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Abstract

Notwithstanding the scientific community’s efforts and results, malwares are still wreaking
havoc of computer networks; among these threats, botnets are growing at an alarming
rate and have been responsible for dangerous attacks. Indeed, in the past five years,
notorious botnets such as Mirai, Roboto, or Kraken have been a primary target of the
cybersecurity community. However, independently from the purposes of these malwares,
the botnets are characterised by a common point of failure, i.e., the communication channel.
Infected devices need to reach out to the Command & Control (C&C) servers to download
second-stage infections, perform malicious actions, or await further commands. As the
infected devices are already connected to the internet, TCP/IP connections have been
widely abused, notwithstanding the providers’ efforts in blacklisting IPs and sinkholing
fully qualified domain names (FQDNs). Domain generation algorithms (DGAs) have grown
to a conventional approach to elude detection algorithms by generating pseudo-random
rendezvous-points, i.e., the C&C servers FQDNs. Although many machine learning (ML)-
oriented frameworks have been theorised to identify and intercept DGAs, the problem
is yet to be solved. As such, this PhD thesis’s scope is to analyse the DGAs’ outputs,
known as algorithmically generated domains (AGDs), to provide a set of ML tools and
privacy-aware methodologies that help identify these evasive patterns.

To be more precise, the objectives achieved throughout this research are twofold. On
the one hand, this thesis aims to provide a characterisation of the DGAs aspects, includ-
ing, among others, a comprehensive survey of previous literary contributions, data sources,
and ML-based approaches for DGA-based botnet detection. On the other hand, it aims to
integrate and improve the state-of-the-art by providing methods, strategies, and technolo-
gies to enable DGA-based botnet detection at scale. Specifically, signature patterns are
identified in malicious AGDs using Natural Language Processing (NLP) techniques, and,
the resulting learning models are designed as services to be dynamically deployed anywhere
on the network.

As a result, this research encompasses literary survey, theory and framework crafting,
experiments design and evaluations, and knowledge gaps identification and discussions.
Under the compendium modality, the three chapters composing this PhD dissertation are
outlined as follows.

• Firstly, a state-of-the-art survey on ML approaches to DGA-based botnet detection;
the first chapter reports on supervised and unsupervised algorithms, their features
sets, the definition of use cases and experiments, and, ultimately, the outline of
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Abstract

multiple research challenges to guide the thesis. Eventually, the experimental findings
lay the foundations for AGDs formal and verifiable study.

• Secondly, a comparative analysis of the data sources to power ML frameworks; the
second chapter reports on the published datasets by providing a formal comparison
and discussion on multiple orthogonal properties. In the same article, the Univer-
sity of Murcia Domain Generation Algorithm Dataset (UMUDGA) is introduced as the
most complete, balanced, and up-to-date collection of DGA-related data, featuring
50 malware classes for a total of 30+ million FQDNs. Eventually, the exploratory
analysis reported in the article suggests that ML solutions to precisely pinpoint the
malware variant based on AGDs pattern recognition are feasible.

• Thirdly, a proof-of-concept framework where the detection of DGA-based botnets
is deployed as a security service on edge; the third chapter compares and examines
architectural edge intelligence (EI) approaches to enable scalable detection in fifth
generation (5G) networks and beyond. In the article, the experimental evaluation
demonstrates that AGD detection is not only reasonable and achievable, but it is
also plausible to expect to have deployed such detection capabilities on the networks’
edges and eventually on the user equipments (UEs).

In summary, the chapters composing this PhD dissertation promote cohesive research
exploring, analysing, and ultimately tackling the DGA-based botnets. Following this Ari-
adne’s thread, each chapter is self-contained and provides critical insights on the research
challenges from a different perspective; together, these contributions depict a clear descrip-
tion of the research niche summarised in the thesis. However, although conclusive on the
explored subjects, some questions mooted by this research remain unsolved. Prime among
them is whether it will be feasible to provide anonymous, exchangeable, and trustworthy
profiles of AGDs to enable collaborative and federated detection models without harming
users’ privacy.
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Resumen

Ahora que “todo” se ofrece como servicio, maximizar el rendimiento y minimizar la la-
tencia son requisitos fundamentales de cualquier proyecto, ya sea éste de investigación y
desarrollo o comercial. Esto es especialmente relevante considerando los millones de dis-
positivos que van a estar conectados gracias a las redes de quinta generación (5G), y que
solo representan una parte de los que se esperan que lleguen a estar conectados a las redes
futuras (del inglés, Beyond 5G o B5G). Sin embargo, en este entorno la ciberseguridad es
una necesidad que sigue estando infravalorada: no hay normas de obligado cumplimiento
en los estándares, en particular cuando se hace referencia a los dispositivos más pequeños y
limitados. Como tales, los volúmenes de datos que cada vez son mayores, y que en muchos
casos están incorrectamente manejados, hacen que los ingenieros y los investigadores ded-
icados a la ciberseguridad tengan dificultades en encontrar soluciones capaces de ofrecer
servicios de ciberseguridad dentro de entornos y escenarios con recursos limitados. De he-
cho, en la última década se han visto programas con software malicioso, o malware por su
abreviatura en inglés, sembrando el caos en las redes de computadores, desde las pequeñas
y medianas empresas (PYME) hasta las grandes corporaciones globales. En consecuencia,
los expertos de todo el mundo están preocupados por el hecho de tener millones de dis-
positivos conectados a Internet y protegidos de forma inadecuada. Entre esas amenazas
cibernéticas, las botnets están creciendo a un ritmo alarmante, siendo responsables de peli-
grosos ataques contra objetivos tales como las infraestructuras críticas de cualquier país.
A modo de ejemplo, en los últimos cinco años, botnets como Mirai, Conficker o Kraken
han sido un objetivo principal de la comunidad de ciberseguridad.

A pesar de los esfuerzos y resultados de la comunidad científica, el malware sigue
causando pérdidas y daños en las redes informáticas. Aun siendo cambiantes en su com-
portamiento y omnipresentes, no todos los malwares son idénticos; de hecho, difieren en
alcance, en técnicas aplicadas y en efectividad. Sin embargo, existen funcionalidades que
son universales y que comparten las distintas familias de malware. A modo de ejemplo,
los programas maliciosos necesitan contactar con el atacante que está dirigiendo el ataque
para recibir comandos (p.ej., botnets), para llevar a cabo la exfiltración de datos (p.ej., soft-
ware espía) o para proporcionar el acceso no autorizado (p.ej., troyanos de acceso remoto
– del inglés Remote Access Trojan, RAT). En particular, los dispositivos infectados por
una botnet necesitan comunicarse con los servidores de Comando y Control (C&C) para
descargar infecciones de segunda etapa, realizar acciones maliciosas o quedar a la espera
de nuevos comandos.

Durante la década pasada, la tendencia era utilizar diversas formas de comunicación (o

PhD Thesis – Mattia Zago vii



Resumen

canales de contacto) con el grupo de criminales cibernéticos detrás del software malicioso;
entre ellos, como los dispositivos infectados ya están conectados a Internet, las conexiones
TCP/IP han sido objeto de un abuso generalizado. Desde la perspectiva del criminal
cibernético, se ha demostrado que las conexiones directas entre los dispositivos infecta-
dos y las direcciones IP de los servidores de C&C son ineficaces. De hecho, poner esas
direcciones IP en una lista negra para que sean bloqueadas es una técnica de bajo costo
y fácil de aplicar, y muchas de esas listas están disponibles públicamente y actualizadas
a diario (p.ej., Spamhaus). Sin embargo, históricamente, los criminales cibernéticos han
diseñado malwares que cuentan con varias direcciones IP, generalmente disponibles bajo
un nombre de dominio totalmente calificado (del inglés Fully Qualified Domain Name,
FQDN) específico y codificado dentro del propio programa malicioso, que cambian y rotan
dinámicamente durante la vida útil del malware para evitar los mecanismos de protección
basados en listas negras. Estos cambios rápidos de direcciones IP también son fácilmente
abordables; los nombres de dominio configurados en el malware pueden ser bloqueados
en unas pocas horas (una técnica conocida en inglés como sinkholing). Por lo tanto, los
criminales cibernéticos han llegado a introducir módulos dedicados a contener algoritmos
pseudoaleatorios como, por ejemplo, los algoritmos de generación de nombres de dominio
(del inglés Domain Generation Algorithms, DGAs). Estos algoritmos incluyen fragmentos
de código que, aunque diferentes en los detalles de implementación, sirven para generar
nombres de dominio pseudoaleatorios conocidos como AGDs (por sus siglas en inglés de
Algorithmically Generated Domain), los cuales podrían ser registrados por los criminales
cibernéticos para actuar como puntos de encuentro entre los servidores C&C y los dis-
positivos infectados. Este paso intermedio permite que los cibercriminales puedan generar
potencialmente millones de FQDNs de forma dinámica y sin tener la necesidad de registrar-
los todos, ya que solo uno de ellos es suficiente para permitir la conexión entre el dispositivo
y los servidores de C&C. El uso de estos DGAs se ha convertido en un enfoque recurrente
y muy eficaz para eludir los equipos de ciberseguridad y los algoritmos de detección.

En la última década, la comunidad científica se ha dedicado a explorar soluciones de
detección de botnets realizando herramientas basadas tanto en sistemas de reglas y heurís-
ticas como en sistemas de aprendizaje automático. Actualmente, son tres las categorías
principales de técnicas de detección de estas ciberamenazas que se suelen diseñar y desple-
gar en entornos tanto en producción como de investigación. Brevemente, las características
de cada una de ellas se presentan a continuación:

i) En primer lugar, se encuentran los sistemas basados en reglas y heurísticas, que
permiten analizar una gran cantidad de datos de manera rápida y representan la
solución ideal para identificar vulnerabilidades y ataques bien conocidos. A pesar de
estos beneficios, representan un sistema más bien reactivo, es decir, que necesitan
que alguien defina el conjunto de reglas a añadir para detectar cada amenaza, bien
conocidas de antemano.

ii) En segundo lugar, están los sistemas basados en el análisis e inspección profunda de
paquetes (del inglés Deep Packet Inspection, DPI), que, a pesar de ser muy eficaces
en algunos escenarios, resultan ser muy invasivos con respecto a la privacidad de
los usuarios y casi completamente ineficaces en ecosistemas donde habitualmente
se cifran las comunicaciones. Además, tampoco es una técnica apropiada para los
grandes volúmenes de tráfico que caracterizan las redes actuales 5G, y aún menos
para los previstos para las redes B5G.

iii) Finalmente, en la tercera categoría se localizan los sistemas basados en inteligencia
artificial, que, a pesar de la necesidad de entrenar los modelos con grandes cantidades
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de datos, resultan ser muy eficaces en la detección con una cierta confianza tanto
en las amenazas conocidas como en las desconocidas. Gracias a estas propiedades,
las herramientas basadas en inteligencia artificial se pueden convertir en soluciones
proactivas, es decir, soluciones que, dentro de un determinado grado de confianza,
son capaces de identificar amenazas nuevas o desconocidas.

La comunidad científica se ha dedicado a explorar soluciones basadas en inteligencia
artificial y aprendizaje automático (del inglés Machine Learning, ML), y aunque se hayan
teorizado muchos sistemas orientados al ML para la detección de los DGAs, el problema
aún no ha sido resuelto del todo. Como tal, el alcance de esta tesis doctoral se centra
en analizar los nombres de dominio generados por los DGAs, de cara a proporcionar un
conjunto de herramientas de aprendizaje automático y metodologías respetuosas con la
privacidad que ayuden a identificar estos patrones evasivos.

Antes de desarrollar más los objetivos y los avances en el estado del arte proporciona-
dos por esta tesis doctoral, es necesario comprender la amenaza expuesta por parte de los
DGAs. Así, resulta imprescindible elaborar algo más sobre su magnitud, ya que, según
los informes tecnológicos más recientes el número de servidores de C&C sigue aumen-
tando. Hay que destacar también que, desde la perspectiva de los atacantes, los DGAs son
prácticos y eficientes porque causan un esfuerzo totalmente asimétrico, entre los recursos
necesarios para obtener una conexión positiva entre el bot y el servidor C&C en com-
paración con los recursos necesarios para bloquear todos los posibles nombres de dominio
maliciosos. Por un lado, el programa malicioso puede generar millones de AGDs por día, y
el criminal cibernético detrás de la red solo tendrá que registrar y activar un par de ellos de
forma aleatoria. Por otro lado, en contraposición, los equipos de ciberseguridad necesitan
una manera inteligente de comprobar cada nombre potencial de dominio antes de decidir si
la conexión es legítima o maliciosa, y finalmente aplicar la respuesta o contramedida más
adecuada. Es precisamente en este escenario asimétrico donde los algoritmos de ML, como
el reconocimiento de patrones, aportan una importante contribución. A este respecto, ex-
isten diversas herramientas de ML que implementan numerosos algoritmos y técnicas de
aprendizaje que pueden ser desplegados para identificar los AGDs y sus eventuales “firmas”
(o la ausencia de ellas).

Así, no debería de sorprender que la cantidad de tráfico generado en redes a gran es-
cala como las redes 5G y las B5G influya directamente sobre la elección de las soluciones
de detección de ciberamenazas basadas en algoritmos de ML. Por ejemplo, no es razon-
able tener un sistema de detección de intrusiones único y centralizado, en el pasado se ha
demostrado ampliamente que las soluciones descentralizadas basadas en servicios pueden
tratar de manera eficiente y efectiva volúmenes mucho mayores de datos generados por los
dispositivos de los usuarios. Más en detalle, la ciberseguridad en 5G y en B5G involucra
soluciones de autoorganización y autoprotección a través de servicios de seguridad desple-
gados en redes y entornos virtuales mediante el uso de tecnologías como SDN (del inglés,
Software Defined Networks) y NFV (del inglés, Network Function Virtualization). Estos
servicios de seguridad, que se definen como SECaaS (del inglés Security as a Service), se
despliegan como parte de un ciclo automatizado que incluye los procesos de detección, de
análisis y de mitigación de las ciberamenazas de forma colaborativa, escalable y descen-
tralizada. Una de las características fundamentales de estos enfoques de protección es de
ser independentes del entorno de despliegue. En otras palabras, en cuanto se garanticen
los recursos adecuados, tanto en tema de recursos de computación como de soporte en
tema de software y librerías de código, no importa si el lugar efectivo de actividad es un
entorno en la nube (Cloud), en los perímetros de las redes (Edge) o en los dispositivos de
los usuarios.
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En el caso concreto de los SECaaS que hagan uso de ML, hay que comentar que efec-
tivamente hay algunas fases que no son viables de ejecutar en entornos donde los recursos
son limitados. Por lo tanto, es oportuno diferenciar entre las fases de entrenamiento, eval-
uación e inferencia. De hecho, a lo largo de esta contribución científica se han desarrollado
componentes independientes del entorno de despliegue que apuntan a maximizar la diferen-
ciación de estas fases, de manera que se puedan garantizar las condiciones más adecuadas
para cada una de ellas. Así, usando por ejemplo técnicas de aprendizaje federado, cada fase
puede ser optimizada en función del lugar de despliegue, ya sea en la nube, en el perímetro
de la red o en los mismos dispositivos de los usuarios. De esta manera también se estarían
garantizando que los datos obtenidos de los dispositivos no se transmitan más allá de lo
necesario, ya que, en ciberseguridad, uno de los temas más en auge es precisamente el de
limitar, en la medida de lo posible, la difusión de los datos personales a la nube.

Por lo tanto, en resumen, esta tesis doctoral se centra en el estudio de las botnets
basadas en DGA a través de herramientas de ML para desplegarse como SECaaS en los
perímetros de las redes 5G y B5G, con el objetivo de contribuir a la mejora del estado
del arte en la identificación de aquellos elementos que permitan distinguir actividades
sospechosas en entornos altamente dinámicos. En concreto, se han utilizado herramientas
propias de múltiples ramas de conocimiento dentro de la inteligencia artificial y del ML,
como el reconocimiento de patrones comunes en los malwares que integran los DGAs.
Por aportar un ejemplo, se han estudiado, implementado y evaluado técnicas de análisis
del lenguaje natural (del inglés Natural Language Processing, NLP) a fin de identificar
similitudes y diferencias en la sintaxis de los AGDs. Así, esta investigación multidisciplinar
abarca estudios del estado del arte, elaboración de teorías y modelos basados en aprendizaje
automático, y diseño de experimentos y evaluaciones, así como la identificación y discusión
de brechas de conocimiento.

Fijando como objetivo principal de la tesis doctoral el avance del conocimiento en tema
de ciberseguridad y botnet basadas en DGAs, en esta tesis doctoral se han realizado dos
contribuciones principales. Por un lado, esta tesis doctoral proporciona una caracterización
de los aspectos de los DGAs incluyendo, entre otros, un estudio completo de contribuciones
anteriores presentes en el estado del arte, fuentes de datos y enfoques basados en apren-
dizaje automático para la detección de botnets basadas en DGA. Por otro lado, en esta
tesis doctoral se ha conseguido el objetivo aún más ambicioso de integrar y mejorar el
estado del arte en términos de técnicas y literatura, proporcionando métodos, estrategias
y tecnologías para permitir la detección de botnets basada en DGA a gran escala, es decir,
en redes 5G y en las B5G, a través de técnicas avanzadas de ML. Específicamente, los
patrones de firma que se han podido identificar en los AGDs usando técnicas de NLP y
resultando en modelos de aprendizaje diseñados para ser implementados en SECaaS para
que luego se puedan desplegar dinámicamente en cualquier ubicación de la red.

Metodológicamente se ha utilizado la modalidad de compendio de publicaciones para
la consecución de esta tesis doctoral, siendo tres los artículos que la componen y cuyo
resumen se ofrece a continuación.

• El primer artículo presenta un estudio del arte exhaustivo de los enfoques de apren-
dizaje automático para la detección de redes de bots basadas en DGAs. Este artículo
analiza y propone algoritmos supervisados y no supervisados, sus conjuntos de car-
acterísticas, la definición de casos de uso y experimentos, y en última instancia,
el esquema de múltiples desafíos de investigación para guiar la tesis doctoral. Los
hallazgos experimentales que surgen de este primer artículo sientan las bases para
un estudio formal y verificable de los nombres de dominio generados por los DGAs,
llamados AGDs.
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• El segundo artículo aporta un análisis comparativo de las fuentes de datos para
impulsar los modelos de aprendizaje automático. Este artículo informa sobre los
conjuntos de datos publicados, proporcionando una comparación formal y una dis-
cusión sobre múltiples propiedades ortogonales. En el artículo también se presenta
el dataset UMUDGA como la colección más completa, equilibrada y actualizada de
datos relacionados con los DGAs hasta el momento de su publicación, con 50 clases
de programas maliciosos para un total de más de 30 millones de FQDNs. Además, el
análisis exploratorio reportado en el artículo sugiere que son factibles las soluciones
de aprendizaje automático basadas en el reconocimiento de patrones y NLP para
identificar con precisión variantes de programas maliciosos.

• El tercer artículo presenta una prueba de concepto donde la detección de botnets
basadas en DGA se implementa como un servicio de seguridad en los perímetros más
lejanos de la red. Este artículo compara y examina enfoques arquitectónicos de Edge
Computing para permitir la detección escalable en redes 5G y futuras. En el artículo,
la evaluación experimental demuestra que la detección de los nombres de dominio
maliciosos no solo es razonable y alcanzable, sino que también es plausible esperarse
a que tales capacidades de detección sean desplegadas en los perímetros de las redes,
e incluso en los dispositivos de los usuarios finales.

En resumen, los artículos de investigación que componen esta tesis doctoral promueven
una investigación que explora, analiza y, en última instancia, aborda las redes de bots
basadas en DGA. Siguiendo este hilo conductor, cada artículo es autónomo y proporciona
información crítica sobre los desafíos de la investigación desde una perspectiva diferente.
En conjunto, estas contribuciones representan una descripción clara del nicho de investi-
gación resumido en la tesis doctoral. Sin embargo, aunque concluyentes sobre los temas
explorados, algunas cuestiones planteadas por esta investigación necesitan de mayor es-
fuerzo para su resolución. El principal de ellos es si será factible proporcionar perfiles
anónimos, intercambiables y confiables para los nombres de dominio maliciosos a fin de
permitir modelos de detección colaborativos y federados sin perjudicar la privacidad de los
usuarios.
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1
Introduction and motivation

Fast performances and low latency are strict requirements for every commercial solution
and research proposal, especially now that “everything” is being offered as on-demand
service. Additionally, despite the millions of devices connected since the advent of com-
mercial fifth generation (5G) platforms, a radical increase is to be expected with beyond
5G (B5G) networks [1, 2]. The problem with these devices, however, is that their cyberse-
curity is often overlooked. There are no strict and enforceable specifications regarding the
minimum security requirements of devices, especially resource-constrained ones. As such,
the ever-growing volumes of poorly handled data make researchers and engineers struggle
in finding innovative-yet-reliable solutions capable of delivering cybersecurity services in
resource-constrained scenarios. Indeed, the last decade has seen malwares wreaking havoc
of computers networks, from small and medium enterprises (SMEs) to massive global cor-
porations: all around the globe, the experts have been, and still are, concerned with the
risks of having billions of inadequately protected devices connected to the internet [3].

Besides being diffuse and pervasive, malwares differ in scope, applied techniques, and
effectiveness. However, there exists a single universal functionality that is shared among
them, i.e., any malware needs to reach out to the owner for commands (e.g., botnets),
exfiltrate data (e.g., spyware), or provide unauthorised access (e.g., remote access tro-
jans (RATs)) among others. The past decade trend was to use various communication
channels to contact the cybercriminal group behind the malware; among them, HTTP(s)-
based connections are the most common technique. Although effective in some scenarios,
deep packet inspections (DPIs) and other content-based techniques are impractical in an
ecosystem where connections are encrypted more often than not. Essentially, they are
not suitable for the large volumes that characterise today’s 5G networks [4], let alone the
envisioned numbers that will characterise B5G networks [1].

From the cybercriminal perspective, direct IP connections between the infected de-
vices and the Command & Control (C&C) servers have been proved ineffective. Indeed,
blacklisting such addresses is a low-cost, practical, and well-known technique; furthermore,
daily-updated offenders’ lists are publicly available (e.g., Spamhaus [5]). Cybercriminals
have historically designed malwares that feature multiple IP addresses (generally avail-
able under a specific and hardcoded fully qualified domain name (FQDN)) that dynami-
cally change and rotate during the malware’s expected lifespan to bypass this protection
mechanism. However, these fast-flux IP addresses are also somewhat easy to tackle, as
the rendezvous domain name can be blocked in just a few hours (a technique known as
sinkholing). Hence, cybercriminals came up with the dynamic generation of FQDNs via
pseudo-random generation modules within the malware code. Such modules contain a
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domain generation algorithm (DGA), a fragment of code that, although different in the
implementation details, serves to generate pseudo-random domain names that might be
registered by the cybercriminals to act as rendezvous-points between C&C servers and
infected devices. This intermediate step permits the cybercriminals to generate millions
of FQDNs dynamically without the necessity to register all of them; in fact, one available
domain name is just enough to permit the connection between the infected device and the
C&C servers [6].

To grasp the threat, it is imperative to understand its magnitude before all else; in
fact, according to the most recent tech reports [5, 7], the number of botnets C&C is still
increasing. From the cybercriminal point of view, DGAs are practical and efficient because
of the asymmetrical effort required in contrasting them. On the one hand, a single malware
variant can generate millions of algorithmically generated domains (AGDs) per day, having
only a few of them registered and active; however, on the other hand, the security teams
need to check each FQDN and decide the most appropriate response. In this precise
scenario, artificial intelligence (AI), and precisely machine learning (ML) algorithms such
as patterns recognition, show their potential. The ML toolbox offers a set of tools and
techniques that can be deployed to identify the DGAs variants’ signature (or their lack of);
section I will further discuss the subject. Indeed, in 2019 the number of AGDs registered
plummed [5], confirming the excellent research results published in the previous five years
[6, 8, 9, 10, 11, 12, 13]. Nonetheless, domain registrars’ defensive policies fall short when
vetting the registration of AGDs, hence permitting the abuse to continue [7].

This PhD thesis focuses on studying these generation algorithms with machine learn-
ing tools to identify elements that can distinguish suspicious activities in highly dynamic
5G/B5G environments. Indeed, ML has been studied and successfully deployed to recognise
common patterns in generated domains, often leveraging syntactic analysis from Natural
Language Processing (NLP). As such, the first chapter of this thesis (Scalable detection
of botnets based on DGA (Article 1–SoCo)) focuses on surveying the literature aiming to
establish a trend in algorithms and, in general, machine learning applications. The second
chapter (UMUDGA: A dataset for profiling DGA-based botnet (Article 2–CoSe)), how-
ever, focuses on the data sources used to train and validate these models; after a thorough
review of the available references, it unveils the University of Murcia Domain Generation
Algorithm Dataset (UMUDGA), a collection of 30+ million domain names and 50 malware
variants. Finally, the third chapter (Early DGA-based botnet identification (Article 3–
Clus)) further advances these subjects by focusing on architectures that can maximise
massive detection performance while minimising privacy leakage.

Indeed, we deem necessary to differentiate two research questions, namely identifying
malicious and legitimate domain names using ML techniques, and the capability to do
so at scale. The aspects related to the former research question (i.e., the identification
of AGDs) are discussed and analysed in section I, while, the latter’s challenges (e.g., the
identification of AGDs at scale) require introducing the edge intelligence (EI) paradigm
[14, 15] and how DGAs detection might benefit from its usage. The EI’s concept has been
widely discussed under different names (e.g., mobile computing and fog computing, among
others, as reported in the third chapter of this thesis, Article 3–Clus). The key is that
its fundamental principle still applies to the subject at hand, i.e., the detection process
as a collection of decentralised micro-services that benefit from a shared knowledgebase
[15, 16]. At the core of the EI paradigm, to put it differently, there is exploring the
synergies between the cloud services, the decentralised and often automated edges, and
the user equipments (UEs). In the application boundaries defined by the DGA-detection,
this collaboration outlines the ML components’ separation into virtual services, available
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on-demand, that shares data or trained models. As such, legitimate and suspicious FQDNs
might be gathered and identified locally and then shared (anonymously) with the network
of detection modules or a centralised authority. Shared data can be used to improve a
pre-trained model’s detection performances, either centralised in the cloud or spread over
several independent on-edge detectors.

In the third chapter (Article 3–Clus), various architectural approaches to achieve such a
synergy have been studied and discussed. In essence, a detection framework should consider
to discuss and eventually balance the desired detection performances, users’ privacy, and
agility required to face new and unknown threats. As a point of fact, the learning models’
quality relies on the quality of the collected data, which ultimately needs to be detached
and anonymised regarding the user base to prevent privacy-related issues, without losing
the capability to represent the deployment environment.

Ideally, a transparent view of the data will result in models with improved detection
rates capable of identifying known anomalies and new threats. Despite the anonymisation
introduced in such a collaborative environment, it remains unclear if it is possible to
profile and uniquely identify the users, thus increasing the risk of personal data exposure.
On paper, provided that the data security is guaranteed, collaborative learning models
permits to achieve the scalability required by the volumes involved with 5G networks (and
beyond), without losing the agility needed to face newly identified threats. These concepts
are further discussed and analysed in section II.

I Domain name identification as a machine learning task

Differentiate malicious AGDs from legitimate FQDNs can be seen as a pure ML task, in-
dependent from the actual use case or application environment. In such a scenario, key
performances are the classification ones (e.g., precision and recall, among others) rather
than training and testing time or resources requirements. Under this prism, deep learn-
ing (DL) techniques provide good results without requiring too much work on the data
preprocessing; however, their nature of “black box” algorithms make them of difficult in-
terpretation, especially when it comes to making sense of the outcome results. As the
literature suggests (cf., Article 1–SoCo, Section 2) and experiments demonstrate (cf., Arti-
cle 1–SoCo, Section 3.3, Article 2–CoSe, Section 4, Article 3–Clus, Section 3), the Neural
Networks (NNs)’ sophistication is not required to tackle the DGA-related challenges. In
other words, the collected AGDs call for a straightforward feature engineering process,
rather than the automated, self-learning approach where DL stands out.

