
An Advanced Certificate Validation Service and Architecture
based on XKMS1

Antonio Ruiz Martínez, Daniel Sánchez Martínez, C. Inmaculada Marín López,
Manuel Gil Pérez and Antonio F. Gómez Skarmeta

Department of Information and Communications Engineering
University of Murcia, 30071, Murcia, Spain

Email: {arm, danielsm, inmaml, mgilperez, skarmeta}@um.es

SUMMARY

The apparition of some laws that make the electronic signature (e-signature) legally
equivalent to handwritten signature (under some circumstances) has favoured its use in
different fields such as e-commerce, e-government, etc. In these fields, some signed
documents have to be stored and remain valid over long periods of time. For this kind of
e-signatures some formats such as CAdES and XAdES have appeared. These formats
specify the information to include with the e-signature. Basically, this information
comprises signer’s certificates, a set of certificates up to a trust anchor, certificate
validation responses, etc. That is, the information needed to determine if an electronic
signature is valid. These evidences can be gathered by using different PKI-compliant
protocols. However, the support of the different protocols is complex for clients. XKMS
appeared with the aim of simplifying the certificate management, but XKMS only
supports a simple validation mechanism that does not provide the long term information
needed for the CAdES/XAdES signature. As a solution to this problem, we have
extended XKMS in order to support the obtaining of long term evidences needed for
CAdES/XAdES signatures. With this extension we have also defined the different
components that are needed to support this kind of service. Based on the definition
provided, the service has been implemented and it has been incorporated to an e-
government infrastructure based on service-oriented architectures, which is able to
create and verify this kind of signatures.

KEY WORDS: certificate validation, advanced electronic signatures, service oriented
architecture, XKMS, validation evidences

1. INTRODUCTION

Electronic signature (e-signature) provides some interesting features such as integrity,
authentication and non-repudiation. Thanks to these features, the use of e-signature can
guarantee non-repudiation in electronic commerce (e-commerce), business (e-business)
and government (e-government) transactions. Moreover, it can be considered an
equivalent to the handwritten signature. In fact, some laws such as the directive

1 This article is an extended and revised version of "ACVS: an Advanced Certificate Validation Service in
Service-Oriented Architectures". Published in Proceedings of the Third International Conference on
Internet and Web Applications and Services (ICIW’08). pp. 297-302, Athens (Greece), 2008. DOI:
10.1109/ICIW.2008.84

1999/93/EC of the European Parliament and Council [1] and the UNCITRAL Model
Law [2] have appeared to guarantee that if the e-signature is developed in some
circumstances, it can be considered legally equivalent to the handwritten signature. This
acknowledgment has favoured the increase in the number of different electronic
business/commerce/government transactions. Thus, paper documents have started to be
replaced by electronic documents.

Some of the signed documents that are generated in e-commerce, e-business and e-
government environments have to be stored over long periods of time due to legal
requirements [3]. Some examples of these documents are e-invoices, title-deeds, etc. In
order to be able to validate a signed document over these long periods we need to
include some of the validation evidences that were used to validate the signature when it
was stored. These validation evidences can be signers’ certificates, a set of certificates
from signer’s certificate up to a trust anchor, Online Certificate Status Protocol (OCSP)
[4] responses, Certificate Revocation Lists (CRLs) and/or Authority Revocation Lists
(ARLs) [5], etc. In fact, for this purpose, some signature formats such as CMS
Advanced Electronic Signature (CAdES) [6] and XMLDSig Advanced Electronic
Signature (XAdES) [7] have been proposed. These formats extend Public Key
Cryptographic Standard 7 (PKCS#7) [8]/Cryptographic Message Syntax (CMS) [9] and
XML Signature (XMLDSig) [10] standards, respectively, in order to include these
evidences within the e-signature. Their inclusion is performed in different moments in
time. Some evidences can be included at the same time we are creating the signature
according to CMS/XMLDSig formats. Others can be included just before creating the e-
signature and validating it. Finally, some of them can be included some time after its
validation (if the evidences are not available, e.g., CRLs) or periodically in order to
avoid cryptographic and information weaknesses.

In the validation of an advanced electronic signature we have just mentioned, we
need to perform two main processes: path construction or path discovery up to a trust
anchor and path validation. This process as a whole is referred to as certification path
processing [11],[12].

In order to perform the path construction, protocols such as Lightweight Directory
Access Protocol (LDAP) [13] or Server-based Certificate Validation Protocol (SCVP)
[14] can be helpful. In order to carry out the path validation, there exist several
mechanisms that we can use, such as CRLs, OCSP responses, SCVP responses, etc. A
deeper analysis of the different mechanisms can be found in [15]. To perform this
process we have to support different Public Key Infrastructure (PKI) protocols with
complex syntax and semantics. Furthermore, this process can suppose an important
overhead for some thin clients such as Personal Digital Assistants (PDAs) or mobile
devices, which have limited resources. As a solution to this problem, the XML Key
Management Specification (XKMS) [16] was proposed.

The XKMS specification is based on Service-Oriented Architectures (SOA) [17],[18]
and defines several protocols for registering, distributing and obtaining information
about public keys. Its definition as an SOA service is due to the fact that it helps to
create interoperable services. This also facilitates its integration with many services that
are offered in electronic commerce and government platforms, which are migrating their
services to SOA-based services.

XKMS, specifically for the purpose of validating a certificate, defines a Validate
service. The main drawback of this service is that it only returns a simple response
without any additional information about the validation protocol or the evidences used.

Therefore, the information provided by this service is not enough to recover the
information needed to create long term signatures according to CAdES/XAdES formats.
The only element we can recover is the signer’s certificate, which, in turn, can also be
recovered with the Locate service. However, we need to recover some other information
used in the validation process such as the set of certificates up to a trust anchor, CRLs,
OCSP responses, etc.

The aim of this paper is to present a solution to the problem of creating long term
signatures from XKMS service in an SOA infrastructure. For this reason, we propose a
system architecture with the different elements that should participate in order to cope
with long-term signature (creation and validation). This solution can be useful as the
basis for other standards related to Web services such as SAML or XACML, as well as
for some scenarios such as e-government platforms, e-invoices, registered electronic
mail, mobile platforms, grid infrastructures, identity federations, etc.

The main contribution to this architecture is the extension of XKMS Validate and
Locate services to return the evidences needed. With these extensions we also define the
different modules that should be included in the service to support them. This design is
modular and supports the use of different PKI solutions as well as the extension with
new protocols and new PKIs. Our design also takes into account some components from
other proposals such as Secure client-server Architecture for the Validation of X.509
Certificates (SAVaCert) [19] and Efficient Certificate Path Validation (ECPV) [20], as
well as extending them in order to provide the new functionality.

Additionally, we have also defined an authentication mode based on Payword [21] to
support fast authentication in XKMS when there is a long term relationship between the
client and the server.

With our proposal, we facilitate both the obtaining of these evidences and the
migration of current XKMS services to this new specification. This extension and
architecture have been implemented and are currently part of the e-government platform
of the University of Murcia. In this paper, we present both the platform and the scenario
where this service is been used.

This paper is structured as follows: in Section 2 we introduce background
information related to the creation and validation of advanced electronic signatures.
Thus, we describe some use scenarios of advanced electronic signatures, the e-signature
validation process, the information to be included, the different advanced electronic
formats and the different proposals used to create these signatures. In Section 3 we
present the different components that are part of the advanced certificate validation
architectures. One of the fundamental components in this architecture is the validation
authority that offers the advanced validation service. Its specification is described in
detail in Section 4. Then, in Section 5 we present an SOA-based advance electronic
signature that is being used in an e-government infrastructure. Section 6 analyses and
discusses some related work. Finally, in Section 7 we present our main conclusions and
possible future work.

2. CREATION AND VALIDATION OF ADVANCED ELECTRONIC
SIGNATURES

This section introduces different issues related to the creation and verification of e-
signatures that remain valid over long periods of time as well as some scenarios where
these signatures are useful and/or necessary. Our aim is to establish the context and

explain the different problems that arise when we want to deal with advanced electronic
signatures. Later, we provide a solution to the problems commented.

Nowadays, in e-government, e-business and e-commerce systems, the use of the e-
signature is fundamental to support different kinds of transactions. In general, in these
transactions some documents have to be signed. The e-signature of such documents is
expressed according to formats such as PKCS#7 [8]/CMS [9] or XMLDSig [10]. Some
of these signed documents have to remain valid over long periods of time. For this
purpose, Advanced Electronic Signature (AdES) formats have been proposed.

Basically, AdES formats, that is, CAdES [6] and XAdES [7], are based on the
incorporation of some additional information in the PKCS#7/CMS and XMLDSig
formats. These AdES formats can be created by both the signer and the verifier. The
elements included are commented in more detail in Section 2.2. We can anticipate that,
basically, these elements are the certificates used to validate the e-signature as well as
the different evidences (CRLs, OCSP responses, etc.) to prove that the certificates were
valid at the moment the signature was created. Furthermore, some timestamps are
included to prove the existence of these evidences at a moment in time.

In order to obtain these validation evidences, we could make use of XKMS when
validating the signature and the certificate before storing the signed document.
Specifically, XKMS can be used to locate some certificates and validate them.
However, at this moment, the information provided by XKMS, as we analyze in Section
2.3, is very simple but not enough to create AdES formats.

2.1. USE SCENARIOS OF ADVANCED ELECTRONIC SIGNATURES

These advanced formats are useful and/or needed for some kind of scenarios. An
example of such scenario is the exchange of electronic invoices (e-invoices), a
fundamental process in e-business/government transactions. In these e-invoices the
authenticity and integrity are preserved thanks to e-signature. Without the verification of
the e-signature at issuance time, the validity of the e-invoice cannot be guaranteed.
However, in many cases, this is not enough. Due to legal requirements, the receiver of
the e-invoice has to store the electronic invoice for some time period. During this period
the Directive [22] establishes that the authenticity of the origin, the integrity and the
readability must be preserved.

