Tema 1. Abstracciones y Especificaciones

- 1.1. Introducción
- 1.2. Especificaciones informales
 - 1.2.1. Abstracciones funcionales
 - 1.2.2. Abstracciones de datos
 - 1.2.3. Abstracciones de iteradores
- 1.3. Especificaciones formales
 - 1.3.1. Método axiomático (o algebraico)
 - 1.3.2. Método constructivo (u operacional)

1.1. Introducción

Abstraer: eliminar lo irrelevante y quedarnos con lo realmente importante.

¿Qué es lo importante?

- *Abstracción por especificación: sólo necesitamos conocer qué va a hacer la operación y no cómo funciona. (Encapsulación)
- *Abstracción por parametrización: un algoritmo, un tipo, o una variable se definen a través de unos parámetros. (Genericidad)

AED-I

1.1. Introducción

Tipos de abstracciones

- Abstracciones funcionales → Rutinas, procedimientos.
- Abstracciones de datos → Tipos Abstractos de Datos.
- Abstracciones de iteradores → Iteradores.

Especificaciones: Tipos de notaciones

- Notaciones informales.
- Notaciones formales.
 - Algebraicas.
 - Operacionales.

1.1. Introducción

Diseño mediante abstracciones

- 1. Identificación de los subproblemas.
- 2. Especificación abstracta de cada uno de ellos.
- 3. Implementación de cada abstracción.
- 4. Verificación del programa.

1.2. Especificaciones informales

1.2.1. Abstracciones funcionales

Notación

<u>Operación</u> <nombre> (<u>ent</u> ident: tipo..., <u>sal</u> ident: tipo ...)

Requiere: establecimiento de restricciones de uso.

Modifica: identificación de los datos de entrada que se modifican.

<u>Calcula</u>: descripción textual del comportamiento de la operación.

1.2.1. Abstracciones funcionales

Ejemplo 1: eliminar la repetición en los elementos de un array.

Operación Quitar Duplic (ent a: array [entero])

<u>Modifica</u>: a

<u>Calcula</u>: quita los elementos repetidos de a. El límite inferior del array no varía, pero sí lo puede hacer el superior.

Ejemplo 2: concatenar dos cadenas.

Operación Concat (ent a,b: cadena; sal c: cadena)

<u>Calcula</u>: la cadena de salida c es una nueva cadena que contiene los caracteres de a (en el mismo orden) seguidos de los caracteres de b (en el mismo orden).

AED-I

1.2.1. Abstracciones funcionales

Ejemplo 3: buscar un elemento en un array de enteros.

<u>Operación</u> Buscar (<u>ent</u> a: array [entero]; x: entero; <u>sal</u> i: entero)

<u>Requiere</u>: a debe estar ordenado de forma ascendente.
 <u>Calcula</u>: si x está en a, entonces i debe contener el valor del índice de x tal que a[i] = x. Si x no está en a, entonces i = sup+1, donde sup es el índice superior del array a.

AED-I
Tema 1. Abstracciones y especificaciones.

7

1.2.1. Abstracciones funcionales

Generalización: una operación está definida independientemente de cuál sea el tipo de sus parámetros.

Ejemplo 4: eliminar la repetición en los elementos de un array.

<u>Operación</u> QuitarDuplic [T: tipo](<u>ent</u> a: array [T])
<u>Requiere</u>: -T debe tener una operación de comparación
IgualQue(<u>ent</u> T, T; <u>sal</u> booleano).

Modifica: a

<u>Calcula</u>: quita los elementos repetidos de a. El límite inferior del array no varía, pero sí lo puede hacer el superior.

Ejemplo 5: buscar un elemento en un array de enteros.

Operación Buscar [T: tipo](ent a: array [T]; x: T; sal i: entero)

Requiere: -T debe tener dos operación de comparación MenorQue(ent T, T; sal bool), Igual(ent T, T; sal bool).

-a debe estar ordenado de forma ascendente.

-a debe estar ordenado de forma ascendente.

-T debe estar totalmente ordenado

Calcula: si *x* está en *a*, entonces *i* debe contener...