Furthermore, in a real-world application scenario where data sharing has to be exam-
ined (and its ramification discussed), collecting vast amounts of data required for training
DL models could be difficult. On the contrary, classical ML approaches suffer less from
the lack of sufficiently large, precisely labelled datasets. For another thing, as previously
stated, one could argue that DL solutions could potentially work without features, hence
simplifying the preprocessing steps required to process the data; however, the features iden-
tification process will still be carried out by the first layers of the network, that, in turn,
require training. The DL training phase might also carry challenges related to required
training resources and the amount of data required to feed the model. In the end, the data
itself has to be encoded and eventually scaled or normalised before usage, thus impairing
the benefits of avoiding a predefined feature extraction process. Thus, the application of
classical ML algorithms, rather than DL ones, has been deemed more suitable to the task
at hand.

Besides, one could argue that the DGA-related challenges have been sufficiently dis-

PhD Thesis – Mattia Zago 3



Domain name identification as a machine learning task

cussed in the literature, and thus solved. However, as demonstrated in this thesis, this is
not the case. Essentially, each chapter of this thesis unveil critical shortcomings of the pre-
viously published frameworks and results, ultimately pointing out at yet-unsolved research
challenges. Indeed, three main themes should be evaluated, namely i) the feature engi-
neering process, ii) the data sources, and iii) the applied learning model. These aspects
will be discussed in the following paragraphs.

Feature analysis — One of the essential aspects drawn from this thesis’ feature analysis
has been identifying two families of features, namely the context-aware and the context-free
ones. In other words, the gathered features have been divided into two families, depend-
ing on whether they include (or not) users’ personal and behavioural data. For example,
packet-inspection -related features (such as time-based ones) are included in the context-
aware family; on the contrary, NLP features (such as the ratio between characters) are
included in the context-free family. The first chapter of this thesis (Article 1–SoCo) is ded-
icated to the literature review of these features’ aspects; however, the feature formalisation
and implementation has been studied in the second chapter of the thesis (cf., Article 2–
CoSe, Section 3).

Across this thesis, though, it has been proved that most of the gathered features are
not adequate in describing the data. To be precise, in the first chapter (cf., Article 1–
SoCo, Section 3), several feature selection and feature extraction algorithms have been
applied, leading to demonstrate that, in general, only a handful of features are needed to
classify the AGDs correctly. Furthermore, in the second chapter (cf., Article 2–CoSe, Sec-
tion 4), it has been shown that, albeit using the full set of features, AGDs generated by
some variants are indistinguishable. Likewise, the third chapter (cf., Article 3–Clus, Table
2 and Article 3–Clus, Table 3), pointed out that limiting the feature set to the top 10 most
informative ones significantly improves the resource consumption without unreasonably
hindering the classification performances.

Data sources — For another aspect, there is a general lack of publicly available and ex-
tensive datasets regarding AGDs (and FQDNs in general). As firstly identified in the first
chapter of this thesis (Article 1–SoCo), a quantitative comparison between the proposed
frameworks is unfeasible, mainly due to the lack of shared data. The second chapter of
this thesis (cf., Article 2–CoSe, Table 1) focuses on surveying published and well-recognised
data sources related to network traffic to address this shortcoming. In the article, nine
orthogonal metrics have been designed, discussed and studied to present a formal compar-
ison of the data sources available in the literature. The analysis led to the publication of a
new data source that satisfies all the identified properties. Specifically, the second chapter
presents both the data collection framework and the methodology followed to create the
dataset (cf., Article 2–CoSe, Section 3).

Learning models — Finally, several attempts have been made on the subject of the
ML models for AGDs identification. As presented in the first chapter of this thesis, the
literary review manifests the community’s interest in exploring several potential algorithms
(cf., Article 1–SoCo, Section 2). In the article, several ML frameworks have been identified
from the literature, leveraging supervised, unsupervised and mixed approaches. However,
across the scale surfaced a general lack of reproducibility in terms of data, features and
algorithms configurations.

For instance, as reported in the first chapter of this thesis (Article 1–SoCo), most litera-
ture claim to achieve good to excellent classification results, without providing information
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regarding either the data, the preprocessing, or the models’ hyperparameters. As such, the
first chapter pivots on two main contributions: providing a complete list of tested ap-
proaches (in the form of a comparative analysis of algorithms and claimed results) and an
exhaustive list of studied features.

On the contrary, the second chapter analyses the dataset with five among the most
common ML algorithms. The resulting exploratory analysis provides useful insights into
the dataset composition, classes, and properties (cf., Article 2–CoSe, Section 4).

Finally, the third chapter (Article 3–Clus) explores the capabilities of lightweight, tree-
based classifiers at scale. To be precise, a collaborative framework is theorised, designed,
and implemented leveraging the first two chapters’ results (Article 1–SoCo and Article 2–
CoSe). In such a scenario, the main focus is on the users’ privacy; indeed, a shared-
intelligence system can be designed based on the federated learning theory to provide
anonymous and shareable knowledge without having to share users’ data.

II Cybersecurity as a service

Besides the challenging aspects of the ML tasks, the application use cases offer another
perspective. Indeed, when deploying intrusion detection systems (IDSs), it is imperative
to find the balance between detection performances and resources requirements. In other
words, it is often convenient to accept a reduction in the detection rate in return for higher
traffic volumes. In such a context, metrics like the classification yield or the resources con-
sumption assume a higher relevance than in the pure ML tasks, and further optimisations
are required to determine the equilibrium.

Indeed, the detection probes’ locations influence, as expected, the amount of traffic
that can be successfully inspected. For example, it is unreasonable to have a single and
centralised detection module, especially when considering the volumes and the mobility
requirements of 5G networks and beyond. On the contrary, multiple and decentralised IDSs
are often deployed to scale the protection modules to cover a higher volume of connected
devices. To be precise, the scalability-related challenges have been widely explored in the
past, each time regarding the application scenario’s specific requirements–mobile and not.
However, with the explosive increase of connected devices related to the 5G and B5G
networks, the paradigm of the security-as-a-service (SECaaS) becomes critical.

Traditionally, the cybersecurity approach to 5G involved the network components’ self-
organisation using software-defined network (SDN) and network functions virtualization
(NFV) technologies. The virtualised services are in a cycle where the processes of detection,
analysis, and mitigation of security threats work simultaneously and in a coordinated
fashion. In such a scenario, this thesis aligns with the detection and analysis services by
exploring, theorising, and discussing architectural designs to offer DGA-botnet detection
as a dynamic module compatible with modern networks’ strict requirements. Therefore,
the concept of EI has been investigated and combined with the federated learning theory,
ultimately proving that the detection process is not only feasible on the networks’ farthest
edges, but also on UEs. Indeed, the third and final chapter of this thesis (Article 3–Clus)
focuses on these aspects of detecting and identifying DGA-based malwares leveraging the
EI theory.

In the third article (cf., Article 3–Clus, Section 2.2), several EI-compatible architec-
tures are identified and studied, aiming to establish a knowledgebase useful to deploy
DGA-detection modules by decoupling the training and testing phases from the model
inference process. By virtualising these processes as services, mixed cloud-edge-device sce-
narios become available via technologies such as the SDN and NFV. Indeed, throughout
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this thesis, the main design principle has been to provide modular services that can be
plugged in as independent components in a complex framework such as the ones proposed
in 5G/B5G researches. By guaranteeing the separation between the learning process el-
ements and phases, the compatibility with the SECaaS paradigm is achieved, and, as a
consequence, whether the detection modules are designed and realised internally or out-
sourced becomes a secondary question. Indeed, as pointed out in the first chapter of this
thesis (Article 1–SoCo), the Context-Free features used throughout the research can be ex-
tracted from the collected FQDNs independently from the actual network traffic, inspection
techniques or technology implementation. Similarly, the second chapter’s principal contri-
bution (Article 2–CoSe) (i.e., the UMUDGA dataset) might benefit any SECaaS provider by
providing i) the high-quality labelled data to train ML models, and, ii) the testing data
to be injected to evaluate the framework’s performances.

As a consequence of the SECaaS paradigm compatibility, properties such as the man-
aged execution and isolation can be guaranteed at any moment. The former ensures that
the services can be deployed independently and where they are needed the most. On this
subject, the third chapter of the thesis (cf., Article 3–Clus, Figure 2) explores the different
configurations from cloud to edge deployment, and eventually inferred on-device compat-
ibility. Similarly, the latter property can be enforced by carefully deploying the services
through containerisation, preventing unauthorised access to the model and the data itself.
In this context, the potential capabilities hinted by developing federated learning solutions
might permit to decouple the private data and models from the shared re-trained models.
This subject has been defined and discussed, along with the privacy-related aspects and
challenges, in the third chapter (Article 3–Clus).

III Objectives

Identifying AGDs at scale in complex-environment, such as the ones offered by 5G/B5G
scenarios, pointed out several challenges and multiple criticalities that had to be addressed.

As such, the first objective, defined as follows, aims to identify where the state-of-the-
art is in terms of DGA-based botnet detection, with special attention to ML approaches,
data sources, and published frameworks.

Objective 1: State-of-the-art (O1-SoTA). Outline and study the aspects of DGA-based
botnet detection in 5G and B5G scenarios.

As the first objective is broad in both scope and potential approaches, four sub-
objectives have been outlined; to be precise, the first three objectives aim to identify
and explore the state-of-the-art under different prisms, while the last one aims to draw the
needed conclusions necessary to identify the research path.

Objective 1.1. Study and present a critical revision of researches on DGA-based botnet
detection in 5G/B5G scenarios previously published in high-quality journals and confer-
ences.

Objective 1.2. Study and present a critical revision of publicly available data sources to
power ML detection frameworks.

Objective 1.3. Collection and analysis of published ML solutions to identify samples of
AGDs.

Objective 1.4. Identify and present research gaps, challenges, and potential future lines.
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Following the identification and discussion of the characteristics of the problem at
hand, the second stage of this PhD thesis focuses on achieving a more hands-on objective.
Indeed, starting from state-of-the-art ML solutions and approaches, combining them with
the obtained data sources, and having the 5G/B5G as the primary use case, a novel,
scalable, and service-oriented framework has been designed to achieve the next objective:

Objective 2: Identification framework (O2-FRMW). Theorise, design and implement
a proof of concept ML-based and SECaaS-compatible identification framework for DGA-
based botnet detection in 5G and B5G scenarios.

Similarly, four steps and milestones have been identified to achieve this second objective:

Objective 2.1. Obtain and maintain a curated data source to enable reproducible ML
experiments.

Objective 2.2. Study and present architectural approaches to the detection of DGA-based
botnets in modern networks.

Objective 2.3. Design, implement, and evaluate ML approaches to DGA-based botnet
identification.

Objective 2.4. Design, implement, and evaluate a SECaaS container to enable ML detec-
tion in a collaborative environment.

Besides the two primary objectives just identified, a series of methodological principles
to maintain the research on a scientific and reproducible track throughout the PhD thesis
has been identified and formalised as follows.

Principle 1: Reproducibility of the research (P1-REPR). Each research contribution
shall be studied, formalised with specific attention to those details that enable to replicate
and validate the findings and experiments.

Principle 2: Open science (P2-OPEN). Each research contribution shall be publicly re-
leased, including knowledge, data, and source code.

Principle 3: Keep-it-simple (P3-KIS). Each research contribution shall be unravelled
and reduced to essential components, to facilitate reproducibility, evaluation, and usage of
the obtained result.

Principle 4: Evaluation and validation of the results (P4-EVAL). Each research con-
tribution shall be published in high-ranking peer-reviewed venues.
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2
Methodology

This PhD thesis has been conducted following a scientific approach based on researching
the state-of-the-art, from which key points, challenges, and theorised solutions have been
proposed. As a result of the first initial literary review, it has been made clear that several
issues made it impracticable to reproduce and validate numerous published results. There-
fore, any subsequent effort has focused on enabling research outcomes’ quantitative and
qualitative rigorous analyses and comparisons. Throughout the research, the methodology
aimed at adhering to the three principles defined in the previous section, namely P1-REPR,
P2-OPEN1, and P3-KIS. By publishing these results, this thesis also heeds to the fourth
principle, i.e., P4-EVAL.

It is well known that it is imperative to match originals conditions to replicate any
experiment or result. When depicted in ML solutions, the P1-REPR principle implies to
deploy models with the same configurations using the same data sources (both raw data
and preprocessing). Under such a prism, and aligned with the P1-REPR and P2-OPEN
principles that guide this thesis, the first two chapters (Article 1–SoCo and Article 2–CoSe)
address precisely the data sources, their elaboration and their analysis using ML models.
Hence, to achieve the O1-SoTA objective, the first chapter identifies and collects several
research articles published in the previous five years on the subject of DGA-based botnet
detection.

The analysis of the state-of-the-art, as requested by the O1-SoTA objective, led to the
definition and formalisation of the features sets proposed in the literature, divided into two
general families (cf., Article 1–SoCo, Section 2), i.e., those that rely on users’ data (Context-
Aware features) and those that rely only on the domain name itself (Context-Free features),
being the latter the most common one deployed. These Context-Free features have been
studied, reimplemented, and evaluated in the first chapter of this thesis (Article 1–SoCo,
reaching O1.1 sub-objective), and eventually formalised and published within the UMUDGA
dataset (Article 2–CoSe, reaching sub-objectives O1.3 and O2.1). The conclusions that
have been drawn from the knowledge acquired on this subject hinted that authors have
previously theorised new features without pondering whether they provide enough infor-
mation to justify the computation resources needed to calculate them (sub-objective O1.4).
For example, as reported in the first chapter (Article 1–SoCo), considering metrics related
to nGrams distributions with n ≤ 2 requires to add a non-trivial amount of resources to
the feature extraction process as there are |S|n valid symbols per distribution, where S is
the set of valid ASCII symbols for domain names and n is the size of the analysed nGram.

1Although the research has not been published under the Open Access modality, each article has been
legally released without restrictions as pre-print copy in the appropriate repositories.
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Furthermore, as the sequence of characters taken into account increases, the probability
of having such combination represented in a domain name decreases, leading to mostly
zeroed distributions.

Once again, the keep-it-simple principle (P3-KIS) is reflected in the methodology and
results. Indeed, all three chapters (Article 1–SoCo, Article 2–CoSe, and Article 3–Clus)
demonstrated that privacy-aware, syntactic analysis of the domain names is enough to
achieve outstanding classification performances, without the need to explore elaborated
metrics that require profiling the users’ behaviour. In the first chapter of this thesis, an
exploratory analysis of the data using different feature selection and extraction techniques
is carried out to prove the results (sub-objectives O1.3 and O2.3). In the experiments,
six among the most famous (and used in the literature) classifiers have been deployed
to identify the DGAs variants, suggesting that most of the identified features are indeed
not providing a sufficient amount of information. In each chapter (Article 1–SoCo, Ar-
ticle 2–CoSe, and Article 3–Clus) the data, algorithms, and evaluation results have been
thoroughly described and formalised (P1-REPR principle). However, it is yet to be discussed
if solutions using Context-Aware features can outperform the already excellent results ob-
tained in the experiments (O1.4 sub-objective).

The literary review also pinpointed that the already published researches were carried
out mostly without releasing the data sources (sub-objective O1.3 and principle P2-OPEN).
Hence, this thesis’s second chapter focuses on the formal analysis between the published
resources and the newly presented UMUDGA dataset (sub-objectives O1.3 and O2.1, P2-OPEN
principle). Furthermore, a comparison framework has been designed to achieve sub-
objective O1.2; in the framework, nine orthogonal metrics summarise the different proper-
ties, advantages and disadvantages of each data source, ultimately highlighting their lack
of completeness. Among the metrics presented in the second chapter (Article 2–CoSe), it is
possible to pinpoint the sources’ verifiability, the data extensibility, and the ML readiness.
Among others, these metrics suggested once again the critical importance of reproducible
(P1-REPR principle) and usable open data (P2-OPEN principle). Indeed, the data collection
process has been carried out by collecting the numerous malware variants from publicly
available sources (such as previous researches, tech blogs, or vendor-specific bulletins, to
cite a few) and executed it with predefined seeds (to control the output deterministically)
to collect the resulting AGDs (sub-objective O2.1).

Furthermore, to complete the achievement of the O1-SoTA objective, a literary review
of different architectural designs for DGA-based botnet detection at scale has been con-
ducted. The last chapter (cf., Article 3–Clus, Section 2.2) provides a technical overview
of the different SECaaS architectures for ML-based detections on the network edges (sub-
objectives O1.1 and O1.3). The article explores the different properties of the detection
probes’ location, providing the critical points to foster the discussion regarding the trade-
off between classification capabilities, resource constraints, and limitations in user data
usage.

Similarly, the O2-FRMW objective requested components and modules can be identified
in each of the chapters composing this thesis. Indeed, following a bottom-up approach,
the first and foremost element can be represented by the malwares’ DGAs source code. As
described in the second chapter (cf., Article 2–CoSe, Section 3), and to achieve sub-objective
O2.1, 50 malware variants have been collected; hence, their DGAs have been reimplemented
and executed to generate at least 10.000 AGDs per variant (most DGAs, however, have
been used to collect one million samples). As a result, the collected data, renamed as
the “UMUDGA dataset”, has been processed and publicly released after a peer-review process
(Article 2–CoSe) and have been used to feed any experiment publicly released in this thesis
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(sub-objective O2.1, P1-REPR and P2-OPEN principles). Besides, with the formalisation
of the studied features (Article 2–CoSe), each methodological principle can be identified:
the designed methodologies and deployed procedures have been formalised in all research
contributions and have been evaluated by the scientific community (P1-REPR and P4-EVAL
principles); the source code has been released for each step of the research, including proof-
of-concepts services and algorithms (P1-REPR and P2-OPEN principles); multiple approaches
and solutions have been studied and ultimately formalised in the publications, proving that
straightforward approaches can achieve excellent results without the need for obscure or
uninterpretable constructs (P1-REPR and P3-KIS principles); each contribution has been
published in competitive, high-quality, and peer-reviewed journals (P4-EVAL principle),
namely Soft Computing (Article 1–SoCo), Computers & Security (Article 2–CoSe), and
Cluster Computing (Article 3–Clus).

Indeed, the experimental detection modules have been studied and developed since the
first (Article 1–SoCo) and second chapters (Article 2–CoSe), in which six among the most
used classifiers have been described, implemented, trained and tested (O2.3). In these pub-
lications, the detection modules are examined as machine learning solutions, thus focusing
on the classification performances in different scenarios and with different data sources.
However, the third chapter (cf., Article 3–Clus, Section 3) investigates the detection mod-
ule as a service (O2.4), highlighting and discussing properties such as the requirements
and performances, service deployment location, and eventually, how the detection probes
relate to the users’ privacy (O2.2). Finally, throughout these contributions, it is possible to
identify the keep-it-simple principle (P3-KIS); for example, although deep and convoluted
DL architectures have been proven effective, we have demonstrated that many intelligible
and straightforward solutions can be equally valid.
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3
Conclusions and future work

Formally, this PhD dissertation aims at providing a study on domain generation algorithms
(DGAs), and specifically on the techniques that can be used to identify them in the wild.
However, this research’s unwritten objective is to untangle the amount of machine learn-
ing (ML)-based contributions (that claims to solve the algorithmically generated domains
(AGDs) identification problem) to describe a straightforward, working, and scalable ap-
proach that does not jeopardise users’ privacy. As such, guided by keep-it-simple (P3-KIS)’s
principle, this PhD thesis surveyed the literature regarding algorithms, data sources, and
frameworks to DGA-based botnet detection in fifth generation (5G) networks and beyond.
Indeed, security-as-a-service (SECaaS) and edge intelligence (EI) have been studied and
applied to provide the required dynamicity characteristic of these modern environments.

Among the leading contributions achieved, three specifically outshine the others:

i) firstly, the formalisation of the designed features used to build ML solutions oriented
to the detection of DGA-based botnet, with particular attention to those that do not
require users’ profiling (cf. Article 1: Scalable detection of botnets based on DGA);

ii) secondly, the collection and public release of a complete and up-to-date dataset for
DGA-based malwares, including 50 DGAs and over 30 million AGDs (cf. Article 2:
UMUDGA: A dataset for profiling DGA-based botnet); and,

iii) thirdly, the proof-of-concept AGDs detection module’s design and implementation
devised to be deployed as on-edge SECaaS (cf. Article 3: Early DGA-based botnet
identification).

As per the evaluation and validation of the results (P4-EVAL) principle, these primary
contributions have been published in top-tier journals, namely two Q2 (Soft Computing for
Article 1 and Computers & Security for Article 2) and a Q1 (Cluster Computing for Arti-
cle 3). Nowadays, research in computer science, particularly in cybersecurity and machine
learning, still suffers from the lack of reproducibility. Indeed, many results and solutions
claim to achieve exceptional results, and while that might be the case, the replicability
and validation processes are often overlooked. As such, each contribution presented in this
PhD thesis adhered to the principles of reproducibility of the research (P1-REPR) and open
science (P2-OPEN). In doing so, the achieved results might be evaluated, reimplemented,
and eventually improved by the scientific community and future researchers.

Together, they deliver the PhD dissertation’s established objectives; however, some
challenges are yet to be solved.
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For one thing, this research focuses on analysing those features that do not require users
profiling (context-free); however, their context-aware counterpart has been suggested as
equally valuable in the literature as, intuitively, each malware variants behaves differently.
As such, future works might reveal that a combination of these two families upholds the
key to identify the most advanced malwares. Besides the potential advantages offered
by context-aware features, it is imperative to consider that they require more invasive
techniques than their context-free analogue. As such, future research should focus on how
to provide AGDs detection services without harming users’ privacy.

Furthermore, following the privacy subject, a specific issue strikes out: any given model
needs to be trained with real-world data to learn its environment’s characteristics. In
such a context, sharing knowledge becomes a critical feature of collaborative detection
frameworks; in particular, we hinted at the federated learning capabilities, without delving
too much into it. Noteworthy future researches might explore this and other cooperation
paradigms to unveil innovative solutions for identifying AGDs without having to share
users data.

Last but not least, a remark is needed. Frameworks and proposals are designed, anal-
ysed, tested, and discussed in specific minimal use cases and scenarios. Despite this condi-
tion, research often overlooks the validation process and comparison with other previously
published results. As such, the research area is in great need of a proper formal suite of
validation benchmarks, to which new solutions should adapt.
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Abstract
Botnets are evolving, and their covert modus operandi, based on cloud technologies such as the virtualisation and the dynamic
fast-flux addressing, has been proved challenging for classic intrusion detection systems and even the so-called next-generation
firewalls. Moreover, dynamic addressing has been spotted in the wild in combination with pseudo-random domain names
generation algorithm (DGA), ultimately leading to an extremely accurate and effective disguise technique. Although these
concealing methods have been exposed and analysed to great extent in the past decade, the literature lacks some important
conclusions and common-ground knowledge, especially when it comes to Machine Learning (ML) solutions. This research
horizontally navigates the state of the art aiming to polish the feature discovery process, which is the single most time-
consuming part of any ML approach. Results show that only a minor fraction of the defined features are indeed practical and
informative, especially when considering 0-day botnet identification. The contributions described in this article will ease the
detection process, ultimately enabling improved and more scalable solutions for DGA-based botnets detection.

Keywords Botnet · Domain generation algorithm · DGA · Machine Learning · Natural language processing

1 Introduction andmotivation

Computer networks enable sharing resources, immediate
communications and distributed computation, which have
been strengthened in recent years by the Cloud Comput-
ing paradigm where “everything” is being offered as an
on-demand service (Mell and Grance 2011). Unfortunately,
such network functionalities are misused by malicious enti-
ties aiming to compromise as many systems as possible in
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order to have them available for later use. Such compromised
hosts are generically defined as zombies (or bots), being part
of a network controlled by one or multiple command & con-
trol (C&C) servers. In order to conceal the infection and hide
the botnet purposes, malwares are employing a variety of
techniques such as code obfuscation and encryption (Vor-
mayr et al. 2017; Gupta et al. 2016). Nevertheless, bots need
to reach the C&C servers so as to receive commands and
pull-out recorded data. There is a potential weak point from
attackers perspective: once the C&C is taken out, or seized by
the authorities, the botmaster–botnet owner will lose the con-
trol over the botnet (Leelasankar et al. 2018; Lerner 2014).

As a consequence, malwares are actively employing
advanced evasion techniques to conceal the communications
with C&C servers. A domain generation algorithm (DGA)
represents a practical solution from the attacker’s point of
view. With DGAs, we indicate a family of algorithms that
given a seed, often shipped with the malware as a pre-shared
secret, generate strings of domain names that can be queried
and resolved for locating the active C&C server. In addition,
these evasion characteristics are currently being enhanced
by using the cloud computing environment (Sharieh andAlb-
dour 2017; Stergiou et al. 2018), in which both bots and C&C
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servers can be provisioned dynamically and being moved
from one location to another or even between providers
within the cloud (Bugiel et al. 2011; Hussain et al. 2017).
This fact makes botnets more difficult to trace and detect
in real time (Zhang et al. 2014). Moreover, cyber-criminals
are continuously updating their malwares’ DGA in order to
evade regular patterns and signatures created by security ven-
dors. These updated versions are considered as 0-day threats.
To be more precise, a 0-day is a threat that was previously
unknown, which can be either in form of a new variant of a
known malware or an entirely new malware family.

Most DGAs algorithms are both time-dependent and
deterministic, i.e. their generation parameters are retrievable
and reusable to compute all the possible outcomes. Hypo-
thetically, it is possible to reverse engineer each malware
variant to obtain the generation algorithm and the seed, thus
extracting the subset of valid domain names (DNs) for a given
date and time. This approach is not viable when considering
the number of malware families and variants (0-days) dis-
covered every day. Moreover, even excluding exceedingly
large algorithmically generated domains (AGDs) produced
by malwares such as Conficker or Virut, which can generate
an average of 50,000 domains per day (Plohmann et al. 2016),
a blacklisting approach is not a practical solution. This huge
number of information discovering C&C connectivity entails
a key challenge to address the big data problem (Watkins
et al. 2017). In this context, this work focuses on the detec-
tion approach, aiming to prevent malwares to contact C&C
servers by distinguishing between legitimate and malicious
DNs, taking into account big data analysis algorithms for
reduction. And, by its own definition, AGDs are dynami-
cally generated as pseudo-random strings or by combination
of dictionary words; consequently, it is possible to sepa-
rate legitimate DNs from the others by applying Machine
Learning (ML) techniques. Under the hood, our ML frame-
work leverages two separate families of metrics: on one side
static and dynamic analysis of Domain Name Service (DNS)
queries highlights suspicious behaviours of clients, while on
the other side, natural language processing (NLP) techniques
permit to accentuate linguistic differences between DNs. We
called these two families Context-Aware and Context-Free,
respectively.

Although different in nature, these two families of met-
rics are complementary. DNS queries analysis can provide
evidence of non-human activity, such as daily similarity
and repeating communication patterns. For example, it has
been proven that legitimate users repeat daily patterns (Bilge
et al. 2014). Similarly, NLP-based metrics help to identify
non-human activities; that is, DNs are intended to be easily
remembered by users, or at least mnemonic, since the main
purpose of any DNS service is to provide human-readable
association with IP addresses. By comparison, most mal-
ware families do not include such forethoughts (Bilge et al.

2014). DNS-related metrics can natively deal with the con-
cept of fast-flux botnets, a subset of the DGA-based family.
This technique, spotted in the wild since at least 2007 (with
the Storm Worm (Holz et al. 2008), consists in registering
multiple IP addresses within the same DNS-A record, lever-
aging the well-known round-robin DNS scheme to provide
short-lived C&C rendezvous-points.

Due to privacy concerns, it is important to state also that
metrics based on network analysis are difficult to obtain
and use. However, Context-Free metrics are anonymous and
more privacy-oriented since they do not require any con-
textual information from the users or the network state. In
other words, users’ confidentiality is compromised by packet
inspection and network analysis. Additionally, the literature
review (Sect. 2) and preliminary results (Sect. 3.3) suggest
that these confidentiality-harming solutions may be subdued
by more privacy-oriented solutions that do not require users’
contextual information in order to achieve excellent detection
results.

A key challenge in this field is the comparability of dif-
ferent models. From the theory of ML, it is clear that there
are three key aspects of any learning model: data sources,
feature characterisation and model optimisation. This work
focuses on homogenising the existing Context-Free features
in order to be able to test different models with the same data
source.