In order to support long term signatures, the signature stored with the e-invoice must
be signed according to the CAdES/XAdES-X-L format (see more details in Section
2.2). Some governments that are working on this kind of signature are the German and
Spanish Governments.

Another scenario of application is the e-mail. Nowadays, the e-mail is one of the
most important tools in e-business and e-government. However, e-mail systems do not
provide enough security services to be trusted. As a response to this need, some services
named Registered Electronic Mail (REM) services have been proposed [23]. In this kind
of systems, the goal is to provide origin authentication and proof of delivery. For this
purpose, in REM the Advanced Electronic Signature is used and defined how to apply it
to satisfy the goals we have just mentioned.

As a final scenario, it is worth mentioning that in some countries, such as Spain, the
exchange of e-dossiers between different public agencies has been regulated. These
dossiers are signed according to the XAdES signature in order to guarantee the origin,
integrity and authentication of the information exchanged.

Due to these needs and the different kinds of documents where AdES formats can be
used, some profiles have been defined [24],[25]. These profiles establish the specific
AdES format to use in a particular type of document as well as the different elements to
be incorporated.

In the rest of this section we briefly explain the different AdES formats, which
information is needed to create them, how we can obtain this information, etc. In
particular, we comment that XKMS can be an interesting candidate to simplify the
process of recovering this information. However, as we also explain later, this protocol,
with its current specification, cannot be used for this purpose and therefore we have
decided to extend it.

2.2. ELECTRONIC SIGNATURE AND AdES FORMATS

Currently the standard formats that are available to e-signatures are PKCS#7/CMS and
XMLDSig. The former is based on the ASN.1 data model, whereas the latter is based on
the XML data model. Both formats basically allow expressing the same information:
data to be signed (optional), algorithms used, certificate (optional) or a reference to the
certificate; and the signature value itself.

In the e-signature verification process we do not only need to verify whether the
document is correctly signed, but also whether the certificate used was valid at the
moment the signature was generated or at the moment the verification is being
performed. Specifically, the verification of an e-signature involves:

 The verification of the e-signature value.

 The validation of the additional data needed to validate the e-signature (set of
certificates up to a trust anchor, certificate status of each certificate in the
complete certification path). These certificates must be valid at the moment the
signature was performed. For this purpose, we need to recover the different
certificates up to a trust anchor and perform the validation of the status of each
certificate in the path. In Section 2.3 this process is explained in more detail.
Neither PKCS#7/CMS nor XMLDSig define how to incorporate this information.

 The verification of the existence of the signature at a specific moment in time. For
this purpose, timestamps are used.

When the e-signature verification is performed at a time close to the moment when
the e-signature was produced, the information previously mentioned might be recovered
easily. However, if this e-signature has to be stored and remain valid over long periods,
we can find some problems when verifying this signature much later: the certificates set
could be unavailable, some keys could be compromised (signer’s key, CA’s key, etc.),
the algorithms used to generate signatures and/or certificates could become weak, etc.

To overcome these possible problems, the use of the advanced electronic signature
(AdES) formats is proposed [3]. Then, we describe the different formats defined in
AdES formats and the different information incorporated in each of them.

2.2.1. AdES

AdES formats [6],[7] were proposed with the aim of defining several electronic
signature formats for various types of transactions where long-term validity is

important. Thus, AdES defines electronic signature formats that support the validity of
electronic signatures over long periods of time.

Next, we briefly mention the different formats and the information that is included in
each format. We go from the simplest to the most complex. Each format includes the
information that was defined by the previous one. For this reason, in each format we
only describe the new information that is included. Basically, each format involves
inserting a set of signed and/or unsigned properties over basic signature formats (CMS
or XMLDSig). These formats are:

 Basic Electronic Signature (AdES-BES). It includes the signing certificate (or a
digest of it) as a signed property. It can also include other signed and/or unsigned
properties such as signing time, data object format, signer role, etc.

 Explicit Policy-based Electronic Signature (AdES-EPES). It is built from
CMS/XMLDSig or from AdES-BES formats. It includes a signed property to
indicate a reference to the signature policy used.

 Electronic Signature with Time (AdES-T). It adds a timestamp of the signature as
an unsigned property.

 Electronic Signature with Complete Validation References (AdES-C). It adds to
the AdES-T format the references (certificate hash, issuer and serial) to all the
certificates used to validate the signature. It also includes the references to all
revocation data used in the signer and the CA certificates validation.

 Extended Signatures with Time Indication Forms (AdES-X). It adds one or more
timestamps to protect the information inserted in the previous format.

 Extended Long Signatures with Time (AdES-X-L). It adds the set of certificates
(not the references) to all the certificates used to validate the signature, as well as
all the revocation data needed to validate the signer and CA certificates.

 Archival Electronic Signatures (AdES-A). It adds a timestamp to protect the
information inserted in the previous format. At a certain time, a new timestamp
can be inserted to protect the signature from algorithms and cryptographic
material weaknesses.

2.3. CERTIFICATION PATH PROCESSING

In this section we describe the process to be carried out to validate a certificate. We also
mention the main existing mechanisms that can be used for this purpose and that could
be used to recover the evidences needed for the AdES formats.

With the purpose of validating a certificate, the following steps must be executed:

1. Building one or more candidate certification paths between the certificate to
validate and one established trust anchor. This is called path construction or path
discovery. This task can be carried out by a client performing a recursive search
through multiple directory protocols such as Directory Access Protocol (DAP),
LDAP, HyperText Transfer Protocol (HTTP) and File Transfer Protocol (FTP).
The client can also delegate this task to a server. The set of requirements that has
to be taken into account to define a protocol with delegated path discovery
processing is specified in Delegated Path Discovery (DPD) [26]. Some protocols
which satisfy those requirements are SCVP and ECPV. This latter mechanism is

analysed in more detail in the following section because we have considered some
interesting components for our validation authority architecture.

2. Checking that each certificate in the certification path is valid. This implies to
check that its structure is correct and satisfies certain constraints (e.g. path length
constraints, name constraints, etc.), it is within its established validity period, it
has not been revoked and the issuer’s signature over the certificate is valid. This
step is called path validation. This process can be performed directly by a client
with the help of several mechanisms such as CRLs (and ARLs) and OCSP
responses, or even through an XKMS system. This task can be also delegated. The
requirements that should satisfy a delegated server are described in Delegated
Path Validation (DPV) [26]. Both SCVP and XKMS satisfy them. A deeper
analysis of the validation mechanisms can be found in [15].

The process consisting of these two steps is referred to as certification path
processing [27],[28]. In order to facilitate this complex process, XKMS has appeared.
XKMS is especially useful in SOA architectures because it is specified as a Web
service. XKMS is also part of the WS-* security related to protocols and can constitute
the basis of other proposals such as WS-Authorization, WS-Federation, WS-Policy,
WS-Trust, etc. XKMS is analysed in more depth in Section 2.3.2 because it is an
essential part of our proposal.

2.3.1. ECPV

ECPV [20] is an Efficient Certificate Path Validation scheme, designed only for public
key infrastructures based on X.509 certificates, in which clients can delegate the
complex process of building and validating users’ certificates. This scheme is based on
one or more Certificate Path Validation Authorities (CPVAs). These authorities build
and analyze candidate certification paths according to the trust anchors in which a
relying party trusts and the policies/constraints established by it. These certification
paths are called Certificate Path Validation Trees (CPVTs) which can be used later by
the relying parties to carry out a local validation in an offline manner.

The ECPV architecture is composed by the following components:

 Subject module. Authorized clients that can request to the relying parties the
validation of their user’s certificates.

 Relying party module. It receives the requests from the clients and forwards, on
their behalf, the validation requests to the corresponding CPVA. This last
component provides all the needed information for the building and validation
process (i.e. certificate to be validated, trust anchors and validation policies).

 CPVA module. The Certificate Path Validation Authority performs the process of
path discovery (building the CPVTs) and validation. This module is divided into
the harvester and analyzer submodules, which are in charge of gathering required
information from the different PKIs (e.g. CA certificates, CRLs, OCSP responses)
and building CPVTs based on relying parties’ requirements, respectively.

 CA module. This module represents a specific underlying local PKI with its own
internal components; that is, the CA, its RA, the public repository and OCSP
responder.

CPVAs can operate either as autonomous entities or in a federated mode. When
relying parties handle a few domains (i.e., a reduced number of CAs), autonomous
entities work very well. But nowadays thousands of CAs might be managed by a single
relying party, and therefore a federated architecture is necessary to harvest data about all
CAs. In this case, CPVAs could be organized hierarchically to share this information
among them, and thus to build the different CPVTs more quickly.

ECPV is a good distributed scheme to validate X.509-based certification paths,
although it presents some important disadvantages that should be taken into account.
Firstly, ECPV can only manage X.509 digital certificates. This entails an important
negative consideration since other formats have to be supported, such as SPKI and
attributes certificates. Secondly, this scheme does not consider that future non-
repudiation checking operations could be carried out. Thus, although validation
evidences might be stored, they are not used later. Finally, ECPV does not provide any
mechanism by means of which clients can select the validation protocol needed for
validating certificates requested by them.

2.3.2. XKMS

XML Key Management Specification (XKMS) [16] is a W3C recommendation which is
not tied to specific protocols defined by the underlying PKIs, thus making clients totally
independent of the complex process that those protocols require. XKMS is a Web
Service which involves exchanging trust information between clients and the underlying
PKIs. Clients are able to use, in a simple way, different PKI solutions (which might be
based on different specifications such as PKIX, SPKI or PGP) with many different
protocols which these PKIs could be using.

This means that clients can outsource the processing of key management to a
dedicated server in order to reduce substantially the complexity, high processing and
memory requirements of the underlying protocols. Thereby, XKMS is a very attractive
solution when small devices are being used by clients. Furthermore, XKMS uses XML
as exchange format to express the services for certificate management, thus being able
to use the XML-Signature and XML-Encryption protocols to provide a secure
information exchange.

With respect to the scope of this work, one of the main parts defined in XKMS is the
XML Key Information Service Specification (X-KISS), which defines two services.
The first one, called X-KISS Locate, resolves <ds:KeyInfo> elements for gathering the
corresponding public key certificates in order to validate or decrypt secure messages.

