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Abstract. We study the behavior of the so called successive inner and
outer radii with respect to the p-sums of convex bodies, p ≥ 1, which
were introduced by Firey in 1962. For all p ≥ 1 we get the upper and
lower bounds for the radii of the p-sum of two convex bodies in terms of
the radii of the sets. These results generalize the corresponding relations
for the classical Minkowski addition.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the
n-dimensional Euclidean space Rn. Let 〈·, ·〉 and | · |2 be the standard inner
product and the Euclidean norm in Rn, respectively, and denote by ei the
i-th canonical unit vector.

The set of all i-dimensional linear subspaces of Rn is denoted by Ln
i ,

and for L ∈ Ln
i , L⊥ denotes its orthogonal complement. For K ∈ Kn and

L ∈ Ln
i , the orthogonal projection of K onto L is denoted by K|L. With

lin{u1, . . . , um} we represent the linear hull of the vectors u1, . . . , um and
with [u1, u2] the line segment with end-points u1, u2. Finally, for S ⊂ Rn we
denote by conv S the convex hull of S and by bdS its boundary. Moreover,
we write relbdS to denote the relative boundary of S, i.e., the boundary of
S relative to its affine hull aff S.

The diameter, minimal width, circumradius and inradius of a convex body
K are denoted by D(K), ω(K), R(K) and r(K), respectively. For more
information on these functionals and their properties we refer to [4, pp. 56–
59]. If f is a functional on Kn depending on the dimension in which a convex
body K is embedded, and if K is contained in an affine space A, then we
write f(K;A) to stress that f has to be evaluated with respect to the space
A. Successive outer and inner radii are defined in the following way.

Definition 1.1. For K ∈ Kn and i = 1, . . . , n let

Ri(K) = min
L∈Ln

i

R(K|L) and ri(K) = max
L∈Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
.
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de Ciencia y Tecnoloǵıa 2007/2010), 04540/GERM/06.

1
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Notice that Ri(K) is the smallest radius of a solid cylinder with i-dimen-
sional spherical cross section containing K, and ri(K) is the radius of the
greatest i-dimensional ball contained in K. It is clear that the outer radii are
increasing in i, whereas the inner radii are decreasing in i, and we obviously
have

Rn(K) = R(K), R1(K) =
ω(K)

2
, rn(K) = r(K) and r1(K) =

D(K)
2

.

The first systematic study of the successive radii was developed in [1]. For
more information on these radii and their relation with other measures, we
refer, for instance, to [1, 2, 5, 8, 11, 13, 14, 15, 19, 20, 21, 22, 24].

From now on we write Kn
0 to denote the class of convex bodies containing

the origin. In [7] Firey introduced the following generalization of the classical
Minkowski addition (i.e., vectorial addition). Let p ≥ 1 be given. Then, for
K, K ′ ∈ Kn

0 , the p-sum of K and K ′ is the unique convex body K +p K ′ for
which the support function

(1) h(K +p K ′, ·)p = h(K, ·)p + h(K ′, ·)p.

We recall that h(K, u) = max
{
〈x, u〉 : x ∈ K

}
, u ∈ Sn−1; as usual, Sn−1

denotes the (n − 1)-dimensional unit sphere of Rn (see e.g. [23, s. 1.7]).
Clearly, when p = 1, formula (1) defines the usual Minkowski sum K + K ′,
and for p = ∞ it holds h(K +∞ K ′, u) = max

{
h(K, u), h(K ′, u)

}
, i.e.,

K +∞ K ′ = conv(K ∪K ′). Moreover, in [7, Theorem 1] it is shown that

(2) K +q K ′ ⊆ K +p K ′

for all 1 ≤ p ≤ q. Observe that for the p-sums of sets, except in the case
p = 1, the translation invariance is lost.

In [16, 17] Lutwak studied p-sums of convex bodies systematically, and
developed a theory nowadays known as Brunn-Minkowski-Firey theory. In
the last years many important developments of this theory have come out;
we mention e.g. [3, 6, 18] and the references inside.

In this point we would like to notice that usually p-sums are defined for
convex bodies containing the origin as a relative interior point, since this
condition is needed in some aspects of the Brunn-Minkowski-Firey theory;
however, regarding the functionals we are working on, this condition can
be withdrawn, and thus we allow the origin to lie on the boundary of the
convex bodies.