Lastly, it is worth stating that in this research paper two
different ML problems are dealt with; that is, given a set of
fully qualified domain names (FQDNs), (i) binary separate
legitimate domains from malware ones and (ii) categorise
them according to their malware family.

Therefore, the contributions of this work are threefold:

– Firstly, a horizontal survey of the state of the art in
terms of features used in ML and Deep Learning (DL)
approaches to solve cybersecurity challenges related to
DGA-based botnets;

– secondly, the analysis of the two aforementioned ML
problems and their potential solution using privacy-
preserving approaches; and,

– thirdly, a deep analysis of the previously mentioned fea-
tures to highlight their properties with respect to the
feature engineering process and their evaluation using
six amongst the most important ML algorithms.

To do so, this article firstly recollects the usage of both
families (Context-Aware and Context-Free) in the literature,
aiming to establish which features are used, by whom and
with which results. Section 2 presents these outcomes. Sec-
ondly, in Sect. 3, this work proposes an analysis of the
Context-Free features using two different feature selection
and extraction techniques and evaluated using six differ-
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ent classifiers. Finally, conclusions and the further work are
drawn and discussed in Sect. 4.

2 DGA-based botnet detection in the
literature

Despite the efforts spent to fight them, DGAs are still thrust-
ing a good portion of themost advancedmalware families.As
stated before, classic blacklisting approaches are inadequate
to contrast malwares, just consider that the DGA powering
the now-obsolete Conficker malware can generate up to 50
thousands DNs per day. As illustrated in Kührer et al. (2014),
public blacklistswere lacking in terms ofDGAcoveragewith
less than 1.2% of DGAs analysed by the authors being con-
tained in any of the blacklists. Bruteforcing those generation
algorithms is thus not going to solve the problem (espe-
cially when considering 0-days variants); however, Artificial
Intelligence (AI) can help to tackle them. AI techniques and
precisely ML algorithms have been not only proven appli-
cable but also relevant and well suited when tackling these
malwares (Tran et al. 2018;Zhang et al. 2016).Alongwith the
classic network detection techniques, e.g. honeypot-based or
signature-based, Alieyan et al. (2017) cited passive DNS-
based anomaly detection techniques based on Graph Theory
(GT), entropy, statistics, Neural Network (NN), Decision
Tree (DT) and clustering. Our aim is to extend this taxon-
omy to provide a more complete and sound classification
to achieve better performance when detecting DGA-based
botnets; that is, we build a taxonomy based on:

1. The ML approach used, that is either supervised, not
supervised or semi-supervised.

2. The families of features adopted in the learning model,
that is Context-Aware features (e.g. DNS inspection),
Context-Free features [e.g. lexical analysis (Fu et al.
2017] and, finally, a Featureless model [e.g. NN-based
learners (Mac et al. 2017)].

To this extent, and with respect to the aforementioned
taxonomy categories, this research article will adhere to the
following definitions:

Definition 1 (Context-Aware feature) A feature that is
dependent on the specific malware sample execution, which
is realised in a precise environment with a specific configu-
ration and in a particular time frame; for example, Features
extracted upon DNS-response inspection.

Definition 2 (Context-Free feature) A feature that is related
only to a FQDN and thus is independent of contextual infor-
mation, including, but not limited to, timing, origin or any
other environment configuration. First and foremost example
of this family is the lexical analysis of the domain name.

In summary, the Context-Free feature family represents
the complement set of the Context-Aware feature, that is,
a feature can either belong to the Context-Aware or the
Context-Free family, but not both.

With regards to the Context-Aware feature family, they are
subject to a number of limitations that should be taken into
account, so exiting data sets containing them are rare, out-
dated and generally partial. For example, on the one hand,
AGDs lists such as Malware Domain List (2009), Abaku-
mov (2016), Risk Analytics (2007) and OSINT are limited,
fragmented and generally outdated. On the other hand, big-
ger repositories of network traces such as Biglar Beigi et al.
(2014) and García et al. (2014) are crafted, heavily unbal-
anced and often include only short burst of malware packets.
They are usually collected in a test environment or hand-
crafted because mass-collecting real user data are, in fact,
a direct breach of user’s privacy, and can therefore only
be gathered in an anonymous way after explicit consent.
Nonetheless, the quality of these data sets is notable (Biglar
Beigi et al. 2014; García et al. 2014), and when correctly
used, they can be of great help to any detection model. On
the contrary, data sets with Context-Free features (Malware
Domain List 2009; Abakumov 2016; OSINT; Risk Analyt-
ics 2007) consist mainly of lists of FQDNs belonging to a
specific malware family. They are natively privacy-oriented
since users’ data are not involved in any phase of the pro-
cessing.

Finally, it is worth mentioning that in the literature exist
several models that do not make use of hand-crafted, or
even automatically guessed features. These models can take
advantage of both types of data sets, thus we consider them
as a third, distinct category.We define suchmodels “Feature-
less”:

Definition 3 (Featureless model) A Machine Learning
model that does not require features in order to learn the
training data set.

Both Mac et al. (2017), Woodbridge et al. (2016) and
Vinayakumar et al. (2018) claim that feature-based detection
systems can be easily circumvented by malware engineers in
the context of the Adversarial Machine Learning theory. The
motivation for such claims generically relies on the intrinsic
difficulties of defining and analysing the feature set suitable
for not only differentiate AGDs from legitimate FQDNs but
also to separate and pinpoint different malware families.

On one side, it is clear that featureless detection systems
can produce good results without the need of ideate a feature
set; but on the other side, an extensive and deep knowledge
about the specific subject represented by the data enables the
feature engineering process to converge to an optimal feature
set. Feature-based detection systems are in general more reli-
able and offer important qualities such as the transparency,
efficiency, scalability and the capabilities of fine-tuning the
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algorithms. Not all features, though, are strictly relevant or
helpful during the detection process, i.e. a given featuremight
not be relevant as-is for the detection model, but in combi-
nation with others it may produce optimal results.

To reflect the taxonomywepropose in this research article,
this section is divided into two subsections according to the
ML paradigm chosen by the authors of the different related
works of the literature that we have thoroughly analysed,
either supervised or unsupervised learning.

Generally speaking, the act of labelling a data set such
as a collection of domain names is an extremely compli-
cate and resource-consuming task, especially because white
and blacklists can help only to a certain extent. unsupervised
learning is, unlike supervised, missing the knowledge related
to the instances, i.e. the model does not know the label of
each point in the data set. It is imperative to understand that
supervised and unsupervised learning are different both in
nature and in scope of application: on the one hand, super-
vised learning techniques partition a data set into subsets,
named clusters, according to some common characteristics;
on the other hand, unsupervised learning algorithms divide
the instances into classes and use that knowledge to infer the
class (label) of new and previously unseen elements.

With regards to all the aforementioned aspects, in each
subsection, a list of the most used or relevant algorithms for
that category is presented. Furthermore, each subsection will
provide several tables that report:

– the reference of the work;
– the type of classifier or cluster used;
– an indication whenever the authors made a comparison

with other works or other methods;
– whether their proposed framework is capable of realtime

(RT) detection;
– the algorithm proposed;
– the usage of either Context-Aware or Context-Free fea-

tures; and
– a generic field that considers the overall results —

specifically, we consider as poor performances whenever
the proposed results (in terms of precision and recall) are
below 75%, average below 85%, good below 95% and
excellent above 95%.

Remarkably, it is worth noticing that only a few authors
have cited any challenge related to 0-day, either as part of
their analysis (Nguyen et al. 2015; Pu et al. 2015; Tong and
Nguyen 2016) or as potential future work (Ahluwalia et al.
2017; Fu et al. 2017; Thomas and Mohaisen 2014).

2.1 Supervisedmachine learning approach

A supervised ML algorithm is a function that associates a
label (also known as outcome or dependent variable) to a
given set of predictors (also known as independent variables).
The learning process consists of optimising the internal
parameters of the algorithm to associate the input set with
the desired output. Examples of supervised ML algorithms
are Decision Tree (DTs), Random Forests (RFs), k-Nearest
Neighbours (kNN), Hidden Markov Models (HMMs), Neu-
ral Network (NNs), etc. Amongst them, we considered only
the most effective that have been successfully used in the
recent past to detect DGA-based malwares in the network.
Here follows a brief list of such approaches.

2.1.1 Hidden Markov Model (HMM)

HMMs are the simplest class of dynamic Bayesian Networks
(BNs) and, specifically, they are Markov Models in which
the states are hidden (unobservable). HMMs have a proven
record of successful applications in the linguistic field when
applied to the extraction of grammars and information from
texts.

In the literature, they have been used by several authors in
order to distinguish legitimate DNs from malicious AGDs.
On one side, for example, Mac et al. (2017), Tran et al.
(2018),Woodbridge et al. (2016) showed that HMMs behave
poorly in comparison with more complex featureless solu-
tions such as Long Short-TermMemory Networks (LSTMs).
In general, HMMs have unsatisfactory performances when
applied to binary classification between AGDs and legiti-
mate DNs (Woodbridge et al. 2016). HMMs, however, have
been successfully deployed by Antonakakis et al. (2012) to
trace back theC&Cservers, achieving interesting results only
when targeting specific classes of malware. Table 1 presents
a comparison of these previous works, especially with Deep
Learning (DL) and feature aware solutions.

On the other side, however, Fu et al. (2017) decided to use
HMMs and probabilistic context-free grammars (PCFGs) to
extract core properties of legitimate DNs, in order to build
a new family of DGAs able to guarantee the generation of
statistically undistinguishable AGDs when referring to lex-
ical analysis (as specified below in Sect. 3). As reported
by the authors, the inclusion of others lexical properties, in
combination with network-based features, helps in overcom-
ing this concealing technique. Extending the work proposed
inAnderson et al. (2016), in terms of usingGenerativeAdver-
sarial Network (GAN) as an anti-detection approach, may
result in interesting outcomes. Table 2 presents a compari-
son of the work used to evade the detection techniques.
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Table 1 Supervised approach—Hidden Markov Models

Refs. Classifier Comparison RT Algorithm Feature context Results

Aware Free

Antonakakis et al. (2012) C&C identification ✗ ✗ HMM Featureless Poor

Mac et al. (2017) and Tran et al. (2018) MultiClass Feature aware, DL ✗ HMM Featureless Poor

Woodbridge et al. (2016) MultiClass Feature aware, DL ✗ HMM Featureless Poor

Table 2 Supervised
approach—avoiding detection

Refs. Used for Comparison Algorithm

Anderson et al. (2016) AGDs generation Other DGAs GAN, LSTM

Fu et al. (2017) AGDs generation Other DGAs PCFG, HMM

2.1.2 Artificial neural network (NN) and deep learning

Artificial Neural Networks (NN) are mathematical structures
that combine nonlinear functions to compute complex func-
tions. They ultimately aim to resemble the structure of human
neurons and interactions. One of the most impressive results
of NNs is that it has been proved that they can approximate
the result of any function [Universality Theorem (Haykin
1998)]. There is a catch, though, in using NN for such task:
they can only approximate continuous functions. Deep Neu-
ral Networks come to improve this result.

Amongst the past decades, NNs have been widely and
successfully used for image processing, speech recognition
and text analysis (Abdel-Hamid et al. 2014). NNs have been
adapted to several problems by changing the composition and
the number of the inner layers to align with complex prob-
lems. As, for example, Baruch and David (2018) designed a
NN with a single strongly connected hidden layer and a sin-
gle output neuron to binary distinguish between legitimate
domains and AGDs.

In the case ofDGAs, ExtremeLearningMachines (ELMs)
have been proved effective in the classification of such
domains (Mac et al. 2017; Tran et al. 2018; Shi et al. 2017).
Nevertheless, NNs have a major shortcoming, the lack of
any persistence mechanism. As a result, Recurrent Neu-
ral Networks (RNNs), LSTM (more commonly known as
Deep Learning) and a bunch of other techniques, including
Convolutional Neural Network (CNN) and Cost-Sensitive
Neural Network (CS-NN), have been developed to include,
respectively, short-term and long-term persistence.Mac et al.
(2017) and Tran et al. (2018) studied and developed a
specific variation of classic LSTMs to include binary and
multiclass classification models with class-dependent cost-
sensitive functions. Despite the very good performances in
binary classification, they are still unable to distinguish mal-
wares using pronounceable AGDs.

To be more precise, the performances of the most
advanced DL techniques (Mac et al. 2017; Tran et al. 2018;

Woodbridge et al. 2016) are achieving excellent results only
in the binary case, i.e. when distinguishing between mal-
ware and legitimate FQDNs. In the multiclass classification,
and especially with regards to the most advanced malware
families (such as Kraken, CryptoWall or Qakbot), DL-based
detection solutions achieve questionable results in terms of
both precision and recall.

Woodbridge et al. (2016) also used LSTMs to learn the
sequence of patterns generated by DGAs, ultimately classi-
fying AGDs and legitimate DNs. Vinayakumar et al. (2018)
also proved the excellent results of RNNs and LSTMs (and
their combinations) when solving the binary classification
problem of distinguishing legitimate and harmful domain
names. Table 3 presents a comparison of the previous works.

As a final remark, it is worthmentioning that DL hasmany
issues that are usually skipped during the evaluation phase
of the proposed works. Although it is correct that they can
offer impressive results, it is also correct that they are often
overfitted and especially opaque. This lack of transparency
ultimately leads to the impossibility of fine-tuning the algo-
rithms and of explicating the reasons behind the results. As
for HMMs, Deep Learning can be used to outshine the con-
cealing capabilities of classicDGAs. It is the case studied and
reported by Anderson et al. (2016), who developed a DGA
specifically designed for crafting difficult DNs. The AGDs
were used then to harden the proposed classifier, resulting in
aGANarchitecture able to lower the detection rate below any
acceptable threshold. Related works used to evade the detec-
tion techniques have been presented and compared above in
Table 2.

2.1.3 Decision trees (DTs) and derived

Contrarily to the Deep Learning solutions presented in
Sect. 2.1.2, Decision Trees (DTs) offer transparent solu-
tions that do not require any scaling or data normalisation.
Moreover, since they are particularly resilient to outliers,
missing values and nonlinear relationships, they are capa-
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Table 3 Supervised approach—neural network and deep learning

Refs. Classifier Comparison RT Algorithm Feature context Results

NN-based LSTM Aware Free

Baruch and David (2018) Binary Feature aware ✗ NN ✗ ✗ ✓ Good

Mac et al. (2017) and
Tran et al. (2018)

MultiClass HMM, feature aware ✗ CS-NN, ELM CNN-LSTM Featureless Excellenta

Shi et al. (2017) Binary Feature aware ✗ ELM ✗ ✓ ✓ Excellent

Vinayakumar et al. (2018) MultiClass Feature aware ✗ I-RNN, CNN CNN-LSTM Featureless Excellent

Woodbridge et al. (2016) MultiClass HMM, feature Aware ✗ ✗ ✓ Featureless Excellent

aWhile classifying some classes. The scores are excellent when consideringmicro-averaging the per-class scores, but onmacro-averaging the results
are quite poor

ble of remaining consistent regardless of the data shape.
Nonetheless, they are prone to errors and misconfiguration,
i.e. without pruning and limitations they tend to overt the
data, thus lowering the prediction accuracy. Although it is
common to find a scenario-specific algorithm that performs
better [typically DL or AdaBoost (AB)], they conventionally
require more resources or time to be trained.

Several works have been proposed so far in the context
of DTs, not surprisingly using the classic C4.5 as gener-
ation algorithm. Specifically, Ahluwalia et al. (2017) and
Bilge et al. (2014) have used them to solve the binary clas-
sification problem of distinguishing AGDs from FQDNs,
while Antonakakis et al. (2012), Mac et al. (2017), Ste-
vanovic et al. (2017), Tran et al. (2018), Truong and Cheng
(2016), Vinayakumar et al. (2018) have instead opted for
the multi-classification problem of identifying the malware
family.

Random Forests (RFs) have been proposed to help to
fix the aforementioned overfitting bias of DTs. RFs require
almost no parameter tuning, as DTs can handle any type
of feature without scaling or normalisation. They do not
require tweaking of the hyper-parameters, perform implicit
features selection and train extremely fast. However, these
accomplishments are often paid with the slow evaluation per-
formances and the important amounts of resources required
creating and storing them. Nevertheless, RF, out of the box,
performs particularly well. Not surprisingly RFs have been
widely used in the literature to approach the DGA-based bot-
net problem both in the binary (Ahluwalia et al. 2017; Xu
et al. 2017) and in the multiclass (Luo et al. 2017; Song and
Li 2016; Stevanovic et al. 2017; Truong and Cheng 2016;
Vinayakumar et al. 2018; Woodbridge et al. 2016) forms.

As specified before, both DT-based and RF-based mod-
els need features in order to work. Generally speaking,
the usage of Context-Free features (as defined in Sect. 2)
is sufficient to have a good-to-excellent classifier. To be
more precise though, it is worth mentioning that to the
best of our knowledge, there are not related researches
that only uses Context-Aware features for the classifica-

tion with DT or RF algorithms. In fact, when considering
Context-Aware metrics they tend to have them integrated
with NLP-based ones (Bilge et al. 2014; Stevanovic et al.
2017; Xu et al. 2017), while on the contrary, researches
featuring DT and/or RF solutions tend to focus purely on
linguistic features (Ahluwalia et al. 2017; Luo et al. 2017;
Mac et al. 2017; Song and Li 2016; Tran et al. 2018; Truong
and Cheng 2016; Xu et al. 2017).

Table 4 presents a comparison of these previous works.
It may perhaps be observed that the authors have used

a different subset of these features, both belonging to the
Context-Aware and Context-Free families. To clarify this
observation, Sect. 3.2 will highlight and present, to the best
of our knowledge, the complete list and description of the
used features.

It also worth mentioning how Vinayakumar et al. (2018)
used a CNN to generate the features that later on have been
analysed by theDT and theRF classifier.Moreover, highlight
how these classifiers are compared with several algorithms
that are intrinsically different, including classic approaches
such as SVM, NB and SGD.

2.1.4 Other supervised approaches

Apart from DL and DT derived learners, historically exist
several other decision algorithms. Amongst them, the five
most used algorithms are presented in Table 5 and described
in the following list.

– Naïve Bayes (NB), a family of probabilistic classifiers that
assume a strong (and thus naïve) independence between
the features. In the context of AGDs detection, it has
been appliedwith inconsistent results (Truong andCheng
2016; Vinayakumar et al. 2018).

– Regression, both linear and logistic regressions represent
a family of learners that attempt to define an explanation
model by interpolating the data. To the best of our knowl-
edge, this approach has not yet been studied and applied
to the problem.
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Table 4 Supervised approach—decision trees and derived

Refs. Classifier Comparison RT Algorithm Feature context Results

DT RF Aware Free

Ahluwalia et al. (2017) Binary ✗ ✗ ✓ ✓ ✗ ✓ Excellent

Antonakakis et al. (2012) MultiClass ✗ ✗ ✓ ✗ ✗ ✓ Excellent

Bilge et al. (2014) Binary ✗ ✓ ✓ ✗ ✓ ✓ Excellent

Luo et al. (2017) MultiClass ✗ ✓ ✗ ✓ ✗ ✓ Good

Mac et al. (2017)and
Tran et al. (2018)

MultiClass SVM, DL ✗ ✓ ✗ ✗ ✓ Average

Song and Li (2016) MultiClass ✗ ✗ ✗ ✓ ✗ ✓ Good

Stevanovic et al. (2017) MultiClass ✗ ✓ ✓ ✓ ✗ ✓ Good

Truong and Cheng (2016) MultiClass NB, kNN, SVM ✗ ✓ ✓ ✗ ✓ Good

Vinayakumar et al. (2018) MultiClass AB, NB, DL ✗ ✓ ✓ CNN-generated Excellent

Woodbridge et al. (2016) MultiClass HMM, DL ✗ ✗ ✓ ✗ ✓ Excellent

Xu et al. (2017) Binary AB, SGD ✓ ✗ ✓ ✓ ✓ Excellent

Table 5 Supervised approach—other machine learning techniques

Refs. Classifier Comparison RT Algorithm Feature context Results

Aware Free

Baruch and David (2018) Anomaly DL ✗ SVM, kNN ✗ ✓ Good

Han and Zhang (2017) Binary Accuracy (Luo et al. 2017) ✗ SVM Filter ✓ Good

Mac et al. (2017) and
Tran et al. (2018)

MultiClass DT, RF, DL ✗ SVM ✗ ✓ Good

Truong and Cheng (2016) MultiClass DT, RF ✗ NB, kNN, SVM, AB ✗ ✓ Poor

Vinayakumar et al. (2018) MultiClass RF, DT, DL ✗ NB, AB CNN-generated Excellent

Xu et al. (2017) Binary DT, RF ✗ SGD, AB ✓ ✓ Excellent

– Support Vector Machines (SVMs) represent a family of
linear models that attempt to classify data by finding
a hyperplane that maximises the data distance in an n-
dimensional space. A common approach is to use the
SVM as binary classifier to separate legitimate and mali-
cious AGDs (Baruch and David 2018; Han and Zhang
2017), but also as multiclass classifier (Mac et al. 2017;
Tran et al. 2018; Truong and Cheng 2016).

– k-Nearest Neighbours (kNNs), a classifier that defines the
boundaries of the classes by the distance from their neigh-
bours through a majority vote. In one case, Truong and
Cheng (2016) successfully applied this algorithm to the
problem, obtaining poor results. However, Baruch and
David (2018) have used this approach for anomaly detec-
tion, obtaining interesting results.

– Stochastic Gradient Descend (SGD), a family of clas-
sification algorithms that approximate gradient optimi-
sation. Xu et al. (2017) have reportedly used it for
comparison.

As specified before, and similarly to the previous subsec-
tions, Table 5 reports the comparison of these works in terms
of RT usage, algorithms, feature families and results.

2.2 Unsupervisedmachine learning approach

Amongst the algorithms making use of unsupervised learn-
ing techniques, it appears that in the literature the K-Means,
Density-Based Spatial Clustering of ApplicationswithNoise
(DBSCAN) andHierarchical Clustering (HC) algorithms are
the most used. To this extent, it is clear that unsupervised
learning has a concrete and important advantage compared
with supervised learning, as it does not require labelled
data sets. However, the labels of each cluster’s instance can
be inferred by a few manually recognised examples. The
main drawback of most of unsupervised learning algorithms
resides in the fact that they need to be configured with the
predicted number of clusters, an assumption that may not be
available.

In the literature, unsupervised learning has been applied
in many scenarios with different objectives, including, but
not limited to:

– statistical filtering techniques to filter out the most basic
AGDs (Grill et al. 2015);

– techniques to correlate bots and C&Cs (Han and Zhang
2017);
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Table 6 Unsupervised approach—K-Means and derived

Refs. Cluster Comparison RT Algorithm Feature context Results

K-Means Other Aware Free

Antonakakis et al. (2012) Multiclass ✗ ✗ X-Means ✗ ✗ ✓ Excellent

Bisio et al. (2017) Multiclass ✗ ✓ ✓ ✗ Filter ✓ Uncleara

Nguyen et al. (2015) Multiclass DBSCAN ✗ X-Means ✗ ✓ ✓ Average

Pu et al. (2015) Multiclass ✗ ✗ ✓ ✗ ✗ ✓ Unknown

Stevanovic et al. (2015) Binary ✗ ✗ ✓ ✗ ✓ ✓ Good

Tong and Nguyen (2016) Multiclass DBSCAN ✗ X-Means ✗ Filter ✓ Uncleara

aAuthors are not providing detection metrics such as accuracy, precision and recall

– techniques to label groups of FQDNs according to their
similarity (Berger and Gansterer 2013; Stevanovic et al.
2015);

– detection tools to separate legitimate from malicious
FQDNs (Baruch and David 2018; Pu et al. 2015); and

– techniques to group users according to their network
behaviour, e.g. users who query the same group of
non-existent domains (NXDomains) (Antonakakis et al.
2012).

A clear trend in the literature is the usage of unsupervised
learning techniques to perform some sort of data prepro-
cessing prior to performing real classification with more
resource-consuming supervised algorithms. Several works
are, in fact, at least partially based on clustering and/or associ-
ation, such as the ones presented inAntonakakis et al. (2012),
Fu et al. (2017) and Nguyen et al. (2015), just to reference a
few.

2.2.1 K-means and derived

The well-known K-Means algorithm is the first and the sim-
plest unsupervised learning algorithm. It requires defining a
priori the number of desired clusters and maps each point in
the data set with the same label of the nearest cluster cen-
troid. These centroids evolve and move during the iterations
of the algorithm, ensuring the adaptability of the algorithm to
different scenarios and applications. It is worth noticing that
although it produces an output in a finite amount of time, it
may not be the optimal result, which may be strongly depen-
dent from the initial configuration. Essentially, it has three
major drawbacks (Pelleg and Moore 2000), that is, it scales
poorly, the number of clusters has to be supplied beforehand
and it may output local optimal results.

Several authors Bisio et al. (2017), Pu et al. (2015), Ste-
vanovic et al. (2015) have used the K-Means to, at least
partially, solve the AGDs detection problem. Knowing the
aforementioned issues, Antonakakis et al. (2012), Bisio et al.
(2017), Tong and Nguyen (2016) have instead opted for a
variant known as X-Means (Pelleg and Moore 2000) that

estimates the number of clusters and their parameters, fac-
ing though a sensible amount of resources required (Nguyen
et al. 2015). Table 6 presents a comprehensive list of literary
works that have been reportedly used either this algorithm or
a derived version.

Using an appropriate feature set, the K-Means algorithm
is capable of associating collected FQDNs in clusters, which
can be later on used to recognise 0-day AGDs with similar
characteristics to previously discovered malwares (Tong and
Nguyen 2016). Such module can be used as a filter to collect
and then discard the AGDs generated by known malwares,
in order to focus on the ones that are potentially generated
by new DGAs.

2.2.2 Other unsupervised approaches

Amongst the historically notable unsupervised learning algo-
rithms, it appears, to the best of our knowledge, that only a
few of them have been studied and presented in the past
decade to deal with the problem of detecting DGA-based
botnets. In fact, apart from theK-Means and its variants high-
lighted in the previous section, there are two approaches to
clustering: the Mixture Model (MM) and the HC, but their
usage is quite limited and with questionable results.

To be more precise, the MM attempts to model the data
by using a mixture of probability distributions, while the HC
uses distance (and linkage) functions to separate (or join)
groups of points in the data set. While the HC has been pro-
posed a few times (Zhang et al. 2016; Thomas andMohaisen
2014; Tu et al. 2015; Fu et al. 2017), to the best of our knowl-
edge the MM clustering has not been applied so far to this
subject. Similarly, the Bipartite Graph Clusterings (BGCs)
approach used by Han and Zhang (2017) does not need to
indicate a number of clusters and it has the ability to find
any geometric clusters. But, in the course of running, this
algorithm requires high computational resources when run-
ning online in comparison with K-Means (Tong and Nguyen
2016).

Finally, we can also find the DBSCAN algorithm that,
similarly to the agglomerative HC approach, join together
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Table 7 Unsupervised approach—other algorithms

Refs. Usage Comparison RT Algorithm Feature family Results

DNS NLP

Han and Zhang (2017) C&C identification ✗ ✗ BGC ✓ ✗ Unknown

Zhang et al. (2016) Detection ✗ ✗ HC ✗ ✓ Average

Thomas and Mohaisen (2014) Detection ✗ ✗ HC ✗ ✓ Average

Tu et al. (2015) Correlation ✗ ✗ HC ✓ ✗ Good

Fu et al. (2017) Correlation ✗ ✗ HC ✗ ✓ Average

Nguyen et al. (2015) Identification Schiavoni et al. (2014) ✗ DBSCAN ✓ ✓ Average

Tong and Nguyen (2016) Identification K-Means ✗ DBSCAN Filter ✓ Average

elements of the data set according to the density of the region
in which they reside, being capable of modelling clusters of
any spatial shape. A few authors Nguyen et al. (2015) and
Tong and Nguyen (2016) have used it in order to circumvent
the need of initialising the parameters of the aforementioned
K-Means. Table 7 presents a list of these works that have just
been discussed.