The second service, called X-KISS Validate, performs the same function as X-KISS
Locate and, in addition, clients may obtain an assertion specifying the status of a given
public key, which will depend on a single set of validation criteria. However, X-KISS
Validate entails some disadvantages that should be treated. On the one hand, it is not
able to return any certificate evidence needed to create advanced electronic signatures
such as a set of certificates (or references to them) up to a trust anchor, CRLs, OCSP
responses, etc. On the other hand, clients are not able to specify which validation
protocol should be used by the service to validate the certificates requested by them.
Thus, the validation results could vary depending on the protocol chosen by the
corresponding PKI. For example, let us suppose that X-KISS Validate uses a CRL
mechanism to check the revocation status of the certificates. When a certificate becomes
revoked it is possible that this certificate could not be considered as revoked until the

new CRL is issued by its corresponding CA. By using other validation mechanisms
such as OCSP, new revoked certificates are instantly deemed not valid.

As explained above, XKMS can offer the service which is used to access an SOA-
based validation authority. In order to perform the different tasks related to a validation
authority, a set of modules is needed. In the following section, we analyse a proposal
named SAVaCert that covers this open issue. This proposal is analysed because we
have considered the different components in it in order to define the architecture of our
validation authority.

2.3.2. SAVaCert

SAVaCert [19] is a Secure client-server Architecture for the Validation of X.509
Certificates. Clients can delegate only path discovery for doing an offline validation
locally, or both path discovery and validation together. This architecture is comprised of
several modules, which are defined in a suitable level of abstraction, in order to allow
developers to choose the most appropriate protocols and validation mechanisms (both
on the client and server side).

On clients’ side, there exists the possibility of configuring some parameters to
control and tune the behaviour of the validation process. Between those parameters we
can emphasize:

 Indication of what information used during path processing must be returned.

 Set of acceptable certificate policies for the CAs in a certification path.

 Other specific parameters for the selected protocol between client and server.

Regarding the Certificate Validation Server (CVS) defined by SAVaCert, the
modules involved in the validation process are the following:

 Validation module. This is the module in charge of building and validating the
certification paths for a given certificate. Since it is based neither on a particular
cryptographic library nor certificate management library, developers can freely
choose the underlying protocols and mechanisms. This module can be in turn
divided into various submodules:

o Validation Protocol module. It manages the messages exchanged between
clients and the server. Thus, this is dependent of the underlying protocol
used between them, like SCVP.

o Path Validation module. It is responsible for validating the status of each
certificate in the certification path.

o Path Construction module. It tries to build one or more candidate
certification paths for the requested certificate according to the defined
certificate policy constraints.

o Certificate Status module. It determines the status of a certificate depending
on the revocation mechanism used (e.g. CRL, OCSP).

o Policy Processing module. It manages both the certificate and validation
policies.

o Time module. It supplies an indication of time, such as timestamps.

 Storage module. It is appointed to store and/or retrieve certificates, revocation
data and policies.

This architecture is not complete enough since it does not consider several aspects
which are essential for an advanced certificate validation service; namely, among
others: an element that carries out authorisation operations to control accesses to the
service, support for asynchronous operations, management of profiles (not only service
profiles but also user ones) and management of service policies.

3. ADVANCED CERTIFICATE VALIDATION ARCHITECTURE

In this paper we propose the extension of XKMS in order to provide an advanced
validation service that can be used to recover the evidences needed for the AdES
formats. This extension, which we have called Advanced Certificate Validation Service
(ACVS), defines the service that could provide a validation authority.

XKMS

CLIENTS
X
K
M
S

C
L
I
E
N
T

CLIENTS
X
K
M
S

C
L
I
E
N
T

X
K
M
S

S
E
R
V
E
R

LOCATE

VALIDATE

REGISTER

REISSUE

REVOKE

RECOVER

STATUS

PENDING

COMPOUND

VALIDATION AUTHORITY
PKI TTP

VALIDATION AUTHORITY
PKI TTP

ACVS
OCSP

ECVP

XKMS CLIENT

XKMS AdES
CVS CLIENT

SCVP

PKCS

CMC

LDAP (pkiCA)

LDAP (pkiCA)
OCSP
PKCS

PKIA
LDAP (pkiCA)

OCSP
PKCS

PKIA

OCSP
XKMS
CMC

PKIB
OCSP
XKMS
CMC

PKIB

OCSP
XKMS-AdES CVS

CMC

PMIA
OCSP

XKMS-AdES CVS
CMC

PMIA

OCSP
XKMS-AdES CVS

CMC

PKI/PMIN
OCSP

XKMS-AdES CVS
CMC

PKI/PMIN

PKI
PROTOCOLS

ACVS

Figure 1: Architecture system

In this section we present the different elements that are part of the architecture
where our service is integrated. In Figure 1 we show the elements that compose the
system as well as the different relationships drawn between them.

These elements are: clients, the XKMS server that supports our extension (ACVS),
the different Public Key Infrastructures (PKIs) and Privilege Management
Infrastructures (PMIs), which issue the certificates to be validated and offer different
validation mechanisms for this purpose. These elements communicate with each other
by using different protocols like XKMS, LDAP, OCSP, etc. Each of these components
is described in more depth in the following sections.

3.1. PUBLIC KEY AND PRIVILEGE MANAGEMENT INFRASTRUCTURES

PKIs (in Figure 1) are responsible for managing the complete lifecycle of identity
certificates. One of the most important functions is to provide information about the
status of a certificate by means of different mechanisms/protocols such as CRLs, delta
CRLs, OCSP, SCVP, etcetera. We need to simplify how end users access those
mechanisms.

In a similar way, PMIs are in charge of the management of attribute certificates.
Usually, these certificates are issued for short periods of time and, therefore, it is not
necessary to check their validation status. However, attribute certificates are sometimes
issued for long periods of time, thus being required the provision of a mechanism to
check them.

These infrastructures are mainly based on the use of certificates according to the
X.509-based format. However, there are other proposals of certificate format, such as
SPKI certificates.

3.2. CLIENTS

In this architecture, shown in Figure 1, clients contact the Validation Authority in order
to check the status of a certificate (or some of them) at a given moment in time. There
are two kinds of possible clients: thin or lightweight clients and thick or powerful
clients.

Thin or lightweight clients are clients that have quite limited networking and
computational resources (reduced memory, bandwidth and speed processor). In this
category we could introduce some clients with mobile devices such as mobile phones,
Personal Digital Assistants (PDAs), etc. These clients only need to know whether a
certificate is valid at a given time (when the request is being performed or at a previous
moment). Additionally, these clients need to know whether the certificate satisfies a
specific policy at the moment when it is being verified. Thus, in their requests these
clients send the minimum possible information (for example, instead of the full
certificate they could send a reference to the certificate). Usually, the answer to their
requests is only valid or not valid. In the event that these clients need the evidences used
to validate the certificate, they could request the server to store them on their behalf.
Later they could recover them from a more powerful client.

Thick or powerful clients are those that are sending their requests from powerful
devices such as a personal computer, a laptop or a server. In general, these clients
contact the validation authority because they need to recover the different evidences
used to validate a certificate (for example, for building an AdES signature for some of
the scenarios previously mentioned in Section 2). However, at the same time, they want
to avoid the complexity of supporting different protocols for the tasks of certification
path processing.

The clients request the certificate validation to the authority validation by using the
XKMS protocol (see Figure 1). In particular, they make use of the XKMS Validate
service. As commented in Section 2.3.2, this service only returns whether the certificate
is valid or not. We have defined an extension to this XKMS service in order to recover
the evidences used in the certification path processing to validate the certificate. We
have defined it as an extension to maintain backward compatibility with current XKMS
systems and to facilitate the process of migration to the new service we propose. This
extension to the XKMS Validate service is presented in Section 4.

3.3. VALIDATION AUTHORITY

The Validation Authority is responsible for receiving the certification validation
requests from the clients and answering them. In our proposed architecture, this entity is
different from a PKI or a PMI. This entity would be a trusted third party for the clients.

Although we have established it as a separate entity, this certificate validation task could
also be carried out by the corresponding PKI or PMI.

This validation authority implements an XKMS server with the services associated to
this protocol (see Figure 1). In our proposal these services have been extended as we
explain in the Section 4. In particular, these services are responsible for performing the
certification path processing of a certificate to validate it. In order to carry out these
tasks, the service needs several modules. These modules are described in the following
subsection.

3.3.1. CERTIFICATE VALIDATION SERVICE MODULES

In Figure 2, we depict the different modules that are part of the architecture of this
advanced validation service. This architecture is based on SAVaCert and in some
interesting ideas from ECPV, such as the Scheduler and Harvester modules. Thus, we
can improve the path validation. Furthermore, we have defined some new modules in
order to satisfy the requirements that we need for this advanced validation services.

XKMS Server

XKMS Request/Response Processor

XKMS SERVICES

LOCATE VALIDATE REGISTER

REISSUE REVOKE RECOVER

STATUS PENDING COMPOUND

XKMS ACCESS-RELATED
SERVICES

AUTHORIZATION AUTHENTICATION

ACCOUNTING

SUPPORT MODULES
Service
Profiles

User’s
Profiles

Repositories
Module

Evidences
Store

Policy Management

Log

Harvester Scheduler

Certificate, Storage and Crypto SupportRepositories

OCSP
CLIENT

SCVP
CLIENT

XKMS
CLIENT

XKMS-ACVS
CLIENT

LDAP
CLIENT

PKIA OCSP
CLIENTMAPPING PKIB OCSP

CLIENT
PKIB LDAP

CLIENT

Figure 2: XKMS server service modules

Conceptually, there are four main groups of modules (each of them is marked in
Figure 2):

 XKMS Request/Response Processor. This module is responsible for receiving the
different requests from the clients and providing an answer. This module uses

XKMS access-related services to control the users’ access to the service. When
the request is processed, this is redirected to the specific XKMS service which is
in charge of carrying out the task requested. In order to support the different tasks
to perform, this module could make use of the Support Modules.

