}(x, y)=\frac{1}{2}\left(d_{2}(x, y)+d_{2}(y, x)\right) .
\end{aligned}
$$

- Moreover, φ is a homeomorphism and the functions $f: X_{2} \rightarrow \mathbb{R}$ are continuous

Almost isometries

Notation:

- Iso (X, d) is the group of isometries of (X, d)
- Iso (X, d) is the group of almost isometries of (X, d). It will be called the extended isometry group of (X, d).

Almost isometries

Notation:

- Iso (X, d) is the group of isometries of (X, d)
- Iso (X, d) is the group of almost isometries of (X, d). It will be called the extended isometry group of (X, d).

Proposition

- With the above notation, $\widetilde{\operatorname{Iso}}(X, d)$ and $\operatorname{Iso}(X, d)$ are topological groups endowed with the compact-open topology.
- If the topology induced by d is locally compact, then $\widetilde{\operatorname{Iso}}(X, d)$ and Iso (X, d) are locally compact.

Almost isometries

Notation:

- Iso (X, d) is the group of isometries of (X, d)
- Iso (X, d) is the group of almost isometries of (X, d). It will be called the extended isometry group of (X, d).

Proposition

- With the above notation, $\widetilde{\operatorname{Iso}}(X, d)$ and $\operatorname{Iso}(X, d)$ are topological groups endowed with the compact-open topology.
- If the topology induced by d is locally compact, then $\widetilde{\operatorname{Iso}}(X, d)$ and Iso (X, d) are locally compact.

Proof.

The proof follows from the inclusions:

$$
\operatorname{Iso}(X, d) \subseteq \widetilde{\operatorname{Iso}}(X, d) \subseteq \operatorname{Iso}(X, \widetilde{d})
$$

Local almost isometries

Definition

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be two quasi-metric spaces. A map $\varphi: X_{1} \rightarrow X_{2}$ is a local almost isometry if $\forall x \in X_{1}, \exists U \subseteq X_{1}, V \subseteq X_{2}$ open subsets, with $x \in U$, such that $\left.\varphi\right|_{U}: U \rightarrow V$ is an almost isometry.

Local almost isometries

Definition

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be two quasi-metric spaces. A map $\varphi: X_{1} \rightarrow X_{2}$ is a local almost isometry if $\forall x \in X_{1}, \exists U \subseteq X_{1}, V \subseteq X_{2}$ open subsets, with $x \in U$, such that $\left.\varphi\right|_{U}: U \rightarrow V$ is an almost isometry.

- define d_{l} as the infimum of the lengths of curves between two points. We say that (X, d) is a length space when $d_{l}=d$.
- We say that a quasi-metric space is weakly finitely compact if $B^{+}(x, r) \cap B^{-}(x, r)$ are precompact $\forall x \in X$ and $r>0$.

Local almost isometries

Definition

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be two quasi-metric spaces. A map $\varphi: X_{1} \rightarrow X_{2}$ is a local almost isometry if $\forall x \in X_{1}, \exists U \subseteq X_{1}, V \subseteq X_{2}$ open subsets, with $x \in U$, such that $\left.\varphi\right|_{U}: U \rightarrow V$ is an almost isometry.

- define d_{l} as the infimum of the lengths of curves between two points. We say that (X, d) is a length space when $d_{l}=d$.
- We say that a quasi-metric space is weakly finitely compact if $B^{+}(x, r) \cap B^{-}(x, r)$ are precompact $\forall x \in X$ and $r>0$.

Theorem

Let $\varphi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ be a local almost isometry. Assume that $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ are length spaces, d_{1} is weakly finitely compact and X_{2} is locally arc-connected and simply connected. Then φ is an almost isometry.

Second Part: Almost isometries of Finsler metrics

DEFINITION: $F:$ TM $\rightarrow[0,+\infty)$ continuous and

Paul Finsler (1894-1970)

Second Part: Almost isometries of Finsler metrics

DEFINITION: $F: T M \rightarrow[0,+\infty)$ continuous and
(c) C^{∞} in $T M \backslash\{0\}$

Paul Finsler (1894-1970)

Second Part: Almost isometries of Finsler metrics

DEFINITION: $F:$ TM $\rightarrow[0,+\infty)$ continuous and
(1) C^{∞} in $T M \backslash\{0\}$
(2) Positively homogeneous of degree one $F(\lambda v)=\lambda F(v)$ for all $\lambda>0$

Paul Finsler (1894-1970)

Second Part: Almost isometries of Finsler metrics

DEFINITION: $F:$ TM $\rightarrow[0,+\infty)$ continuous and
(1) C^{∞} in $T M \backslash\{0\}$
(2) Positively homogeneous of degree one $F(\lambda v)=\lambda F(v)$ for all $\lambda>0$
(3) Fiberwise strongly convex square:
$g_{v}(w, z)=\left.\frac{\partial^{2}}{\partial t \partial s} F(v+t w+s z)^{2}\right|_{t=s=0}=\operatorname{Hess}\left(F^{2}\right)_{v} \stackrel{\text { PadL FinsLer (1894-1970) }}{ }(w, z)$
for every $w, z \in T_{\pi(v)} M$. Then $g_{v}(w, w)>0$ for every $0 \neq w \in T_{\pi(v)} M$.