The behavior of the diameter, minimal width, circumradius and inradius
with respect to the Minkowski sum is well known (see e.g. [23, p. 42]),
namely,

D(K + K ′) ≤ D(K) + D(K ′), ω(K + K ′) ≥ ω(K) + ω(K ′),

R(K + K ′) ≤ R(K) + R(K ′), r(K + K ′) ≥ r(K) + r(K ′),
(3)

and in [9] we obtained the corresponding relations for the more general
successive inner and outer radii. Here we are interested in generalizing those
results to the p-sums of convex bodies. We prove the following theorems.
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Theorem 1.1. Let K, K ′ ∈ Kn
0 and p ≥ 1. Then

2
p−1

p R1(K +p K ′) ≥ R1(K) + R1(K ′) for all p ≥ 1,(4)

2
3p−2
2p Ri(K +p K ′) ≥ Ri(K) + Ri(K ′) for 1 ≤ p ≤ 2, i = 2, . . . , n,(5)

Ri(K +p K ′) ≥ max
{
Ri(K),Ri(K ′)

}
for p ≥ 2, i = 2, . . . , n.(6)

All inequalities are best possible.

Moreover, a reverse inequality can be obtained only in the case of the
circumradius:

Proposition 1.1. Let K, K ′ ∈ Kn
0 and p ≥ 1. Then

Rn(K +p K ′) ≤ Rn(K) + Rn(K ′),

which is tight, and for any i = 1, . . . , n − 1, there exists no constant c > 0
such that cRi(K +p K ′) ≤ Ri(K) + Ri(K ′).

Theorem 1.1 and Proposition 1.1 become [9, Theorem 1.1 and Remark 3.1]
when p = 1.

Theorem 1.2. Let K, K ′ ∈ Kn
0 and p ≥ 1. Then

2
p−1

p rn(K +p K ′) ≥ rn(K) + rn(K ′) for all p ≥ 1,(7)

2
3p−2
2p ri(K +p K ′) ≥ ri(K) + ri(K ′) for 1 ≤ p ≤ 2, i = 1, . . . , n− 1,(8)

ri(K +p K ′) ≥ max
{
ri(K), ri(K ′)

}
for p ≥ 2, i = 1, . . . , n− 1.(9)

All inequalities are best possible.

A reverse inequality can be obtained only in the case of the diameter:

Proposition 1.2. Let K, K ′ ∈ Kn
0 and p ≥ 1. Then

r1(K +p K ′) ≤ r1(K) + r1(K ′),

which is tight, and for any i = 2, . . . , n, there exists no constant c > 0 such
that c ri(K +p K ′) ≤ ri(K) + ri(K ′).

Theorem 1.2 and Proposition 1.2 become [9, Theorem 1.2 and Remark 3.2]
when p = 1.

We notice that in both Theorems 1.1 and 1.2, the last two inequalities
are valid for all p ≥ 1. We point out that the distinction depending on the
range of p is needed for the sharpness.

In Section 2 we present the proofs of the main results, as well as some
remarks. Finally, Section 3 is devoted to study a particular case for which the
bounds in Theorems 1.1 and 1.2 can be improved, the so called p-difference
body of a convex set K, i.e., K +p (−K).
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2. Proofs of the main results

For p ≥ 1 let Bp
n be the unit p-ball associated to the p-norm | · |p, i.e.,

Bp
n =

x = (x1, . . . , xn) ∈ Rn : |x|p =

(
n∑

i=1

|xi|p
)1/p

≤ 1

 ,

with |x|∞ = max{|xi| : i = 1, . . . , n}. For the sake of brevity, we will write
Bn = B2

n to denote the n-dimensional Euclidean unit ball. Moreover, for
L ∈ Ln

i , we will write Bi,L = Bn ∩ L and Bp
i,L = Bp

n ∩ L.
On the one hand, for any 1 ≤ p ≤ q, it is a direct consequence of Hölder’s

inequality for q/p (see e.g. [12, p. 15]) that | · |q ≤ | · |p ≤ n1/p−1/q| · |q, which
is equivalent to the inclusions Bp

n ⊆ Bq
n ⊆ n1/p−1/qBp

n. On the other hand,
it is known (see e.g. [10]) that [−e1, e1] +p · · · +p [−en, en] = Bq

n for q ≥ 1
such that 1/p + 1/q = 1. Therefore we get, in particular, that

(10) [−e1, e1] +p · · ·+p [−en, en] ⊆

{
n1/p−1/2Bn for 1 ≤ p ≤ 2,
Bn for p ≥ 2.