 XKMS access-related services. There are several modules that are in charge of
performing different actions related to the access of the clients to the system, such
as authentication, authorisation and accounting. Thus, the service could determine
whether a client is able to use the service or not, the request comes from a valid
client, and even it could take into account the different accesses made from the
different clients in order to subsequently charge for their services (in the event of
some services being charged for). The integration of these security services in
XKMS could be based on SAML and XACML as proposed in [29].

 XKMS services. These modules are responsible for supporting the different
functionality provided by the different services offered by XKMS, such as Locate,
Validate, Register, Reissue, etc. The behaviour of these services is described in
XKMS specification [16].

 Support Modules. The different modules in charge of supporting the different
functionality of XKMS to carry out its tasks.

Next, we provide a clarification on the different modules that are part of the Support
Modules group because they constitute the core modules needed to support the different
functionality of the modules of the XKMS services group. These modules are:

 Certificate, storage and crypto support. This module offers all the functionality
related to the processing of certificates, its storage, as well as all cryptographic
functions (parser, verify, etc.) needed to process certificates, e-signatures, etc.

 Service and User’s profiles. These modules are used to manage and support the
different profiles supported by the server. A profile is useful to make requests
simpler. The profile determines which information can be requested and should be
answered in a response. For example, there could be a profile that returns the
specific information needed for the XAdES format, others for the XAdES-X-L
format, etc., or the information contained in the certificate from a particular PKI
(user’s name, passport ID, address, etc.). The profile could also determine the
information to return for a specific type of client such as thin clients. In our
system, to simplify requests, we have defined a profile for each AdES format (see
Section 2.2 to know the evidences needed for each format). Thus, we do not need
to specify the evidences explicitly to recover them. In the response, the server
provides these evidences.

 Policy Management. This module is responsible for the different policies that can
be used in the service. Specifically, a policy determines the behaviour for a
specific profile.

 Harvester module. This module gathers from the CA repositories (e.g. LDAP
servers), OCSP and SCVP responders some information needed to carry out both
the path building and validation. This information comprises certificates, CRLs
and OCSP responses, etc. and is stored in a repository called harvested evidences.
Thus, we could have in advance some information which is used in the
certification path validation and makes this process faster.

 Scheduler module. The scheduler interacts with the harvester module in order to
have the validation information up to date.

 Analyzer. The analyzer is responsible for analysing the information obtained from
the Harvester module.

 Repositories. It is the module that accesses the data base systems to store all the
information that needs to be stored by the rest of the modules.

 Evidences store. This specific module, by using repositories modules, stores all
the information needed for particular certification path validation operation. This
information is stored so that the requester can subsequently have the information
used in a validation and which at that specific moment could have not been
returned (e.g. in the event, it is a thin client).

 Log. This module registers the different events that occur in the system in order to
detect possible problems or attacks related to the behaviour of the different
modules and its implementation.

 LDAP (pkiCA), OCSP, SCVP, XKMS, XKMS-ACVS Clients. These modules
implement the LDAP (pkiCA), OCSP, SCVP, XKMS, XKMS-ACVS protocol
according to its specification, respectively.

 PKIX LDAP (pkiCA), OCSP, SCVP, XKMS, XKMS-ACVS Clients. Some PKIs,
when implementing the different protocols, do not follow the specification
completely or introduce some changes for authentication purposes. These modules
are introduced in order to support slightly different versions of a standard protocol
for a specific PKI.

 Mapping. This module helps to determine which module is used to perform the
certificate validation. Most of the PKIs introduce the URL of the CRL distribution
point, the URL of the OCSP responder, etc., in the certificate extensions.
However, some certificates do not include this information. For this reason a
module that allows the system to know which client should use to validate a
certificate is needed. This module processes a configuration file in the server. This
file indicates, for each PKI, which module has to be used to validate a certificate.
This module is also used to determine the module and the URI to use in order to
recover certificates from the reference to a certificate.

3.4. PKI PROTOCOLS

The PKI protocols are used by the validation certificate service to build the candidate
certification paths and perform the subsequent validation.

Depending on the certificates involved in the validation process, the service requests
validation information to the corresponding PKI. The protocols used depend on the
mechanisms supported by every PKI. These protocols can vary from online validation
protocols (OCSP, SCVP, etc.) to offline methods (CRLs, delta CRLs, etc.).

In each request to the service, this service uses the protocol that it considers the most
adequate. This behaviour is modified whether the client specifies the protocols to be
used in the validation. This functionality is fundamental for some scenarios, such as in
e-commerce scenarios when some transactions, due to the risk to be assumed, require an
online verification.

It is also important to mention that the XKMS protocol, with the extensions we
propose, can also be considered a PKI protocol. Thus, our service could make a request,
by means of XKMS with our proposal, and this request is processed by other entity such
as a PKI or another validation entity. Thus, the delegation of the validation of some
particular certificates is possible.

4. CERTIFICATE VALIDATION SERVICE SPECIFICATION

In this section we present the design of the Advanced Certificate Validation Service
(ACVS) we propose. Firstly, we define the main goals the service should support in
order to provide an advanced validation service. Next, we introduce the different
working modes the protocol supports to interact with it. These modes are compatible
with the XKMS specification. Then, we provide a detailed specification of the different
extensions we have made to XKMS to support this kind of service. Finally, we provide
an example of a validation flow to describe the working of the different components
defined in our proposal to perform this certificate validation.

4.1. MAIN GOALS FOR AN ADVANCED VALIDATION SERVICE

This section defines the main goals and requirements that an advanced certificate
validation service should fulfil. Regarding the goals, six objectives have been detected.

First, clients of a certificate validation service should be as independent as possible
from the underlying protocols used during the validation process. As a second goal,
legacy validation mechanisms must be supported; that is, it should be possible to
perform different types of validation processes through this service (e.g. OCSP, SCVP),
depending mainly on which validation mechanism has been implemented by the
underlying infrastructure.

The third goal is the support of different kinds of certificates belonging to several
infrastructures. At least, X.509-based certificates (both identity and attributes
certificates) and SPKI certificates have to be supported.

As a fourth goal, a repository is mandatory in order to store the validation evidences
for future non-repudiation checking operations. These evidences could be certificates,
CRLs, OCSP and/or SCVP responses, among others. They depend on the validation
mechanism chosen.

The fifth goal is related to policy and profile configuration. End clients must be able
to select a specific policy and/or profile to configure the behaviour of the service. In
some cases it could be interesting to perform any kind of validation, but sometimes only
an online mechanism validation could be valid (e.g. in e-commerce platforms).

Finally, the last goal is the control access configuration. Thereby, we can determine
what entities can use the service and how they can do it. In some organizations only
certain clients are allowed (e.g. after paying a fee), whilst others have free access.

Bearing in mind the above goals, as well as the open issues discussed in Section 2,
some needs and requirements are raised for an advanced certificate validation service.
We next summarize those needs and requirements which a service with these features
would have. The general requirements are as follows:

 The certificate validation service must fulfil the DPD and DPV requirements.

 This service must allow validating different types of certificates such as X.509
certificates, attribute certificates and SPKI certificates.

 The architecture of a validation service should be as generic and extensible as
possible in order to enable the incorporation of new features in future releases.

Next, we summarize the requirements of mandatory fulfilment for the main actors
involved in a validation process. On the client side, we have the following ones:

 Clients should be able to include intermediate certificates to ease the building
process of the candidate certification paths.

 Clients have to be able to indicate whether they want the revocation status of the
certificates included in the certification path to be verified by the server.

 Clients should be able to determine the precise time in which the validation
process should be carried out.

On the server side, the following requirements should be fulfilled:

 Storing the validation data along with all information used during that process.
 Receiving the trust anchors in which clients trust to build the certification paths.

 Receiving indications about the protocol to be used in the validation process.

 Supporting service policies and profiles.

 Returning both validation information about the protocols used during the
validation process and information about a particular format (e.g. XAdES).

 The server might establish that all requests are digitally signed by the clients in
order to check if they are authorized to use the service or not.

 An asynchronous message exchange must be allowed.

Finally, regarding the information that needs to be exchanged between clients and
server, which implements the certificate validation service, two main requirements are
defined:

 Requests could indicate that the server stores information about the validation
process, together with all information used by the server to carry out such a task.

 Requests must specify what information contained in the certificate should be
returned in the response. Thus, this requirement eases the processing of the
certificates by a client.

4.2. WORKING MODES

In this section we explain how we have extended XKMS, its services and modes in
order to satisfy the goals defined in the previous section.

The basic element in a validation request is the certificate. Optionally, the client can
specify a time to validate the certificate in and a validation policy. If the time is not
provided, the server validates it at the reception moment. If a validation policy is not
specified, the default policy is then applied. Moreover, clients can specify how the
server should behave in the validation process. Thus, clients are able to select the
validation mechanisms, or request additional validation information related to the

validation process, such as requests and responses of the validation mechanisms used,
the path of the certificate up to a trusted point, a timestamp, etc.

There are different modes to implement this process. If the information requested can
be provided in the response almost immediately or in a short interval of time, the
XKMS synchronous mode is used. On the contrary, if the response cannot be provided
in a short interval of time, the asynchronous mode will be used.

Additionally, in some circumstances, it could occur that the server wants to avoid
denial of services attacks. For this purpose, the two-phase protocol has been provided in
XKMS. In the following sections we explain how the different modes work and how we
have extended the different requests and responses in order to support the goals defined
in the previous section.

4.2.1. SYNCHRONOUS MODE

In XKMS the synchronous mode consists of a request and a response (see Figure 3). In
this mode, the server has or can obtain, in an acceptable interval of time, the information
requested by the client. Therefore. when the server obtains the information it creates a
final response with the information requested.

CLIENT

NORMAL MODE (synchronous)

XKMS ValidateRequest + ExtendedValidationRequest

XKMS ValidateResult + ExtendedValidationResult

XKMS
SERVER

with
ACVS

extensionCLIENT

NORMAL MODE (synchronous)

XKMS ValidateRequest + ExtendedValidationRequest

XKMS ValidateResult + ExtendedValidationResult

XKMS
SERVER

with
ACVS

extension

Figure 3: The Validate Service in the synchronous mode

In the validation of a certificate, according to XKMS, the client sends a
ValidateRequest message and receives a ValidateResult message.