Second Part: Almost isometries of Finsler metrics

DEFINITION: $F:$ TM $\rightarrow[0,+\infty)$ continuous and
(1) C^{∞} in $T M \backslash\{0\}$
(2) Positively homogeneous of degree one

$$
F(\lambda v)=\lambda F(v) \text { for all } \lambda>0
$$

(3) Fiberwise strongly convex square:

$$
g_{v}(w, z)=\left.\frac{\partial^{2}}{\partial t \partial s} F(v+t w+s z)^{2}\right|_{t=s=0}=\operatorname{Hess}\left(F^{2}\right)_{v}(w, z)
$$

for every $w, z \in T_{\pi(v)} M$. Then $g_{v}(w, w)>0$ for every $0 \neq w \in T_{\pi(v)} M$.
It can be showed that this implies:

Second Part: Almost isometries of Finsler metrics

DEFINITION: $F:$ TM $\rightarrow[0,+\infty)$ continuous and
(1) C^{∞} in $T M \backslash\{0\}$
(2) Positively homogeneous of degree one $F(\lambda v)=\lambda F(v)$ for all $\lambda>0$
(3) Fiberwise strongly convex square:

$$
g_{v}(w, z)=\left.\frac{\partial^{2}}{\partial t \partial s} F(v+t w+s z)^{2}\right|_{t=s=0}=\operatorname{Hess}\left(F^{2}\right)_{v}(w, z)
$$

for every $w, z \in T_{\pi(v)} M$. Then $g_{v}(w, w)>0$ for every $0 \neq w \in T_{\pi(v)} M$.
It can be showed that this implies:

- F is positive in $T M \backslash\{0\}$ and F^{2} is C^{1} on $T M$.

Second Part: Almost isometries of Finsler metrics

DEFINITION: $F:$ TM $\rightarrow[0,+\infty)$ continuous and
(1) C^{∞} in $T M \backslash\{0\}$
(2) Positively homogeneous of degree one $F(\lambda v)=\lambda F(v)$ for all $\lambda>0$
(3) Fiberwise strongly convex square:

$$
g_{v}(w, z)=\left.\frac{\partial^{2}}{\partial t \partial s} F(v+t w+s z)^{2}\right|_{t=s=0}=\operatorname{Hess}\left(F^{2}\right)_{v}(w, z)
$$

for every $w, z \in T_{\pi(v)} M$. Then $g_{v}(w, w)>0$ for every $0 \neq w \in T_{\pi(v)} M$.
It can be showed that this implies:

- F is positive in $T M \backslash\{0\}$ and F^{2} is C^{1} on $T M$.
- Triangle inequality holds in the fibers

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$
- and then the distance between two points:

$$
\operatorname{dist}(p, q)=\inf _{\gamma \in C^{\infty}(p, q)} \ell_{F}(\gamma)
$$

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$
- and then the distance between two points:
$\operatorname{dist}(p, q)=\inf _{\gamma \in C^{\infty}(p, q)} \ell_{F}(\gamma)$
- dist is non-symmetric because F is non-reversible

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$
- and then the distance between two points:

$$
\operatorname{dist}(p, q)=\inf _{\gamma \in C^{\infty}(p, q)} \ell_{F}(\gamma)
$$

- dist is non-symmetric because F is non-reversible
- the length of a curve $t \rightarrow \gamma(t)$ is different from the length of its reverse $t \rightarrow \gamma(-t)$!!

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$
- and then the distance between two points:

$$
\operatorname{dist}(p, q)=\inf _{\gamma \in C^{\infty}(p, q)} \ell_{F}(\gamma)
$$

- dist is non-symmetric because F is non-reversible
- the length of a curve $t \rightarrow \gamma(t)$ is different from the length of its reverse $t \rightarrow \gamma(-t)$!!

We have to distinguish between forward and backward:

- balls $B^{+}(p, r)=\{x \in M: \operatorname{dist}(p, x)<r\}$ and

$$
B^{-}(p, r)=\{x \in M: \operatorname{dist}(x, p)<r\}
$$

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$
- and then the distance between two points:

$$
\operatorname{dist}(p, q)=\inf _{\gamma \in C^{\infty}(p, q)} \ell_{F}(\gamma)
$$

- dist is non-symmetric because F is non-reversible
- the length of a curve $t \rightarrow \gamma(t)$ is different from the length of its reverse $t \rightarrow \gamma(-t)$!!