AED-I

8

1.2. Especificaciones informales

1.2.2. Abstracciones de datos

Notación

TAD <nombre_tipo> es <lista_operaciones>

Descripción

Descripción textual del tipo

<u>Operaciones</u>

Especificación informal de las operaciones de la lista anterior

Fin <nombre_tipo>.

Ejemplo 6: TAD Conjunto de enteros

<u>TAD</u> CjtoEnteros <u>es</u> Vacío, Insertar, Suprimir, Miembro, EsVacío, Unión, Intersección, Cardinalidad

<u>Descripción</u>

Los CjtoEnteros son conjuntos matemáticos modificables, que almacenan valores enteros.

Operaciones

Operación Vacío (sal CjtoEnteros)

Calcula: devuelve un conjunto de enteros vacío.

Operación Insertar (ent c: CjtoEnteros; x: entero)

Modifica: c.

<u>Calcula</u>: añade x a los elementos de c. Después de la inserción, el nuevo conjunto es c U {x}.

. . .

Fin CjtoEnteros.

<u>TAD</u> ListaEnteros <u>es</u> Crear, Insertar, Primero, Ultimo, Cabeza,Cola, EsVacío, Igual

<u>Descripción</u>

Las ListaEnteros son listas de enteros modificables. Las listas se crean con las operaciones Crear e Insertar...

<u>Operaciones</u>

<u>Operación</u> Crear (<u>sal</u> ListaEnteros)

Calcula: Devuelve una lista de enteros vacía.

Operación Insertar (ent l: ListaEnteros; x: entero)

Modifica: I.

Calcula: Añade x a la lista l en la primera posición.

. . .

Fin ListaEnteros.

11

- Generalización (parametrización de tipo): el tipo se define en función de otro tipo pasado como parámetro.
- Útil para definir tipos contenedores o colecciones. Por ej. Listas, pilas, colas, arrays, conjuntos, etc.
- En lugar de: ListaEnteros ListaCadenas ListaReales

Tenemos:Lista[T]

Instanciación: Lista[entero], Lista[cadena],...

```
TAD Conjunto[T: tipo] <u>es</u> Vacío, Insertar, Suprimir, Miembro,
       EsVacío, Unión, Intersección, Cardinalidad
  Descripción
       Los Conjunto[T] son conjuntos matemáticos modificables,
  que almacenan valores de tipo T.
  Operaciones
       <u>Operación</u> Vacío (<u>sal</u> Conjunto[T])
       Operación Insertar (ent c: Conjunto[T]; x: T)
        Operación Suprimir (ent c: Conjunto[T]; x: T)
        Operación Miembro (ent c: Conjunto[T]; x: T; sal booleano)
Fin Conjunto.
```

13

```
TAD Lista[T] es Crear, Insertar, Primero, Ultimo, Cabeza,
        Cola, EsVacío, Igual
   Descripción
        Las Lista[T] son listas modificables de valores de tipo T.
        Las listas se crean con las operaciones Crear e Insertar...
   Operaciones
        <u>Operación</u> Crear (<u>sal</u> Lista[T])
         Operación Insertar (ent l: Lista[T]; x: entero)
         <u>Operación</u> Primero (<u>ent</u> l: Lista[T]; <u>sal</u> Lista[T])
Fin Lista.
```

1.2. Especificaciones informales 1.2.3. Abstracciones de iteradores

 Ejemplo: Sobre el TAD CjtoEnteros queremos añadir operaciones para calcular la suma, el producto, ...

```
    Operación suma_conj (ent c: ConjEnteros; sal entero)
    Calcula: devuelve la suma de los elementos de c.
    Operación producto_conj (ent c: ConjEnteros; sal entero)
    Operación varianza_conj (ent c: ConjEnteros; sal real)
```

- Necesitamos abstracciones de la forma:
 - para cada elemento *i* del conjunto *A* hacer acción sobre *i*
 - para cada elemento *i* de la lista *L* hacer acción sobre *i*
 - para cada i de la cola C tal que P(i) hacer acción sobre i
 - D:= Seleccionar todos los i de C tal que P(i)
- Abstracción de iteradores: permiten definir un recorrido abstracto sobre los elementos de una colección.