2.3 Discussion and key points

The proposed state of the art has highlighted a few important
inconsistencies in terms of solutions for tackling DGA-based
botnets. The foremost notable shortage is undoubtedly the
lack of structured data sources, especially when considering
those suitable for ML algorithms. The preprocessing phase
for the raw-data such as the PCAP files or the network flows
is not trivial, and its consequent exploratory analysis is con-
siderably time-consuming. As a result, the evaluation of the
proposed classifying and clustering algorithms is quite a chal-
lenge. Several algorithms have been proposed, and authors
have reported discordant results. As previously cited, a com-
mon ground may lead to improved and, most importantly,
comparable results.

For another thing, although most of the reported works
are focusing on the multiclass analysis of malware fami-
lies, the binary case should not be a priori excluded. Further
researches are required in order to establish a signature for
the legitimate FQDNs so to be able to filter out suspicious
DNS queries for subsequent analysis.

Finally, it is worth noticing the staggering absence of
solutions capable of targeting 0-day malware variants and
families. In fact, only a few authors Nguyen et al. (2015),
Pu et al. (2015), Tong and Nguyen (2016) have included
at least a partial analysis of the subject, even if, intuitively,
this may be explained through the native predisposition of
unsupervised learning techniques towards unknown samples
and classes. In brief, the 0-day detection still represents an
open research topic in detection as well as in other phases of

the cybersecurity process (Lobato et al. 2018; Nespoli et al.
2018).

To this extent, we define the following challenges and
potential research lines that should be considered by the
cybersecurity community and industry.

1. Firstly, privacy-oriented data sets must be researched and
made publicly available;

2. secondly, it is mandatory to establish a series of shared
best practices that lead and advise future researches
related to ML applications for botnet detection;

3. thirdly, to enable the research community to focus on
the study of new approaches and detection algorithms
instead of data gathering and preprocessing,ML-oriented
and ready-to-use data sets must be researched and made
publicly available; and,

4. finally, having taken into consideration the delicate and
complex nature of the data, ad-hoc nonlinear solutions
might be worth investigating.

To summarise, the scientific community, but also the
security vendors, might benefit from exploiting the afore-
mentioned research lines. Ideally, by establishing a common
ground in terms of data, feature sets, procedures and even-
tually reactions, the future researches might only focus on
providing algorithms and advanced solutions for detection,
reaction and mitigation purposes.

3 Defining a common base for feature
analysis

In Machine Learning, the process of feature analysis is well
known for being complex and extremely time-consuming
(Bishop 2006; Almomani et al. 2018), conjecture that has
been confirmed once again in the case of DGA-based bot-
net detection (Woodbridge et al. 2016). It also requires a
deep knowledge of the data in conjunction with the algo-
rithm that attempt to model the training data. In this context,
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and as specified in Sect. 2, we consider twomacro-categories
for features related to DGA-based botnet detection, namely
Context-Aware (Definition 2) and Context-Free (Defini-
tion 1) features. They are, respectively, dependent on the
instantiation of the malware sample (e.g. DNS response
Time-to-Live, TTL) and independent from it (e.g. the number
of characters in the queried FQDN). Clearly, being the focus
of this work on feature analysis, we a priori exclude the Fea-
tureless (Definition 3) solutions. Similarly, we exclude the
automatic generated features solutions due to their strong
dependence from the input data and not on the definition of
the features itself.

This work only focuses on the Context-Free category that,
being independent of the state of the network, permits us
an evaluation not susceptible to the environment variations
occurringwhere andwhen themalware is executed.As a con-
sequence, further researches are required in order to analyse
the Context-Aware feature family.

The features collected and presented in this work are indi-
vidual; they are extracted from a single and precise FQDN
(e.g. the domain length) so that the feature set does not
include aggregated features such as the average of such
domain length.

This section is divided into three parts. Section 3.1 briefly
introduces themethodology and the data used for carryingout
the comparison, Sect. 3.2 highlights themost informative fea-
tures existing in the literature and, finally, Sect. 3.3 presents
a detailed evaluation of these features through a series of
experiments.

3.1 Methodology

In order to be as variate as possible, we retrieved a list of
collected AGDs from public available data sets (Bader; Net-
lab 360; Plohmann 2015; Risk Analytics 2007) and malware
blacklists (MalwareDomain List 2009; OSINT). The follow-
ing families using DGAs were taken as data source due to
their importance, usage or complete reverse engineering sta-
tus: Alureon, Conficker, CryptoLocker, Goz, Kraken, Mat-
snu, Murofet, Nymaim, Pushdo, QakBot, Ramdo, Rovnix,
Shiotob, Simda, Tinba and Zeus. To establish a compar-
ison with the real-world legitimate FQDNs, we retrieved
the list of the top-ranking domains according to Majestic-
12 Ltd: The Majestic Million (2018) backlink data set. Our
collected data set includes a thousand distinct samples for
each class, with the ones that we consider a priori legit-
imate. We extracted from each sample the list of features
described in Sect. 3.2 and, based on the histogram analy-
sis, performed the suggested data preprocessing operations,
e.g. transformation, scaling and normalisation. The data have
been preprocessed with alternatively Orange3 (Demšar et al.
2013) and Weka (Fran et al. 2016).

In order to do so, we will:

1. Present the list of features extracted from the state of
the art in the category of individual Context-Free
features.

2. Present a selection of distribution histograms and the cor-
relationmatrix from the new feature set obtained from the
ranking method.

3. Apply the Principal Component Analysis (PCA) to
extract n features that cumulatively cover at least 98%
of the variance on the original feature set.

4. Evaluate the original data with the six most used classi-
fiers in the state of the art (RF, NN, SVM, DT, AB and
kNN), using the well-known accuracy, precision, recall,
area under the curve (AUC) and F1 scores.

3.2 Most informative features

By reviewing the literature on the subject of DGA-based bot-
net discovery, we collected a total amount of 40 features, of
which 17 are related to the NLP nGrams, and thus recal-
culated for every value of n ∈ {1, 2, 3}. Table 8 reports
these findings. Specifically, the first 23 features,1 presented
in Table 8 are related to the metrics that can be extracted by
analysing the domain name as if it were a string of text. It
makes sense, as a consequence, to measure metrics such as
its entropy (that measure the randomness of the string), its
length and the length of the longest consecutive consonant
sequence.Moreover, most of these features reflect real-world
common practices such as the Search Engine Optimisation
(SEO) and the netiquette. For example, SEO advice includes
not only the ideal length of a domain name, which should be
around 12–13 characters, but also suggestions like the read-
ing easiness and the ability to spell the relay the FQDN to
someone else.

The presented features in Table 8 can be assigned to two
groups, on the one side classic string metrics such as the
length (67% of cited works) (Schales et al. 2016; Ahluwalia
et al. 2017; Antonakakis et al. 2012; Bisio et al. 2017; Han
and Zhang 2017; Luo et al. 2017;Mowbray and Hagen 2014;
Plohmann et al. 2016; Pu et al. 2015; Schiavoni et al. 2014;
Shi et al. 2017; Song and Li 2016; Stevanovic et al. 2017;
Tran et al. 2018; Truong and Cheng 2016; Xu et al. 2017),
the number of vowels characters (17%) Schales et al. (2016),
Ahluwalia et al. (2017), Song and Li (2016), Stevanovic
et al. (2017) or the entropy (46%) Antonakakis et al. (2012),
Bisio et al. (2017), Han and Zhang (2017), Luo et al. (2017),
Plohmann et al. (2016), Pu et al. (2015), Shi et al. (2017),

1 Including four features (NLP-L-x , NLP-R-NUM-x ,
NLP-R-VOW-x , NLP-R-CON-x) for each domain name level:
the FQDN, the Second Level Domain Name (2LD) or all the others
sub-levels as a whole (OLD).
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Table 8 Context-Free features collected from the literature

Code Description

(a) Context-Free features with their descriptions

NLP-L-x String length

NLP-LDN Number of domain levels

NLP-R-NUM-x Ratio of numerical characters

NLP-R-VOW-x Ratio of vowel characters

NLP-R-CON-x Ratio of consonants characters

NLP-LANG Language hypothesis

NLP-LC-C Longest consecutive cons. sequence

NLP-LC-V Longest consecutive vowel sequence

NLP-LC-D Longest consecutive number sequence

NLP-COV Covariance matrix

NLP-R-MC Ratio of meaningful charactersa

NLP-LMS Length of longest meaningful stringa

NLP-WLU Number of “word-like” unitsa

NLP-SQS Domain squatting scorea

NLP-LED Levenshtein edit distancea

NLP-nG-FR Frequency distribution (histogram)

NLP-nG-E Entropy

NLP-nG-COV Covariancea

NLP-nG-MEAN Mean of frequencies

NLP-nG-MED Median of frequencies

NLP-nG-VAR Variance of frequencies

NLP-nG-STD Standard deviation of frequencies

NLP-nG-PRO Pronounceability scorea

NLP-nG-NORM Normality score

NLP-nG-PRT Transition probabilitya

NLP-nG-PRA Probability of appearancea

NLP-nG-PRI Index probabilitya

NLP-nG-DST-KL Kullback–Leiber divergencea

NLP-nG-DST-JI Jaccard Index measurea

NLP-nG-DST-TH Distance-thresholda

NLP-nG-DST-AF Distance–avg. frequencya

NLP-nG-DST-AC Distance–avg. counta

Used by Code (NLP-)

L-x LDN R-NUM-x R-VOW-x R-CON-x LANG LC-C LC-V LC-D COV R-MC LMS WLU SQS LED

(b) Context-Free features and their usage in the literature

Abbink and Doerr (2017)

Ahluwalia et al. (2017) ✓ ✓ ✓ ✓

Antonakakis et al. (2012) ✓ ✓

Baruch and David (2018) ✓

Bilge et al. (2014) ✓ ✓

Bisio et al. (2017) ✓ ✓

Han and Zhang (2017) ✓ ✓ ✓ ✓ ✓

Kintis et al. (2017) ✓
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Table 8 continued

Used by Code (NLP-)

L-x LDN R-NUM-x R-VOW-x R-CON-x LANG LC-C LC-V LC-D COV R-MC LMS WLU SQS LED

Luo et al. (2017) ✓ ✓

Mac et al. (2017)

Mowbray and Hagen (2014) ✓

Plohmann et al. (2016) ✓

Pu et al. (2015) ✓ ✓ ✓ ✓

Schales et al. (2016) ✓ ✓ ✓ ✓ ✓

Schiavoni et al. (2014) ✓ ✓ ✓ ✓

Shi et al. (2017) ✓ ✓

Used by Code (NLP-)

nG-FR nG-E nG-COV nG-MEAN nG-MED nG-VAR nG-STD nG-PRO nG-NORM

(b) Context-Free features and their usage in the literature

Abbink and Doerr (2017)

Ahluwalia et al. (2017)

Antonakakis et al. (2012) ✓ ✓ ✓ ✓ ✓

Baruch and David (2018)

Bilge et al. (2014)

Bisio et al. (2017) ✓

Han and Zhang (2017) ✓ ✓

Kintis et al. (2017)

Luo et al. (2017) ✓ ✓

Mac et al. (2017) ✓

Mowbray and Hagen (2014)

Plohmann et al. (2016) ✓

Pu et al. (2015) ✓ ✓

Schales et al. (2016)

Schiavoni et al. (2014) ✓ ✓ ✓

Shi et al. (2017) ✓

Song and Li (2016) ✓ ✓ ✓

Stevanovic et al. (2017)

Thomas and Mohaisen (2014)

Tong and Nguyen (2016) ✓

Tran et al. (2018) ✓

Truong and Cheng (2016) ✓

Xu et al. (2017) ✓ ✓

Yadav et al. (2010)

Used by Code (NLP-)

nG-PRT nG-PRA nG-PRI nG-DST-KL nG-DST-JI nG-DST-TH nG-DST-AF nG-DST-AC

(b) Context-Free features and their usage in the literature

Abbink and Doerr (2017) ✓

Ahluwalia et al. (2017)

Antonakakis et al. (2012)

Baruch and David (2018) ✓ ✓

Bilge et al. (2014)
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Table 8 continued

Used by Code (NLP-)

nG-PRT nG-PRA nG-PRI nG-DST-KL nG-DST-JI nG-DST-TH nG-DST-AF nG-DST-AC

Bisio et al. (2017) ✓

Han and Zhang (2017)

Kintis et al. (2017)

Luo et al. (2017) ✓ ✓ ✓ ✓ ✓

Mac et al. (2017)

Mowbray and Hagen (2014)

Plohmann et al. (2016)

Pu et al. (2015) ✓

Schales et al. (2016)

Schiavoni et al. (2014) ✓

Shi et al. (2017)

Song and Li (2016)

Stevanovic et al. (2017)

Thomas and Mohaisen (2014) ✓

Tong and Nguyen (2016)

Tran et al. (2018)

Truong and Cheng (2016) ✓

Xu et al. (2017) ✓

Yadav et al. (2010) ✓ ✓

x ∈ {FQDN,2LD,OLD} denotes the domain levels a is about the English language n ∈ [1, 2, 3] represents the n Gram size

Song and Li (2016), Tran et al. (2018), Truong and Cheng
(2016), Xu et al. (2017) shows attempts of solving the prob-
lem by using simpler but effective metrics; on the other side,
features like the Jaccard Index measure (17%) (Abbink and
Doerr 2017; Baruch and David 2018; Thomas andMohaisen
2014; Yadav et al. 2010), the Kullback–Leiber divergence
(0.08%) (Baruch and David 2018; Pu et al. 2015) or the
probability of appearance (0.08%) (Luo et al. 2017; Truong
and Cheng 2016) depict a deeper knowledge about the struc-
ture of the domain names and their usage from the linguistic
point of view. Most importantly, however, is the fact that
a standard pool of features is missing; that is, most of
the presented solutions use arbitrary combinations of them,
often with different names and unconventional mathematical
definitions.

This work aims to homogenise the features by imple-
menting them according to their theoretical definitions
and common usage. Although with different formulations,
authors like Ahluwalia et al. (2017) and Schales et al. (2016)
have both proposed at a feature based on differentiating
between vowels and consonants. Specifically, Ahluwalia
et al. (2017) proposed to use the count of the occur-
rences of the consonants as feature, while Schales et al.
(2016) proposed a Boolean flag that indicates whenever
the domain name is composed only by consonants. Intu-
itively, the former is a discrete number whose value can

range2 from 3 to 255 characters that can be easily nor-
malised with respect to the domain length. The latter,
however, delineate a partial information by discarding
data regarding the string composition. Both features are
homogenised in our proposal by the NLP-R-CON-FQDN
feature, which measures the ratio between the consonants
and the length of the FQDN: on the one hand, it per-
fectly represents the number of occurrences normalised
with respect to the length of the domain, while on the
other hand not only includes the Boolean situation where
the domain name is composed by all consonants but also
provides additional information regarding the domain struc-
ture.

Likewise, a similar process has been completed for all the
others features presented in Table 8; however, due to space
and complexity concerns, such homogenisation process is
not reported in this research item.

We included in Table 8b previous researches that are not
strictly aligned with the DGA-based botnet detection, being
either grouping client based on their connections (Schales
et al. 2016; Yadav et al. 2010), applying filtering tech-
niques (Abbink and Doerr 2017; Mowbray and Hagen

2 According to ICANN specifics, the minimum length of a domain
name without considering the Top Level Domain (TLD) is three char-
acters. Themaximum, including symbols and extensions, is 255, having
a maximum length per-level of 63 characters.
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(a) (b)Distribution histogram of NLP-L-2LD. Distribution histogram of NLP-LC-C.

Fig. 1 Distribution histograms of two selected features from Table 8a

2014) or targeting a different problem (Kintis et al. 2017).
Nonetheless, their feature definition and usage are clear and
well used.

In order to realise a potential common data set of AGDs
suitable for ML algorithms, the data are required to be nor-
malised. To do so, each feature’s histogram and relative
distribution have been analysed and accordingly transformed
to obtain, where possible, a normal distribution. Addi-
tionally, their graphical representations permit revealing
some important aspects; for example, amongst all the fea-
tures, we picked two normalised distributions from Table 8,
namely NLP-L-2LD (length of the second level domain
name) and NLP-LC-C (longest consecutive consonants
sequence).

These features have been chosen as example to illustrate
an important property that can be extracted from the distri-
bution analysis, that is, a feature can be used to discriminate
according to its value (Fig. 1a) or its shape (Fig. 1b). In fact,
it is important to notice that malwares have different and
well-defined distributions; for example, in the case of the
feature NLP-L-2LD (Fig. 1a) the density histogram shows
how different values of the feature permits to sort AGDs into
their classes. The feature NLP-LC-C, however, presents a
more overlapped distribution due to its nature (only a few
malwares, such as Pushdo and Nymaim have an indistin-
guishable distribution with respect to the legitimate ones).
Yet, its information is enough to separate them by exclusion
from the simpler ones.

As for the features related to the nGrams, presented in
Table 8, and similarly to the aforementioned habits, it isworth
mentioning the pronounceability and normality scores, the
transition and index probability and the different distances
and divergences from the English language. These values are
often calculated differently but having the same objective in

Table 9 Most informative features

Code IG IG ratio Gini χ2

(a) Sorted by IG

NLP-L-2LD 1.450 0.725 0.112 13296.997

NLP-L-FQDN 1.425 0.716 0.112 14143.591

NLP-1G-PRO 1.392 0.697 0.109 12441.981

NLP-2G-PRO 1.304 0.652 0.101 12291.421

NLP-1G-MEAN 1.000 0.500 0.081 8492.071

(b) Sorted by IG ratio

NLP-R-NUM-OLD 0.306 0.821 0.044 1023.027

NLP-LC-D 0.306 0.820 0.044 13236.135

NLP-L-2LD 1.450 0.725 0.112 13296.997

NLP-L-FQDN 1.425 0.716 0.112 14143.591

NLP-R-NUM-FQDN 0.645 0.711 0.069 30694.025

(c) Sorted by Gini Coefficient

NLP-L-2LD 1.450 0.725 0.112 13296.997

NLP-L-FQDN 1.425 0.716 0.112 14143.591

NLP-1G-PRO 1.392 0.697 0.109 12441.981

NLP-2G-PRO 1.304 0.652 0.101 12291.421

NLP-1G-MEAN 1.000 0.500 0.081 8492.071

(d) Sorted by χ2

NLP-R-NUM-FQDN 0.645 0.711 0.069 30694.025

NLP-R-NUM-2LD 0.634 0.699 0.065 30031.921

NLP-L-FQDN 1.425 0.716 0.112 14143.591

NLP-L-2LD 1.450 0.725 0.112 13296.997

NLP-LC-D 0.306 0.820 0.044 13236.135

mind, i.e. establishing “how random” are the domain names.
However, they have been accordingly analysed, as illustrated,
for example, for featureNLP-R-CON-FQDN, and reduced to
a common formal definition. In order to analyse this feature
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Table 10 Correlation matrix of the most informative features

Features (NLP-) R-NUM-FQDN L-FQDN L-2LD LC-D 1G-PRO 2G-PRO 1G-MEAN R-NUM-OLD R-NUM-2LD

R-NUM-FQDN – 0.51 0.51 − 0.11 − 0.14 0.04 − 0.04 0.02 0.99

L-FQDN 0.51 – 0.96 − 0.1 − 0.81 − 0.59 − 0.16 − 0.01 0.47

L-2LD 0.51 0.96 – − 0.36 − 0.76 − 0.55 − 0.14 0.00 0.47

LC-D − 0.11 − 0.10 − 0.36 – 0.03 0.03 − 0.01 0.00 − 0.11

1G-PRO − 0.14 − 0.81 − 0.76 0.03 – 0.86 0.21 0.03 − 0.08

2G-PRO 0.04 − 0.59 − 0.55 0.03 0.86 – 0.19 0.05 0.08

1G-MEAN − 0.04 − 0.16 − 0.14 − 0.01 0.21 0.19 – − 0.01 − 0.02

R-NUM-OLD 0.02 − 0.01 0.00 0.00 0.03 0.05 − 0.01 – 0.00

R-NUM-2LD 0.99 0.47 0.47 − 0.11 − 0.08 0.08 − 0.02 0.00 –

set, we extracted the five most relevant features according to
four different algorithms, reported in Table 9; namely:

– Information Gain (IG), sorted in Table 9a. It gives a score
regarding “howmuch” information is the feature bringing
with respect to the classification target.3 Substantially,
it reflects the amount of information that was available
before and after considering the feature.

– IG Ratio, sorted in Table 9b. Similar in concept to the IG,
this score measures the ratio between the information
provided by the actual label and the one provided by the
feature. It compensates for high-entropy features, which
are normally advantaged by the simple IG, score.

– Gini Coefficient, sorted in Table 9c. Thismetricmeasures
the “purity” of the feature with regards to the actual label.
The greater the value is, the better the feature is.

– Chi-Square (χ2), sorted in Table 9d. This statistical
score measures the independence (specifically its lack)
between the feature and the actual label compared with
the χ2 distribution with one degree of freedom. The
greater the value is, the more category information the
feature contains.

As the features’ names suggest, the length of the domain
as a whole and the length of the second level domain name
might be strictly correlated, as well as the number ratio for
the second and the FQDN. We thus extracted the correlation
matrix, presented in Table 10, which confirms our hypothe-
sis by identifying a strong correlation between two different
pairs of features.

Generally speaking, having highly correlated features
affects the model performances, especially in supervised
learning. However, to bemore precise, both the improvement
and the deterioration in model performances are question-
able and require further investigations. Removing them may
be the correct approach, but also may degrade the model:

3 The IG, is purely theoretic, it does not consider any particular classi-
fication algorithm.

– Performance improvement. Especially in terms of train-
ing speed, due to the well-known problem of the “Curse
of Dimensionality”.

– Bias decrease. As a rule of thumb, features that present
low values of mutual correlation or multicollinearity, to
the target are helpful and generally speaking they should
be kept in the feature set.

– Interpretability. Fewer features lead to a model that is
easier to justify and explain, thus it may worth to remove
them, possibly paying in terms of precision and recall.

Within the context of our data set and the aforemen-
tioned applicability scenario, we decided to discard the
feature NLP-L-2LD in favour of NLP-L-FQDN since
former is stripped from the extensions, thus losing infor-
mation with respect to the latter. Likewise, we discard the
NLP-R-NUM-FQDN in favour of NLP-R-NUM-2LD due
to the ICANN rules that prevent numerical characters from
appearing in the extension part.

Furthermore, feature engineering algorithm such as the
PCA may provide another hint towards a more suitable
feature set. Specifically, the PCA decorrelates the data by
mapping it to n orthogonal dimensions that maximise the
variance and minimise the correlation between them. In
Fig. 2, it is highlighted the PCA configuration to cover 99%
of the variance of the data, where the upper line represents the
cumulative variance covered, while the lower one represents
the variance covered per component. However, knowing
the structure and the complexity of the data analysed, the
PCA may not represent the most suitable data transforma-
tion to improve the learning models performances. In fact,
by observing Fig. 2, one could argue that the PCA is not
producing the desired effects (i.e. reducing the number of
features without losing too much information) since most of
the principal components are not so informative.

In this context, and as demonstrated by the following eval-
uation Sect.3.3, blindlymaximising the variance amongst the
data leads to worse performances. This phenomena suggest
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Fig. 2 PCA configured to cover
99% of the data variance

Fig. 3 Evaluation using the
original feature set (U.C. 1)
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RF 0.989 0.989 0.989 0.988 0.989

SVM 0.958 0.955 0.958 0.956 0.956

DT 0.978 0.976 0.978 0.840 0.976

kNN 0.982 0.981 0.982 0.950 0.981
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Binary experiment using the original feature set. (Exp. 1, U.C. 1)
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Accuracy Precision Recall AUC F1

Method Acc. Prec. Rec. AUC F1

AB 0.913 0.913 0.913 0.954 0.913

NN 0.932 0.932 0.932 0.997 0.932

RF 0.930 0.928 0.930 0.995 0.928

SVM 0.668 0.733 0.668 0.966 0.673

DT 0.917 0.916 0.917 0.966 0.916

kNN 0.791 0.790 0.791 0.956 0.786

Multiclass experiment using the original feature set. (Exp. 2, U.C. 1)

that an exploratory analysis regarding the nonlinear dimen-
sionality reduction techniques may be indeed necessary.

3.3 Evaluation

In order to compare and confirm the findings of Sects. 2
and 3.2, we designed a series of experiments. These exper-
iments were conducted on a Dell M3800 workstation with
an Intel i7-4712HQ processor running at 2.30GHz, 16 GB
of DDR3 RAM at 1600 MHz and a NVIDIA Quadro
K1100M graphic processor. Experiments were run using
Orange3 (Demšar et al. 2013), and for each set of data

described in the aforementioned methodology Sect. 3.1, six
classifiers were applied and cross-validated using a stratified
tenfold approach. On the one hand, the six algorithms used
are defined using the following configuration:

– AdaBoost (AB)—Using 50 trees as base estimators, with
SAMME.R classificator (updates base estimators weight
with probability estimates) and linear regression loss
function.

– Neural Network (NN)—Single hidden layer with 100
nodes activated with the Rectified Linear unit (ReLu)
function, weight optimised with the stochastic gradient-
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Fig. 4 Evaluation using the
most informative features
(U.C. 2)
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Method Acc. Prec. Rec. AUC F1

AB 0.954 0.951 0.954 0.847 0.952

NN 0.960 0.956 0.960 0.909 0.951

RF 0.959 0.955 0.959 0.879 0.956

SVM 0.669 0.905 0.669 0.630 0.759

DT 0.959 0.953 0.959 0.667 0.951

kNN 0.959 0.953 0.959 0.858 0.954
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(b)

Binary experiment using the most informative feature set. (Exp. 1, U.C. 2)
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Accuracy Precision Recall AUC F1

Method Acc. Prec. Rec. AUC F1

AB 0.840 0.839 0.840 0.974 0.839

NN 0.828 0.819 0.828 0.983 0.814

RF 0.864 0.859 0.864 0.978 0.860

SVM 0.490 0.538 0.490 0.925 0.448

DT 0.858 0.853 0.858 0.963 0.854

kNN 0.800 0.812 0.800 0.941 0.797

Multiclass experiment using the most informative feature set. (Exp. 2, U.C. 2)

based optimiser (Adam), α = 0.0010 and 200 max
iterations.

– Random Forest (RF)—Using 10 trees, considering up to
five attributes at each split and without splitting subsets
smaller than five.

– Support Vector Machine (SVM)—Configured with
C = 1.00, ε = 0.10 and using the RBF Kernel.

– Decision Tree (DT)—Two minimum instances in leaves,
do not split trees smaller than five, having a max depth
of 100. Exiting condition when the majority reaches
95%.

– k-Nearest Neighbours (kNN)—Five neighbours using the
Euclidean metric and a uniform weight.

While, on the other hand, the tables reported in Figs. 3, 4
and 5 are reporting the average values over the tested classes
with a testing set obtained by cross-validation sampling (hav-
ing 10 stratified folds).

Section 3.3.1 introduces the three evaluation use cases
which are later discussed and commented in Sect. 3.3.2.

3.3.1 Experiments design and use cases

Two sets of experiments were run on with the same data
set and the same configuration. In the first one, the malware
families (reported in Sect. 3.1) are used as separate classes,
while in the second one the malwares are considered as a
single class, enabling the binary analysis of malware versus
legitimate domain names. To be more specific:

Experiment 1 (Binary) The binary experiment is designed
to answer the ML question of separating legitimate FQDNs
from malicious AGDs, considering all malware families as a
single category.

Experiment 2 (Multiclass) The multiclass experiment is
designed to go beyond the above-mentioned binary exper-
iment in order to classify not only the legitimate FQDN but
also sort malware samples according to their families.

Moreover, in order to present the experiments results in
combination with the aforementioned feature sets, three use
cases are introduced and commented below.

Use Case 1 (Original features set) In the first use case, both
experiments were run using the original data set with the all
the collected features, as presented in Table 8. The results
are reported in Fig. 3. Specifically, it is possible to compare
the results of the binary experiment and the multiclass one
in Fig. 3a and b, respectively.