We have to distinguish between forward and backward:

- balls $B^{+}(p, r)=\{x \in M: \operatorname{dist}(p, x)<r\}$ and

$$
B^{-}(p, r)=\{x \in M: \operatorname{dist}(x, p)<r\}
$$

- Cauchy sequence

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$
- and then the distance between two points:

$$
\operatorname{dist}(p, q)=\inf _{\gamma \in C^{\infty}(p, q)} \ell_{F}(\gamma)
$$

- dist is non-symmetric because F is non-reversible
- the length of a curve $t \rightarrow \gamma(t)$ is different from the length of its reverse $t \rightarrow \gamma(-t)$!!

We have to distinguish between forward and backward:

- balls $B^{+}(p, r)=\{x \in M: \operatorname{dist}(p, x)<r\}$ and

$$
B^{-}(p, r)=\{x \in M: \operatorname{dist}(x, p)<r\}
$$

- Cauchy sequence
- topological completeness

Non-symmetric "distance"

- We can define the length of a curve: $\ell_{F}(\gamma)=\int_{a}^{b} F(\dot{\gamma}) \mathrm{d} s$
- and then the distance between two points:

$$
\operatorname{dist}(p, q)=\inf _{\gamma \in C^{\infty}(p, q)} \ell_{F}(\gamma)
$$

- dist is non-symmetric because F is non-reversible
- the length of a curve $t \rightarrow \gamma(t)$ is different from the length of its reverse $t \rightarrow \gamma(-t)$!!

We have to distinguish between forward and backward:

- balls $B^{+}(p, r)=\{x \in M: \operatorname{dist}(p, x)<r\}$ and

$$
B^{-}(p, r)=\{x \in M: \operatorname{dist}(x, p)<r\}
$$

- Cauchy sequence
- topological completeness
- geodesical completeness

Randers metrics

- Randers metrics in a manifold M is a function $R: T M \rightarrow \mathbb{R}$ defined as:

$$
R(v)=\sqrt{h(v, v)}+\omega(v)
$$

where h is Riemannian and ω a 1-form with $\|\omega\|_{h}<1 \forall x \in M$,

G. Randers and A. Einstein

Randers metrics

- Randers metrics in a manifold M is a function $R: T M \rightarrow \mathbb{R}$ defined as:

$$
R(v)=\sqrt{h(v, v)}+\omega(v)
$$

where h is Riemannian and ω a 1-form with $\|\omega\|_{h}<1 \forall x \in M$,

- are basic examples of non-reversible Finsler metrics: $R(-v) \neq R(v)$.

G. Randers and A. Einstein

Randers metrics

- Randers metrics in a manifold M is a function $R: T M \rightarrow \mathbb{R}$ defined as:

$$
R(v)=\sqrt{h(v, v)}+\omega(v)
$$

where h is Riemannian and ω a 1-form with $\|\omega\|_{h}<1 \forall x \in M$,

- are basic examples of non-reversible Finsler metrics: $R(-v) \neq R(v)$.
- Named after the norwegian physicist Gunnar Randers (1914-1992):
Randers, G.: On an asymmetrical metric in the fourspace of General Relativity.
 Phys. Rev. (2) 59, 195-199 (1941)

Zermelo metrics

Given a Riemannian metric g,
Zermelo metric:
$Z(v)=\sqrt{\frac{1}{\alpha} g(v, v)+\frac{1}{\alpha^{2}} g(W, v)^{2}}-\frac{1}{\alpha} g(W, v)$,
where $\alpha=1-g(W, W)$.

MEETING OF WATERS

Zermelo metrics

Given a Riemannian metric g,
Zermelo metric:
$Z(v)=\sqrt{\frac{1}{\alpha} g(v, v)+\frac{1}{\alpha^{2}} g(W, v)^{2}}-\frac{1}{\alpha} g(W, v)$,
where $\alpha=1-g(W, W)$.

It is of Randers type

MEETING OF WATERS

Zermelo metrics

Given a Riemannian metric g,
Zermelo metric:
$Z(v)=\sqrt{\frac{1}{\alpha} g(v, v)+\frac{1}{\alpha^{2}} g(W, v)^{2}}-\frac{1}{\alpha} g(W, v)$,
where $\alpha=1-g(W, W)$.

It is of Randers type

Geodesics minimize time in the presence of a wind or current W.

MEETING OF WATERS

Matsumoto metrics

Given a Riemannian metric g, and a one-form β

$$
M(v)=\frac{g(v, v)}{\sqrt{g(v, v)}-\beta(v)}
$$

Sierra Nevada (near Granada)

Matsumoto metrics

Given a Riemannian metric g, and a one-form β

$$
M(v)=\frac{g(v, v)}{\sqrt{g(v, v)}-\beta(v)}
$$

It is strongly convex if
$\sqrt{g(v, v)} \geq 2 \beta(v)$

Sierra Nevada (near Granada)

Matsumoto metrics

Given a Riemannian metric g, and a one-form β

$$
M(v)=\frac{g(v, v)}{\sqrt{g(v, v)}-\beta(v)}
$$

It is strongly convex if
$\sqrt{g(v, v)} \geq 2 \beta(v)$

Sierra Nevada (near Granada)