- La abstracción de iteradores no es soportada por la mayoría de los lenguajes de programación.
- Posibles definiciones:
 - Como una abstracción funcional:

<u>Iterador</u> ParaTodoHacer [T: tipo] (<u>ent</u> C: Conjunto[T]; <u>accion</u>: Operacion)

<u>Requiere</u>: accion debe ser una operación que recibe un parámetro de tipo T y no devuelve nada, accion(ent T). <u>Calcula</u>: Recorre todos los elementos c del conjunto C, aplicando sobre ellos la operación accion(c).

Como una abstracción de datos:

<u>Tipolterador</u> IteradorPreorden [T: tipo] **es** Iniciar, Actual, Avanzar, EsUltimo <u>Descripción</u>

Los valores de tipo IteradorPreorden[T] son iteradores definidos sobre árboles binarios de cualquier tipo T. Los elementos del árbol son devueltos en preorden. El iterador se debe inicializar con Iniciar.

<u>Operaciones</u>

<u>Operación</u> Iniciar (<u>ent</u> A: ArbolBinario[T]; <u>sal</u> IteradorPreorden)
<u>Calcula</u>: Devuelve un iterador nuevo, colocado sobre la raíz de A.
<u>Operación</u> Actual (<u>ent</u> iter. IteradorPreorden; <u>sal</u> T)

. . .

Fin IteradorPreorden.

```
var
  A: ArbolBinario[T];
  i: IteradorPreorden[T];
begin
  i:= Iniciar(A);
  while Not EsUltimo(i) do begin
      Acción sobre Actual(i);
      i:= Avanzar(i);
  end;
```

1.3. Especificaciones formales

- Las especificaciones en lenguaje natural son ambiguas e imprecisas.
- Especificaciones formales: definen un TAD o una operación de manera precisa, utilizando un lenguaje matemático.
- Ventajas de una especificación formal:
 - Prototipado. Las especificaciones formales pueden llegar a ser ejecutables.
 - Corrección del programa. Verificación automática y formal del funcionamiento correcto del programa.
 - Reusabilidad. Posibilidad de usar la especificación formal en distintos ámbitos.

1.3. Especificaciones formales

Notación

La descripción formal constará de cuatro partes:

- NOMBRE. Nombre genérico del TAD.
- CONJUNTOS. Conjuntos de datos que intervienen en la definición.
- SINTAXIS. Signatura de las operaciones definidas.
- **SEMÁNTICA**. Indica el significado de las operaciones, cuál es su resultado.

1.3. Especificaciones formales

Sintaxis:

```
<nombre_operación> : <conj_dominio> → <conj_resultado>
```

- Los distintas notaciones formales difieren en la forma de definir la semántica:
 - Método axiomático o algebraico. Se establece el significado de las operaciones a través de relaciones entre operaciones (axiomas). Significado implícito de las operaciones.
 - Método constructivo u operacional. Se define cada operación por sí misma, independientemente de las otras, basándose en un modelo subyacente. Significado explícito de las operaciones.

AED-I 22

- La semántica de las operaciones se define a través de un conjunto de axiomas.
- Un axioma es una regla de tipo algebraico de la forma:

```
<operación> (<valores particulares>) = <expresión del resultado>
```

- ¿Qué axiomas introducir en la semántica?
- Los axiomas deben ser los necesarios para satisfacer dos propiedades:
 - Completitud: los axiomas deben ser los suficientes para poder deducir el significado de cualquier expresión.
 - Corrección: a partir de una expresión sólo se puede obtener un resultado.

AED-I

Ejemplo: TAD Natural de los números naturales.

NOMBRE

Natural

CONJUNTOS

N Conjunto de naturales

Bool Conjunto de booleanos (true, false)

<u>SINTAXIS</u>

cero: \rightarrow N

sucesor: $N \rightarrow N$

suma: $N \times N \rightarrow N$

esCero: $N \rightarrow Bool$

esigual: $N \times N \rightarrow Bool$

SEMÁNTICA

- \forall m, n \in N
- 1. suma (cero, n) = n
- 2. suma (sucesor (m), n) = sucesor (suma (m, n))
- 3. esCero (cero) = true
- 4. esCero (sucesor (n)) = false
- 5. eslgual (cero, n) = esCero (n)
- 6. eslgual (sucesor (n), cero) = false
- 7. eslgual(sucesor(n), sucesor(m)) = eslgual(n, m)