Use Case 2 (Most informative features set) Similarly, in the
second use case the experiments were run using the data set
updated with the features selected in the previous Sect. 3.2
and presented in Fig. 4, also divided into binary (Fig. 4a)
and multiclass (Fig. 4b) experiments.

Use Case 3 (PCA features set) Finally, and as reported
above, the third use case features the experiments run
using the data set manipulated with the PCA algorithm.
Likewise, Fig. 5 presents the comparison tables and the rel-
ative charts for binary (Fig. 5a) and multiclass (Fig. 5b)
experiments.
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Fig. 5 Evaluation using the
PCA (U.C. 3)
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Binary experiment using the PCA feature set. (Exp. 1, U.C. 3)
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DT 0.707 0.708 0.707 0.859 0.707
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Multiclass experiment using the PCA feature set. (Exp. 2, U.C. 3)

3.3.2 Discussion

When looking at the multiclass experiments (Exp. 2), it is
important to restate that the values reported in Figs. 3b, 4b
and 5b are referring to the average value calculated over the
classes-specific values. As a consequence, values such as the
F1 score are not to be considered inconsistent; that is, the
average of all the F1 scores over the classes might be outside
the range delimited by the average of the precision and recall
scores. The same applies to the AUC results, a value that
represents the discrimination, i.e. the ability of the specific
classification algorithm to sort themember of the target class.
Not surprisingly, by having 17 classes (16 malware families
plus the legitimate one, see Sect. 3.1) the average value of
the AUC is quite high because of the excellent performances
with regard to some easily identifiable malwares.

As expected, the multiclass experiments are presenting
worse performances than the binary ones due to the poor
performances obtained when distinguishing similar mal-
wares such as Qakbot or Matsnu. In the binary experiments,
however, those samples are considered as a generic mal-
ware class, thus improving the overall detection. Similarly,
the performances of the PCA use case (U.C. 3) are worse
than the ones reported in the original use case (U.C. 1).
This worsening trend is mainly due to the nature of the
PCA itself, i.e. maximise the variability of the features,
but not the classes’ separability. Although very common
and widely used, the PCA is an example of unsupervised
analysis tool that is not suitable in this scenario, thus lead-
ing in general to worse performances. Further researches

are required in order to establish which feature reduc-
tion strategy optimally approximates the data. Preliminary
results using nonlinear feature reduction techniques seem
promising.

In contrast with the expected results of the previous use
cases, the feature selection use case (U.C. 2) reports unantic-
ipated slightly worse performances. However, the theory of
ML permits to explain such results, especially when compar-
ing them to the ones described in the literature (outlined in
Sect. 2). First and foremost, the data set used plays an impor-
tant role; that is, by accurately selecting the data involved in
the analysis, it is possible to boost the accuracy and generally
increase the performances. Secondly, different algorithms
require different optimal structures for the data, e.g. RF are
indifferent to scaling and normalisation techniques, while
NN require normal and scaled distributions. Last, but not
least, fine-tuning each algorithm permits to extend further
their efficiency (Mantovani et al. 2015).

To sum up, this evaluation process once again pointed
out the lack of common elements that can be used so as
to guarantee the reproducibility of the experiments and thus
their comparative analysis. To this extent, a publicly available
data set of AGDs may lead to better, but more importantly,
comparable results.

4 Conclusions and future work

Although DGA-based botnets have been proved challeng-
ing, there are some positive results within the research field
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that looks promising. In this context, in fact, ML approaches
have been successfully employed both in a supervised and
unsupervised manner aiming to achieve usable and scalable
solutions.

After presenting the state of the art in terms of both algo-
rithms and feature set, this work has defined and established
a common-ground knowledge regarding the features used as
a base for such algorithms, showing that the Context-Free
feature family is more than capable of pinpointing DGA-
based malwares without harming the users’ privacy. Besides
what is discussed in Sect. 3.3.2, the sole use of Context-Free
features achieves excellent results in terms of performances,
precision and recall both in the Binary and in the Multiclass
scenarios.

Therefore, the main outcomes of this work are several.
In fact, this research firstly collects and studies the most
relevant literatureworks that attempted to dealwith theDGA-
based botnet detection problem; secondly, this research item
enables the development of privacy-preserving solutions4;
and, finally, by collecting and studying the literature and
the proposed features, it prearranges a common ground that
enables future researches to focus on the evaluation and the
creation of newefficient detection algorithms in the subject of
DGA-based botnet. To this extent, in fact, preliminary anal-
yses carried out internally indicate positive and interesting
results.

Therefore, to summarise and complement what is pro-
posed in Sect. 2.3, future works might include (i) the study
of the Context-Aware feature family to establish whether it
may combine and consolidate detection solutions; (ii) the
development of a full-fledged, public available and labelled
data set of either Context-Aware and Context-Free features
that might emerge as a common ground for the evaluation of
existing and new ML solutions; (iii) the exploratory analy-
sis of the above-mentioned data with nonlinear techniques in
order to achieve improved classification results; and, finally,
(iv) testing detection algorithms against 0-day resilience by
adding both new malware families and variants.
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exploratory analysis of the proposed dataset to provide both data characteristics and potential future 

research lines, which eventually emerges as iv) a collection of suggested guidelines. When proposing a 

machine learning solution, researchers should adhere to it in order to achieve scientific rigorousness. 
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1. Introduction 

The 2019 cybersecurity landscape is seriously perilous, in fact, 

as for the past few years, several technical reports from major se- 

curity stakeholders ( Brandt et al., 2018; Eremin, 2018; Fireeye Man- 

diant Services, 2019; Kujawa et al., 2019; O’Gorman et al., 2019; 

Spamhaus Project, 2019a; 2019b ) have confirmed that cybercrimi- 

nal activities are rising in almost every sector. Although 2018 has 

seen a decrease in the number of malware variants available in 

exploit kits (-63% according to O’Gorman et al. (2019) ), the threat 

posed by botnets is increasing ( Kujawa et al., 2019; Spamhaus 

Project, 2019a; 2019b ), especially when considering the ones with 

backdoor functionalities ( + 34% in private vs + 173% in enterprises 

( Kujawa et al., 2019 )). One could argue that the reason behind such 

“positive result” (from the cybercriminals standpoint) is due to the 

extensive usage of well-known evasion techniques such as obfus- 

cation, live encryption and Domain Generation Algorithm (DGA) 

( Etaher et al., 2015; Vormayr et al., 2017; Zago et al., 2019a ). These 

techniques are employed by almost every major malware in the 

wild in order to bypass Intrusion Detection System (IDS) inspection 

∗ Corresponding author. 

E-mail addresses: mattia.zago@um.es (M. Zago), mgilperez@um.es (M. Gil Pérez), 

gregorio@um.es (G. Martínez Pérez). 

measures since the infamous Kraken and Conficker malwares, back 

in 2008. To be more precise, a DGA is a technique that makes use 

of pseudo-random routines and external factors (such as time, data 

feeds, etc. Vormayr et al. (2017) ) to generate multiple Fully Qual- 

ified Domain Names (FQDNs) to use as rendezvous-point ( i.e ., al- 

gorithmically generated domains, or algorithmically generated do- 

mains (AGDs) for the botnets’ Command & Control (CC) servers 

( Zago et al., 2019a ). DGAs are a notably effective evasion technique 

that consists of generating thousands, often millions, of pseudo- 

random domain names. Their strength relies in the asymmetry of 

resource required by the attacker(s) ( i.e ., the botmaster(s), the ma- 

licious actor(s) in control of the CC servers and thus in control of 

the botnet) and the defenders ( i.e ., Internet Service Provider (ISP), 

cyber security vendors and, in general, the scientific community). 

That is to say, the defenders needs to detect and react against 

all AGDs, while the attacker(s) to be able to communicate with 

the botnet only require a single, undetected and working domain 

name. 

To grasp the threat it is imperative to firstly understand 

its magnitude. That is to say, the most recent technical re- 

ports estimate the number of malicious FQDNs to be around 

9.9% of the total domain names, of which, 1 in 5 belongs 

to DGA-based botnets (around 1.8% of all the registered do- 

main names) ( O’Gorman et al., 2019 ). To be more precise, ac- 

cording to the Spamhaus Project (2019b) (and confirmed by 
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Plohmann et al. (2016) , among others), the most abused do- 

main names extensions are by far .com and .uk . Secondly, 

it is clear that the botnet specialisation are versatile and they 

normally change depending on the main actors behind them 

( Eremin, 2018 ). That is to say, botnets belonging to the same 

family are instantiated and managed by different operators, with 

varying objectives. In other words, botnets are offered as cloud- 

based malware-as-a-service ( Putman et al., 2018 ). Although this is 

a well-known security issue ( Hammi et al., 2019 ), accordingly to 

( Spamhaus Project, 2019a ), ISPs are not following the best prac- 

tices for customer verification enabling cybercriminals to auto- 

matic sign-up fraudulent accounts (61% of the observed CC servers 

in 2018). For example, Cloudflare has been identified as the most 

abused ISP for hosting CC servers ( Spamhaus Project, 2019a ). 

Finally, and as previously mentioned, evasive techniques are 

widely used by botnets, especially DGA-based ones, to avoid 

detection. It has been estimated that the average dwell time, 

i.e ., the number of days an attacker is present on a vic- 

tim network from first evidence of compromise to detection, 

is to be measured in months ( Eremin, 2018; Fireeye Mandi- 

ant Services, 2019 ). Furthermore, the fact that most botnets 

present CC servers in multiple countries (njRAT, DarkComet and 

NanoCore malwares have them in over 80 countries) further 

demonstrate the limitation of sinkholing and, in general, reaction 

techniques. 

In general, endpoint countermeasures (such as blacklisting) 

have already been proved ineffective ( Kührer et al., 2014 ). There- 

fore, the cybersecurity community is actively researching and de- 

signing machine learning (ML)-based solutions to overcome this 

limitation. To be more precise, there are two potential areas of 

application of ML-powered products, namely the detection of ac- 

tively queried AGDs and the dynamic reaction against either the 

malware spreading and/or the infected machine communications. 

This research focuses on this first area of application, that is the 

detection of AGDs in the wild using ML techniques. Our claim is 

that it is mandatory to shift the detection of this peculiar class 

of botnets from the attack phase ( i.e ., when the infected machines 

are actively engaging in malicious activities) to the early stages, in 

which the botnets and the CC servers are being instantiated and 

configured. 

The research inhere proposed leverages this idea, eventually 

aiming to enable cybersecurity operators to perform preemptive 

analysis of services to flag suspicious associated domain names. 

However, the very first step required in order to deploy a ML- 

powered solution to achieve this objective is to obtain trustworthy 

and reliable data to be used as a training set. As we sill demon- 

strate in the related work Section 2 , this still represents a major 

challenge. In fact, as reported by Zago et al. (2019a) among oth- 

ers, the shortcoming of mature, ML-ready and publicly available 

datasets dedicated to DGA-based detection represent nowadays a 

critical setback. 

Our proposal is to ease and eventually standardise the future 

researches on this subject by providing firstly a mature dataset 

(which will be publicly released as publicly available dataset ( Zago 

et al., 2020 ), code repository ( Zago et al., 2020 ) and documenta- 

tion ( Zago et al., 2019b )); secondly, a complete state-of-the-art in 

terms of potential third-party data source ( Section 2 ); and, thirdly, 

an exploratory analysis to guide future practitioner toward the 

open challenges in terms of machine learning applications, which 

also have been previously discussed by the authors ( Zago et al., 

2019a ). 

To this extent, our endeavour is to propose the research com- 

munity, but also the registrars, the ISPs and the cybersecurity ven- 

dors, to focus on creating innovative ML solutions for identifying 

DGA-based botnet threats. 

Therefore, the main contributions of this research are twofold: 

i) firstly, the in-depth state-of-the-art analysis regarding pub- 

licly available datasets that might provide the solid ground 

for ML-powered detection frameworks; and, 

ii) secondly, the public release of a full-fledged, privacy-aware 

and ML-ready dataset, called UMUDGA , featuring samples 

from 50 malware variants for a total of 30+ million domain 

names. 

Additionally, to support the findings and further extend the 

state-of-the-art, this article includes another two minor contribu- 

tions, which may prove useful to future researchers, namely 

iii) the exploratory analysis that serves both as data descriptor 

and as data breakdown and interpretation; and, finally, 

iv) the discussion sprang from the analysis that flows into a col- 

lection of suggested guidelines that should be followed to 

achieve the required scientific rigorousness. 

The structure of this article is the following. Section 2 intro- 

duces the comparison metrics and the current state-of-the-art in 

terms of publicly available datasets, while Section 3 presents the 

architecture, the methodology and in general, the characteristics of 

the proposed UMUDGA dataset. In addition, Section 4 reports a brief 

analysis of the data, and as a consequence, Section 4.3 pinpoints 

the main challenges identified and the guideline for future works. 

At last, Section 5 summarises-up and concludes the article. 

2. Related works 

Building a formal and strict comparison of the existent re- 

lated works in terms of malware datasets that includes DGA-based 

botnets is a non-trivial research task. Moreover, the innate scope 

differences between them further aggravate the shortcoming of 

shared and acknowledged comparison techniques. 

Nevertheless, in the past decade there are several notable re- 

searches that achieved to provide great support to the cybersecu- 

rity community that study innovative solutions for tackling net- 

work threats. The scope of this survey is to analyse them as ML 

data sources. As will become clear in the following sections, nearly 

half of the existing datasets are ready “out-of-the-box” to be used 

in ML-powered solutions. Besides the clear issues in terms of gen- 

erality and representativeness, important weaknesses will be high- 

lighted in terms of stating whenever a data source is verifiable, 

reproducible and extensible. To be more precise, we have collected 

9 fundamental characteristics that a ML dataset should achieve ac- 

cording to both our view and the researches available in literature. 

In the following paragraphs, we will discuss these characteristics 

and highlight how the publicly available datasets struggle to excel 

in all of them. The outlines of such comparison can be found in 

Table 1 . In the table, the last line is dedicated to summarise the 

achievements of our proposed dataset, UMUDGA , which properties 

will be discussed in Section 3 . 

Finally, a review of literature approaches in terms of 

ML solutions for tackling DGA-based botnets is available at 

Zago et al. (2019a) . 

The first and foremost is the property that establishes whether 

the dataset is composed of real data or it is an artificial artefact. 

We thus introduce the first property 2.1. 

Definition 2.1 (Synthetic. SYNT ) The dataset is artificially created 

either by generating the samples or by mixing multiple sources. 

Firstly, the SYNT does not represent a binary “good versus bad”

feature. Instead, both values are important and legitimate required 

depending of the application scope and purpose. That is to say that 

on the one hand, a value represents a dataset that makes use of 

data that has been organically captured from real networks and 

real infected machines ( Bhuyan et al., 2015; Kent, 2015a, 2015b; 

UMUDGA: A dataset for profiling DGA-based botnet
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Table 1 

Comparison of datasets embodying DGA-based botnets. 

Name Year Characteristics 

SYNT GNRL RPST BLNC EXTS VRFB PROR MLRD LABL 
(2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) 

PCAP Based 

ISCX IDS ( Shiravi et al., 2012 ) 2012 

CTU ( García et al., 2014 ) 2014 

CONTAGIO Parkour, 2015 2015 

CyberData1 Kent, 2015a, 2015b 2015 

ISOT HTTP Alenazi et al. (2017) 2017 

CTU Extended García et al. (2014) 2018 

Network Flows Based 

ISOT Zhao et al. (2013) 2013 

UNB Botnet Beigi et al. (2014) 2014 

PUF Sharma et al. (2018) 2018 

FQDN Based 

SuperCowPowers Wylie (2013) 2013 

Andrewaeva Abakumov (2014) 2014 

Pchaigno Chaignon (2015) 2015 

BaderJ Plohmann et al. (2016) , Bader, 2019 2015 

AmritaDGA Vinayakumar et al. (2018) 2018 

Features Based 

NSL-KDD Tavallaee et al. (2009) 2009 

UCSD URL Ma et al. (2009) 2009 

UMUDGA Zago et al., 2020 2020 

Legend: Yes – No – Partially Characteristics abbreviations, as defined in Section 2 : Synthetic (SYNT), General (GNRL), Representative 

(RPST), Balanced (BLNC), Extensible (EXTS), Verifiable (VRFB), Privacy-Orientation (PROR), Machine L6earning Ready (MLRD), Labelled (LABL). 

Moustafa, 2017; Parkour, 2015 ); on the other hand, a value rep- 

resents a synthetic dataset, that can be generated (with different 

degrees of randomness). The former requires to complete the con- 

siderable task of having the data labelled for training purposes, 

while the latter, if accurately and unbiased generated, might po- 

tentially represent a more reliable source of new labelled data. 

It is important to notice that synthetic does not implies unre- 

alistic data, however, it is possible that the generation process in- 

troduces dependencies that ML algorithms can detect ( Beigi et al., 

2014 ). That is to say that the action of mixing two different data 

sources does not imply better performances. To provide some ex- 

amples, the following scenarios are considered synthetic: 

i) the injection of previously captured malware traces in any 

traffic data; and 

ii) the generation of malware data by executing the malware in 

a controlled environment. 

As previously mentioned, and as summarised in Table 1 , the 

dataset strictly composed by real data collected from real net- 

work are rare (CONTAGIO ( Parkour, 2015 ), CyberData1 ( Kent, 2015a, 

2015b ), PUF ( Sharma et al., 2018 ) and UCSD URL ( Ma et al., 

2009 )). Most authors prefer to inject malware data into back- 

ground traffic, generate it in controlled environment, or mixing 

the captures from different sources (ISCX IDS ( Shiravi et al., 2012 ), 

CTU ( García et al., 2014 ), ISOT HTTP ( Alenazi et al., 2017 ), ISOT 

( Zhao et al., 2013 ), UNB Botnet ( Beigi et al., 2014 ) and NSL-KDD 

( Tavallaee et al., 2009 )). A noticeable trend is identifiable with re- 

spect to the FQDN-based datasets, in which the data consists of 

AGD lists collected from multiple sources like security vendors 

or bulletins, often including also an implementation of the DGA 

(SuperCowPowers ( Wylie, 2013 ), Andrewaeva ( Abakumov, 2014 ), 

Pchaigno ( Chaignon, 2015 ), BaderJ ( Plohmann et al., 2016 ; Bader, 

2019 and AmritaDGA ( Vinayakumar et al., 2018 )). 

Secondly, in parallel with Property 2.1, there are the General 

GNRL , Representative RPST and Balanced BLNC characteristics, that 

reflect the realism of the dataset. Although a dataset cannot be at 

the same time synthetic and real, it surely can be both synthetic 

and realistic. In fact, by including a wide range of malware families 

(Property 2.2, GNRL , GNRL ) ( Beigi et al., 2014; Bhuyan et al., 2015; 

García et al., 2014; Moustafa, 2017; Shiravi et al., 2012 ), each one 

represented by a sizeable (Property 2.3, RPST ) ( Beigi et al., 2014; 

Bhuyan et al., 2015; Moustafa, 2017; Sharma et al., 2018; Shiravi 

et al., 2012 ) amount of samples, comparable to the other classes 

(Property 2.4, BLNC ) ( Berman et al., 2019 ), might result in a real- 

istic representation of a real environment. Thus, the following def- 

initions hold: 

Definition 2.2 (General. GNRL ) The dataset covers a wide range 

of malware families rather than being composed by a few specific 

examples. To be more precise, the volume of the data is enough to 

accurately represent a real-world scenario. 

Definition 2.3 (Representative. RPST ) The dataset includes, for 

every category, enough instances to accurately reflect the charac- 

teristics of the larger population. 

Definition 2.4 (Balanced. BLNC ) The dataset has a comparable 

number of samples for each category, i.e ., the number of instances 

belonging to a class should not outnumber any other class. 

One could say that a dataset including several instances of a 

specific malware execution is representative of the variant (Prop- 

erty 2.3, RPST ), but not general (Property 2.2, GNRL ) nor bal- 

anced (Property 2.4, BLNC ). Moreover, a dataset that features mul- 

tiple instances of several malware variants might be general (Prop- 

erty 2.2, GNRL ) with respect of the network threats, representative 

of the malware families examined (Property 2.3, RPST ), but not 

balanced with respect to legitimate or background traffic (Prop- 

erty 2.4, BLNC ). As previously mentioned, these three character- 

istics are quite difficult to find altogether in a dataset, in fact, 

most of the PCAP-based repositories are not general (Property 

2.2, GNRL ) nor representative (Property 2.3, RPST ), let alone bal- 
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anced (Property 2.4, BLNC ). Nevertheless, a few exceptions shine, 

even if only in a single category, namely the completeness of CTU 

( García et al., 2014 ) and BaderJ ( Plohmann et al., 2016 ; Bader, 2019 , 

in terms of number of malware families (Property 2.2, GNRL ) and 

the amount of samples in each class represented by CyberData1 

( Kent, 2015a, 2015b ) and AmritaDGA ( Vinayakumar et al., 2018 ) 

(Property 2.3, RPST ). To the best of our knowledge, there is no 

dataset (apart from AmritaDGA ( Vinayakumar et al., 2018 ) and 

NSL-KDD ( Tavallaee et al., 2009 )) that presents clearly balanced 

data samples. 

Thirdly, to ensure the reusability and the consistency of the re- 

sults derived from the dataset, two properties are defined aiming 

to: 

i) measure whether the research community can extend 

and eventually enhance the data (Property 2.5, EXTS ) 
( Bhuyan et al., 2015 ); and 

ii) verify the data, when the whole replication process is not 

doable (Property 2.6, VRFB ) ( Bhuyan et al., 2015 ). 

Definition 2.5 (Extensible. EXTS ) The dataset is publicly available 

and well documented to enable the research community to ex- 

tend or combine it with other data sources aiming to improve its 

reusability. 

Definition 2.6 (Verifiable. VRFB ) The data included in the dataset 

provide enough means to permit the research community to prove 

the consistency, the accuracy and the genuineness of the data, ide- 

ally resulting in a fully reproducible dataset. 

Datasets composed by PCAP files have medium-to-low exten- 

sibility due to the fact that mixing it with other traffic sources 

might not result in a effective dataset. Moreover, dataset obtained 

by eavesdropping a real network is to be considered not verifi- 

able and not replicable, because of the strong dependence from 

the context and the environmental conditions. However, a capture 

that is obtained from a controlled environment, i.e ., a testbed, is to 

be considered verifiable and potentially replicable, depending on 

the generation process. Finally, the simultaneous replay of multiple 

well-known traffic captures is to be considered both verifiable and 

replicable. Not surprisingly, both properties are generally satisfied 

by the FQDN-based category, while the other datasets generally 

achieve partial success at best. Notably, the ISCX IDS ( Shiravi et al., 

2012 ) is the only dataset in its category to achieve both properties. 

Fourthly, as previously stated by ( García et al., 2014; Zago et al., 

2019a ), a dataset should be made publicly available without doubts 

or concerns about harming users’ privacy. Property 2.7, PROR , has 

been defined to target this aspect. 

Definition 2.7 (Privacy-Orientation. PROR ) The dataset has been 

designed to not include any privacy-harming content nor is re- 

quired for the research community to harm the users’ privacy in 

order to deploy or include the data in their experiments. 

Any form of network traces that also includes the payload 

( e.g ., PCAP files) is natively including personal data that poten- 

tially harm the users’ privacy. Although the network flows for- 

mat dictates to strip the payload of the packets in order to 

aggregate them, the IP addresses are still considered to cer- 

tain extent as personal information. As expected, almost all 

dataset composed by network flows, AGD lists or features do 

not contain personal information or user-specific data (UNB Bot- 

net ( Beigi et al., 2014 ), PUF ( Sharma et al., 2018 ), SuperCow- 

Powers ( Wylie, 2013 ), Andrewaeva ( Abakumov, 2014 ), Pchaigno 

( Chaignon, 2015 ), BaderJ ( Plohmann et al., 2016 ; Bader, 2019 , Amri- 

taDGA ( Vinayakumar et al., 2018 ), NSL-KDD ( Tavallaee et al., 2009 ) 

and UCSD URL ( Ma et al., 2009 )). It is also interesting to note that, 

generally, the PCAP-based solutions presents some sort of data 

anonymisation even when they are not built as privacy-oriented 

solutions (ISCX IDS ( Shiravi et al., 2012 ), CyberData1 ( Kent, 2015a, 

2015b ), ISOT HTTP ( Alenazi et al., 2017 ) and CTU (both original and 

Extended) ( García et al., 2014 )). 

Finally, one of the scopes of this research is to explore the state- 

of-the-art oriented toward ML applications. To achieve this, two 

properties are defined to measure how easy it is to use “as-is”

(Property 2.8, MLRD ) (as suggested by Sharma et al. (2018) ) and 

to indicate whether the dataset is labelled or not (Property 2.9, 

LABL ) ( Berman et al., 2019; Bhuyan et al., 2015; García et al., 2014; 

Moustafa, 2017; Sharma et al., 2018; Shiravi et al., 2012 ). 

Definition 2.8 (Machine Learning Ready. MLRD ) The dataset is 

composed by carefully curated samples. There are no missing val- 

ues nor unwanted characters. Moreover, the data format is consis- 

tent across all the samples and it is suitable for usage with the 

leading tools. 

Definition 2.9 (Labelled. LABL ) Each sample is carefully charac- 

terised with one or more class attributes, eventually providing a 

variable granularity of the labels. 

For example, a dataset composed by network flows is di- 

rectly suitable of being directly plugged into ML solutions, pro- 

vided that the target platform can support string and date 

features. By nature, both network flows based solutions (ISOT 

( Zhao et al., 2013 ), UNB Botnet ( Beigi et al., 2014 ) and PUF 

( Sharma et al., 2018 )) and feature based (NSL-KDD ( Tavallaee et al., 

2009 ) and UCSD URL ( Ma et al., 2009 )) ones are natively 

pluggable in ML algorithms, while FQDN lists (SuperCowPow- 

ers ( Wylie, 2013 ), Andrewaeva ( Abakumov, 2014 ), Pchaigno 

( Chaignon, 2015 ), BaderJ ( Plohmann et al., 2016 ; Bader, 2019 ) and 

AmritaDGA ( Vinayakumar et al., 2018 )) are directly usable only by 

a subset of them ( e.g ., deep learning or text processing). With re- 

gards to the labels, only CyberData1 ( Kent, 2015a, 2015b ) does not 

present any form of class separation. In order to provide an overall 

view, and as previously mentioned, in Table 1 it is possible to find 

the relevant datasets compared according to the aforementioned 

properties. 

It is worth mentioning, that although not pinpointed in this 

section, our proposed dataset, UMUDGA , meets all the properties 

here described. A detailed discussion of such achievements is of- 

fered in Section 3 . 

Finally, for a few selected datasets (either for their importance 

or their properties) we realised also a quantitative analysis in 

terms of number of legitimate and malicious domain names and 

number of classes. Table 2 reports these findings. The validation 

column is obtained by processing each FQDN with Google Guava li- 

brary, and specifically its InternetDomainName class’s method 

which checks if the domain name is syntactically valid using le- 

nient validation ( The Guava Authors, 2009 ). 

To be more precise, we excluded the remaining datasets for 

being obsolete (NSL-KDD ( Tavallaee et al., 2009 ) and UCSD URL 

( Ma et al., 2009 )), not labelled (CyberData1 ( Kent, 2015a, 2015b )) 

or labels not aligned with the scope of this article (ISCX IDS 

( Shiravi et al., 2012 ) labels attacks, not malwares) and finally, 

for not being yet publicly released (PUF ( Sharma et al., 2018 )). 

With regards of the CTU ( García et al., 2014 ) and the CTU Ex- 

tended ( García et al., 2014 ), we have considered them as a single 

dataset, extracting the data from both. Pchaigno ( Chaignon, 2015 ) 

and BaderJ( Plohmann et al., 2016 ; Bader, 2019 ) are datasets of DGA, 

thus the quantitative comparison based on the number and prop- 

erties of the FQDN is not applicable. To be more precise, and as 

reported both in Section 3 and ( Zago et al., 2019b ), the generators 

used in our dataset, UMUDGA , are using both ( Chaignon, 2015 ) and 

Bader, 2019 as source, among others. 
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Fig. 1. Datasets metrics, as reported in Table 2 . 

Fig. 2. Boxplots representing the number of FQDN per class. The ideal dataset present a small interquartile range ( i.e ., more balanced) and a high median ( i.e ., more samples 

per class). 