Geodesics minimize time in the presence of a slope

Finsler metrics

Let us define the symmetrized Finsler metric of F as

$$
\hat{F}(v)=\frac{1}{2}[F(v)+F(-v)]
$$

for every $v \in T M$. The sum of Finsler metrics is a Finsler metric:
固 M. A. J. And M. Sánchez, On the definition and examples of Finsler metrics, Arxiv 2011

Finsler metrics

Let us define the symmetrized Finsler metric of F as

$$
\hat{F}(v)=\frac{1}{2}[F(v)+F(-v)]
$$

for every $v \in T M$. The sum of Finsler metrics is a Finsler metric:
目 M. A. J. and M. Sánchez, On the definition and examples of Finsler metrics, Arxiv 2011

Lemma

If $\varphi:\left(M_{1}, F_{1}\right) \rightarrow\left(M_{2}, F_{2}\right)$ is an almost isometry then

$$
\varphi:\left(M_{1}, \hat{F}_{1}\right) \rightarrow\left(M_{2}, \hat{F}_{2}\right)
$$

is an isometry and φ is smooth.

Proof.

- To see that φ is an isometry prove that preserves the length of curves
- φ is smooth because it is an isometry of a Riemannian average metric

Finsler metrics

Proposition

- If \exists an almost isometry $\varphi:\left(M_{1}, F_{1}\right) \rightarrow\left(M_{2}, F_{2}\right)$, then there exists a smooth $f: M_{2} \rightarrow \mathbb{R}$ such that $\varphi^{*}\left(F_{1}\right)=F_{2}+\mathrm{d} f$.
- Conversely, if $\varphi^{*}\left(F_{1}\right)=F_{2}+\mathrm{d} f$, the map φ is an almost isometry.

Finsler metrics

Proposition

- If \exists an almost isometry $\varphi:\left(M_{1}, F_{1}\right) \rightarrow\left(M_{2}, F_{2}\right)$, then there exists a smooth $f: M_{2} \rightarrow \mathbb{R}$ such that $\varphi^{*}\left(F_{1}\right)=F_{2}+\mathrm{d} f$.
- Conversely, if $\varphi^{*}\left(F_{1}\right)=F_{2}+\mathrm{d} f$, the map φ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group $\widetilde{\operatorname{Iso}}(M, F)$ is a closed subgroup of $\operatorname{Iso}(M, \hat{F})$. In particular, $\widetilde{\operatorname{Iso}}(M, F)$ is a Lie group.

Finsler metrics

Proposition

- If \exists an almost isometry $\varphi:\left(M_{1}, F_{1}\right) \rightarrow\left(M_{2}, F_{2}\right)$, then there exists a smooth $f: M_{2} \rightarrow \mathbb{R}$ such that $\varphi^{*}\left(F_{1}\right)=F_{2}+\mathrm{d} f$.
- Conversely, if $\varphi^{*}\left(F_{1}\right)=F_{2}+\mathrm{d} f$, the map φ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group $\widetilde{\operatorname{Iso}}(M, F)$ is a closed subgroup of $\operatorname{Iso}(M, \hat{F})$. In particular, $\widetilde{\operatorname{Iso}}(M, F)$ is a Lie group.

Proof.

Use that $\widetilde{\operatorname{Iso}}(M, F) \subset \operatorname{Iso}(M, \hat{F})$

Randers metrics

Corollary

Let (M, R) be a Randers manifold and $\varphi: M \rightarrow M$ an almost isometry for R. Then φ is an isometry for h.

Randers metrics

Corollary

Let (M, R) be a Randers manifold and $\varphi: M \rightarrow M$ an almost isometry for R. Then φ is an isometry for h.

Proof.

Just observe that the symmetrized Finsler metric of R is given by $\hat{R}(v)=\sqrt{h(v, v)}$ for $v \in T M$.

Third part: applications to stationary spacetimes

$(S \times \mathbb{R}, /)$ is a standard stationary spacetime

S is naturally endowed with a Randers metric F called the Fermat metric

Conformally Standard Stationary Spacetimes

- A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$
\mathcal{L}_{K} g=\lambda g
$$ for some function $\lambda: M \rightarrow \mathbb{R}$

Conformally Standard Stationary Spacetimes

- A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$
\mathcal{L}_{K} g=\lambda g
$$

for some function $\lambda: M \rightarrow \mathbb{R}$

- Standard Conformastationary means that $M=S \times \mathbb{R}$ and

$$
g((v, \tau),(v, \tau))=\varphi\left(g_{0}(v, v)+2 \omega(v) \tau-\tau^{2}\right)
$$

in $(x, t) \in S \times \mathbb{R}$, where $(v, \tau) \in T_{x} S \times \mathbb{R}, \varphi: S \times \mathbb{R} \rightarrow(0,+\infty)$

- and g_{0} is a Riemannian metric on S and ω a 1-form on S.