We start proving the lower bound for the outer radii Ri(K +p K ′) of the
p-sum of two convex bodies in terms of the corresponding radii.

Proof of Theorem 1.1. In [7, Theorem 1] it is shown that

(11)
1

2(p−1)/p
(K + K ′) ⊆ K +p K ′ ⊆ K + K ′.

Therefore 2(p−1)/p Ri(K +p K ′) ≥ Ri(K +K ′) for all i = 1, . . . , n, and by [9,
Theorem 1.1] we get

2(p−1)/p R1(K +p K ′) ≥ R1(K + K ′) ≥ R1(K) + R1(K ′),

2(p−1)/p Ri(K +p K ′) ≥ Ri(K + K ′) ≥ 1√
2

(
Ri(K) + Ri(K ′)

)
,

i = 2, . . . , n, which shows inequalities (4) and (5). Notice also that it always
holds K, K ′ ⊆ K +p K ′, which leads to

Ri(K +p K ′) ≥ max
{
Ri(K),Ri(K ′)

}
.

Since for any non-negative real numbers a, b ≥ 0 it holds that if p ≥ 2 then
max{a, b} ≥ 1/2(3p−2)/(2p)(a + b), inequality (6) is obtained.

So it remains to be shown that the three inequalities are best possible.
For the first one, let K = K ′. Then K +p K = 21/pK and thus

2(p−1)/p R1(K +p K) = 2(p−1)/p 21/p R1(K) = R1(K) + R1(K).

Next, for i ∈ {2, . . . , n− 1} we consider the convex bodies

K = [−e1, e1] +
n∑

k=i+1

[−ek, ek], K ′ = [−e2, e2] +
n∑

k=i+1

[−ek, ek],
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i.e., the 0-symmetric (n− i + 1)-cubes with edges parallel to the coordinate
axes and length 2, of the subspaces Lj = lin{ej , ei+1, . . . , en} ∈ Ln

n−i+1,
j = 1, 2, and for i = n we take K = [−e1, e1], K ′ = [−e2, e2]. Clearly
R(K|L),R(K ′|L) ≥ 1 for all L ∈ Ln

i . Moreover, R
(
K| lin{e1, . . . , ei}

)
=

R
(
K ′| lin{e1, . . . , ei}

)
= 1, which shows that Ri(K) = Ri(K ′) = 1.

Let 1 ≤ p ≤ 2, and we compute Ri(K +p K ′). Let L ∈ Ln
i . On the one

hand, since dim Lj ∩L ≥ (n− i + 1) + i− n = 1, there exist x ∈ K ∩L and
x′ ∈ K ′ ∩ L with |x|2, |x′|2 ≥ 1, and because of the central symmetry, we
may assume that 〈x, x′〉 ≥ 0. Then∣∣∣∣(x + x′)

2(p−1)/p

∣∣∣∣
2

≥
(
|x|22 + |x′|22

)1/2

2(p−1)/p
≥ 21/2

2(p−1)/p
= 2(2−p)/(2p)

and thus, since (x + x′)/2(p−1)/p ∈ (K +p K ′) ∩ L (see (11)), we get

(12) R
(
(K +p K ′)|L

)
≥ R

(
(K +p K ′) ∩ L

)
≥ 2(2−p)/(2p)

for all L ∈ Ln
i . On the other hand, since the orthogonal projection of the

p-sum of two convex bodies onto any lower dimensional linear subspace is
the p-sum of the projections (see [7, pp. 21–22]), and using (10), we get

(K +p K ′)| lin{e1, . . . , ei} = K| lin{e1, . . . , ei}+p K ′| lin{e1, . . . , ei}
= K| lin{e1}+p K ′| lin{e2} = [−e1, e1] +p [−e2, e2]