Table 2 

Dataset comparison in terms of number of FQDN available for analysis and number of classes (including the legitimate 

one, when available). 

Name Year Legit AGD Unique Valid Classes 

ISOT ( Zhao et al., 2013 ) 2013 30,699 32,952 63,651 31,297 5 

SuperCowPowers ( Wylie, 2013 ) 2013 1,000,000 2,670 1,002,670 986,081 2 

Andrewaeva ( Abakumov, 2014 ) 2014 1,000,000 694,173 1,694,173 1,694,167 9 

CTU ( García et al., 2014 ) 2014 73,020 153,999 227,019 62,620 8 

UNB Botnet ( Beigi et al., 2014 ) 2014 46,440 15,734 62,183 46,474 17 

CONTAGIO ( Parkour, 2015 ) 2015 0 8,612 3,637 3,620 110 

ISOT HTTP ( Alenazi et al., 2017 ) 2017 3,114 105 3,219 1,298 9 

AmritaDGA ( Vinayakumar et al., 2018 ) 2018 2,498,076 1,072,418 3,570,494 3,405,238 21 

UMUDGA Zago et al., 2020 2020 1,000,000 30,799,449 31,799,449 30,799,449 51 

The numbers reported in Table 2 , have been graphically high- 

lighted also in Fig. 1 (in terms of total number of samples) and 

in Fig. 2 (in terms of number of samples per class). In particu- 

lar, Fig. 2 a and b presents the different datasets with a suitable 

scale. In the figures, the ideal dataset presents a small interquartile 

range (all the classes have roughly the same amount of samples, 

i.e ., it satisfies Property 2.4, BLNC ) and a high median (the average 

number of samples per class is elevated, thus potentially achieving 

Property 2.3, RPST ). In both figures, outliers are not represented 

and our proposed UMUDGA has been included with the appropri- 

ate Tier ( i.e ., the size of each class sample set, as will be described 

in Section 3 ). 
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Table 3 

Comparison of datasets in terms of overlapping percentages. 

Dataset Year Percentage of overlap with 

Zhao et 

al. (2013) 

Wylie 

(2013) 

Abakumov 

(2014) 

García et al. 

(2014) 

Beigi et al. 

(2014) 

Parkour, 

2015 

Alenazi et al. 

(2017) 

Vinayakumar 

et al. (2018) 

UMUDGA Alexa 

ISOT ( Zhao et al., 

2013 ) 

2013 N.A. 12% 13% 16% 100% 1% — 19% 10% 10% 

SuperCowPowers 

( Wylie, 2013 ) 

2013 — N.A. 44% 1% — — — 41% 22% 22% 

Andrewaeva 

( Abakumov, 

2014 ) 

2014 — 25% N.A. — — — — 38% 24% 18% 

CTU ( García 

et al., 2014 ) 

2014 8% 10% 10% N.A. 22% 1% — 17% 8% 8% 

UNB Botnet 

( Beigi et al., 

2014 ) 

2014 67% 9% 10% 29% N.A. 2% — 20% 7% 7% 

CONTAGIO 

( Parkour, 2015 ) 

2016 12% 9% 9% 21% 24% N.A. 2% 34% 12% 7% 

ISOT HTTP 

( Alenazi et al., 

2017 ) 

2017 3% 15% 16% 7% 12% 7% N.A. 81% 16% 16% 

AmritaDGA 

( Vinayakumar 

et al., 2018 ) 

2018 — 12% 19% — — — — N.A. 16% 12% 

UMUDGA Zago et 

al., 2020 

2020 — 1% 1% — — — — 2% N.A. 3% 

With Alexa we indicate the top one million domains Alexa Internet Inc, 2019 , 2018 update. With “—” we indicate that the overlap is either non-existent or smaller than 

0.1%. 

In Table 2 , the first two columns, namely the legit and the AGD 

columns, represent the amount of FQDN obtained from the lists 

or PCAP files, and thus do not include those databases that do 

not include domain names ( Kent, 2015a, 2015b; Chaignon Bader, 

2019 ; Ma et al., 2009; Tavallaee et al., 2009 ) and those that 

are not publicly available ( Sharma et al., 2018 ). The legit col- 

umn reports the number of FQDNs considered legitimate while 

the AGD one reports the number of malicious domains, using 

wireshark ( Gerald Combs, 1998 ) to extract the dns.qry.name 
field for PCAP-based datasets. The two lists are then combined, 

sorted and all duplicates are removed, results are reported in the 

unique column. Moreover, the fourth column ( valid ) is obtained 

by processing each FQDN with Google Guava library, and specifi- 

cally its InternetDomainName class’s method which checks if 

the domain name is syntactically valid using lenient validation 

( The Guava Authors, 2009 ). 

Finally, the datasets have been analysed according to their over- 

laps in terms of FQDNs and Table 3 identifies the amount of colli- 

sions registered within each dataset. To be more precise, the over- 

lap is defined as the percentage of the dataset that is shared with 

the others, i.e ., giving any two lists of FQDNs, namely A and B , the 

percentage of collision is calculated as follows: 

overlap (A, B ) = 100 · | A ∩ B | 
| A | (1) 

It is important to notice that the function is not symmetric, that 

is to say, a permutation of the input variables changes the result 

value, i.e ., overlap (A, B ) � = overlap (B, A ) . Table 3 does not report 

values smaller than 0.1%. 

As shown in Table 2 , and to the best of our knowledge, this 

is the first attempt to provide a comprehensive and representa- 

tive dataset to be used for tackling DGA-based botnets. In using 

our proposed dataset, one of the main advantages that the re- 

search community might acquire relies upon the formal definition 

( Zago et al., 2019b ) of the features and the verifiable feature set 

obtained as result Zago et al., 2020 . 

3. UMUDGA: University of Murcia domain generation algorithm 

dataset 

One of the main outcome of this article is the public release 

of a ML-ready and privacy-aware dataset of AGD. As previously re- 

ported in Table 1 , our solution matches all the defined properties. 

To be more precise, as as reported in Section 3 and its subsections, 

the UMUDGA dataset meets those properties as follows: 

• Property 2.1, Synthetic ( SYNT ) — The dataset is generated by 

executing malware DGAs and collecting the resulting data, thus 

achieving the requested SYNT property. 
• Property 2.2, General ( GNRL ) — The dataset includes 38 mal- 

ware families ( Table 4 ), presenting more than 30 million FQDN s 
distributed over 50 malware variants besides the legitimate 

class ( Table 2 ). To the best of our knowledge, this covers the 

vast majority of publicly known DGA -based malwares. 
• Property 2.3 Representative ( RPST ) — As summarised in 

Table 4 , all variants include at least 10,0 0 0 FQDNs ( i.e ., first Tier 

in Table 4 ), having most of them 1 million valid and unique 

FQDNs ( i.e ., highest Tier in Table 4 ). 
• Property 2.4, Balanced ( BLNC ) — As summarised in Table 4 , the 

data are sorted in tiers of different sizes. Within each tier, all 

the malware variants are fully balanced. 
• Property 2.5, Extensible ( EXTS ) — The code for generating the 

AGDs is available on Mendeley Data Zago et al., 2020 
• Property 2.6, Verifiable ( VRFB ) — All the data sources are pub- 

licly available online. Moreover, the data repository itself re- 

ports the formal mathematical definition for each feature pre- 

sented. 
• Property 2.7 Privacy-Orientation ( PROR ) — The dataset is com- 

posed only by context-free features, which are natively anony- 

mous and privacy-oriented. They, in fact, do not require any 

contextual information from the users or the network state 

( Zago et al., 2019a ). 
• Property 2.8 Machine Learning Ready ( MLRD ) — The data have 

been preprocessed to assure the absence of missing or cor- 

rupted data. The repository provides the data in both raw TXT 

FQDNs lists, CSV and ARFF formats Zago et al., 2020 . 
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Table 4 

DGA families. 

Tier Families collected 

10,000 CCleaner, Kraken ∗ , Murofet ∗ , Pizd † , Pykspa, SuppoBox ∗, † , Vawtrak ∗

50,000 Vawtrak ∗ , Gozi ∗, † 

100,000 Pykspa-noise, QakBot, Ramnit, Tempedreve, Gozi ∗, † 

500,000 Banjori, Murofet ∗

1,000,000 Alureon, Bedep, ChinAd, CoreBot, CryptoLocker, DirCrypt, Dyre, Fobber ∗ , Kraken ∗ , Locky, Matsnu † , 

Necurs, Nymaim, PadCrypt, Proslikefan, Pushdo, Qadars, Ramdo, Ranbyus ∗ , Rovnix † , Shiotob, Simda, 

Sisron, Symmi, Tinba, Vawtrak ∗ , Zeus-NewGoz. 

† Wordlist-based family. ∗ Multiple variants. 

Fig. 3. Architecture for the dataset generation showing both the required inputs (the malware DGA and the English Language Data) and the provided outputs (the AGD lists 

and the AGD features sets). 

• Property 2.9 Labelled ( LABL ) — The data are available as col- 

lection of malware variants data sources, natively tagged with 

the correct label. 

As previously stated ( Zago et al., 2019a ), the public release of 

a ML-ready dataset represents an innovative response to a well- 

known challenge in the cybersecurity field, however, future re- 

searches are still required to extend it to both context-free and 

context-aware features. 

The following Section 3.1 presents the architecture of the 

data processing and collecting framework, while Section 3.2 will 

describe the methodology used for designing and building the 

dataset. 

3.1. The UMUDGA architecture 

The generation framework flow consists in executing malware 

DGA to collect the AGD and then process them to obtain the rele- 

vant features. Fig. 3 illustrates the data flow. 

To be more precise, and as explained in detail in Section 3.2 , the 

raw FQDNs are obtained by executing in a controlled environment 

the malwares’ DGAs, which in turn are both saved as raw lists 

and processed to become ML-ready data. The AGDs are firstly pro- 

cessed by the Domain Inspector procedure, entry point for the 

Feature Extraction Module , which takes care of validating 

each domain name and extract relative n Grams. The validation is 

carried out with both the Google Guava InternetDomainName 
class ( The Guava Authors, 2009 ) and the Apache Commons Val- 

idator library ( The Apache Software Foundation, 2017 ). The former 

performs syntax validation while the latter evaluates the domain 

names according to the standards RFC 1034 (Mockapetris, 1987, 

Section 3) and RFC 1123 (Braden, 1989, Section 2.1) . A detailed ex- 

planation of the technical validation is offered in a companion ar- 

ticle that provides the dataset description ( Zago et al., 2020 ). 

Firstly, the domains are analysed by a Natural Language Pro- 

cessing (NLP) procedure that extracts 15 common features such as 

Table 5 

List of features generated by the NLP Processor for each 

FQDN. 

Code Description 

L- x String length of x domain level 

N Number of domain levels 

LC-C Longest consecutive consonance sequence 

LC-D Longest consecutive number sequence 

LC-V Longest consecutive vowel sequence 

R-CON- x Ratio of consonants characters 

R-LET- x Ratio of letter characters 

R-NUM- x Ratio of numerical characters 

R-SYM- x Ratio of symbolical characters 

R-VOW- x Ratio of vowel characters 

where x ∈ { FQDN , 2LD , OLD } denotes the domain levels. 

the length of the domain, its vowel ratio, among others; while, sec- 

ondly, the n Gram are analysed by the corresponding procedure to 

extract 31 features for each n Grams size (with n = 1 , 2 , 3 ), e.g ., en- 

tropy, frequencies. As previously mentioned, the features, among 

other technical aspects of the dataset, are described in Zago et al., 

2020 . 

The n Grams Processor primarily compares the n Grams dis- 

tribution with the corresponding distribution of the English lan- 

guage, provided by the Leipzig Corpora ( Goldhahn et al., 2012 ). 

The following methodology Section (3.2) discuss in detail the 

content of each module and procedure. 

3.2. Methodology for building the UMUDGA dataset 

This section aims to illustrate the procedures, the assumptions 

and the tools used to collect, filter, and generally prepare the data. 

The process is twofold, i.e ., the data are firstly collected in form of 

raw FQDN lists (see Section 3.2.1 ); secondly, the domains lists are 

processed and the resulting features files are saved in the dataset 

(see Section 3.2.2 ). 
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3.2.1. Generation and collection of FQDNs 

Malware lists such as Netlab 360, 2019 ; ( Malware domain 

list, 2009 ); Bambenek Consulting, 2019 ; ( Risk Analytics, 2007 ) are 

quite common and used on daily basis by multiple firewalls and 

anti-malware providers. However, the provided data are rarely 

identified with the malware family or variant, thus they are more 

often labelled as generic threats. As a consequence, the approach 

that we took for building this dataset is slightly different. That 

is to say, instead of collecting lists of AGDs from multiple online 

sources like those, we have been looking for the study and the ac- 

tual implementation of the malwares’ DGAs. Therefore, our data 

are exclusively generated by executing DGAs implementations in 

a controlled environment (achieving the Property 2.1, SYNT ). The 

source code has been adapted from three of the main providers of 

DGA implementations Abakumov (2014) ; Chaignon (2015) ; Bader, 

2019 and will be released in a public repository (thus achieving 

Property 2.5, EXTS ). 
Each algorithm’s random function is initialised with a fixed 

seed and when required, this random module is also used to derive 

both dates and other arguments. For example, whenever a DGA re- 

quires a new date to calculate the corresponding AGDs, the support 

infrastructure provides a random datetime string derived from the 

initialisation seed (Property 2.6, VRFB ). 
The generated AGD are guaranteed to be unique within the 

class, however, this property is not forced across the dataset when 

considered as a whole. To be more precise, there are 551 colli- 

sions shared among 10 malware variants ( e.g ., Pizd shares 441 

AGDs with first version of SuppoBox ). However, as highlighted 

by Plohmann et al. (2016) and proved by our analysis (551 over 

30.8 million total domains), collisions are quite rare among differ- 

ent malware families, and negligible when considering also the le- 

gitimate category. Therefore, removing eventual collisions does not 

produce a statistically significant change in the malware family dis- 

tribution, while substantially increasing the quality of the data for 

ML usage. To be as complete as possible, the full list of colliding 

FQDN is available in the repository Zago et al., 2020 . 

Each DGA is executed until it stops generating new domain 

names or it reaches 1 million AGD (Property 2.3, RPST ). Resulting 

FQDNs are then truncated to the highest completed tier, i.e ., 10k, 

50k, 100k, 500k, 1M. Table 4 reports the list of the families sorted 

according to their highest tier, e.g ., at least one variant of Kraken 
consists of only 10k AGDs. To the best of our knowledge, these 

50 variants are covering the vast majority of known DGA-powered 

malwares (Property 2.2, GNRL ). 
To complete the dataset, the last set of FQDNs is obtained 

by joining the Alexa Internet Inc, 2019 and the Majestic Million 

( Majestic-12-Ltd, 2019 ) domain lists. From the two lists, a million 

unique domains are extracted and allegedly considered as legiti- 

mate . However, two main problems aroused when validating those 

domain names, in fact a total amount of 178 FQDNs fail to pass the 

validation procedure. To be more precise: 

• 38 of them use one of the new generic top level do- 

mains (gTLDs) which are still not included in the list of ac- 

cepted gTLDs as per the last update of the validation li- 

brary (Apache Commons Validator ( The Apache Software Foun- 

dation, 2017 ) – v1.6, 04/02/2017). Namely, .africa (del- 

egated on 14/02/2017), .charity (04/06/2018), .hotels 
(03/04/2017), .inc (16/07/2018) and .sport (08/01/2018). 

• 140 domains are technically invalid because of the presence of 

at least one underscore character (“_ ”): the validation library 

checks the domains against the RFC 1123 ( Braden, 1989 ), which 

limits host names to letters, digits and hyphen. The policy for 

the underscore character has been clarified later with the RFC 

2181 (Elz and Bush, 1997, Section 11) . 

3.2.2. Preprocessing and feature extraction 

To begin with the inner mechanisms of such module, as illus- 

trated in Figure 3 , it is imperative to restate what firstly proposed 

by Zago et al. (2019a) , i.e ., the generated features belong to the 

Context-Free family. That is to say, the features are related only to 

a FQDN and are independent of contextual information. 

Firstly, the FQDN lists obtained in the previous steps 

are analysed and syntactically validated against RFC 1034 

(Mockapetris, 1987, Section 3) and RFC 1123 (Braden, 1989, Sec- 

tion 2.1) by the Feature Extraction Module reported in 

Fig. 3 . All the invalid domain names are replaced with other unique 

samples obtained by the corresponding DGA. The dataset docu- 

mentation provides the required mathematical formalism for each 

implemented feature Zago et al. (2019b) . 

With regards to Fig. 3 , the first process is the 

NLP Processor , which analyses each domain name as string, 

with little to none knowledge about its structure as FQDN or its 

language. The NLP Processor extracts 22 features from the 

domain name, which are listed and described in Table 5 . To im- 

prove the readability, Table 5 presents a list of meta features, that 

indicates that a specific mathematical formula has been applied 

to multiple targets. That is to say, we indicate with x the domain 

level used as argument for calculating the feature, having x equals 

to either “FQDN ” (that stands for Fully Qualified Domain Name), 

“2LD ” (that stands for Second Level Domain) and “OLD ” (that 

stands for Other Level Domain, which comprehends any domain 

level below the second). 

The second process, namely the n Grams Processor , is the 

one that analyses the domain name as a collection of tokens, called 

n Gram. Firstly, each FQDN is divided into chunks of size n and then 

compared to the reference ones belonging to the English language. 

These last collections are obtained by preproccessing the Leipzig 

Corpora ( Goldhahn et al., 2012 ) which includes 1 million words 

from Wikipedia (2016 update). There are a total of 29 features ex- 

tracted from such analysis; Table 6 presents them. Despite having 

these features listed once in Table 6 , the dataset includes them ap- 

plied to 1Grams, 2Grams and 3Grams for a total of 87 features. 

That is to say, the 29 features are mathematically defined inde- 

pendently from the chosen length ( n ) of the chunks used for the 

analysis and thus can be applied to any n Grams size. 

As a side note, some of these features applied to 2Grams and 

3Grams are (almost) constant and thus (practically) irrelevant. 

They are nevertheless included in the dataset for completeness. 

Fig. 4 presents one of such features, namely the specific case of 

the 75 th percentile of the n Gram distributions. For example, Fea- 

ture 1G-75P ( Fig. 4 a) have been proven sufficiently informative 

for ML applications, despite having its counterparts zeroed-out. In 

fact, by considering the nature of the feature itself, it does not sur- 

prise that both the 2G-75P (for 2Grams, shown in Fig. 4 b) and the 

3G-75P (for 3Grams, shown in Fig. 4 c) present a very skewed dis- 

tributions, where only a few of them have actually a value. Both of 

them are nevertheless included for symmetry and completeness. 

Due to space concerns, the full list of features, with their dis- 

tributions and descriptions is not included here. Nonetheless, it is 

publicly available at Zago et al., 2020 . 

Finally, a survey in terms of where these features originated and 

when have been used in literature to power ML-based solutions 

can be found at Zago et al. (2019a) . 

4. UMUDGA dataset analysis 

Generally speaking, a first exploratory analysis of the data is 

suggested and often required before applying more sophisticated 

ML algorithms. This section aims to provide a brief characterisa- 

tion of the malware variants and their properties by presenting 

and discussing the results of a first and naïve analysis. The anal- 
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Fig. 4. Boxplots comparisons for the Feature n G-75P that indicates the 75 th percentile of the n Gram distributions. (See Table 6 ). 

ysis carried out in the section below is performed over the first 

tier of malwares, as depicted in Table 4 . 

Among the features described in Section 3 , few of them present 

signs that indicate their low quality with regards to the data anal- 

ysed. 

Firstly, there are features in which nearly all the values are 

identical, to be more precise the percentiles of frequencies, their 

mean and median for n = 1 , 2 , 3 are statistically indistinguishable. 

Moreover, the different ratios are mostly alike when consider- 

ing the second level domain (2LD) and the other level domain 

(OLD) parts. Lastly, the number of repeated n Gram and their co- 

variance with respect to the n = 3 size are also practically identi- 

cal. Lastly, there are multiple features that are highly correlated, 

thus considering the ones with a correlation index lower than 

0.9. 

On the one hand, when considering the structure of the AGD, 

i.e ., most of them are composed only by two domain levels, it is 

not surprise that the NLP features like the ratios or the lengths 
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Table 6 

List of features generated by the n Grams Processor for each n Grams set. 

Code Description Code Description 

n G-DIST Number of distinct n Gram n G-REP Number of repeated n Gram 

n G-25P 25th percentile of frequencies n G-E Entropy 

n G-50P 50th percentile of frequencies n G-COV Covariance 1 

n G-75P 75th percentile of frequencies n G-KEN Kendall’s Correlation 1 

n G-MEAN Mean of frequencies n G-PEA Pearson’s Correlation 1 

n G-QMEAN Quadratic Mean of frequencies n G-SPE Spearman’s Correlation 1 

n G-SUMSQ Squared sum of frequencies n G-TSUMSQ Squared sum of target language frequencies 1 

n G-VAR Variance of frequencies n G-TVAR Variance of target language frequencies 1 

n G-PVAR Population VAR of frequencies n G-TPVAR Population VAR of target language frequencies 1 

n G-STD Standard deviation of frequencies n G-TSTD Standard deviation of target language frequencies 1 

n G-PSTD Population STD of frequencies n G-TPSTD Population STD of target language frequencies 1 

n G-SKE Skewness of frequencies n G-TSKE Skewness of target language frequencies 1 

n G-KUR Kurtosis of frequencies n G-TKUR Kurtosis of target language frequencies 1 

n G-PRO Pronounceability score 1 n G-TSUM Sum of target language frequencies 1 

n G-NORM Normality score n G-DST-KL Kullback-Leiber divergence 1 

n G-DST-CA Canberra Distance 1 n G-DST-JI Jaccard Index measure 1 

n G-DST-CH Chebyshev Distance 1 n G-DST-EU Euclidean Distance 1 

n G-DST-EM Earth Movers Distance 1 n G-DST-MA Manhattan Distance 1 

where 1 is about the English language, and n G indicates the size of the n Grams collection used for the group of features. 

are correlated to each other, specifically when looking at the ones 

calculated over the FQDN and the 2LD . 
However, giving the n Grams analysis in combination with the 

shortness of the domain names, it is not unexpected that the fea- 

tures that are most sensible to zeros have been discarded. For ex- 

ample, the number of distinct n Grams, their variance, standard de- 

viation, skewness, etc., presents high correlation grades with each 

other. Also the Manhattan distance, calculated as the sum of the 

absolute deviation, tends to be highly correlated with other dis- 

tances included in the data. 

In order to further explore the data we designed two ML clas- 

sification tasks. These experiments were conducted on a virtual 

server with 18 cores running at 2.30GHz and 50 GB of DDR3 RAM 

at 1600 MHz. Experiments were run using Orange3 ( Demšar et al., 

2013 ). Six classifiers were applied and cross-validated using a strat- 

ified 10-fold approach, using the following configuration and ML 

techniques: 

• AdaBoost (AB) — Using 50 trees as base estimators, with 

SAMME.R classificator (updates base estimatorâ;;s weight with 

probability estimates) and linear regression loss function. 
• Neural Network (NN) — Single hidden layer with 100 nodes 

activated with the Rectified Linear unit (ReLu) function, weight 

optimised with the stochastic gradient-based optimiser (Adam), 

α = 0 . 0010 and 200 max iterations. 
• Random Forest (RF) — Using 10 trees, considering up to five 

attributes at each split and without splitting subsets smaller 

than five. 
• Support Vector Machines (SVM) — Configured with C = 1 . 00 , 

ε = 0 . 10 and using the RBF Kernel. 
• Decision Tree (DT) — Two minimum instances in leaves, do not 

split trees smaller than five, having a max depth of 100. Exiting 

condition when the majority reaches 95%. 
• k-Nearest Neighbours (kNN) — Five neighbours using the Eu- 

clidean metric and a uniform weight. 

In the following sections, unless otherwise stated, the experi- 

ments were conducted using all the variants belonging to the Tier 

10,0 0 0, i.e ., a balanced dataset with 10,0 0 0 samples for each class. 

The two classification tasks are defined as follows: 

Experiment 1 (Binary) . The Binary task is designed to answer the 

ML question of separating legitimate FQDNs from malicious AGDs, 

considering all malware families as a single category. 

Experiment 2 (Multiclass) . The Multiclass task is designed to clas- 

sify not only the legitimate FQDNs, but also sort malware samples 

according to their variants. 

Figs. 5 and 6 report both the results in terms of classifiers per- 

formances and the Receiver Operating Characteristic (ROC) curves 

for the Binary ( Exp. 1 ) and the Multiclass ( Exp. 2 ) experiments, 

respectively. It is worth mentioning that the ROC curves are gener- 

ated considering the legitimate (legit) class as target, thus showing 

the support in correctly predicting this class on average with re- 

spect to the 10 folds analysed. Figs. 5 and 6 a have been simplified 

by firstly interpolating the values and then by smoothing the curve 

to reduce the number of points (accepting a loss of 5% precision). 

From the two images, it is possible to notice that the results are 

somewhat different from the high-grade extremely precise results 

obtained in literature over subsets of the same classes ( Zago et al., 

2019a ). One could argue that the data are different, which is some- 

what correct; data sources are different, and rarely publicly shared 

for subsequent analysis ( i.e ., Property 2.6, VRFB ). We assume that 

the data obtained from the generators, as described in Section 3 , 

for a specific malware variant are taken from the same space, 

thus having similar characteristics. It can also be stated that the 

features used are not the same, nor calculated in the same way. 

This assertion surely holds. However, as shown in our early re- 

search ( Zago et al., 2019a ), most literature works made usage of 

context-free features, which have been collected, analysed and re- 

implemented as presented in Section 3 . Moreover, the features se- 

lected in the literature are rarely mathematically defined, let alone 

implemented and made publicly available ( i.e ., Property 2.5, EXTS ). 
Once again, without having a structural formalism of the per- 

formed data processing that led to those results, comparing them 

is somewhat difficult. 

As expected, the Binary experiment ( Exp. 1 ) performs much 

better than the Multiclass one ( Exp. 2 ). And, to further explore 

these average results, a sample of a class-specific analysis is pro- 

posed in Sections 4.1 and 4.2 . 

Fig. 7 presents the confusion matrix for the Random Forest 

classifier in the Multiclass experiment as an heatmap chart. In 

the figure, the darker the colour, the better is the classifier pre- 

cision. From the picture, it appears clear that although the classi- 

fier achieves excellent results in most of the classes, some clusters 

of classes appears to be difficult to separate, ultimately causing the 

degraded overall performances presented in Fig. 6 b. In Fig. 7 , actual 

percentages are omitted for clarity, the complete report is available 

at Zago et al., 2020 . 
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Fig. 5. Results for the Binary experiment ( Exp. 1 ). 

Fig. 6. Results for the Multiclass experiment ( Exp. 2 ). 

To further explore these classes clusters, we picked two clus- 

ters of variants, namely the one formed by Alureon and Fobber 
(2nd version) and the one composed by Bedep , DirCrypt 
and Ramnit . The results of these analysis are presented in 

Sections 4.1 and 4.2 , respectively. The experiments have been per- 

formed with amount compatible with the highest tier available for 

each malware variant. As indicated in both section, a potential so- 

lution for this issue might be represented by the double detection 

process implemented by Gil Pérez et al. (2017) . To be more pre- 

cise, by considering the elements of the cluster as a single unique 

entity, it is possible to flag as “suspicious” a DNS query made by 

some user ( i.e ., the first, high-level detector). A dedicated analyser 

( i.e ., the second, fine-granularity detector) might then take care of 

performing a more precise, accurate and time consuming analysis 

of the identified user. 

To further explore the potential researches that might spring 

from the usage of this dataset, it is worth mentioning the chal- 

lenges related to ML identification of DGA-based botnets. For ex- 

ample, it is unclear whether is possible to define a common sig- 

nature for AGDs as a group ( Exp. 1 ) or if from a sample analysis 

is possible to incontrovertibly identify the malware family or even 

the precise variant ( Exp. 2 ). Further researches are also required in 

terms of algorithms application to explore the data, for example, 

literature suggests that both deep learning and clustering solutions 

might prove useful in identifying known and unknown malwares, 

respectively. 