Conformally Standard Stationary Spacetimes

- A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$
\mathcal{L}_{K} g=\lambda g
$$

for some function $\lambda: M \rightarrow \mathbb{R}$

- Standard Conformastationary means that $M=S \times \mathbb{R}$ and

$$
g((v, \tau),(v, \tau))=\varphi\left(g_{0}(v, v)+2 \omega(v) \tau-\tau^{2}\right)
$$

in $(x, t) \in S \times \mathbb{R}$, where $(v, \tau) \in T_{x} S \times \mathbb{R}, \varphi: S \times \mathbb{R} \rightarrow(0,+\infty)$

- and g_{0} is a Riemannian metric on S and ω a 1-form on S.
- In this case, ∂_{t} is a timelike conformal field.

Conformally Standard Stationary Spacetimes

- A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$
\mathcal{L}_{K} g=\lambda g
$$

for some function $\lambda: M \rightarrow \mathbb{R}$

- Standard Conformastationary means that $M=S \times \mathbb{R}$ and

$$
g((v, \tau),(v, \tau))=\varphi\left(g_{0}(v, v)+2 \omega(v) \tau-\tau^{2}\right)
$$

in $(x, t) \in S \times \mathbb{R}$, where $(v, \tau) \in T_{x} S \times \mathbb{R}, \varphi: S \times \mathbb{R} \rightarrow(0,+\infty)$

- and g_{0} is a Riemannian metric on S and ω a 1-form on S.
- In this case, ∂_{t} is a timelike conformal field.

A conformastationary spacetime is standard whenever it is distinguishing and the timelike conformal vector field is complete:
M. A. J. and M. Sánchez, A note on the existence of standard splittings for conformally stationary spacetimes, Miguel SÁnchez Classical Quantum Gravity, 25 (2008), pp. 168001, 7 .

Fermat principle in General Relativity

- First established by Herman Weyl in 1917 for static spacetimes

H. Weyl
\rightarrow (1885-1955)

Fermat principle in General Relativity

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927

H. Weyl
T. Levi-Civita
\rightarrow (1885-1955) \rightarrow (1873-1941)

Fermat principle in General Relativity

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927
- It appears in classical books as Landau-Lifshitz "The classical theory of fields" 1962

H. Weyl \rightarrow (1885-1955)

T. Levi-Civita

$$
\rightarrow \quad(1873-1941)
$$

Lev Landau

$$
\begin{aligned}
& \text { LEV LANDAU } \\
& \rightarrow \quad(1908-1968)
\end{aligned}
$$

E. Lifshitz
(1915-1985)

Fermat principle in General Relativity

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927
- It appears in classical books as Landau-Lifshitz "The classical theory of fields" 1962
- I. Kovner gave a version of Fermat principle for an arbitrary spacetime in 1990

H. Weyl \rightarrow (1885-1955)

T. Levi-Civita
\rightarrow (1873-1941)

Lev Landau \rightarrow (1908-1968)

E. Lifshitz \rightarrow (1915-1985)

I. Kovner

Fermat principle in General Relativity

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927
- It appears in classical books as Landau-Lifshitz "The classical theory of fields" 1962
- I. Kovner gave a version of Fermat principle for an arbitrary spacetime in 1990
- Volker Perlick gave a rigorous proof of this general principle in the same year (1990)

H. Weyl \rightarrow (1885-1955)

T. Levi-Civita
\rightarrow (1873-1941)

Lev Landau \rightarrow (1908-1968)

E. Lifshitz $\rightarrow \quad$ (1915-1985)

I. Kovner

V. Perlick
\rightarrow (Born in 1956)

Fermat principle in standard stationary spacetimes

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves

Fermat principle in standard stationary spacetimes

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves
- If you consider as observer $s \rightarrow L_{1}(s)=\left(x_{1}, s\right)$ in $(S \times \mathbb{R}, g)$, given a lightlike curve $\gamma=(x, t)$, the
 arrival time $\operatorname{AT}(\gamma)$ is

$$
t(b)=t(a)+\int_{a}^{b}\left(\omega(\dot{x})+\sqrt{g_{0}(\dot{x}, \dot{x})+\omega(\dot{x})^{2}}\right) \mathrm{d} s
$$

Fermat principle in standard stationary spacetimes

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves
- If you consider as observer $s \rightarrow L_{1}(s)=\left(x_{1}, s\right)$ in $(S \times \mathbb{R}, g)$, given a lightlike curve $\gamma=(x, t)$, the
 arrival time $\operatorname{AT}(\gamma)$ is

$$
t(b)=t(a)+\int_{a}^{b}\left(\omega(\dot{x})+\sqrt{g_{0}(\dot{x}, \dot{x})+\omega(\dot{x})^{2}}\right) \mathrm{d} s
$$

- because $g_{0}(\dot{x}, \dot{x})+2 \omega(\dot{x}) \dot{t}-\dot{t}^{2}=0(g(\dot{\gamma}, \dot{\gamma})=0)$

