Práctica 4

Método del descenso máximo. Optimización de funciones diferenciables de varias variables

Método del descenso máximo

El método del descenso máximo es uno de los procedimientos más utilizados para minimizar una función diferenciable de varias variables.

Un vector \mathbf{d} se dice que es una dirección de descenso de una función f en un punto \mathbf{x} si existe $\delta > 0$ tal que $f(\mathbf{x} + \lambda \mathbf{d}) < f(\mathbf{x})$ para todo $\lambda \in (0, \delta)$. Si

$$f'(\mathbf{x}; \mathbf{d}) = \lim_{\lambda \to 0^+} \frac{f(\mathbf{x} + \lambda \mathbf{d}) - f(\mathbf{x})}{\lambda} < 0$$

entonces \mathbf{d} es una dirección de descenso de f en \mathbf{x} .

La dirección de descenso máximo es al dirección \mathbf{d} , con $\|\mathbf{d}\| = 1$, que minimiza el límite anterior. Se demuestra que si f es diferenciable en \mathbf{x} con gradiente no nulo, entonces

$$\frac{-\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}$$

es la dirección de descenso máximo. El método del descenso máximo se mueve a lo largo de esta dirección, o, equivalentemente, a lo largo de la dirección $-\nabla f(\mathbf{x})$ hasta localizar

un punto con gradiente nulo. Por esta razón, a este método se le conoce habitualmente como el método del gradiente.

Algoritmo del descenso máximo

Inicialización.- Sea \mathbf{x} un punto inicial y $\epsilon > 0$ un valor de control de fin del algoritmo. Tomar $\mathbf{x}_1 = \mathbf{x}$ y hacer k = 1.

Paso Principal.- Si $\|\nabla f(\mathbf{x}_k)\| < \epsilon$, FIN; el punto actual \mathbf{x}_k se considera una aceptable aproximación al verdadero candidato a mínimo. En caso contrario, tomar $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$, y sea λ_k la solución del problema

$$\min_{\lambda \ge 0} f(\mathbf{x}_k + \lambda \mathbf{d}_k)$$

Tomar $\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda_k \mathbf{d}_k$, hacer k = k+1 y repetir el paso principal.