- Supongamos un TAD, T.
- Tipos de operaciones:
 - Constructores. Conjunto mínimo de operaciones del TAD, a partir del cual se puede obtener cualquier valor del tipo T.

$$\underline{c1}$$
: \rightarrow T, $\underline{c2}$: V \rightarrow T, $\underline{c3}$: V₁x...xV_n \rightarrow T

 Modificación. A partir de un valor del tipo obtienen otro valor del tipo T, y no son constructores.

$$\underline{m1}$$
: T \rightarrow T, $\underline{m2}$: TxV \rightarrow T, $\underline{m3}$: V₁x...xV_n \rightarrow T

Consulta. Devuelven un valor que no es del tipo T.

o1: T
$$\rightarrow$$
 V, o2: TxV \rightarrow V', o3: V₁x...xV_n \rightarrow V_{n+1}

- La ejecución de una expresión acaba al expresarla en función de los constructores.
- ¿Cómo garantizar que una especificación es completa y correcta?
- Definir los axiomas suficientes para relacionar las operaciones de modificación y consulta con los constructores.
- No incluir axiomas que se puedan deducir de otros existentes.

•Ejemplo: Especificación del TAD genérico pila.

NOMBRE

Pila [T]

CONJUNTOS

P Conjunto de pilas

T Conjunto de elementos que pueden ser almacenados

Bool Conjunto de booleanos (true, false)

SINTAXIS

pilaVacía: → P

esVacía: P → Bool

pop: $P \rightarrow P$

tope: $P \rightarrow T$

push: $T \times P \rightarrow P$

- En el caso de tope: P → T, ¿qué pasa si la pila está vacía?
- Se puede añadir un conjunto de mensajes en CONJUNTOS, de la forma:
 - M Conjunto de mensajes {Error.Pilavacía}
- Y cambiar en la parte de SINTAXIS la operación tope:

tope: $P \rightarrow T \cup M$

	pilaVacía	push (t, p)
esVacía ()	esVacía(pilaVacía) =	esVacía(push(t, p)) =
pop()	pop(pilaVacía) =	pop(push(t, p)) =
tope ()	tope(pilaVacía) =	tope(push(t, p)) =

SEMÁNTICA

$$\forall t \in T; \forall p \in P$$

- 1. esVacía (pilaVacía) = true
- 2. esVacía (push (t, p)) = false
- 3. pop (pilaVacía) = pilaVacía
- 4. pop (push (t, p)) = p
- 5. tope (pilaVacía) = Error.Pilavacía
- 6. tope (push (t, p)) = t

•Para facilitar la escritura de la expresión del resultado en la semántica, se pueden emplear expresiones condicionales de la forma:

SI <condición> ⇒ <valor si cierto> | <valor si falso>

•Ejemplo: Especificación algebraica del TAD bolsa.

NOMBRE

Bolsa[I]

<u>CONJUNTOS</u>

B Conjunto de bolsas

I Conjunto de elementos

Bool Conjunto de booleanos (true, false)

N Conjunto de naturales

<u>SINTAXIS</u>

bolsaVacía: → B

poner: $I \times B \rightarrow B$

esVacía: B \rightarrow Bool

cuántos: $I \times B \rightarrow N$

AED-I 32

- Incluir una operación quitar, que saque un elemento dado de la bolsa.
- ¿Y si queremos que los saque todos?
- Incluir una operación esIgual, de comparación de bolsas.

Conclusiones:

- Las operaciones no se describen de manera explícita, sino implícitamente relacionando el resultado de unas con otras.
- La construcción de los axiomas se basa en un razonamiento inductivo.
- ¿Cómo se podría especificar, por ejemplo, un procedimiento de ordenación?

1.3.2. Método constructivo (operacional)

- Para cada operación, se establecen las precondiciones y las postcondiciones.
- Precondición: Relación que se debe cumplir con los datos de entrada para que la operación se pueda aplicar.
- Postcondición: Relaciones que se cumplen después de ejecutar la operación.