4.1. Fobber (2nd version) versus Alureon 

The first cluster of errors belongs to Fobber (2nd 
version) and Alureon . Both variants’ DGAs are publicly 

available at Zago et al., 2020 . The first step is to execute a specific 

ML experiment oriented toward those two classes, which results 

are reported in Fig. 8 a ( ROC curve) and Fig. 8 b (classifiers per- 

formances). From these, it is clear that the feature set chosen, in 

combination with the data and the algorithms configurations do 

not permit to separate the two classes. 

To further explore the two classes, we have printed their 

1Grams distributions in Fig. 8 c together with the English distribu- 

tion and a uniform one. As suggested by Knuth (1997) , we per- 

formed a Pearson’s ChiSquare Test to compare them, and the re- 

sults are reported in Fig. 8 d. The test does not reject the hypothesis 

that the two variants belong to the same uniform distribution. Fol- 

lows that both malware variants have achieved to generate AGDs 

within a uniform distribution, and thus impossible to distinguish 

with the current feature set. 
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Fig. 7. Confusion Matrix for the Multiclass experiment ( Exp. 2 , Random Forest). 

Further analysis including, but not limited to, context-aware 

features might result in an effective way to distinguish the two 

classes. For example, a double cycle detection as proposed by 

Gil Pérez et al. (2017) might be applied in such case. That is to 

say, both Fobber (2nd version) and Alureon can be con- 

sidered as a single class, and then deeply analysed with a spe- 

cific component once a detection event occurs. In fact, as shown 

in both Fig. 9 a and b, almost all classifiers achieve extremely high 

performances while oriented toward distinguishing legitimate do- 

main names from these two joined classes. 

4.2. Bedep versus DirCrypt versus Ramnit 

The second cluster of classification errors belongs to three 

classes, namely Bedep , DirCrypt and Ramnit . However, as 

shown in Fig. 10 and Fig. 11 , it appears that this group is driven 

by the identical distributions of DirCrypt and Ramnit , which 

are then very likely, but not identical to Bedep . 
The classifiers output for the three malware variants can be 

found in Fig. 10 b, and together with the ROC curve analysis 

( Fig. 10 a) prove that, within this data, the ML algorithms only take 

educated guesses over the class, without being capable of actually 

memorising the class characteristics. 

The Pearson’s ChiSquare test, presented in Fig. 10 b, suggests an- 

other subgroup formed by DirCrypt and Ramnit . To analyse and 

eventually confirm this hypothesis, we conducted a Binary experi- 

ment over those two classes, proving that also in this case it is not 

possible to separate the two classes ( Fig. 10 c and d). 

However, in Fig. 10 a it is possible to notice that both 

DirCrypt and Ramnit differ from the uniform distribution in 

a few cases. To be more precise, our implementation of Ramnit 
DGA does not ever produce the letter “z ” in any domain. This leads 

to a missing value in the distribution value, which can be mapped 

as zero. Having one zero in the distribution causes the ChiSquare 

test to fail for not being defined at zero. This condition, together 

with the fact that we do not have a specific feature for each char- 

acter (including “z ” and “c ”, as highlighted in Fig. 10 a) permits to 

not consider the character during this test. The results are avail- 

able in Fig. 10 b and, as expected, both three variants achieve to be 

uniform (or almost uniform). 

As suggested in Section 3 , a double cycle detection ( Gil Pérez 

et al., 2017 ) might take advantage of other class-specific character- 

istics to perform a deeper analysis. For instance, Fig. 12 reports the 
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Fig. 8. Comparative analysis of Fobber (2nd variant) and Alureon. 

classifier results and the ROC curve for the six classifiers defined 

earlier in Section 4 . It is clear that most classifiers can achieve ex- 

tremely good performances, and thus can act as a filter before a 

more deep and accurate analysis is performed. 

4.3. Discussion 

As previously mentioned in Section 4 , only a few clus- 

ters have been analysed and reported here. The same anal- 

ysis however has been carried out for all classification er- 

rors. To be more precise, we decided to aggregate the classes 

that have at least 20% of misclassification between each other. 

For example, Fobber (2nd version) and Alureon share around 

50%. 

Following what previously suggested throughout this section, 

an approach like the one defined in Gil Pérez et al. (2017) might 

be appropriate to develop a full-fledged detection solution for tack- 

ling DGA-based botnets. To validate this hint, Experiment 2 have 

been executed on a tweaked dataset that considers clusters of 

classes as classification target instead of malware variants. Fig. 13 

summarises the results for this scenario and to be more precise, 

Fig. 13 b reports the classifiers performances while Fig. 13 a presents 

a comparison between the previously shown Multiclass experi- 

ment’s classifiers’ F1 scores ( Fig. 6 b) and the ones obtained by the 

classifiers in this scenario. 

As depicted in Fig. 13 a there is a general improvement across all 

the classifiers, which is also clearly visible in the related confusion 

matrix available in Fig. 14 . 

Once a FQDN is flagged as suspicious, for example by classify- 

ing it as in the new aggregated class Alu-Fobv2, which compre- 

hends both Fobber (2nd version) and Alureon , further 
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Fig. 9. Comparative analysis of Fobber (2nd variant) and Alureon as a single class against the Legit one. 

Fig. 10. Comparative analysis of Bedep , DirCrypt and Ramnit — Part 1. 
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Fig. 11. Comparative analysis of Bedep , DirCrypt and Ramnit — Part 2. 

Fig. 12. Comparative analysis of Bedep , DirCrypt and Ramnit versus the legitimate class. 

analysis can be deployed to perform deep inspection that might 

allow to pinpoint the exact malware variant, thus enabling the de- 

ployment of appropriate countermeasures. 

Future researches are, however, required to establish whether 

an improved context-free set of features may be able to distinguish 

between the clusters of classes or if a deeper analysis based on 

context-aware features is required. Nevertheless, this result, along 

with the one reported in Fig. 5 , validates the concept of having a 

first, high-level filter for detecting AGDs, followed by a malware- 

specific intrusive inspection technique. 

One could argue that this approach, does not rely on studying 

and developing a ML approach suitable for solving the previously 

detailed Multiclass experiment ( Exp. 2 ). That would be correct to 

claim if the target of this article would have included the pro- 

posal for a ML-powered detection framework. Nevertheless, in this 

context, where the proposal is a dataset to enable such analysis 

and comparison, the above mentioned claim does not hold. Once 

again, one of the main contributions of this article is to propose a 

publicly available dataset that can be used to research, study and 

deploy new comparable ML-based solutions that do not require 

harming the users’ privacy. 

As pinpointed previously by the authors ( Zago et al., 2019a ), 

the task of detecting DGA-based botnets without privacy breaches 

remains an open challenge, especially with the approach of en- 

crypted DNS ( Patsakis et al., 2020 ). Even if some recent studies 

suggest that Deep Learning (DL) techniques might provide some 

advantages ( Liang and Yan, 2019; Qiao et al., 2019; Vinayakumar 

et al., 2019 ), however, a comparison between these solutions is far 
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Fig. 13. Results for the Multiclass experiment ( Exp. 2 ) after remapping the classes as described in Section 4.3 . 

Fig. 14. Confusion Matrix for the Multiclass experiment ( Exp. 2 , Random Forest) with tweaked data as described in Section 4.3 . 
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to be achievable due to the lack of structured and publicly acces- 

sible data. 

As previously suggested, with UMUDGA we aim to provide data 

to overcome the lack of ML-ready and publicly available datasets. 

However, we acknowledge that our proposal of a context-free 

dataset is just one side of the problem ( Zago et al., 2019a ) and 

the study of the state-of-the-art in terms of context-aware features 

might result in potential game-changing applications. Despite the 

unquestionable benefits that supplying fresh data to the scientific 

community produces, there are several areas at which potential fu- 

ture researchers might look. To cite one, ML techniques have been 

only used to scratch the surface of the problem ( Zago et al., 2019a ) 

and further analysis might lead to innovative products. 

Finally, we once again would like to remark that, generally, lit- 

erature solutions are not replicable, let alone deployable in a real 

world environment ( Zago et al., 2019a ). To reach such remarkable 

objective, future works must: 

1. publish the data, a necessary condition to enable the repro- 

ducibility of the experiments but also to enable third party 

future researches to not start from scratch; 

2. precisely discuss about initial configurations and subsequent 

optimisation of applied techniques, including ML algorithms; 

3. identify the architecture, the workflow, the environment, the 

experiments configurations and, in general, provide all the 

information required to independently redeploy the scenar- 

ios and verify the results; and, finally 

4. compare the obtained results with the state-of-the-art tech- 

niques using reproducible means based, at least, on compa- 

rable, if not identical, data sources. 

5. Conclusions 

Recent technical reports suggest an increasing interest in 

ML solutions for cybersecurity, and, although sold as an all- 

comprehensive panacea, their applications are non-specialist at 

best. Literature researches show a plethora of shady solutions that 

claim to achieve almost perfect performances without providing 

enough means to validate, let alone reproduce, the results. The 

first and foremost key issue regarding this problem is attributable 

to the data sources, which are not adequately organised or care- 

fully reviewed. In fact, most of the publicly available datasets suffer 

from important shortcomings that prevent to achieve the required 

rigorousness, reproducibility and credibility of the research. To the 

best of our knowledge, Section 2 , summarised in Table 1 , highlights 

the well-known properties of the current state-of-the-art in terms 

of data sources, providing a precise categorisation that may prove 

useful to future researchers. 

As a consequence, we propose our dataset, the University of 

Murcia Domain Generation Algorithm Dataset (UMUDGA) UMUDGA 
available at Mendeley Data ( Zago et al., 2020 ), that ultimately 

achieves all these established properties alongside with a formal 

and rigorous mathematical data definition ( Zago et al., 2019b ). 

At the same time, it holds that several challenges are yet to be 

solved. Further researches are required to address the problem of 

DGA-based botnets. Unlike the related works analysed in Section 2 , 

UMUDGA aims to address the first of the shortcomings of compara- 

ble ML results, i.e ., the data source. 

Finally, the exploratory analysis shows that data manipulation 

can easily lead to significant improvements in the performances 

of any ML solutions, and thus should be strictly documented and 

justified. Moreover, scientists and future researches should trans- 

parently adhere to an experimental protocol that follows predeter- 

mined and well-established guidelines, which, to the best of our 

knowledge, nowadays do not exist. Our proposed guidelines aim to 

serve as a catalyst for creating a standard protocol for ML solutions 

in network cybersecurity. 
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Abstract
With the first commercially available 5G infrastructures, worldwide’s attention is shifting to the next generation of

theorised technologies that might be finally deployable. In this context, the cybersecurity of edge equipment and end-

devices must be a top priority as botnets see their spread remarkably increase. Most of them rely on algorithmically

generated domain names (AGDs) to evade detection and remain shrouded from intrusion detection systems, via the so-

called Domain Generation Algorithm (DGA). Despite the issue, by applying concepts such as distributed computing and

federated learning, the cybersecurity community has prototyped and developed dynamic and scalable solutions that

leverage the increased capabilities and connectivity of edge devices. This article proposes a lightweight and privacy-

preserving framework that pushes the intelligence modules to the edges aiming to achieve early DGA-based botnet

detection in mobile and edge-oriented scenarios. Experimental results prove the deployability of such architecture at all

levels, including resource-constrained end-devices.

Keywords Domain Generation Algorithm (DGA) � Machine learning � 5G � Cybersecurity � Edge artificial intelligence �
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1 Introduction

As predicted [5], the past five years have seen the expo-

nential growth of the research interest in 5G technology,

and, nowadays, the first 5G commercial infrastructures are

being deployed worldwide. Among other aspects and

together with the newly improved service delivery

requirements, the ultra-densification of connected devices

forces scenarios in which fixed network architectures are

not an option anymore [6]. Despite the numerous chal-

lenges that remain open [7], the research community has

started to look beyond 5G [25].

A critical lesson that the community learned from the

5G research is that the service layer can be decoupled from

the network architecture, resulting in frameworks that

feature dynamic capabilities such as self-configuration, on-

demand scalability, and self-protection. In such a scenario,

Artificial Intelligence (AI) can be seen as a necessary

construction block to sustain this required dynamicity.

Indeed, the enabling technology that can offer the capa-

bilities mentioned above consists of using the AI—

Machine Learning (ML) and Deep Learning (DL)—to

automate networks and services virtualisation, e.g., AI for

software-defined network (SDN) and network functions

virtualization (NFV) self-optimisation. As a point of fact,

several projects and vendors (5G America [4] and SELF-

NET [10] among others) proved that intelligent and scal-

able platforms based on ML-powered SDN/NFV could

meet the exponentially increasing demands.

Not surprisingly, with this automation grade, the

cybersecurity feature as a key principle across the hetero-

geneous solutions. Even though numerous frameworks

have been developed to provide the required automation,

security aspects are often overlooked [7]. To provide an

example, proactive and reactive Intrusion Detection Sys-

tems (IDSs) appear to be limited to supervised analysis of

network flows [7, 15, 24].To be precise, and to the best of

our knowledge, there are a few high-grade network IDSs
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that include machine learning capabilities for other pur-

poses than analysing network flows [7]. However, a clear

trend is the widespread adoption of ML solutions at the

farthest edges of the networks. Indeed, the concept of

pushing computation towards the users is considered as one

of the enabling technologies of the 21st century [12, 26].

To be precise, both the concepts of AI-for-Edge and AI-on-

Edge [12] have been widely explored before under differ-

ent names, such as Multi-access Edge Computing (MEC),

Mobile Cloud Computing (MCC), Transparent Computing

(TC), Fog Computing, cloudlet [26]. All of them employed

virtualisation techniques (e.g., SDN/NFV) to decouple the

services from the underlying hardware and features AI to

optimise them automatically.

Notwithstanding the deployed analysis techniques,

researchers agree on the urgency of tackling botnets and

Advanced Persistant Threats (APTs), and specifically to

identify their communication channels before the actual

attacks can take place [21, 37, 39]. Within this context, the

usage of Domain Generation Algorithms (DGAs) appeared

as a clear trend due to the asymmetrical efforts required to

sinkhole the generated domains [37, 39]. The paper at hand

will focus on ML applications for tackling these commu-

nication channels by providing the means to identify DGA-

based botnets at scale.

The subject of detecting algorithmically generated

domains (AGDs) is, in fact, offering a fertile research topic

from multiple standpoints:

(i) firstly, the inherit randomness of the Fully Qual-

ified Domain Names (FQDNs) makes static rule-

based IDSs ineffective in favour of ML solutions;

(ii) secondly, the amount of FQDNs to be analysed

compels researchers to develop scalable

architectures;

(iii) thirdly, browsing history is to be considered a

private subject, thus requiring privacy-aware solu-

tions; and,

(iv) finally, it has been proved that APTs can stay

dormant for prolonged periods before performing

malicious actions, thus compelling preemptive

detection capabilities.

In summary, the proposed approach leverages the well-

known ideas that support the SDN/NFV paradigm to pro-

vide automated and scalable detection and reaction capa-

bilities—also known as security-as-a-service (SECaaS)

[40]. To be precise, the proposed framework demonstrates

the capabilities of DGA-based botnet detection services

deployed on the farthest edges of the network.

Hence, the fivefold contributions of the paper at hand

can be outlined as follows.

– Firstly, this research will identify and discuss the key

principles of Edge AI applied to ML-based network

security;

– secondly, the literary works on DGA-based botnet

detection are examined and mapped to the architectural

designs that characterise Edge AI, eventually providing

a comparison with pros and cons for each architectural

design;

– thirdly, after a constructive discussion regarding the

SECaaS deployment location, an experimental frame-

work architecture is drafted;

– fourthly, a set of experiments will prove both the

soundness of the Edge AI approach and the effective-

ness of lightweight and explainable traditional ML

algorithms in identifying DGA-based botnets; and,

– finally, the key ideas and principles identified through-

out the research are blended in a lesson learned and

future work discussion.

The rest of the paper at hand is structured as follows.

Firstly, Sect. 2 will report the necessary background in

terms of both Edge AI architectures and applications, with

a specific focus on the difference between deployment

locations; secondly, Sect. 3 will present the proposed

prototypical framework for DGA-based botnet detection on

edge. Then, Sect. 4 will gather and discuss some critical

aspects with particular attention to future research objec-

tives, while, finally, Sect. 5 will provide a conclusive

summary.

2 Edge AI to look beyond 5G

To look beyond 5G technology is necessary to consider the

enabling technologies that make the 5G ecosystem working

[1]. Among them, the most important ones are undoubtedly

the SDN, the NFV, the orchestration frameworks, and the

containerisation theory [7]. Although Beyond 5G (B5G)

heavily relies on wireless technology improvements [42],

they are out of the scope for this research. Hence, instead of

focusing on what makes B5G possible hardware-wise, this

research looks at what architectural solutions and frame-

works can be used.

Across the scale, the trend is clear: AI can and should

automate and optimise most of these steps [12].

In this research, the main focus is on the early detection

of DGA-based botnets in scenarios that features large

volumes of data and a high degree of user mobility. As

previously shown by [37], both classical ML (i.e., those

algorithms and models that do not employ neural networks)

and DL solutions have been deployed to tackle this mal-

ware threat.
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In the context of 5G and B5G networks, where poten-

tially billions of devices are susceptible to malware

infections, the ability to detect DGA-based botnets before

they activate to attack other systems is critical. Edge AI

offers a promising set of tools to study, design, and deploy

scalable ad effective detection solutions.

Hence, using the DGA-based botnet detection as a use

case, the remaining of this section is structured to introduce

the necessary background on Edge AI (Sect. 2.1), the dif-

ferent architectural designs (Sect. 2.2), and their relations

with the cybersecurity aspects (Sect. 2.3).

2.1 On the subject of Edge AI

As thoroughly surveyed by several authors [12, 26, 33, 43],

the Edge AI discipline encompasses all those techniques

intended to move the ML (with great focus on DL ones)

towards the end users instead of the cloud. In this research,

we adhere to the definitions proposed by [43] that classifies

the approaches to Edge AI as layers of a pyramid. Starting

from the Cloud scenario, each subsequent level moves a

part of the process towards the edges, having in the highest

tier (Level 6) the whole process performed within the end

devices. To be precise, with device it is identified any

potential device that presents the properties of being of

users’ propriety and usage. Thus, in this category, falls both

personal and company-issued devices such as laptops and

smartphones, but also IoT devices such as routers, cameras,

sensors.

As described in this section, Fig. 1 will describe and

discuss the properties and differences of these six approa-

ches (compared to the well-known cloud approach).

An entirely different subject is the application of AI to

optimise and self-configure the network slices that provide

the services, a topic defined as Intelligence for Edge or AI

for Edge [12, 33]. In the same surveys, the authors reported

a collection of technologies designed to work at the edge of

the networks; we suggest the readers refer to them,

alongside with the numerous surveys in the area

[11, 18, 19, 23, 26, 32], for detailed information regarding

the subject.

The SECaaS theory provides an example of this

semantic difference. Generally speaking, a network IDS,

such as the DGA-based botnet detection framework in-here

presented, might be configured as a service using any vir-

tualisation technology. Within the 5G ecosystem, this IDS

would be designed as virtual network function (VNF) to be

deployed as other services by the orchestrator. Similarly to

5G orchestration-level intelligence, AI for Edge [12]

encompasses those ML applications that provide optimi-

sation and learning capabilities to the management mod-

ules. On the contrary, AI on Edge covers the study of what

kind of intelligence should be deployed in the IDS service,

not how to deploy it; e.g., how to separate malicious AGDs

from legitimate FQDNs.

As for 5G orchestration, the location of the deployment

of the service does influence the performances, especially

in the context of the depicted use case of DGA-based

botnet SECaaS. Thus, to highlight the differences between

the approaches, in Fig. 1 are reported the prototypical

architectures for each level in regards to the training

(indicated with a red diamond marked with the TR acro-

nym) and inference (indicated with a blue triangle with the

INF acronym) phases. In this novel computation paradigm,

low requirements tasks can be executed at the edges of the

network, often directly on the end devices.

On the one hand, classical approaches rely upon the

cloud datacenters for training the AI models [33], i.e., the

most resource-consuming part of the process. Whether it is

possible to perform the training phase on the edges—and

ultimately on the end-devices—heavily depends, among

others, on:

(i) the use case, as not all scenarios have critical

issues that can be mitigated by offloading the

intelligence to the edges;

(ii) the latency and delay requirements, as, depending

on the use case, there might be some constraints

on the privacy requirements, e.g., personalised

user experience that strictly requires that no user

data leave the device [16];

(iii) the isolation requirements as coexisting applica-

tions, cryptographical restrictions, and network

slicing limitations may cause privacy and data

issues;

(iv) the amount of data to be processed, e.g., a face

recognition service that needs to process hours

upon hours of multiple feeds necessitate a non-

trivial amount of bandwidths;

(v) the resource constraints of the end-devices, espe-

cially in the Internet of Things (IoT) ecosystem

where the issues related to battery usage, broad-

band connection unreliability are more noticeable.

On the other hand, generally speaking, the data originate at

the most remote edge of the network, i.e., in the end-de-

vices. As the data needs to be processed and inferred by the

AI models, it is reasonable to aim at completing as much

computation as possible directly on the devices (Levels 3

and 6 of Fig. 1) or eventually offloaded to the edge (Levels

2, 4, and 5). Nonetheless, moving ML components to the

device has some limitations, mainly regarding limited

energy, computing capabilities, and storage [13].

Finally, and referring to Fig. 1, it is worth mentioning

that only two levels, namely the third and the sixth, guar-

antee that the users’ data never leaves the device. In Fig. 1,

such limit is indicated with a double line, that can be either
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continuous or dotted. As will be described later on, in this

last case, it represents the actual data limit in the case

where no cloud-offloading is activated. Similarly, in the

second and fifth levels, the inference process is performed

on edge. Since these services are deployed closer to the

users, there is a significant reduction in both latency and

bandwidth; however, the security implications of leaving

the data at the edge level are still unclear [18, 22, 23]. To

be precise, if multiple edges merge their data to the cloud,

privacy issues might arise, i.e., the privacy concerns

gathering around the extensive use of AI on end-devices

are not related to the devices themselves, but with how and

where the data are transmitted, processed and stored.

Nonetheless, one of the main advantages of the centralised

cloud relies on this uploaded and shared knowledge. In a

collaborative environment such as has been studied before

[27], IDSs can benefit from the intelligence gathered from

multiple sources. Specifically, collaborative, cloud-based

IDSs have been proved effective against zero day (0-day)

malwares [8].

2.2 Architectural differences

With regards to the different options presented in Fig. 1,

this section will introduce a brief analysis of the most

engaging aspects. To do so, we will introduce the Fig. 2

that presents a vertical analysis for Levels 2, 3, 4, and 5. To

be precise, this section will unfold the options and capa-

bilities of a DGA-based detection framework to be

deployed as a collection of SECaaSs.

To start with the inference process location, Fig. 2a, b

present two edges configurations. To begin with, Fig. 2a

reports a prototypical architecture for a 5G-like network

slice that interposes between the internal resolver and the

remote ones. In this scenario, the network slice is config-

ured to apply a policy enforcer whose rules are defined by,

for example, a ML classifier. Similarly, Fig. 2b reports a

prototypical architecture for a on-device resolver that

intercepts user’s requests before sending them. In both

configurations, the requested FQDN is extracted from the

DNS query, processed by the feature extraction
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microservice, and classified using a pre-trained-cloud

model. The difference between Fig. 2a, b dwells in the

actual location of this process, i.e., the edge and the end-

device. Notice that both configurations require a trained

model, which has been conveniently trained in the cloud.

Mind also that there are no obligations to share the inferred

data with the cloud services; thus, both the isolation and the

privacy requirements can be achieved.

Similarly, Level 4 (Fig. 2c) and Level 5 (Fig. 2d)

achieve the same isolation property by analysing the data

directly on edge, without offloading it to the cloud. To

better discuss it, it is necessary to refer back to Fig. 1, and

specifically Levels 1 and 4. In both cases, the inference

process takes place on edge; however, the architecture does

leave open the possibility of offloading such tasks to the

cloud services if needed. To put it in other terms, since the

edges are generally resource-constrained, they might

decide to offload part of the inference to the cloud services

to optimise the workload. Offloading strategies include

partial offloading, vertical collaboration, and horizontal

collaboration, to cite a few (the readers might refer to [33]

for a detailed survey on the subject). The main difference

between the two approaches resides in the possibilities

offered by transferring part of the training to the edges.

That is to say, in Level 4, each edge can update the model

and eventually share it with the cloud in a federated fash-

ion. Even though the fourth level could be, in theory,

designed to transfer the data to the cloud for load balancing

purposes, in the scenario depicted in Fig. 2c, this is not the

case. The classifier is designed to work only on edge; thus,

the data limit can be considered on the edge boundaries,

and not on the cloud ones.

So far, both Fig. 2a–c have the training phase deployed

as a cloud SECaaS. By contrast, in Fig. 2d the same pro-

cess is configured to have the training phase on edge. To be

precise, in Fig. 2d the in-edge training process uses a

cloud-collected dataset that is augmented with private and

locally-available data. It is worth mentioning that the
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training process does not require both local and cloud

samples. However, shared knowledge [22, 27] is effective

in tackling cybersecurity threats, specifically in the case of

0-days malwares. Although the scenario described in

Fig. 2d offers a collaborative base for sharing knowledge,

it does not include the actual share of the trained model (or

its hyperparameters) as Fig. 2c (Level 4) does. In Fig. 2c,

we assume that the edges are cooperating to produce an

optimal model without sharing users’ data, thus enforcing

the isolation and privacy requirements. On the contrary, in

Fig. 2d, the edges cannot share the user data to the cloud,

hence forcing the central cloud to obtain its data some-

where else. In any case, a hybrid architecture is achievable,

where multiple edges adopt a different model depending on

local requirements: for example, in a context such the one

offered by the DGA-based botnet detection, sharing users’

browsing history might not be feasible without substantial

anonymisation. Nonetheless, as proved in [37, 39], sharing

a list of domain names (both legitimate FQDNs and AGDs)

does not constitute a privacy issue.

2.2.1 Outlined differences, pros and cons

To summarise the different approaches, Table 1 reports

their properties, advantages and disadvantages when the

architectural models are applied to the DGA-based botnet

detection.

For this comparison, it is worth mentioning that the

difference between a 5G-style edge environment and a

corporate domain one is of utmost importance, being it key

to understanding the potential risks and benefits associated

with cloud data [29]. In this scenario, several assumptions

are, in fact, reasonable. Besides small and micro-enter-

prises, it is plausible to consider a private cloud environ-

ment, perhaps with a dedicated IT team or even a security

operation center (SOC) in case of larger corporations. The

resources available to these entities are not the same as

those at the disposal of 5G-RAN nodes, albeit they share

some advantages and disadvantages of Edge AI. Firstly,

from the computation resources available, cloud training

and testing feature virtually infinite resources; however,

farthest edge pieces of equipment have limited means

while end-devices have substantial constraints. Not sur-

prisingly, latency heavily depends on the proximity to the

users, the closest to them, the fastest the response. The

Table 1 Qualitative comparison of different architectural approaches for a DGA-based detection framework compatible with Edge AI

Metric DGA-based SECaaS deployment location

Cloud Corporate domain private cloud Edge End device

Computational resources

availability

Unlimited Depends on corporate resources Limited Constrained by power,

battery and performance

Latency Potentially high Significantly high Low Zero

Data source

availability

Labelled Significantly high if in a

collaborative framework

Depends on the size, scope, and

availability of SOC

None None

Not labelled Potentially unlimited if in a

collaborative framework

Limited to corporate nodes Limited

to node

Limited to device

Data access and isolation Third party accessible and

variable with ToS

Corporate Service

provider

User

Benefits from

shared

intelligence

Receiving
data or
models

Multiple data sources, early

identification of new threats

Broad Protection

Sharing data
or models

Higher protection for the

framework participants

Might get economical benefit

from sharing data or models

Directly none. Indirectly, it contributes

to the ecosystem

Risks from shared

intelligence

Receiving
data or
models

Data or model poisoning

Sharing data
or models

Security CIA non-compliance, potentially higher risk of exposure due to

higher data value

Security CIA non-

compliance
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concept of data source availability is deeply connected to

the sharing framework between the participants, in this

context, such as presented by [22], the cloud can either

receive aggregated and anonymised data or a selection of

parameters to update accordingly, ultimately providing a

virtually unlimited overview of the network. The economic

resources available at the highest levels also justifies the

assumption of high-quality labelled data originating from

the ones shared by the edges. The same happens within

medium to large corporations, where a dedicated SOC

might be providing curated data for the AI processes to

work. For the same reason, data access can be limited to

corporation assets, thus providing a similar isolation level

as edge devices; as widely stated before in literature, once

the data reaches the cloud, there is no guarantee besides

what the service provider declared in the term of service

(ToS).