Fermat principle in standard stationary spacetimes

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves
- If you consider as observer $s \rightarrow L_{1}(s)=\left(x_{1}, s\right)$ in $(S \times \mathbb{R}, g)$, given a lightlike curve $\gamma=(x, t)$, the
 arrival time $\operatorname{AT}(\gamma)$ is

$$
t(b)=t(a)+\int_{a}^{b}\left(\omega(\dot{x})+\sqrt{g_{0}(\dot{x}, \dot{x})+\omega(\dot{x})^{2}}\right) \mathrm{d} s .
$$

- because $g_{0}(\dot{x}, \dot{x})+2 \omega(\dot{x}) \dot{t}-\dot{t}^{2}=0(g(\dot{\gamma}, \dot{\gamma})=0)$
- Let us define the Fermat (Finslerian) metric in S as

$$
F(v)=\omega(v)+\sqrt{g_{0}(v, v)+\omega(v)^{2}},
$$

References

E. Caponio, M. A. J., and A. Masiello, On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann., 351 (2011), pp. 365-392.
E. Caponio, M. A. J., and M. SÁnchez, On the interplay between Lorentzian Causality and Finsler metrics of Randers type, Rev. Mat. Iberoamericana, 27 (2011), pp. 919-952.

References

E. Caponio, M. A. J., and A. Masiello, On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann., 351 (2011), pp. 365-392.
E. Caponio, M. A. J., and M. SÁnchez, On the interplay between Lorentzian Causality and Finsler metrics of Randers type, Rev. Mat. Iberoamericana, 27 (2011), pp. 919-952.
For a review see:
雷 M. A. J., Conformally standard stationary spacetimes and Fermat metrics, arXiv:1201.1841v1 [math.DG], to appear in Proceedings of GeLoGra 2011.

K-conformal maps

- Let (M, g) be a spacetime and K a Killing field

K-conformal maps

- Let (M, g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \rightarrow M$ is K-conformal if

K-conformal maps

- Let (M, g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \rightarrow M$ is K-conformal if
- It is conformal, $\psi_{*}(g)=\lambda g, \lambda \neq 0,\left(\psi_{*}\right.$ is the pushforward $)$ and

K-conformal maps

- Let (M, g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \rightarrow M$ is K-conformal if
- It is conformal, $\psi_{*}(g)=\lambda g, \lambda \neq 0,\left(\psi_{*}\right.$ is the pushforward) and
- preserves $K, \psi_{*}(K)=K$

K-conformal maps

- Let (M, g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \rightarrow M$ is K-conformal if
- It is conformal, $\psi_{*}(g)=\lambda g, \lambda \neq 0,\left(\psi_{*}\right.$ is the pushforward) and
- preserves $K, \psi_{*}(K)=K$
- Now consider a normalized standard stationary spacetime $(S \times \mathbb{R}, g)$ with

$$
g((v, \tau),(v, \tau))=g_{0}(v, v)+2 \omega(v) \tau-\tau^{2}
$$

$v \in T S$ and $\tau \in \mathbb{R}$.

K-conformal maps

- Let (M, g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \rightarrow M$ is K-conformal if
- It is conformal, $\psi_{*}(g)=\lambda g, \lambda \neq 0,\left(\psi_{*}\right.$ is the pushforward) and
- preserves $K, \psi_{*}(K)=K$
- Now consider a normalized standard stationary spacetime $(S \times \mathbb{R}, g)$ with

$$
g((v, \tau),(v, \tau))=g_{0}(v, v)+2 \omega(v) \tau-\tau^{2}
$$

$v \in T S$ and $\tau \in \mathbb{R}$.

Theorem

If $\psi:(S \times \mathbb{R}, g) \rightarrow(S \times \mathbb{R}, g)$ is a K-conformal map, then

$$
\psi(x, t)=(\varphi(x), t+f(x))
$$

and $\varphi_{*}(F)=F+d f$ and $\varphi:(S, h) \rightarrow(S, h)$ is an isometry, where

$$
h(v, v)=g_{0}(v, v)+\omega(v)^{2}
$$

K-conformal maps

Theorem

If $\psi:(S \times \mathbb{R}, g) \rightarrow(S \times \mathbb{R}, g)$ is a K-conformal map, then
$\psi(x, t)=(\varphi(x), t+f(x))$ and $\varphi_{*}(F)=F+d f$ and $\varphi:(S, h) \rightarrow(S, h)$ is an isometry, where

$$
h(v, v)=g_{0}(v, v)+\omega(v)^{2} .
$$

Proof.

K-conformal maps

Theorem

If $\psi:(S \times \mathbb{R}, g) \rightarrow(S \times \mathbb{R}, g)$ is a K-conformal map, then
$\psi(x, t)=(\varphi(x), t+f(x))$ and $\varphi_{*}(F)=F+d f$ and $\varphi:(S, h) \rightarrow(S, h)$ is an isometry, where

$$
h(v, v)=g_{0}(v, v)+\omega(v)^{2} .
$$

Proof.