⊆ 2(2−p)/(2p)B2,lin{e1,e2},

which gives R
(
(K +p K ′)| lin{e1, . . . , ei}

)
≤ 2(2−p)/(2p). Then, together with

(12) we get R
(
(K +p K ′)| lin{e1, . . . , ei}

)
= 2(2−p)/(2p), and moreover,

Ri(K +p K ′) = min
L∈Ln

i

R
(
(K +p K ′)|L

)
= 2(2−p)/(2p) =

1
2(3p−2)/(2p)

(1 + 1)

=
1

2(3p−2)/(2p)

(
Ri(K) + Ri(K ′)

)
,

as required.
Now let p ≥ 2 and K, K ′ as before. First notice that Ri(K +p K ′) ≥

Ri(K) = Ri(K ′) = 1. With an analogous argument to the previous one, but
using (10) when p ≥ 2, we get that

R
(
(K +p K ′)| lin{e1, . . . , ei}

)
≤ R

(
B2,lin{e1,e2}

)
= 1.

Both inequalities give Ri(K +p K ′) = 1 = Ri(K) = Ri(K ′). �

However, as we show next, there is no chance to get a reverse inequality
for all outer radii.

Proof of Proposition 1.1. In the case of the circumradius we easily get, using
(11) and (3), that

Rn(K +p K ′) ≤ Rn(K + K ′) ≤ Rn(K) + Rn(K ′).

Notice that the inequality is tight, because the circumradius is a continuous
functional and equality is attained if K ′ = {0}.
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In order to show the non-existence of a reverse inequality, i = 1, . . . , n−1,
we take the convex bodies

K = [−en−i+1, en−i+1] and K ′ =
n−i∑
k=1

[−ek, ek].

On the one hand, since

K| lin{en−i, en−i+2, . . . , en} = K ′| lin{en−i+1, . . . , en} = {0},
then Ri(K) = Ri(K ′) = 0, i.e., Ri(K) + Ri(K ′) = 0. On the other hand,

K +p K ′ ⊇ 1
2(p−1)/p

(K + K ′) =
1

2(p−1)/p

n−i+1∑
j=1

[−ej , ej ],

i.e., K +p K ′ contains an (n− i+1)-dimensional convex body, which implies
that dim

(
(K +p K ′)|L

)
≥ 1 for all L ∈ Ln

i . Then, Ri(K +p K ′) > 0, which
shows the result. �

Remark 2.1. We notice that the inequality R(K +p K ′) ≤ R(K) + R(K ′),
p ≥ 1, can be strengthened in the particular case when the circumcenter of
both K, K ′ ∈ Kn

0 lies at the origin: since

h(K +p K ′, u) =
(
h(K, u)p + h(K ′, u)p

)1/p ≤
(
R(K)p + R(K ′)p

)1/p

for all u ∈ Sn−1, then we get

R(K +p K ′) ≤
(
R(K)p + R(K ′)p

)1/p
.

If K ′ = K equality holds.

Now we deal with the inner radii ri(K +p K ′) and prove Theorem 1.2.

Proof of Theorem 1.2. By (11) we have 2(p−1)/p ri(K +p K ′) ≥ ri(K + K ′)
for all i = 1, . . . , n, and applying [9, Theorem 1.2] we get

2(p−1)/p rn(K +p K ′) ≥ rn(K + K ′) ≥ rn(K) + rn(K ′),

2(p−1)/p ri(K +p K ′) ≥ ri(K + K ′) ≥ 1√
2

(
ri(K) + ri(K ′)

)
,

i = 1, . . . , n− 1, which shows inequalities (7) and (8). Again, since K, K ′ ⊆
K +p K ′, then

ri(K +p K ′) ≥ max
{
ri(K), ri(K ′)

}
,

which, together with the fact that max{a, b} ≥ 1/2(3p−2)/(2p)(a+b) for p ≥ 2
and a, b ≥ 0, leads to inequality (9).

So, we have to show that these inequalities are best possible. For the first
one, with K = K ′ we get

2(p−1)/p rn(K +p K) = 2(p−1)/p 21/p rn(K) = rn(K) + rn(K).