In general, the strength of deploying a DGA-based

botnet detection on edge relies on providing broad pro-

tection services (due to the collaborative efforts [27]) clo-

ser to the user, provided that the security triad

(Confidentiality, Integrity, and Availability) of the data is

guaranteed. However, as for every other collaborative

framework, defensive mechanisms against data and model

poisoning must be considered [34].

Finally, in terms of computational requirements for

Edge AI, Khan et al. [19] reported a curated syllabus on

expected technologies that are, in general, required for

enabling Edge AI, while Coppolino et al. [11] specifically

discussed hardware-based enhancement to make Edge AI

feasible. Furthermore, Lin et al. [22] presented a compre-

hensive survey on actual implementations approaches,

architectures and libraries to enable Edge AI in a decen-

tralised and collaborative fashion.

2.2.2 Critical aspects of services location

To summarize, cloud services provide, by far, the most

common scenario. In this context, a broadly employed—

and thus lacking in innovation—approach is to propose

frameworks that can provide SECaaS through self-de-

ployable VNF [2, 40]. For these functionalities, most

authors across the board agree on primary key performance

indicators (KPIs) such as detection rates, yield capabilities,

and guaranteed availability, indeed, the cloud scenario is

characterised by scalable and high-reliable VNF that pro-

vide the required services to massive amounts of cus-

tomers. Amid the criticalities, there are the privacy issues,

well discussed in the past [20], that arise with sharing the

data to third parties (first and foremost the GDPR-related

issues). Nevertheless, aggregating and collecting a massive

amount of data can provide useful information to CERT

and nation-wise monitoring actors without harming users’

privacy.

With regards to DGA-botnet detection, the scenario

itself does not offer any relevant challenge besides the ones

already identified and explored in literature. Although

supported by practically unlimited resources, SECaaS at

cloud level suffers from scalability issues in regards to the

number of connected devices, a critical aspect for B5G

ecosystems.

Similarly to the cloud services, a few authors have

designed SECaaS bearing in mind the potentialities of edge

computing, for example, by pushing the VNFs to the

remotest areas of the networks. Regarding the KPIs, and

besides those already defined for the cloud services,

authors have collected and defined several metrics based on

the hardware requirements needed for running the VNF.

Although some authors make the distinction between the

different categories of KPI indicators (e.g., quality of ser-

vice (QoS) and quality of experience (QoE) among others),

such a discussion falls outside of the scope of this research.

Indeed, this research field hankers for a precise and formal

definition of metrics and indicators to enable a quantitative

comparison between reproducible frameworks. To cite an

example of such indicators, there is the capacity of utili-

sation, i.e., the percentage of classification capacity used

over a predefined time unit that enables optimised load

balancing for network intrusion detection [15].

To further discuss the applicability of a DGA-based

detection module at the edge level, it is necessary to sep-

arate the concept of edge and corporate domain.

Edge computing—On the one hand, the edge-related

discussion should pivot on the automated, human-free,

capabilities, highlighting themes such as the limited com-

putational resources, the extremely low-latency require-

ments and the native isolation from the cloud services.

Corporate domain—On the other hand, corporate

domains can be partially overlapped with the concept of the

private cloud, thus centring the discussion on themes such

as the protection and isolation of the sensible data rather

than fully automated detection capabilities. The private

cloud environment provides mitigation against the already

mentioned privacy issues of the cloud providers, without

tackling the benefits of the broad protection that a shared

knowledge base can provide [9].

Provided that the corporate domain can guarantee the

security CIA compliance, and as previously reported in

Table 1, the scenario can present several benefits to the

SECaaS, specifically in terms of the amount of data and

overall network visibility. In comparison, a fully automated

on-edge configuration would permit much faster responses

due to the reduced latency and high self-capabilities.

However, a dedicated SOC, if available, can be handy in
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detecting anomalies and new APTs, thus providing con-

stant updates and improvements to the detection models.

Lastly, only a few authors have proposed detection

solutions that work entirely on the end-devices [14, 23]. In

this constrained scenario, hardware related KPIs becomes

critical, e.g., execution time and resource consumption.

Bear in mind that the end-device category does not only

include smartphones and personal devices, but it also

encompasses a broad category of IoT devices such as home

routers and Industrial Internet of Thingss (IIoTs) sensors.

Indeed, Edge AI solutions proliferate in industrial scenarios

due to the low resources, high availability constraints [35].

2.3 Edge AI and cybersecurity

There are a few notable solutions worth mentioning con-

cerning the cybersecurity side of the applications compat-

ible with the Edge AI paradigm.

Besides the inherited threat model from the cloud, edge

computing introduces new security risks due to its traits

[23]. Ideally, a fully privacy-preserving approach would

only manage strictly necessary data without transmitting

them to any external processing centre (in Fig. 1, only

levels three and six achieves this status). We invite the

readers to refer to [12, 22, 33] for technical analysis of up-

to-date libraries to deploy frameworks in such fashion.

On the attack side of the cybersecurity, Isakov

et al. reported an in-depth analysis of the current state of

the art regarding the threats [18]. In their survey, they

firstly introduced a taxonomy on vulnerabilities and criti-

calities of neural networks that can be exploited by crim-

inals to gain an advantage on the cyber defences; also Liu

et al. [23] reported a collection of security threats that

target data explicitly.

On the defensive side, several aspects need to be taken

into account. First and foremost, most (if not all) data have

protection and isolation requirements; consequently, the

security challenges associated with those subjects are of the

highest importance and priority. In such a sense, several

surveys have collected, analysed, and compared specific

mitigation techniques to the vulnerabilities that have been

gradually uncovered. Among them, Liu et al. [23] analysed

the phases of collection, processing, and storage of the data

management on the edges, with particular attention to the

open challenges and future research directions.

For another aspect of the defensive side, classical ML

powered detection frameworks are evolving toward

decentralised, edge-oriented solutions. Two scenarios pre-

vail among others when looking at the research interest; on

the one hand, the industrial environment offers require-

ments for high-availability, low-resources and low-latency

services. The derived research challenges cause the

research community to thrive [35, 41]. On the other hand,

the challenges and requirements offered by the 5G self-

protection scenarios mainly lead the community to design

IDSs as full-cloud services [24], having just some of them

offloading part of the inference process to the edges

[15, 17]. In that sense, [14] stands out by presenting a

working solution for a Level 6 (fully on-device) architec-

ture for IoT devices. Notably, mixed solutions like the ones

proposed by the federated learning paradigm [22, 32],

i.e., those solutions where the training is at least partially

performed on edge are hyped and are notably worth further

researches.

Within network detection, to the best of our knowledge,

this is the first attempt to explore DGA detection on the

edges. Notably, several frameworks have been proposed

just in the last year [3, 28, 31, 36], however, besides

apparent reproducibility issues [39], every work allegedly

resolves the challenges related to DGA-based botnet

detection. Nevertheless, there is a clear trend in terms of

the chosen technology, i.e., Long Short-Term Memory

network (LSTM)-based and, in general, DL-powered

framework [28, 31, 36].

In addition to generic network-based malware detection,

a particular focus should be dedicated to the APT threat

[21]. These advanced malwares are often recompiled for

the specific target and present multiple obfuscated variants

that do not match classical signatures. However, the

extensive usage of machine learning in log and data mining

has been proved useful to detect malware infection symp-

toms, especially new ones (0-day). In the context of this

manuscript, the same ideas are applied to the network

communication phase [39] to identify a botnet communi-

cation as early as its first connection to the Command &

Control (C&C). In the context of Edge AI and, in general

B5G, it appears that this threat explodes with the number of

newly connected and poorly protected devices [35].

Last but not least, the distributed nature of these archi-

tectures requires to discuss the underling security primi-

tives that guarantee the confidentiality and integrity of the

shared data [29]. However, subjects like trust and reputa-

tion management alongside with access control, authenti-

cation and encryption will not be discussed in this research

article as they are out of scope and they have already been

widely covered in literature [29].

3 Experimental DGA-based botnet detection
on Edge

Most of the Edge AI reported in the previous sections

offer little-to-no architectural challenges besides the one

offered by implementing the actual algorithms on the

resource-constrained edge devices. Despite that, the
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Federated Learning approach offers an intermediate solu-

tion that connects the best cloud performances with the

isolation and scalability offered by the edge characteristics.

The remaining of this section is structured as follows:

Sect. 3.1 depicts the framework’s architecture, while

Sect. 3.2 presents a brief remark in terms of minimum

computational resources and modules locations.

3.1 Proposed architecture

The framework described in the paper at hand is designed

to be compatible with the Edge AI Level 4 in a Federated

Learning fashion. Figure 3 presents its architecture,

including both the cloud level services and two different

edge-level environments leveraging the idea of a collabo-

rative framework The edges, represented as isolated

domains, receive a shared and pre-trained detection model

that can be augmented with locally available data. How-

ever, albeit it is possible to improve the model in such a

way using the same data structure (e.g., feature set and

format, among others) it is also true the opposite. Locally

poisoned data could skew the model in an adversarial

fashion [30, 34]. Similarly, each domain can willingly

provide data or partial models to be included in the shared

cloud next training iteration. Bear in mind that, as will be

demonstrated by the experimental results, the whole edge

plan might be shifted to an end-device, provided that the

libraries for executing the code are available. To the best of

our knowledge, this is the first attempt to establish a DGA-

based botnet detection framework that can be deployed this

far in the edges.

At a high level, Fig. 3 presents three areas, namely the

Cloud level (on the top half, with a white background) and

two edge levels (on the bottom half, with yellow and blue

backgrounds). Edges are also identified as ‘‘domains’’ due

to the extendibility of the proposed framework to an

enterprise scenario. In such a case, the company infras-

tructure might be composed of several edges that rely on a

single shared training subcomponent.

One of the crucial advantages of having enforced the

separation of the detection modules relies on the data and

model isolation [22]. The cloud components can be seen as

multiple SECaaS provided by a cybersecurity vendor,

while each edge/domain represents a federated subscriber.

In Fig. 3, ‘‘Domain A’’ does not share model nor data to

the cloud, simulating a restricted environment where the

collected user data cannot be pushed to the cloud. No

information regarding eventual APTs and 0-days are thus

available for the federation. On the contrary, ‘‘Domain B’’

does share the pieces of evidence and samples of collected

malwares, enabling the cloud model to be updated with the

new information. Instead of data, the hyperparameters of

the model could be shared to provide an extra isolation

level [22].

Among the various levels identified in Fig. 1 and dis-

cussed in Sect. 2, we considered Level 4 as the one that

provides both the flexibility of deployment required by

automated 5G scenarios and the compatibility with the

isolation requirements characteristics of corporate envi-

ronments. To be precise, as will be discussed in Sect. 3.2,

the whole process could be executed directly on the end-

devices (thus achieving the Level 6 compatibility);
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however, we deemed more interesting to evaluate the

potential flexibility offered by the federated learning

environment, i.e., a collaborative network of virtualised

and lightweight SECaaS to provide DGA-based botnet

detection at scale.

In this configuration, the two domains represent the

duality of the Level 4 architecture design presented in

Fig. 1. The user data limit is, indeed, different. In fact, for

domain ‘‘Domain A’’, that does not share user data with the

central cloud, the limit is enforced at the boundaries of the

edge. Independently from the location of the classification

process, ‘‘Domain B’’ does share data with the cloud pro-

vider, thus moving the limit mentioned above to the

boundaries of the cloud services. To summarise, the iso-

lation properties heavily depend on the actual deployment

configuration and application scenarios; policies and

restrictions might apply to different use cases, as well as

risks and benefits.

In terms of the chosen technology, besides several DL

algorithms that can be used for DGA-based botnet detec-

tion [28, 31, 36, 37], we will adhere to the explainable AI

philosophy in the current manuscript. Indeed, although DL

solutions are trending, this research will empirically

demonstrate that classical and lightweight models can

achieve excellent results. Albeit Federated Learning focu-

ses on DL, the same principles can also apply to some

classical models, first and foremost the tree-based ones. As

a consequence, all the experiments will be carried out with

decision-tree based solutions like the Random Forest

algorithm or modern approaches such as the XGBoost or

LightGBM.

The remainder of this section has been divided into three

parts to ease the framework exploration process; firstly, the

data are described and presented in Sect. 3.1.1; then, the

primary framework’s loop (i.e., steps from ð1Þ to ð8Þ) is

analysed in Sect. 3.1.2; finally, an example of the feedback

loop (i.e., steps from ðAÞ to ðHÞ) is provided in Sect. 3.1.3

in the advent of a new 0-day infection.

3.1.1 Preprocessing and feature analysis

The proposed experiment uses the data collected by the

authors [39] and publicly released in [38]. In the dataset, 50

malware variants have been collected and described, pro-

viding both the raw lists of AGDs and a preview of the

extracted features. Nevertheless, not all reported features

provide enough information to be used for detection pur-

poses [37, 39]. Hence, a feature selection process has been

carried out to limit the overheat provided by the curse of

dimensionality, also given the context of low-resource or

resource-constrained devices provided by the Edge AI

scenario [37]. Furthermore, some malware classes have

been grouped due to their indistinguishability [39] with a

combination of clustering techniques and careful human

revision. Of the 50 malware families identified, 21 clusters

have been identified. Figure 4 reports the classes with the

associated clusters. The clustered data have been resampled

(200,000 FQDNs for the training set, and 9628 FQDNs for

the testing set, both stratified).

Features are ranked with a recursive feature elimination

process, eliminating one feature per iteration. Experimental

results suggest that the top 10 features are representative

enough to achieve good classification results. Table 2

reports these classification performances for the three

classifiers picked for the analysis. By combining the

information reported in Table 2 with the one reported in

Table 3 it is possible to notice that the average resource

consumption halves by accepting a 2% loss in F1 score.

The proposed trade-off enables scalable and dynamic

reconfiguration of the detection model, but simply

switching to the most reactive and less computationally

expensive model depending on the traffic volumes. To be

precise, Table 3 reports the results in terms of resource

consumption’s for both the full feature set and the top 10

feature sets.

3.1.2 Data flow and experimental results

For the experiments, the framework samples 10,000

domain names for each provided class obtained from [38],

and the framework is built upon the Random Forest clas-

sifier with the warm start option enabled to allow the in-

edge upgrade of the model.

The data flows from a central shared data source, indi-

cated in Fig. 3 with the number ð1Þ to the edge classifiers

indicated with the number ð8Þ. The elements marked with

circled letters are instead analysed later in Sect. 3.1.3.

A standard 80/20 separation is adopted for splitting the

data in step ð2Þ. On the one hand, the resulting testing set

(20%) will be used at cloud and edge levels to ensure

comparability results. On the other hand, the training data

(80%) is shuffled and separated into three different, pos-

sibly stratified sets with configurable proportions in ð3Þ.
The subcomponent separates the data to simulate data that

are available only at the edges level ð4Þ.
The cloud training module ð5Þ will use the first data set

to train the base model ð6Þ to be shared with the edges. The

first experimental results are gathered at this phase by

evaluating this classifier model against the testing set and

reported in Table 4.

The base model is then shared with all edges belonging

to the federation and augmented with locally collected data

ð7Þ; these data are simulated by sharing one training set

with the edge in step ð3Þ. The updated model is evaluated

in ð8Þ against the same testing data used in the previous

phase; the results are also available in Table 4. From the
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table perspective, it is possible to notice that the results

provided by updating the model ð7Þ and validating it

against the testing set ð8Þ do not necessarily lead to an

improvement in the model. In other words, retraining the

model with additional data might not result in an increased

detection ratio [30]. Nevertheless, this local-update func-

tionality is of undoubted interest, and future researches

might consider it when exploring security architectures.

3.1.3 Simulating a zero-day APT

One of the critical aspects of having ML-powered detection

modules is the capability of identifying suspicious beha-

viours never seen before. This experiment aims to simulate

the framework data flow in case of a new malware (which

could be easily interpreted as an early stage APT

infection).

While referring to Fig. 3, this experiment flow is iden-

tified by circled letters (i.e., from ðAÞ to ðHÞ) instead of

numbers. In step ðAÞ, a few AGD samples are injected in

the analysed set of data to simulate a previously unseen

malware establishing a communication channel with the

C&C.

Two scenarios are available at this point, i.e., depending

on the Edge concept’s interpretation, some capabilities

might or might not be enabled. On the one hand, in ‘‘Do-

main A’’, (that simulates a classic, fully automated, 5G-

RAN environment) the new threat will remain unnoticed.

On the other hand, in ‘‘Domain B’’ (that simulates a cor-

porate domain with active monitoring tools), the SOC

eventually notices the confidence decrease (see Table 4,

row ðAÞ Edge Test Zero Day) and investigate the matter. In
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Fig. 4 Partial Hierarchical Cluster of UMUDGA [38] classes, all the non-connected boxes are considered standalone classes

Table 2 Model performances comparison for feature selection

Features Algorithm F1 micro F1 macro

Full Random forest 0.9523 0.9514

Top 10 Random forest 0.9399 0.9386

Full LightGBM 0.9612 0.9604

Top 10 LightGBM 0.9473 0.9459

Full XGBoost 0.9024 0.8988

Top 10 XGBoost 0.8794 0.8749

Table 3 Model resources

consumption comparison for

feature selection (duration are in

seconds, memory usage is in

MiB)

Feat. Algorithm Type Total time Instance time Memory peak Memory increment

Full RF Train 75.243 0.00038 1157.18 395.82

Full RF Test 0.630 0.00007 1066.05 12.23

Top 10 RF Train 31.555 0.00016 1115.76 363.69

Top 10 RF Test 0.651 0.00007 1124.62 12.27

Full LightGBM Train 305.845 0.00153 1377.81 641.18

Full LightGBM Test 2.436 0.00025 757.02 0.34

Top 10 LightGBM Train 45.275 0.00023 768.75 9.84

Top 10 LightGBM Test 1.627 0.00017 769.01 0.26

Full XGBoost Train 1669.997 0.00835 1543.91 595.18

Full XGBoost Test 1.529 0.00016 1345.97 0.31

Top 10 XGBoost Train 261.434 0.00131 757.41 2.48

Top 10 XGBoost Test 1.411 0.00015 757.49 0.08
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this last scenario, some samples will be eventually col-

lected ðBÞ and used to update the local model ðCÞ. Possi-
bly, and in a federated learning fashion, these data could be

shared and aggregated at the cloud level ðDÞ, to be studied

(ðEÞ and ðFÞ), and eventually distributed to some edges ðGÞ
as the base model. Similarly to the forward-loop (steps ð1Þ-
ð8Þ), the results are reported in Table 4.

3.2 Resources requirements

A computation analysis has been carried out to evaluate the

various components capabilities and requirements. The

results, presented in Table 5, encompass both the time

(Table 5a) and the memory (Table 5b) requirements of the

subcomponents. In the table, the training process indicated

in Fig. 3 as ð5Þ has been divided into the initial generic

fitting and the optional cross-validation process. Similarly,

the clients have been divided accordingly to the option

availability of a retraining component (indicated in Fig. 3

as ð7Þ).
To begin with the experiment configuration, a unique

VNF has been configured to execute each submodule

independently. On the subject of resources allocated, sev-

eral typical profiles have been taken into account, ranging

from 1 dedicated core and 1 GB SDRAM (typical config-

uration of a Raspberry PI IoT device) to 4 dedicated cores

and 4 GB SDRAM (typical configuration of a low-end

personal laptop). With the specific configuration of the

chosen ML model, lowering the minimum memory

resources is not possible. Nevertheless, new specialised

IoT-oriented ML libraries might provide comparable

detection performances while operating under lower

resources requirements. Both the results reported in

Table 5 and previously in Table 3 demonstrate that even

without optimised mobile-specific ML libraries it is pos-

sible to achieve excellent and explainable detection results

in a resource-constrained environment.

4 Lessons learned and future works

Edge AI represents an innovative solution to several high-

ends cybersecurity issues. While local models excel at

keeping the information isolated from others, they also

require a non-negligible amount of shared data to be able to

target threats effectively.

In other words, while predictive models such as [16]

works well by only using the individual user data, other

detection models–such as the one proposed in this

research–are not suitable to work individually. To be pre-

cise, detection models benefit from the shared knowledge

base gathered either at cloud level or collaboratively in an

edge-federated fashion; local models are great to learn the

particular context in which they are deployed, but they

miss the broad vision that only the cloud can provide.

Indeed, some scenarios might require extensive computa-

tions for preprocessing before the actual inference process

kicks-in; for example, in the context of IIoT, most of the

sensors deployed do not have the minimum resources (in-

cluding battery capacity) to perform any intensive com-

putation [35]. For the DGA-based botnet detection,

tackling the malwares at the DNS level enables to deploy

lightweight platform-independent probes capable of pri-

vacy-aware real-time inspections at scale. Future resear-

ches should include the tradeoff between performances,

latency, and privacy aspects in the architectural design.

Concerning the data protection subject, future resear-

ches might focus on ways to aggregate and anonymise data

(e.g., homomorphic and searchable encryption), knowl-

edge transfer learning, gossip training, as well as explain-

able ML (and DL) models which hyperparameters could be

shared within the collaborative network. The parameter

sharing approach could potentially remove a substantial

amount of computation and still provide a powerful

detection suite. In this sense, future works might include

detectors capable of preemptively block connections that

Table 4 Random Forest performances for the simulated experiment, before and after injecting the zero day

Phase Trees Classes Samples 0-day F1 micro F1 macro Confidence

ð5Þ Cloud training 50 21 127,761 7 0.929 0.928 0.957

ð6Þ Cloud testing 50 21 39,926 7 0.931 0.930 0.910

ð7Þ Edge retrain 50 ? 10 21 159,702 7 0.931 0.930 0.935

ð8Þ Edge test 50 ? 10 21 39,926 7 0.931 0.929 0.906

ðAÞ Edge test zero day 50 ? 10 21 8000 U 0.776 0.855 0.812

ðEÞ Cloud retrain with Zero Day 50 22 128,761 U 0.930 0.931 0.957

ðFÞ Cloud testing 50 ? 10 22 47,926 U 0.943 0.933 0.925

ðGÞ Edge retrain 50 ? 10 22 187,725 U 0.929 0.929 0.934

ðHÞ Edge testing 50 ? 10 22 47,927 U 0.943 0.937 0.923
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are suspected of belonging to botnet networks by merely

analysing the DNS queries.

On the subject of traditional ML vs DL solutions, we

deem that a remark is needed: DL is not required in every

domain. In the depicted scenario, the DGA data does not

feature complex non-linear relationships. As established

before [37, 39] and remarked in Sect. 3, a small number of

features will suffice to train classical ML algorithms

achieving good results. As empirically demonstrated in the

section, a fully on-device DGA-based botnet detection is

possible with traditional ML algorithms, given that enough

samples for each class are provided. Moreover, most

approaches focus on supervised learning as it provides

relatively straightforward and verifiable pipelines; despite

their clear benefit, supervised solutions require large

datasets and careful data supervision. Unsupervised

approaches have also been explored, although not in-depth

[37], and future researches might focus on analysing semi-

supervised hybrid solutions to take advantage of the mas-

sive amounts of unlabelled data.

For another key lesson, attacks at collaborative models

are not something new [30], as a such, DGAs are going to

evolve to mimick legitimate FQDNs and potentially to

tackle the detection algorithms directly in an adversarial

fashion. On-edge solutions, and precisely in a federated

learning ecosystem, have been proved susceptible to

adversarial attacks [22]. In such a sense, future works

might discuss whether edge computing is necessary,

desired, or even feasible.

Finally, as previously indicated by the authors [37, 39],

the field in-here studied features a general lack of

reproducibility:

– First and foremost, the data used to power the

frameworks are rarely shared; therefore, future

researches should make use of already shared and

well-known datasets, or provide their own with the

appropriate comparisons to the state-of-art.

– Secondly, the deployed models are described, but not

released (often neglecting to comment on the hyperpa-

rameters configuration); as such, future researches

Table 5 Performances of the machine learning processes depending on the resources dedicated to the virtualised environment

Role Component Time (s) Med. STD

(a) Time requirements

Server ð5Þ Fitting 65.05 60.55 79.05 64.70 76.26 64.04 64.03 63.81 63.56 64.04 6.33

ð5Þ 10 CV 236.30 235.92 274.03 13.20 14.35 13.44 15.02 13.85 14.49 14.49 117.86

ð6Þ Validation 0.31 0.31 0.35 0.31 0.35 0.32 0.70 0.33 0.33 0.33 0.13

Client w/ retrain Load model 0.10 0.10 0.15 0.09 0.14 0.12 0.12 0.15 0.10 0.12 0.02

ð7Þ Add. fitting 2.73 2.78 3.01 2.80 3.07 2.91 2.94 2.90 2.93 2.91 0.11

ð8Þ Validation 0.37 0.36 0.41 0.45 0.41 0.37 0.46 0.48 0.47 0.41 0.05

Client w/o retrain Load model 0.08 0.11 0.11 0.12 0.13 0.13 0.14 0.13 0.10 0.12 0.02

ð8Þ Validation 0.32 0.31 0.35 0.34 0.37 0.34 0.34 0.31 0.32 0.34 0.02

Processors 1 1 1 2 2 2 4 4 4

Memory 1 GB 2 GB 4 GB 1 GB 2 GB 4 GB 1 GB 2 GB 4 GB

Role Component Memory usage (MB) Med. STD

(b) Memory requirements

Server ð5Þ Fitting 251 251 251 266 266 267 294 294 299 266 20

ð5Þ 10 CV 677 677 677 806 827 825 764 917 970 806 106

ð6Þ Validation 427 426 426 540 561 558 470 624 671 540 91

Client w/retrain Load model 410 410 410 409 410 410 409 410 410 410 0

ð7Þ Add. fitting 410 410 410 427 424 427 435 432 434 427 11

ð8Þ Validation 410 410 410 432 430 431 442 437 442 431 14

Client w/o retrain Load model 410 410 410 410 409 410 410 410 410 410 0

ð8Þ Validation 410 410 410 410 410 411 417 417 418 410 4

Processors 1 1 1 2 2 2 4 4 4

Memory 1 GB 2 GB 4 GB 1 GB 2 GB 4 GB 1 GB 2 GB 4 GB
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should focus on producing reproducible results that can

be tested and validated by the community.

– Thirdly, although quantitative comparison frameworks

for ML (and DL) algorithms do exist, their application

is often limited to aggregated indexes that might

deceive the results, e.g., the Area Under the Curve

(AUC); hence, future researchers should report all the

outcomes, especially the negative ones.

– Lastly, the actual implementations are often described

and tested outside a proper validation framework; in

such a sense, future researches might focus on devel-

oping a suite of tools and indicators to enable formal

comparisons.

5 Conclusions

Albeit the disruptive innovation led by the 5G enabling

technologies, researchers did not stop in exploring more

advanced solutions. Among others, Edge AI is believed to

be the next enabling technology for what is coming beyond

the 5G. It is in this direction that collaborative concepts,

such as federated learning, empowers the raw potential of

5G bandwidth and number of devices, combining it with

lightweight but highly effective machine learning models.

On-device AI might, in some cases, represent the perfect

solution for data-sensible scenarios; however, Edge AI

aspires to serve as an intermediate compromise between

cloud practically unlimited resources and privacy con-

straints. With this scenario in mind, this research empiri-

cally proves that a DGA-based botnet detection module is

not only feasible to be deployed in the resources-con-

strained environment, but it also would benefit from shared

intelligence in a federated fashion. A natural evolution of

this research would be to extend the detection models also

to tackle frequent domain name attacks such as the

typosquatting (i.e., URL hijacking) or to identify less-

known techniques such as the DNS-based data exfiltration.
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