- K-conformal implies that ψ maps orbits of ∂_{t} to orbits of ∂_{t}, that is,

$$
\psi(x, t)=(\varphi(x), t+f(x))
$$

K-conformal maps

Theorem

If $\psi:(S \times \mathbb{R}, g) \rightarrow(S \times \mathbb{R}, g)$ is a K-conformal map, then
$\psi(x, t)=(\varphi(x), t+f(x))$ and $\varphi_{*}(F)=F+d f$ and $\varphi:(S, h) \rightarrow(S, h)$ is an isometry, where

$$
h(v, v)=g_{0}(v, v)+\omega(v)^{2} .
$$

Proof.

- K-conformal implies that ψ maps orbits of ∂_{t} to orbits of ∂_{t}, that is, $\psi(x, t)=(\varphi(x), t+f(x))$
- As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics

K-conformal maps

Theorem

If $\psi:(S \times \mathbb{R}, g) \rightarrow(S \times \mathbb{R}, g)$ is a K-conformal map, then
$\psi(x, t)=(\varphi(x), t+f(x))$ and $\varphi_{*}(F)=F+d f$ and $\varphi:(S, h) \rightarrow(S, h)$ is an isometry, where

$$
h(v, v)=g_{0}(v, v)+\omega(v)^{2} .
$$

Proof.

- K-conformal implies that ψ maps orbits of ∂_{t} to orbits of ∂_{t}, that is, $\psi(x, t)=(\varphi(x), t+f(x))$
- As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics
- Then Fermat metric maps Fermat pregeodesics to Fermat pregeodesics and $\ell_{\varphi_{*}(F)}(\gamma)=\ell_{F}(\gamma)+f(\gamma(1))-f(\gamma(0))$

K-conformal maps

Theorem

If $\psi:(S \times \mathbb{R}, g) \rightarrow(S \times \mathbb{R}, g)$ is a K-conformal map, then
$\psi(x, t)=(\varphi(x), t+f(x))$ and $\varphi_{*}(F)=F+d f$ and $\varphi:(S, h) \rightarrow(S, h)$ is an isometry, where

$$
h(v, v)=g_{0}(v, v)+\omega(v)^{2} .
$$

Proof.

- K-conformal implies that ψ maps orbits of ∂_{t} to orbits of ∂_{t}, that is, $\psi(x, t)=(\varphi(x), t+f(x))$
- As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics
- Then Fermat metric maps Fermat pregeodesics to Fermat pregeodesics and $\ell_{\varphi_{*}(F)}(\gamma)=\ell_{F}(\gamma)+f(\gamma(1))-f(\gamma(0))$
- This means that $\varphi_{*}(F)$ and $F+d f$ have the same geodesics and therefore they are equal

K-conformal maps

Lemma

$\operatorname{Conf}_{K}(M, g)$ (here $M=\mathbb{R} \times S$) is a closed subgroup of $\operatorname{Conf}(M, g)$. Moreover the one-parameter subgroup \mathcal{K} generated by K is closed and normal in $\operatorname{Conf}(M, g)$.

Proof.

K-conformal maps

Lemma

$\operatorname{Conf}_{K}(M, g)$ (here $M=\mathbb{R} \times S$) is a closed subgroup of $\operatorname{Conf}(M, g)$. Moreover the one-parameter subgroup \mathcal{K} generated by K is closed and normal in $\operatorname{Conf}(M, g)$.

Proof.

- First part is obvious in the C^{1} topology.

K-conformal maps

Lemma

$\operatorname{Conf}_{K}(M, g)$ (here $\left.M=\mathbb{R} \times S\right)$ is a closed subgroup of $\operatorname{Conf}(M, g)$. Moreover the one-parameter subgroup \mathcal{K} generated by K is closed and normal in $\operatorname{Conf}(M, g)$.

Proof.

- First part is obvious in the C^{1} topology.
- If $\psi \in \operatorname{Conf}_{K}(M, g)$ then $\psi(x, t)=(\varphi(x), t+f(x))$ with $\varphi \in \widetilde{\operatorname{Iso}}(S, F)$

K-conformal maps

Lemma

$\operatorname{Conf}_{K}(M, g)$ (here $\left.M=\mathbb{R} \times S\right)$ is a closed subgroup of $\operatorname{Conf}(M, g)$. Moreover the one-parameter subgroup \mathcal{K} generated by K is closed and normal in $\operatorname{Conf}(M, g)$.

Proof.