As for Locate service, the client sends a LocateRequest and receives the result in the
LocateResult. All these messages (as well as all the messages of X-KRSS) extend the
MessageAbstractType type. This last type contains an element called MessageExtension
which was included to support the extensibility of XKMS. We mention next the
elements which we defined to be included in this field in order to perform an advanced
validation.

In the synchronous mode, for the Validate service (see Figure 3), we include a new
element in the request called ExtendedValidationRequest into the element
MessageExtension of the ValidateRequest element.

In the ValidateRequest we include the certificate to validate (or a reference to its
public key) and, optionally, the instant of time in which we want to perform the
validation. In the ExtendedValidationRequest we include the rest of information needed
to perform the validation process (protocols to use, responses to obtain, etc.). More
details about the information which is included in this element are provided in Section
4.3. As a response to this request (see Figure 3), we return a ValidateResult which
contains an ExtendedValidationResult in its MessageExtension field. The ValidateResult

only returns whether the certificate is valid or not in the period of time requested. The
rest of information needed to recover for an advanced validation (responses, CA
certificates, etc.) is provided in ExtendedValidationResult. More details about the
information that is included in this element are provided in Section 4.3.

4.2.2. ASYNCHRONOUS MODE

This mode is used when the server receives a request which cannot be completed
immediately. In this case, the client receives a response indicating that its request is
pending and that he has to wait in order to obtain it. In particular, for the advanced
validation of a certificate, the process is depicted in Figure 4.

CLIENT

Asynchronous MODE

XKMS ValidateRequest + ExtendedValidationRequest

XKMS ValidateResult + PendingRequest

XKMS StatusRequest

XKMS StatusResponseX times

XKMS PendingRequest

XKMS ValidateResult + ExtendedValidationResult

XKMS
SERVER

with
ACVS

extension

CLIENT

Asynchronous MODE

XKMS ValidateRequest + ExtendedValidationRequest

XKMS ValidateResult + PendingRequest

XKMS StatusRequest

XKMS StatusResponseX times

XKMS PendingRequest

XKMS ValidateResult + ExtendedValidationResult

XKMS
SERVER

with
ACVS

extension

Figure 4: The Validate Service in the asynchronous mode

In this process the client requests the advanced validation by sending the
ValidateRequest with the ExtendedValidationRequest. As a response, the server sends
the ValidateResult indicating with the PendingRequest value (in the ResultMajor
attribute) that the request cannot be processed immediately. In this response, it is also
included a request identifier (RequestId) to subsequently check the status of this request.

From the moment the client receives the PendingRequest value, he has to check
periodically whether the response is available or not. This checking would not be
necessary whether the client in his request would have specified a notification
mechanism such as the e-mail. For the purpose of checking the status of a request, in
XKMS, the StatusRequest and StatusResponse messages are defined. When the
response is available the server indicates it in the StatusResult with a Success.

The client sends a PendingRequest request to the server to recover the response that
is already available. As a response the server sends a ValidateResult with the
ExtendedValidationResult in the MessageExtension element.

The asynchronous processing for the Locate service would follow the same
behaviour we have just described. Thus, in message 1, we use the LocateRequest with
the ExtendedLocationRequest. In message 2, the server answers the LocateResult with
the PendingRequest. The messages 3, 4 and 5 would be the same. Finally, in message 6,
the server sends the response with the LocateResult and the ExtendedLocationResult.

4.2.3. TWO-PHASE PROTOCOL

In XKMS, the two-phase protocol has been defined to protect the service against denial
of service attacks. This protocol performs a lightweight authentication just before
satisfying a request. The goal of this protocol is to check that the client is able to
process the responses provided by the server.

Thus, in the first phase, when the service receives a request (see Figure 5), the server
replies with a response indicating that the two-phase protocol has to be executed
(Represent value in the response) and also sends a nonce.

In the second phase, the client sends the original request with the nonce. If the nonce
is the same that the one provided in the first phase by the server, then, the response is
now sent. This two-phase protocol can even be combined with the asynchronous mode
defined in XKMS.

Two-phase protocol

XKMS ValidateRequest + ExtendedValidationRequest

XKMS ValidateResult + Represent + Nonce

XKMS ValidateRequest +Nonce+ ExtendedValidationRequest

XKMS ValidateResult + ExtendedValidationResult
CLIENT

XKMS
SERVER

with
ACVS

extension

Two-phase protocol

XKMS ValidateRequest + ExtendedValidationRequest

XKMS ValidateResult + Represent + Nonce

XKMS ValidateRequest +Nonce+ ExtendedValidationRequest

XKMS ValidateResult + ExtendedValidationResult
CLIENT

XKMS
SERVER

with
ACVS

extension

Figure 5: The XKMS two-phase protocol with our extensions

The use of the two-phase protocol with the service we have defined is the same as
specified in XKMS, and there is not any problem with the extension introduced here.
This is due to the fact we have extended the requests and responses defined in XKMS
and which are used in this protocol. Our extensions are sent with these requests and
responses as can be seen in Figure 5. However, we are going to comment some aspects
of the authentication process.

The lightweight process of authentication is based on the exchange of several
messages as we have just described. Therefore, when using this protocol a request has
to be sent twice. A stronger way of authentication is to use an electronic signature in
each message. However, this process supposes a higher overload to the server. We
propose next a hybrid approach between these previous ways of authenticating the user
for those cases when the client usually works with a certificate validation service.

Our proposal of authentication is based on the use of Paywords, which are chains of
hash values. This proposal was introduced by Rivest in [21] to make micropayments.
The idea consists in the client sending a hash value called root (w0) to the vendor. This
root value is the result of executing n times a hash value over a starting value (wn).
Thus, w0=hn(wn). This root value is signed and sent to the server. Thus, each time the
client has to access the service, the client reveals a new value of the chain, from the first
value (w1) to the n-value (wn) in turn. The service could know that the hash value comes
from the client because in a hash function the reverse operation is impossible to perform

if we suppose perfect cryptography. That is, it is very difficult to calculate the value
used to make the hash from the hash value.

We propose that when the service needs to authenticate the client in order to avoid
denial of service attacks, that client signs the request without a root value of a Paywords
chain. This root value is used as a nonce. Then, the server verifies the signature and
stores this nonce. In subsequent requests the client sends directly the following
Payword. Thus, we avoid that the service has to send us a response with a nonce
indicating that an authentication is required.

With this mechanism, in the first authentication, the number of messages exchanged
between client and service is the same that the two-phase protocol proposed by XKMS.
Subsequent times the server does not need to execute the two-phase protocol, and
therefore the number of messages to exchange is reduced. As for the security, we can
say that it is the same as in the previous proposal because both proposals are based on
the use of nonces.

4.3. EXTENSIONS

According to XKMS specification, there exist two kinds of messages in the Validate
service: ValidateRequest and ValidateResult; similarly, there exist two types of
messages in the Locate service: LocateRequest and LocateResult. All these messages
extend the MessageAbstractType, which includes the element MessageExtension that
was thought as an extension mechanism for XKMS messages.

Taking this into account, in order to reach the goals outlined in Section 4.1, and as
we have mentioned in the previous section, we have extended XKMS Validate and
Locate services by defining four new elements that suit the MessageExtension field
perfectly. These new elements are called ExtendedValidationRequest for the
ValidateRequest message, ExtendedValidationResponse for the ValidateResult message,
ExtendedLocationRequest for the LocateRequest message and ExtendedLocationResult
for the LocateResult message. The following subsections describe each of these new
elements in more detail.

4.3.1. ExtendedValidationRequest

When a client wants the service to validate a certificate, he sends the service a
ValidateRequest message. This message includes information regarding that certificate
within the element QueryKeyBinding; optionally, this element also includes within the
TimeInstant subelement, the time at which the certificate should be validated.
Furthermore, if the client is interested in obtaining information associated to the
validation process (such as the specific validation mechanism that should be used or the
indication that the complete certification path validation should be accomplished) and/or
related to the information used in the validation process that should be retrieved (such
as the complete certification path) and stored (in order to be used later, as a proof of
existence of such validation evidences), the ValidateRequest message includes the
ExtendedValidationRequest field. This field is composed of several elements, as shown
in Figure 6.

As we can see, the ExtendedValidationRequest field has two attributes: Profile and
ReturnCertificate. The former allows a user to indicate the server a specific profile to be
used in the validation process. A profile usually establishes a context that requires a
predefined behaviour, thus simplifying the number of parameters indicated in a

message. The latter indicates if the client wants the validated certificate to be returned
within the response, as it is not mandatory to include the complete certificate within the
request (it can include a reference to the certificate, such as an URI or its
IssuerAndSerial). Additionally, the ExtendedValidationRequest consists of several
subelements.

Figure 6: ExtendedValidationRequest element

The ValidationProtocols subelement defines the validation mechanisms that should
be used in the validation process. The server can use the first available mechanism or
even all of them. It is composed of a set of elements of type ValidationProtocol that
includes the mechanism identifier, the priority which mechanism should be applied
with, the validation response returned by this mechanism, the details regarding that
response, etc.

The subelement named CertificationPathValidation indicates that the server should
accomplish the certification path validation from the target certificate up to one or
several trust anchors. It also indicates whether validation evidences should be returned.
Additionally, the client can provide intermediate certificates to ease the building process
of candidate certification paths.

The subelement named ReturnCertificationPath indicates that the server should
return one or several certification paths up to one or more trust anchors. These
certification paths can be different from those validated by the server. Furthermore, this
subelement allows the client to indicate if these certification paths should be validated
by the server, although no evidences will be returned (certification path validation
evidences could only be returned if specified in CertificationPathValidation
subelement).

The subelement named StoreValidationInformation expresses that the evidences used
in the certificate validation process should be stored in the own XKMS server or in an
external secure server. By default, when we include this element, the information is

stored in the XKMS server. We also provide the possibility of specifying the
information needed for the external server.