Next we fix i ∈ {1, . . . , n − 1} and consider the i-dimensional unit balls
Bi,L and Bi,L′ of the following i-dimensional linear subspaces: if 2i > n, let

L = lin{e1, . . . , e2i−n, e2i−n+1, . . . , ei}, L′ = lin{e1, . . . , e2i−n, ei+1, . . . , en};
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if 2i ≤ n, let

L = lin{e1, . . . , ei}, L′ = lin{ei+1, . . . , e2i}.

Clearly, ri(Bi,L) = ri(Bi,L′) = 1. We notice also that, since Bi,L, Bi,L′ are
0-symmetric, then Bi,L +p Bi,L′ is also 0-symmetric, and then

ri(Bi,L +p Bi,L′) = max
L̄∈Ln

i

r
(
(Bi,L +p Bi,L′) ∩ L̄; L̄

)
.

Let 1 ≤ p ≤ 2. We are going to show that

(13) r
(
(Bi,L +p Bi,L′) ∩ L̄; L̄

)
≤ 2(2−p)/(2p)

for all L̄ ∈ Ln
i , which will imply that

2(2−p)/(2p) =
1

2(3p−2)/(2p)
(1 + 1) =

1
2(3p−2)/(2p)

(
ri(Bi,L) + ri(Bi,L′)

)
≤ ri(Bi,L +p Bi,L′) ≤ 2

2−p
2p ,

i.e., ri(Bi,L +p Bi,L′) = 1/2(3p−2)/(2p)
(
ri(Bi,L) + ri(Bi,L′)

)
, as required.

Let L′′ = lin{ej+1, . . . , en}, where j = 2i−n if 2i > n and j = 0 if 2i ≤ n.
In both cases,

dim(L̄ ∩ L′′) = dim L̄ + dim L′′ − dim(L̄ + L′′) = i + n− j − dim(L̄ + L′′)
≥ i + n− j − n = i− j ≥ 1.

Therefore, since dim(Bi,L +p Bi,L′) = n, then, for all L̄ ∈ Ln
i , we can always

find z ∈ relbd(Bi,L +p Bi,L′) ∩ L̄ ∩ L′′, z 6= 0. Moreover, notice that, in
particular, z ∈ lin{ej+1, . . . , e2i−j}, and so it can be expressed in the form
z = x + x′ ∈ lin{ej+1, . . . , ei} + lin{ei+1, . . . , e2i−j} = (L ∩ L′′) + (L′ ∩ L′′);
observe that x, x′ lie in orthogonal subspaces. Writing u = z/ |z|2, we have

|z|2 = 〈z, u〉 ≤ h
(
Bi,L +p Bi,L′ , u

)
=
(
h (Bi,L, u)p + h

(
Bi,L′ , u

)p)1/p
,

and since

h(Bi,L, u) = sup
y∈Bi,L

〈y, u〉 =
1
|z|2

sup
y∈Bi,L

〈y, x〉 =
1
|z|2

〈
x

|x|2
, x

〉
= h

([
− x

|x|2
,

x

|x|2

]
, u

)
and analogously h(Bi,L′ , u) = h

(
[−x′/ |x′|2 , x′/ |x′|2], u

)
, we obtain that

|z|2 ≤

(
h

([
− x

|x|2
,

x

|x|2

]
, u

)p

+ h

([
− x′

|x′|2
,

x′

|x′|2

]
, u

)p
)1/p

= h

([
− x

|x|2
,

x

|x|2

]
+p

[
− x′

|x′|2
,

x′

|x′|2

]
, u

)
= h

(
B

p/(p−1)
2,lin{x,x′}, u

)
≤ R

(
B

p/(p−1)
2,lin{x,x′}

)
≤ 2(2−p)/(2p)R

(
B2,lin{x,x′}

)
= 2(2−p)/(2p)
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by (10). This implies r
(
(Bi,L +p Bi,L′) ∩ L̄; L̄

)
≤ 2(2−p)/(2p), showing (13)

and concluding the proof of the case 1 ≤ p ≤ 2.
Now let p ≥ 2. Notice that ri

(
Bi,L +p Bi,L′

)
≥ ri

(
Bi,L

)
= ri

(
Bi,L′

)
= 1.