1.3.2. Método constructivo (operacional)

Notación

 <u>Ejemplo</u>: operación máximo, que tiene como entrada dos números reales y da como salida el mayor de los dos.

AED-I

• <u>Ejemplo</u>: operación máximo sobre números reales, pero restringida a números positivos.

```
<u>máximop</u>: R x R \rightarrow R

<u>pre-máximop</u>(x, y) ::= (x \geq 0) \wedge (y \geq 0)

<u>post-máximop</u>(x, y; r) ::= (r \geq x) \wedge (r \geq y) \wedge (r=x \vee r=y)
```

- ¿Qué sucedería si x o y no son mayores que 0?
- No se cumple la precondición → no podemos asegurar que se cumpla la postcondición.

 Otra posibilidad: definir un conjunto M (de mensajes de error) y cambiar la imagen. Modificar la sintaxis y la semántica:

```
\begin{array}{l} \underline{\mathsf{m}}\underline{\mathsf{aximop2}} \colon \mathsf{R} \ \mathsf{x} \ \mathsf{R} \to \mathsf{R} \ \mathsf{U} \ \mathsf{M} \\ \underline{\mathsf{pre-maximo2}}(\mathsf{x}, \, \mathsf{y}) ::= \mathsf{true} \\ \underline{\mathsf{pos-m}}\underline{\mathsf{aximop2}}(\mathsf{x}, \, \mathsf{y}; \, \mathsf{r}) ::= \mathsf{SI} \ (\mathsf{x} \geq \mathsf{0}) \land (\mathsf{y} \geq \mathsf{0}) \\ \Rightarrow (\mathsf{r} \geq \mathsf{x}) \land (\mathsf{r} \geq \mathsf{y}) \land (\mathsf{r=x} \lor \mathsf{r=y}) \\ | \quad \mathsf{r} = \mathsf{``Fuera} \ \mathsf{de} \ \mathsf{rango''} \end{array}
```

¿Cuál es la mejor opción?

- ¿Cómo se pueden definir las pre- y post-condiciones cuando el TAD es más complejo? Por ejemplo, para TAD colecciones.
- Necesitamos un modelo subyacente, en el cual se base la definición del TAD.
- No siempre se encuentra uno adecuado...
- Ejemplo: Para definir el TAD Pila[I], definiremos el TAD Lista[I] por el método axiomático, y luego lo usaremos para definir el TAD pila con el método constructivo.

<u>NOMBRE</u>

Lista[I]

<u>CONJUNTOS</u>

- L Conjunto de listas
- I Conjunto de elementos
- B Conjunto de booleanos (true, false)
- N Conjunto de naturales
- M Conjunto de mensajes {"La lista está vacía"}

SINTAXIS

<u>SEMÁNTICA</u>

 $\forall i \in I; \forall a,b \in L$

- 1. último (crearLista) = "La lista está vacía"
- 2. último (formarLista (i)) = i
- 3. último (concatenar (a, b)) = SI esListaVacía (b) ⇒ último (a) | último (b)
- 4. cabecera (crearLista) = crearLista
- 5. cabecera (formarLista (i)) = crearLista
- 6. cabecera (concatenar (a, b)) = SI esListaVacía (b) ⇒ cabecera (a) | concatenar (a, cabecera (b))
- 7. primero (crearLista) = "La lista está vacía"
- 8. primero (formarLista (i)) = i
- 9. primero (concatenar (a, b)) = SI esListaVacía (a) ⇒primero (b) | primero (a)

AED-I

41

- 10. cola (crearLista) = crearLista
- 11. cola (formarLista (i)) = crearLista
- 12. cola (concatenar (a, b)) = SI esListaVacía (a) ⇒ cola (b) | concatenar (cola (a), b)
- 13. longitud (crearLista) = cero
- 14. longitud (formarLista (i)) = sucesor (cero)
- 15. longitud (concatenar (a, b)) = suma (longitud (a), longitud (b))
- 16. esListaVacía (crearLista) = true
- 17. esListavacía (formarLista (i)) = false
- 18. esListaVacía (concatenar (a, b)) = esListaVacía (a) AND esListaVacía(b)

Aserto invariante: siempre que aparezca un mensaje a la entrada de una operación, la salida será el mismo mensaje.