A secure external server that would be used is an LTANS-based server. As the use of
this kind of server is a suitable proposal, and LTANS [30],[31],[32] might become
standardised, we have defined the information that we would need to specify with this
proposal. Furthermore, we have defined an element for extensibility purposes which
would enable it to support other future proposals that could appear. Thus, according to
LTANS, we allow the client to specify the access address to that LTANS server, the
client identifier to gain access to that server, the LTANS server identifier to store the
validation evidences in, the set of policies to be applied when archiving the validation
evidences, the validation evidences that should be archived, etc.

This element supports that clients (especially thin clients) can store validation
information that could be used and recovered subsequently. Thus, a client could indicate
that he is interested in performing the validation. However he does not want to obtain
validation evidences now but he wants to store them to recover them later. For this
purpose, once the information is stored the service provides a stored evidence identifier
in the response. Subsequently, when the client wanted to recover the evidences, he
would send a request with the certificate and the stored evidence identifier in the
OptionalInputs subelement.

Finally, the OptionalInputs subelement has been defined for extensibility purposes
and can contain any type of element. Currently, this field is used to request stored
evidences as we have just described.

4.3.2. ExtendedValidationResponse

When a client sends a ValidateRequest message, the service responds by sending a
ValidateResult message. This message indicates whether the specified certificate is
valid or not at the moment requested. If the ValidateRequest message sent to the service
included the ExtendedValidationRequest field, the service would send, as a response, a
ValidateResult message (as the one aforementioned) with the element
ExtendedValidationResponse. In this case, the existence of this element is mandatory.
The ExtendedValidationResponse field is used to carry the data asked in the request by
means of the ExtendedValidationRequest element, such as the complete certification
path, the validation mechanisms responses etc. This field is composed of several
elements, as shown in Figure 7.

As we can see, the ExtendedValidationResponse field has one attribute, called
Profile, which indicates the profile used by the server when validating the specified
certificate. Generally, the value of this attribute is equal to the corresponding attribute in
the ExtendedValidationRequest field within the ValidationRequest message.

The subelement named CertificateValidity includes the validated certificate as well
as information related to the certificate validation process, the specific validation
mechanism used, the validation responses and the reference to the certificates within the
certification paths from the specified certificate until one or several trust anchors.

The subelement CertificationPaths can include one or more certification paths from
the specified certificate up to one or several trust anchors. It can also include validation
information regarding every certificate within a certification path. Finally, the
OptionalOutputs subelement has been defined for extensibility purposes.

Figure 7: ExtendedValidationResponse element

4.3.3. ExtendedLocationRequest

When a client wants the service to locate a certificate, he sends the service a
LocateRequest message. Similarly to the ValidateRequest message, it includes
information regarding the certificate within the element QueryKeyBinding and it also
includes, optionally, the time the certificate should be located at, within the TimeInstant
subelement. Furthermore, if the client is interested in obtaining information included
within the specified certificate (such as the name of the subject, the identification
number of the subject, the identification of the certificate issuer, etc.), the
LocateRequest message will include the ExtendedLocationRequest field. This field is
composed of several elements, as shown in Figure 8.

Figure 8: ExtendedLocationRequest element

The subelement named ReturnKeyInfoPersonalData indicates that the client is
interested in recovering information related to the certificate or the certificate owner.
The OptionalInputs subelement has been defined for extensibility purposes.

4.3.4. ExtendedLocationResponse

When a client sends a LocateRequest message, the service responds by means of a
LocateResult message. This message mainly provides the complete certificate that was
referenced within the LocateRequest. If the LocateRequest message sent to the service
included the ExtendedLocationRequest field, the service would send, as a response, a
LocateResult message (as the aforementioned one) with the element
ExtendedLocationResponse. In this case, the existence of this element is mandatory.
The ExtendedLocationResponse field is used to carry data asked in the request,
specifically, within the ExtendedLocationRequest element. This field is composed of
several elements, as shown in Figure 9.

Figure 9: ExtendedLocationResponse element

The subelement called KeyInfoPersonalData includes information related to the
specified certificate (for example, its description), the certificate owner (for example, its
identification number, name, surname, email, date of birth, etc.), the entity represented
by the certificate owner (for example, the entity identifier, the entity name, the entity
domain, etc.) or the existing relationship between the certificate owner and the entity
(for example, the owner position within the entity, the entity unit, etc.). This subelement
includes the field named Other for extensibility purposes. The subelement called
OptionalOutputs has been also defined for extensibility purposes.

4.3. VALIDATION FLOW EXAMPLE

In this section we show the interaction and the main operations which take place when a
user using a (thin) client wants to validate a certificate. Let us suppose that a thin client
wants to validate a certificate and obtain the evidences associated to this certificate for,
subsequently, creating an AdES signature. In this example, we suppose that a thin client
provides the validation authority with the reference to the certificate and wants to obtain
the certificate, CA certificate, its validation evidences by means of OCSP and he also
wants to store all this information in a LTANS server. For the shake of simplicity we
also suppose that the client is able to make the request without authentication and using
the two-phase protocol. The steps that would take place appear in Figure 10.

In step 1, the thin client creates a ValidateRequest indicating he wants the validation
of the certificate which is referenced in the request. He also provides the information
needed to store the associated information validation in a LTANS server.

The server checks (in step 2) that the client is able to make the requests. The request
is processed in order to determine the kind of request (step 3). Once the request is a
ValidateRequest, it is forwarded to its associated module (step 4) to process it.

The request specifies the validation in the terms we have explained at the beginning
of this section. Thus, the server queries (in step 5), in the harvested evidences
repository, whether the evidences requested (certificate and CA certificate) had been
obtained in an anticipated way for the Harvester module. In this example, we suppose
these evidences are not stored in this repository. Thus, the server orders the Scheduler
module (step 6) to schedule in order to obtain these evidences for future validations
(creating also the CPVTs trees, see Section 2.3.1).

As the evidences are not stored, the server proceeds to recover them. For this
purpose, it checks the module and the URI in the Mapping module to obtain the
evidences for the certificate requested (step 7). In this case, the module used to recover
them is the LDAP protocol. With the LDAP protocol (step 8), the server obtains the
certificate and the CA certificate from the corresponding PKI.

Figure 10: Validation example flow

To check the validity of the certificate, the server processes the certificates to be
validated (step 9). In these certificates the OCSP responder to be used is specified. The
server additionally checks in the Mapping module whether a specific OCSP module
should be used. In this case, we suppose that this is not necessary since the PKI offers
this service according to the standard and without any special authentication. Thus, the
server makes use of the OCSP client to check the status of the certificates (step 11). All
the evidences obtained (certificates and OCSP responses) are stored in the LTANS
server specified by the user (step 12). Thus, these evidences could later be recovered by
the user from a more powerful client. Finally, the ValidateResult (with the
ExtendedValidationResult providing a stored evidences identifier is provided) is created
(step 13) and sent (step 14) to the thin client.

5. AN SOA-BASED ADVANCED ELECTRONIC SIGNATURE
ARCHITECTURE

In this section we describe the main elements that compose the SOA architecture of the
University of Murcia for the e-government processes where the advanced electronic
signature is involved. Next, we focus on a real scenario for the university community,
such as the generation and signing of electronic mark certificates.

5.1. DESIGN OF THE ARCHITECTURE

The e-government SOA Infrastructure of the University of Murcia (Figure 11) is
composed of several elements. Some of them are hosted by the University and the rest
by trusted third parties such as certificate service providers. We introduce next those

which will be necessary to understand the scenario of use presented in the following
section.

Figure 11: e-government SOA infrastructure

The Digital Signature Services (DSS) server is the pivotal element of the
infrastructure. This server is able to sign and verify signatures on different formats
(PKCS/CMS, XMLDsig, PDF, AdES formats) and support different profiles of use
(profiles for different options of PKCS/CMS/XMLDSig/AdES formats, different
parameters, extensions to include, etc.). The service has been developed according to
the OASIS DSS [33] specification that defines it as a Web service. This service is
invoked by all the different applications and services which require the incorporation of
electronic signature processes in the University, either for validating any kind of e-
signatures and timestamps or for producing signatures on behalf of the University.
Some of these applications are the virtual campus (also known as SUMA), the official
electronic noticeboard system, the electronic registry and the annual university
enrolment application. In the e-signature processes, our most commonly used profile is
able to perform the verification process, add a timestamp to the verified e-signature and
store it in a secure archive system based on LTANS.

One of these applications is SUMA [34]. SUMA is the virtual campus of the
University of Murcia. It provides to lecturers and students a set of tools to improve the
learning of students as well as it facilitates this process can be carried out everytime,
everywhere. In SUMA students can see contents and syllabuses, chat with lecturers, ask
questions related to the subject, query their marks, etc. It also offers additional services
to the university community, some of them specifically for lecturers, such as the
generation and signing of electronic marks certificates.

The Security Assertion Markup Language (SAML) [35] server is the element that
performs all the authentication and authorization processes through the infrastructure.
This server exchanges standard XML assertions with applications and services in the
university, for the performing of access control decisions.

The Advanced Certificate Validation Service (ACVS) is the element that carries out
the validation of all the certificates used in the electronic signature processes. In the
context of the University of Murcia, it is able to perform a validation operation against
three main certificate services providers. The first one is the Dirección General de
Policía (DGP) -Spanish state police direction- for the validation of the Spanish National
Identity Card through the OCSP protocol. The second and third ones are the Fábrica
Nacional de Moneda y Timbre (FNMT)-the Spanish state certification service provider-,
which is the main certificate service provider in Spain and provides CRLs for
performing the validation process, and, finally, the Agencia de Certificación de la
Comunidad Valenciana (ACCV) -a regional certificate service provider-, which
provides both CRLs and OCSP validation services. The University of Murcia has an
agreement with the ACCV not only for the provision of digital certificates, but also for
consuming its timestamp service. This service, which is developed according to the
RFC 3161 [36], is offered through its Time Stamping Authority (TSA), which is
qualified by the Spanish Government.