So, it suffices to show that r
(
(Bi,L +p Bi,L′)∩ L̄; L̄

)
≤ 1 for all L̄ ∈ Ln

i . With
an analogous argument as before, but using (10) when p ≥ 2, we get that
there exists z ∈ relbd(Bi,L +p Bi,L′) ∩ L̄ ∩ L′′ such that

|z|2 ≤ R
(
B

p/(p−1)
2,lin{x,x′}

)
≤ R

(
B2,lin{x,x′}

)
= 1.

It shows that r
(
(Bi,L +p Bi,L′) ∩ L̄; L̄

)
≤ 1 and concludes the proof. �

We deal again with the possible existence of a reverse inequality, showing
Proposition 1.2.

Proof of Proposition 1.2. In the case of the diameter we easily get, using
(11) and (3), that

r1(K +p K ′) ≤ r1(K + K ′) ≤ r1(K) + r1(K ′).

The inequality is tight, since the diameter is a continuous functional and
equality is attained if K ′ = {0}.

In order to show the non-existence of a reverse inequality, i = 2, . . . , n,
we take the convex bodies

K = [−e1, e1] and K ′ =
i∑

k=2

[−ek, ek].

Clearly ri(K) = ri(K ′) = 0, because they have dimensions dim K = 1 and
dim K ′ = i− 1. However,

ri(K+pK ′) ≥ 2−(p−1)/pri(K+K ′) = 2−(p−1)/pri

(
i∑

k=1

[−ek, ek]

)
= 2−(p−1)/p,

which shows the result. �

3. On the p-difference body of a convex set

The difference body of a convex body K ∈ Kn is defined as the Minkowski
addition K −K := K + (−K) which, in particular, is a 0-symmetric body.
Thus, this operation defines the so called central symmetral of a convex
body K, just taking K0 = (K − K)/2 (see e.g. [4, p. 79] for properties of
the central symmetrization).

Similarly, the p-difference body can be defined: for K ∈ Kn
0 , we take the

p-sum K−pK := K+p (−K). We observe that K−pK is also a 0-symmetric
convex body: in fact,

h(K −p K,−u)p = h(K,−u)p + h(−K,−u)p = h(−K, u)p + h(K, u)p

= h(K −p K, u)p.

In [3], a sharp Rogers-Shephard inequality for the p-difference body of a
planar convex body was obtained, i.e., the best (upper) bound for the volume
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of the set K −p K in terms of the volume of the original body K. Here we
are interested in obtaining upper and lower bounds for the in- and outer
radii of the p-difference body K −p K in terms of the ones of K. In [9,
Proposition 4.2] we already studied the behavior of the radii regarding the
usual difference body: for all i = 1, . . . , n,

√
2

√
i + 1

i
Ri(K) ≤ Ri(K −K) ≤ 2Ri(K),

2ri(K) ≤ ri(K −K) < 2(i + 1)ri(K).
(14)

Next proposition extends the above results to the p-difference body, p ≥ 1,
showing moreover that the bounds in Theorems 1.1 and 1.2 can be improved
and that, in this particular case, there are non-trivial reverse inequalities (cf.
Propositions 1.1 and 1.2).

Proposition 3.1. Let K ∈ Kn
0 . Then for all i = 1, . . . , n and all p ≥ 1,

Ri(K −p K) ≤ 2Ri(K),(15)

21/p−1/2
√

i+1
i Ri(K) ≤Ri(K −p K) if 1 ≤ p ≤ 2,(16)

max
{

21/p−1/2
√

i+1
i , 1

}
Ri(K) ≤Ri(K −p K) if p ≥ 2.(17)

21/pri(K) ≤ ri(K −p K) < 2(i + 1)ri(K).(18)

Inequalities (15), (16) and the lower bound in (18) are best possible.

Proof. By (11) we have, for all i = 1, . . . , n, that
1

2(p−1)/p
Ri(K −K) ≤ Ri(K −p K) ≤ Ri(K −K),

and analogously for the inner radii. Then applying (14), together with the
fact that K ⊆ K −p K ′, we directly get the required inequalities.

We observe that if p ≥ 2, then max
{
21/p−1/2

√
(i + 1)/i, 1

}
= 1 for all

i ≥ 2 and all p ≥ (2 log 2)/ log
(
2i/(i + 1)

)
∈ (2, 4.81 . . . ).