 Seguimos el ejemplo y aplicamos el método constructivo a la definición de Pila[I], teniendo como modelo subyacente el tipo Lista[I].

NOMBRE

Pila[I]

CONJUNTOS

- S Conjunto de pilas
- I Conjunto de elementos
- B Conjunto de valores booleanos (true, false)
- M Conjunto de mensajes {"La pila está vacía"}

SINTAXIS

```
crearPila: \rightarrow S
```

tope:
$$S \rightarrow IUM$$

pop:
$$S \rightarrow SUM$$

push:
$$I \times S \rightarrow S$$

AED-I

43

<u>SEMÁNTICA</u>

```
∀ i∈I; ∀ s∈S; b∈B; r∈S; t∈I U M; p∈S U M
1. pre-crearPila () ::= true
2. post-crearPila (s) ::= s = crearLista
3. pre-tope (s) ::= true
```

- 4. post-tope (s; t) ::= SI esListaVacía (s)
 ⇒ t = "La pila está vacía"
 | t = primero (s)
- 5. pre-pop (s) ::= true
- 6. post-pop (s; p) ::= SI esListaVacía (s)

 ⇒ p = "La pila está vacía"

 | p = cola (s)
- 7. pre-push (i, s) ::= true
- 8. post-push (i, s; r) ::= r = concatenar (formarLista (i), s)
- 9. pre-esVacíaPila (s) ::= true
- 10. post-esVacíaPila (s; b) ::= b = esListaVacía (s)

<u>NOMBRE</u>

Pila[I]

<u>CONJUNTOS</u>

- S Conjunto de pilas
- I Conjunto de elementos
- B Conjunto de valores booleanos (true, false)

SINTAXIS

```
crearPila: \rightarrow S
```

tope:
$$S \rightarrow I$$

pop:
$$S \rightarrow S$$

push:
$$I \times S \rightarrow S$$

<u>SEMÁNTICA</u>

- \forall i, t \in I; \forall s, r, p \in S; \forall b \in B
- 1. pre-crearPila () ::= true
- 2. post-crearPila (s) ::= s = crearLista
- 3. pre-tope (s) ::= NOT esListaVacía (s)
- 4. post-tope (s; t) ::= t = primero (s)
- 5. pre-pop (s) ::= NOT esListaVacía (s)
- 6. post-pop (s; p) ::= p = cola (s)
- 7. pre-push (i, s) ::= true
- 8. post-push (i, s; r) ::= r = concatenar (formarLista (i), s)
- 9. pre-esVacíaPila (s) ::= true
- 10. post-esVacíaPila (s; b) ::= b = esListaVacía (s)

 Seguimos el ejemplo y aplicamos el método constructivo a la definición de Cola[I], teniendo como modelo subyacente el tipo Lista[I].

NOMBRE

Cola[I]

CONJUNTOS

C Conjunto de colas

I Conjunto de elementos

B Conjunto de valores booleanos (true, false)

M Conjunto de mensajes {"La cola está vacía"}

SINTAXIS

crearCola: \rightarrow C

frente: $C \rightarrow IUM$

inserta: $C \rightarrow CUM$

resto: $I \times C \rightarrow C$

esVacíaCola: C → B

 Ejecución de la especificación: comprobar precondiciones y postcondiciones de todas las operaciones de la expresión.

- Ejemplos: Pila[Natural]
 - a) tope (push (4, pop (push (2, crearPila))))
 - b) esVacíaPila (push (2, pop (crearPila)))

- ¿Cuál es la mejor solución?
- Programación por contrato (tomado de OO).
- Contrato de una operación: si se cumplen unas condiciones en los parámetros de entrada, entonces garantiza una obtención correcta del resultado.

Idea:

- La operación no trata todos los casos de error, sino que hace uso de las precondiciones.
- La responsabilidad de comprobar la condición de error es del que usa la operación.

Conclusiones:

- La especificación constructiva está limitada por la necesidad de modelos subyacentes.
- No confundir especificación con implementación.
- Es más fácil incluir especificaciones constructivas en los programas (p.ej., mediante asertos).