The Long-Term Archive and Notary Services (LTANS) server is the element in
charge of archiving and preserving the electronic documents over long periods of time.
The LTANS server periodically timestamps the archived documents in order to prevent
weakness of the cryptographic material. It also follows the recommendations of the
IETF working group for the archive protocol and the data structures [30],[31],[32].

5.2. SCENARIO OF USE: ELECTRONIC MARKS CERTIFICATE

Based on the previous elements, we describe now how they are used in a scenario of
use: the signing process of a mark certificate. This process, which is depicted in Figure
12, is performed by a lecturer within SUMA and the eGovernment SOA Infrastructure
of the University. It takes place at the end of the term when the lecturer wants to publish
the official marks that are sent to the secretariat of the University.

At the beginning of the process, the lecturer signs the electronic marks certificate by
means of a qualified certificate of the Spanish National Identity Card (step 1). This
signed document is received by the SUMA application, which initiates the verification
of the electronic signature and the archive of this document (step 2). At this point, the
DSS server performs several tasks in order to carry out this process.

As part of these tasks, the DSS server requests an authorization to the SAML server
(step 3). This server checks the attribution of the SUMA application for invoking a
verification and archive operation. Next, DSS checks the revocation state of the
electronic certificate used for signing the document through the ACVS server (step 4).
The ACVS server is able to establish an online connection with the certificate service
provider for performing the validation process with a standard mechanism, like OCSP
(step 5). Once the verification is performed, the DSS server requests a timestamp token
to the TSA (step 6) with the aim of guaranteeing the validation time. Thus, the DSS
server creates a signature according to AdES-T format (including the timestamp) to
guarantee the non-repudiation of the document and the date it was produced.

Lecturer DSS
SAML
Server LTANSACVS TSAPKI

1. Signing the marks certificate
2. Verification, add timestamp and archive request

3. Authorization request

10. Archive request (AdES-X-L document)

4. Validation request
5. OCSP request

6. Timestamp request

grace - period

10’. Archive response

6’. Timestamp token

5’. OCSP response

3’. Authorization response

4’. Validation response

7. Validation data request
8. CA certificates / OCSP request

8’. Certification path / OCSP response
7’. Validation data response

9. Timestamp request
9’. Timestamp token

SUMA

2’. Response

Figure 12: Electronic mark certificate process

AdES is a standard proposal of the ETSI which defines several profiles and formats
for the advanced electronic signature, in terms of European Directive 1999/93/EC. More
details on AdES formats were described in Section 2.2. The University of Murcia has
adopted this specification for the different electronic signed documents that must be
archived and preserved. AdES also introduces the grace-period concept, as the period of
time that the verification system must wait for until the validation evidences of the
electronic document are available.

 After this grace-period, DSS begins the second validation process (step 7). In this
process, the recovering of all the validation data of the digital certificate is essential. For
this reason, a second communication with the certificate provider is performed (step 8).
In this connection the trusted certificate chain of the lecturer certificate, and a signed
OCSP response which results from the checking about its revocation state, are provided.

Then, DSS requests a new timestamp token to the TSA (step 9) for protecting the
certificate chain obtained in this second validation process. Finally, an extended AdES
format (AdES-X-L) is generated and sent to the LTANS server for the archiving and
long-term preservation of this electronic information (step 10). LTANS securely stores
this document and the process finishes.

5.3. DETAILS OF THE IMPLEMENTATION

In this section we provide a description of the different elements and components that
we needed to develop the architecture and the scenario presented in previous sections. It
is worth mentioning that our developments are based on open source code and mainly

based on the Java programming language because it is object-oriented and the code can
be used in several platforms.

The different Web servers involved in the architecture are based on the OAS 10g
application server. We have based the support of Web services used in the different
servers (DSS, LTANS, SAML, ACVS) on Apache Axis library, which provides an
implementation of the SOAP server as well as several tools and APIs for the
development of Web service applications.

For the development of the different software we have made use of the Eclipse Open
Source IDE. In our developments, we have used Bouncy Castle Crypto APIs as
cryptographic library. This library is used for the basic cryptographic operations
(encryption and signature) and algorithms as well as supporting the main ASN.1
standards formats such as PKCSs, CMS, RFC 3161, OCSP, CRLs, etc. For XML
formats related to cryptography we have used Apache XML security library. Based on
these libraries we have developed the DSS service based on OASIS specification. The
DSS service also uses the iText PDF library for PDF documents. The development of
the SAML server is based on OpenSAML.

The development of ACVS, which is presented in this paper, is based on the
OpenXKMS library [37] and the extensions we have developed for this library. Our
implementation uses OpenLDAP for the access to LDAP servers, Bouncy Castle for
CRLs and OCSP, and our own implementation of SCVP [38]. It is worth mentioning
that most of PKIs are totally compatible with these standards. We also make use of a
specific library for the access to the certificates provided by the FNMT because the
method it offers is not completely based on LDAP. The reason is that they provide a
restricted access to this service. Thus, this service is not available to citizens. FNMT
only provides access to public organisms (following an agreement). The LTANS
service has been developed according to the Internet draft [31],[32]. SUMA is
developed by using J2EE technologies.

Finally, as database for storing evidences, information of the different applications
such as SUMA, ACVS, LTANS, etc. we are using Oracle 10g.

6. RELATED WORK

This section analyses some related work with respect to the different components of the
architecture presented in Section 3 and the XKMS solutions presented in current
literature. As we have commented above, the architecture presented here is based on
SAVaCert [19] and some modules (mainly the Scheduler and Harvester modules) from
ECPV [20]. Our proposal relies on these architectures for the validation phase of
certificates, and we have extended their main core to include some modules and features
that we need to support the XKMS-based advanced validation required to build AdES
signatures as well as to store the validation evidences associated to this process.
Furthermore, we have presented a complete implementation of this proposal, which is
being currently used at the University of Murcia.

On the other hand, regarding the current XKMS solutions, many have been the
implementations that have appeared since the stable and mature release of XKMS
(version 2.0) was recommended in May 2005. Almost all participants and contributors
to the design stage of this specification have developed their own prototypes, or even a
complete reference implementation of it. These companies are VeriSign, as a leading

editor, Microsoft Corporation, RSA Security, SQLData Systems and DataPower
Technology, among others.

VeriSign’s implementation [39] allows key functionalities of PKI to delegate trust
decisions for authentication purposes. The XKMS Web service where Web servers can
send theirs requests is located at [40]. On the other hand, Microsoft has developed an
XKMS client and server on ASP.NET [41] with the aim of providing SOAP message-
based accesses to PKI services. SQLData Systems provides a live test server for
demonstrations and interoperability tests [42]. A client side implementation of XKMS
2.0 is also provided by SQLData Systems, which is written in C/C++ as a COM object
to be used in VBScript and/or ASP pages. Finally, DataPower Technology provides
XKMS support to its XS40 XML Security Gateway [43], which can act as an XKMS
client during the certificate validation phase with the aim of increasing the security in
Web services transactions.

Apart from previous implementations, other interesting commercial implementations
can be found. For instance, the TrustFinder XKMS Server [44], developed by Ascertia,
provides an XML-based server for locating and validating certificates. The building and
validation of the candidate certification paths can help the TrustFinder SCVP Server
and/or the TrustFinder OCSP Server, both also developed by Ascertia.

Regarding open source implementations of XKMS 2.0, only OpenXKMS [37] has
appeared. This WS-XKMS solution, widely explained and detailed in [45], defines a
complete design and implementation of this specification. Moreover, in [45] the authors
include a new module to the XKMS engine, called PKIForXKMS, which is a connector
used to add new specific underlying PKI implementations. The XKMS engine will
choose the proper PKIForXKMS connector, which is in charge of interacting with the
final PKI solution, according to the protocols implemented by this PKI. We have used
and extended this solution for our purposes, explained throughout this paper, since this
solution is open source, quite complete in its definition and implementation, and it is
based on Java so that it can be executed under several operating systems. A limitation of
this solution is the fact that OpenXKMS associates to a concrete domain the use of a
specific module (the proper PKIForXKMS connector) manually. Our proposal is more
generic by looking for the access information to the OCSP responders, CRL distribution
points, etc. directly in the certificate extensions through a PKI-independent module. In
case this information is not defined, a specific module is used as OpenXKMS proposes.

Finally, it is worth mentioning that there exist a lot of XKMS prototypes that can be
used by the research community for interoperability testing purposes. Among others, we
emphasize Wings of Hermes [46], which provides an online XKMS server accessible
through different URLs.

7. CONCLUSIONS AND FUTURE WORK

In e-commerce, e-business and e-government, AdES signatures are fundamental in
order to guarantee the integrity and non-repudiation of a signed document over long
periods of time. To build these signatures we need to incorporate some validation
evidences. These evidences are needed so that the e-signature and the certificate used in
this signature remain valid for a long time after their creation.

These evidences could be obtained by means of XKMS when we validate the
certificate. However, XKMS only provides a simple response indicating whether the
certificate is valid or not. We have extended XKMS in order to able to recover

validation evidences. Our extension is based on the extensibility mechanisms provided
by XKMS. Thus, we facilitate the incorporation of our ACVS extension to the current
implementations of XKMS. Furthermore, we have defined the system architecture and
the different modules that a server providing this functionality should support. The
functionality provided has divided clients into two kinds: thin clients, with limited
capabilities; and thick clients with powerful capabilities. We have also proposed a
lightweight authentication to facilitate long-term relationships between clients and the
server. Finally, our proposal is extensible and could be improved with new features.

Our proposal has been developed and is being used by supporting different PKIs.
This development has also been incorporated in the e-government platform developed
in the University of Murcia. In this platform, as shown previously, this component is
fundamental for the generation of AdES signatures and is related to the signature
service.

Finally, as regards future work, we are studying how to improve the infrastructure for
the access to the services provided in the platform with Single Sign On. We are also
studying how to define a federation between different validation authorities based on
XKMS servers.

REFERENCES

[1] European Parliament. Directive 1999/93/EC of the European Parliament and the
council of December 1999 on a Community framework for electronic signatures.
In Official Journal of the European Communities. 2000.