So we deal with the sharpness of the inequalities, starting with the left
hand side in (18). In this case, just notice that if K is a 0-symmetric convex
body then K = −K and hence ri(K −p K) = ri(K +p K) = 21/pri(K).

Next we study (15). We fix i ∈ {1, . . . , n} and consider the convex body
K = [0, e1] +

∑n
j=i+1[−ej , ej ], for which it clearly holds

Ri(K) = R
(
K| lin{e1, . . . , ei}

)
= R

(
[0, e1]

)
=

1
2
;

here, if i = n we are taking K = [0, e1]. Now, on the one hand we notice
that (K −p K)| lin{e1, . . . , ei} = [0, e1] +p [−e1, 0] and that, by (2),

[−e1, e1] = conv
(
[0, e1] ∪ [−e1, 0]

)
⊆ [0, e1] +p [−e1, 0] ⊆ [−e1, e1],

i.e., (K −p K)| lin{e1, . . . , ei} = [0, e1] +p [−e1, 0] = [−e1, e1]. On the other
hand we observe that conv

(
K∪(−K)

)
= Cn−i+1 is the (n−i+1)-dimensional
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cube of edge-length 2 contained in lin{e1, ei+1, . . . , en} and thus, by (2), we
get that for all L ∈ Ln

i

R
(
(K −p K)|L

)
≥ R

(
conv

(
K ∪ (−K)

)
|L
)

= R(Cn−i+1|L)

≥ R
(
Cn−i+1| lin{e1, . . . , ei}

)
= R

(
[−e1, e1]

)
= R

(
(K −p K)| lin{e1, . . . , ei}

)
.

Therefore,

Ri(K −p K) = R
(
(K −p K)| lin{e1, . . . , ei}

)
= 1 = 2Ri(K).

Finally we consider the equality case in (17).
If i = n, let Sn be the n-dimensional simplex, embedded in Rn+1, lying

in the hyperplane
{

x = (x1, . . . , xn+1) ∈ Rn+1 :
∑n+1

j=1 xj = 0
}

, given by

Sn = conv
{

pk : pkk =
n

n + 1
, pkj =

−1
n + 1

for j 6= k, k = 1, . . . , n + 1
}

.

Since Sn −p Sn is a 0-symmetric n-dimensional convex body, then

Rn(Sn −p Sn) = max

h(Sn −p Sn, u) : |u|2 = 1 and
n+1∑
j=1

uj = 0

 .

Let u ∈ Rn+1 with |u|2 = 1 and
∑n+1

j=1 uj = 0. Recall that the value of the
support function of a convex body at any vector is attained in an extreme
point (cf. e.g. [12, Theorem 5.6]), so, in order to compute h(Sn, u) it suffices
to consider the vertices of Sn. Since

〈pk, u〉 =
n

n + 1
uk −

1
n + 1

∑
j 6=k

uj = uk,

then h(Sn, u) = max
{
〈pk, u〉 : k = 1, . . . , n + 1

}
= max{u1, . . . , un+1}.

Without loss of generality we may assume that u1 ≥ · · · ≥ un+1. Hence

h(Sn −p Sn, u)p = h(Sn, u)p + h(−Sn, u)p = h(Sn, u)p + h(Sn,−u)p

= up
1 + (−un+1)p.

We observe that u1 ≥ 0 and un+1 ≤ 0. Then, by elementary calculations it
can be shown that the maximum of the function up

1 + (−un+1)p, 1 ≤ p ≤ 2,
under the conditions |u|2 = 1 and

∑n+1
j=1 uj = 0, is attained in the point(

1/
√

2, 0, . . . , 0,−1/
√

2
)
. Therefore,

Rn(Sn −p Sn) =
(

1
2p/2

+
1

2p/2

)1/p

= 21/p−1/2.

Since Rn(Sn) =
√

n/(n + 1), then we get the required equality:

Rn(Sn −p Sn) = 21/p−1/2 = 21/p−1/2

√
n + 1

n
Rn(Sn).
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If i < n, we take the i-dimensional simplex Si and consider the convex body
K = Si +MCn−i, where Cn−i ⊂ (aff Si)⊥ represents the (n− i)-dimensional
unit cube and M > 0 is sufficiently large such that Ri(K−pK) = R(Si−pSi)
and Ri(K) = R(Si). The above argument gives the result. �
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