- First part is obvious in the C^{1} topology.
- If $\psi \in \operatorname{Conf}_{K}(M, g)$ then $\psi(x, t)=(\varphi(x), t+f(x))$ with $\varphi \in \widetilde{\mathrm{Iso}}(S, F)$
- Moreover, $\psi^{-1}(x, t)=\left(\varphi^{-1}(x), t-f\left(\varphi^{-1}(x)\right)\right)$

K-conformal maps

Lemma

$\operatorname{Conf}_{K}(M, g)$ (here $\left.M=\mathbb{R} \times S\right)$ is a closed subgroup of $\operatorname{Conf}(M, g)$. Moreover the one-parameter subgroup \mathcal{K} generated by K is closed and normal in $\operatorname{Conf}(M, g)$.

Proof.

- First part is obvious in the C^{1} topology.
- If $\psi \in \operatorname{Conf}_{K}(M, g)$ then $\psi(x, t)=(\varphi(x), t+f(x))$ with $\varphi \in \widetilde{\operatorname{Iso}(S, F)}$
- Moreover, $\psi^{-1}(x, t)=\left(\varphi^{-1}(x), t-f\left(\varphi^{-1}(x)\right)\right)$
- Then if $K^{T}: M \rightarrow M$ is given by $K^{T}(x, t)=(x, t+T)$, it follows that $\psi \circ K^{T} \circ \psi^{-1}=K^{T}(\mathcal{K}$ is normal)

K-conformal maps

Proposition

 homomorphism and $\bar{\pi}: \operatorname{Conf}_{K}(M, g) / \mathcal{K} \rightarrow \widetilde{\operatorname{Iso}(S, F)}$ is an isomorphism.

Proof.

K-conformal maps

Proposition

The map $\pi: \operatorname{Conf}_{K}(M, g) \rightarrow \operatorname{Iso}(S, F)$ defined as $\pi(\psi)=\varphi$ is a Lie group homomorphism and $\bar{\pi}: \operatorname{Conf}_{K}(M, g) / \mathcal{K} \rightarrow \widetilde{\mathrm{Iso}}(S, F)$ is an isomorphism.

Proof.

- We just have to prove that $\bar{\pi}$ is one-to-one.

K-conformal maps

Proposition

 homomorphism and $\bar{\pi}: \operatorname{Conf}_{K}(M, g) / \mathcal{K} \rightarrow \widetilde{\mathrm{Iso}}(S, F)$ is an isomorphism.

Proof.

- We just have to prove that $\bar{\pi}$ is one-to-one.
- Injective: if ψ_{1} and ψ_{2} project on the same almost isometry map φ, then by last Prop. $\psi_{1}(x, t)=\left(\varphi(x), t+f(x)+c_{1}\right)$ and

$$
\psi_{2}(x, t)=\left(\varphi(x), t+f(x)+c_{2}\right), \psi_{2} \circ \psi_{1}^{-1}=K^{c_{2}-c_{1}} \text { and }\left[\psi_{1}\right]=\left[\psi_{2}\right]
$$

K-conformal maps

Proposition

 homomorphism and $\bar{\pi}: \operatorname{Conf}_{K}(M, g) / \mathcal{K} \rightarrow \widetilde{\operatorname{Iso}}(S, F)$ is an isomorphism.

Proof.

- We just have to prove that $\bar{\pi}$ is one-to-one.
- Injective: if ψ_{1} and ψ_{2} project on the same almost isometry map φ, then by last Prop. $\psi_{1}(x, t)=\left(\varphi(x), t+f(x)+c_{1}\right)$ and $\psi_{2}(x, t)=\left(\varphi(x), t+f(x)+c_{2}\right), \psi_{2} \circ \psi_{1}^{-1}=K^{c_{2}-c_{1}}$ and $\left[\psi_{1}\right]=\left[\psi_{2}\right]$
- Surjective: given an almost isometry φ, we construct the map

$$
\psi(x, t)=(\varphi(x), t+f(x))
$$

Clearly, it preserves ∂_{t}. By Fermat principle, it maps lightlike pregeodesics to lightlike pregeodesics, then it preserves the lightcone and it must be conformal (by Dajcker-Nomizu [83]).

Applications

Corollary

Given a manifold S, for a generic set of data $\left(g_{0}, \omega\right)$, the stationary metric $g=g\left(g_{0}, \omega\right)$ on $M=S \times \mathbb{R}$ has discrete K-conformal group $\operatorname{Conf}_{K}(M, g) / \mathcal{K}$.

Applications

Corollary

Given a manifold S, for a generic set of data $\left(g_{0}, \omega\right)$, the stationary metric $g=g\left(g_{0}, \omega\right)$ on $M=S \times \mathbb{R}$ has discrete K-conformal group $\operatorname{Conf}_{K}(M, g) / \mathcal{K}$.

Corollary

If S is compact, then $\operatorname{Conf}_{K}(S \times \mathbb{R}, g) / \mathcal{K}$ and $\widetilde{\operatorname{Iso}}(S, F)$ are compact Lie groups.

Open problems

- Compute explicitly some extended isometry group
- Which are the Finsler metrics with extended isometry group of maximal dimension?

Thanks a lot for this wonderful conference,

[^0]: M. A. Javaloyes (UM)