[2] United Nations. UNCITRAL Model Law on Electronic Signatures with Guide to
Enactment. In United Nations Publications. 2002.

[3] Comité Européen de Normalisation - European Committee for Standardization
(CEN). E-invoices and digital signatures. In CEN Workshop Agreement (CWA)
15579. 2007.

[4] Myers M, Ankney R, Malpani A, Galperin S, Adams C. X.509 Public Key
Infrastructure: Online Certificate Status Protocol - OCSP. IETF RFC 2560, June
1999.

[5] Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. IETF RFC 5280, May 2008.

[6] Pinkas D, Pope N, Ross J. CMS Advanced Electronic Signatures (CAdES). IETF
RFC 5126, February 2008.

[7] Cruellas JC, Karlinger G, Pinkas D, Ross J. XML Advanced Electronic
Signatures (XAdES). W3C Recommendation, February 2003.
http://www.w3.org/TR/XAdES [6 August 2009]

[8] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. An RSA
Laboratories Technical Note. Version 1.5, November 1993.

[9] Housley R. Cryptographic Message Syntax (CMS). IETF RFC 3852, July 2004.
[10] Word Wide Web Consortium (W3C). XML-Signature Syntax and Processing. In

W3C Recommendation. February 2002.
[11] Cooper M, Dzambasow Y, Hesse P, Joseph S, Nicholas R. Internet X.509 Public

Key Infrastructure: Certification Path Building. IETF RFC 4158, September
2005.

[12] Lloyd S. Understanding Certification Path Construction. PKI Forum White Paper,
September 2002.

[13] Wahl M, Howes T, Kille S. Lightweight Directory Access Protocol (v3). IETF
RFC 2251, December 1997.

[14] Freeman T, Housley R, Malpani A, Cooper D, Polk W. Server-Based Certificate
Validation Protocol (SCVP). IETF RFC 5055, December 2007.

[15] Perlines Hormann T, Wrona K, Holtmanns S. Evaluation of Certificate Validation
Mechanisms. Computer Communications, 29(3):291-305, February 2006. DOI:
10.1016/j.comcom.2004.12.008.

[16] Hallam-Baker P, Mysore SH. XML Key Management Specification (XKMS 2.0).
W3C Recommendation, June 2005. http://www.w3.org/TR/xkms2 [6 August
2009]

[17] Jiang M, Willey A. Service-Oriented Architecture for Deploying and Integrating
Enterprise Applications. In Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA’05), pp. 272-273, 2005. DOI:
10.1109/WICSA.2005.60

[18] Papazoglou MP, Traverso P, Dustdar S, Leymann F. Service-Oriented
Computing: State of the Art and Research Challenges. Computer, 40(11):38-45,
November 2007. DOI: 10.1109/MC.2007.400

[19] Berbecaru D, Lioy A. Towards Simplifying PKI Implementation: Client-Server
based Validation of Public Key Certificates. In Proceedings of the 2nd IEEE
International Symposium on Signal Processing and Information Technology
(ISSPIT’02), pp. 277-282, December 2002.

[20] Halappanavar M, Mukkamala R. ECPV: Efficient Certificate Path Validation in
Public-key Infrastructure. In Proceedings of the 17th Annual Working
Conference on Data and Application Security (DBSec’03), pp. 215-228, 2003.

[21] Rivest RL, Shamir A. PayWord and MicroMint: Two Simple Micropayment
Schemes. Proceedings of the International Workshop on Security Protocols,
Lecture Notes in Computer Science, pp. 69-87, 1997.

[22] Council of the European Union. Council Directive 2001/115/EC of 20 December
2001 amending Directive 77/388/EEC. 2001.

[23] European Telecommunications Standards Institute (ETSI). Electronic Signatures
and Infrastructures (ESI); Registered Electronic Mail (REM). In ETSI Technical
Specification (TS) 102 640. October 2008.

[24] ETSI. Electronic Signatures and Infrastructures; Profiles of CMS Advanced
Electronic Signatures based on TS 101 733 (CAdES). In ETSI TS 102 734.
February 2007.

[25] ETSI. Electronic Signatures and Infrastructures; Profiles of XML Advanced
Electronic Signatures based on TS 101 903 (XAdES). In ETSI TS 102 904.
February 2007.

[26] Pinkas D, Housley R. Delegated Path Validation and Delegated Path Discovery
Protocol Requirements. IETF RFC 3379, September 2002.

[27] Hesse PM, Lemire DP. Managing Interoperability in Non-Hierarchical Public
Key Infrastructures. Proceedings of Network and Distributed System Security
Symposium (NDSS’02), February 2002.

[28] Department of Information Security and Electronic Signature, Slovakian National
Security Authority. Certificate Path Validation v1.4. No. 1891/2006/IBEP-011,
November 2006.

[29] Kim J, Kim S, Moon K. Design of Integration Security System using XML
Security. In Proceedings of World Academy of Science, Engineering and
Technology (WASET’05), Vol. 8, pp. 136-140, October 2005.

[30] Blaič AJ, Klobučar T, Jerman BD. Long-term Trusted Preservation Service using
Service Interaction Protocol and Evidence Records. Computer Standard &
Interfaces, 29(3):398-412, March 2007. DOI: 10.1016/j.csi.2006.06.004

[31] Gondrom T, Brandner R, Pordesch U. Evidence Record Syntax (ERS). IETF RFC
4998, August 2007.

[32] Jerman Balzic A, Sylvester P, Wallace C. Long-term Archive Protocol (LTAP).
IETF Internet-Draft version 08. July 2009.

[33] OASIS. Digital Signature Service Core Protocols, Elements, and Bindings
Version 1.0. OASIS Standard. April 2007.

[34] University of Murcia. SUMA Campus Virtual. https://suma.um.es/suma/sumav2
[6 August 2009]

[35] Cantor S, Kemp J, Philpott R, Maler E.Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0. OASIS Standard, March
2005.

[36] Adams C, Cain P, Pinkas D, Zuccherato R. Internet X.509 Public Key
Infrastructure Time-Stamp Protocol (TSP). IETF RFC 3161, August 2001.

[37] OpenXKMS, Open Source Implementation of XKMS 2.0,
http://xkms.sourceforge.net [6 August 2009]

[38] UMU-PKIv6 SCVP API. Public Key Infrastructure with IPv6 support. University
of Murcia. http://pki.inf.um.es/SCVP/ [6 August 2009]

[39] XML Trust Services - XKMS, VeriSign Inc.
http://www.verisign.com/developer/xml/xkms.html [6 August 2009]

[40] VeriSign’s XKMS Web service, http://interop-
xkms.verisign.com/xkms/Acceptor.nano [6 August 2009]

[41] Dillaway B. Implementing XML Key Management Services Using ASP.NET.
ASP.NET Technical Articles, Microsoft Corporation, January 2002.

[42] SQLData Systems, Inc., http://www.sqldata.com [6 August 2009]
[43] DataPower Technology Corporation, http://www.dptia.com [6 August 2009]
[44] TrustFinder XKMS Server, http://www.ascertia.com [6 August 2009]
[45] Alcaraz Calero JM, López Millán G, Martínez Pérez G, Gómez Skarmeta A.F.

Towards the Homogeneous Access and Use of PKI Solutions: Design and
Implementation of a WS-XKMS Server. Journal of Systems Architecture,
55(4):289-297, April 2009. DOI: 10.1016/j.sysarc.2008.10.004

[46] XKMS Prototype Server, Wings of Hermes,
http://www.wingsofhermes.org/xkms.html [6 August 2009]

	SUMMARY
	1. INTRODUCTION
	2. CREATION AND VALIDATION OF ADVANCED ELECTRONIC SIGNATURES
	2.1. USE SCENARIOS OF ADVANCED ELECTRONIC SIGNATURES
	2.2. ELECTRONIC SIGNATURE AND AdES FORMATS
	2.3. CERTIFICATION PATH PROCESSING
	2.3.1. ECPV
	2.3.2. XKMS
	2.3.2. SAVaCert
	3. ADVANCED CERTIFICATE VALIDATION ARCHITECTURE
	Figure 1: Architecture system
	3.1. PUBLIC KEY AND PRIVILEGE MANAGEMENT INFRASTRUCTURES
	3.2. CLIENTS
	3.3. VALIDATION AUTHORITY
	3.3.1. CERTIFICATE VALIDATION SERVICE MODULES
	Figure 2: XKMS server service modules
	3.4. PKI PROTOCOLS
	4. CERTIFICATE VALIDATION SERVICE SPECIFICATION
	4.1. MAIN GOALS FOR AN ADVANCED VALIDATION SERVICE
	4.2. WORKING MODES
	4.2.1. SYNCHRONOUS MODE
	Figure 3: The Validate Service in the synchronous mode
	4.2.2. ASYNCHRONOUS MODE
	Figure 4: The Validate Service in the asynchronous mode
	4.2.3. TWO-PHASE PROTOCOL
	Figure 5: The XKMS two-phase protocol with our extensions
	4.3. EXTENSIONS
	4.3.1. ExtendedValidationRequest
	Figure 6: ExtendedValidationRequest element
	4.3.2. ExtendedValidationResponse
	Figure 7: ExtendedValidationResponse element
	4.3.3. ExtendedLocationRequest
	Figure 8: ExtendedLocationRequest element
	4.3.4. ExtendedLocationResponse
	Figure 9: ExtendedLocationResponse element
	4.3. VALIDATION FLOW EXAMPLE
	Figure 10: Validation example flow
	5. AN SOA-BASED ADVANCED ELECTRONIC SIGNATURE ARCHITECTURE
	5.1. DESIGN OF THE ARCHITECTURE
	Figure 11: e-government SOA infrastructure
	5.2. SCENARIO OF USE: ELECTRONIC MARKS CERTIFICATE
	Figure 12: Electronic mark certificate process
	5.3. DETAILS OF THE IMPLEMENTATION
	6. RELATED WORK
	7. CONCLUSIONS AND FUTURE WORK
	REFERENCES

