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ABSTRACT
In this paper we present the results obtained from a large experi-
mental environment that makes use of Bluetooth Low Energy (BLE)
as the core technology for a location estimation system. BLE is a
common technology for this kind of geopositioning systems, but
most of the existing proposals are based on the RSS (Received Sig-
nal Strength) value obtained by mobile smart devices from static
emitters such as iBeacons or other similar tags. This is not our
case, since we adopt a passive approach where monitors obtain
advertising frames emitted by mobile BLE beacons with no comput-
ing capabilities. In our particular scenario, based on a commercial
application of our system, we perform fast but exhaustive train-
ing procedures to produce an initial dataset that is then analyzed
paying attention to important design parameters. A thorough anal-
ysis of the data by means of different data visualization techniques
reveals valuable information about the behavior of the emitters,
signal characterization, radio coverage and, mainly, possible fea-
tures that can be employed lately by machine learning methods
in order to provide accurate location estimations. This is useful to
define a quick and continuous training life-cycle which enables the
detection of inconsistent data or failures. Our analysis also suggests
that a representation of the observations using alternative features
provides similar or even better results than the RSS values in terms
of efficiency and support for heterogeneous devices.
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• Networks → Location based services; • Human-centered
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1 INTRODUCTION AND RELATEDWORK
Over the past twenty years, several radio technologies have been
proposed for localization purposes. However, the recent introduc-
tion of Bluetooth 4.0 and the Bluetooth Low Energy (BLE) sub-
system enables new opportunities. Already supported on a wide
range of devices, BLE was designed for ubiquitous computing and
the Internet of Things. BLE devices are small, inexpensive and run
on batteries for months or years. In some particular scenarios, for
practical reasons, it is more appropriate to track valuable assets and
people using this kind of small, cheap and off-the-shell devices.

The work presented in this paper was developed making use of
an existing localization service which is currently in commercial
exploitation. It is placed in a large truck workshop and the main
purpose of that application environment is to optimize the repair
service and to enhance the service quality by analyzing the required
time for each operation and operator. Workers, trucks and valuable
equipments are tracked using the localization service based on BLE.

Taking into account our previous background and experience
described in [8], we developed a passive indoor localization system
based on BLE devices and Raspberry Pi monitors which has several
advantages from different points of view: taking into account the
economical cost, we are employing 2$ beacons and 30$ monitors;
regarding autonomy, beacons have a battery lifetime around 2 years
when emitting 1 frame per second; deployment is easy since we
make use of a wireless 802.11 network in order to interconnect the
monitors with the central server; regularity, since the traffic pattern
of BLE advertisements is guaranteed and it can be as frequent as
required (several frames per second). In relation to our previous
works based on 802.11, as we will show, making use of BLE we ob-
tain much more data in smaller training periods (around 30 minutes
for almost 6000𝑚2).

As in most fingerprinting based methods, our training phase
implies the generation of an initial geo-tagged radio map of signals
emitted by the BLE beacons and captured by the monitors. We can
find in the literature a good number of research works providing
different fingerprinting localization techniques for BLE [2, 4, 5] but,
to the best of our knowledge, they are validated usually in small and
not realistic scenarios, not taking into account the heterogeneity of
the devices involved, andmaking use of the RSSI value as the unique
source of information to infer location. Additionally, they do not
use the beacons as the devices to be located, but instead as anchor
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devices deployed in the scenario at fixed locations and emitting
frames to be processed by the mobile device –usually a smartphone
or tablet– to be located. This configuration is not appropriate for
certain working environments. Other works make use of devices
and configurations similar to ours for other purposes like care
of elders and children [6], but they follow an approximation for
coarse classification by zones, rather than for position regression. A
valuable work which provides insight and experiences from large-
scale deployments can be found in [3].

Making use of the trained radio map, composed by thousands
of geo-tagged and timestamped RSS signals, the first stage is to
analyze which information is really useful. The first contribution
of this work are the set of techniques for data visualization that let
data speak, that is, we display the training data in multiple forms
in order to determine which kind of information is more reliable
to perform localization. For example, we will show that the RSSI
value in our BLE/Raspberry Pi setting is very noisy, but we can still
make use of additional information, such as the number of frames
received during a given sampling period, or even completely ignore
the RSSI absolute value of each capture. The use of these alternative
features to perform localization is our second contribution: we will
describe up to three additional data representations beyond the
classical RSSI value that will prove equally useful to provide precise
(in the 2.5 ∼ 5𝑚 range) localization: binary vectors built from the
mere absence/presence of captured frames; ternary vectors built
from binary comparisons of RSSI values received from different
monitors; and frame vectors built from the fraction of total number
of received frames with respect to the theoretical maximum.

We finally analyze three different regression techniques on all
the defined representations. The first are two classical regression
methods without memory, k-nearest neighbour and naive Bayes.
The third method adds temporal consistency constraints, being
based on hidden Markov models. We obtain state-of-the-art per-
formance in relation to accuracy and estimation error even when
the RSSI absolute value is discarded. We plan to make our dataset
freely available, as well as the procedures that we have followed,
according to the principles of the reproducible science [9].

The paper is structured as follows. Section 2 presents an overview
of the scenario and the deployed passive localization system. Sec-
tion 3 then performs an exhaustive data analysis of our collected
dataset, using a variety of useful data visualization techniques.
Then, an overview of the different regression techniques that we
have employed to perform localization is presented in section 4.
Finally, section 5 contains the experimental evaluation of these
techniques in several different partitions of the complete dataset,
while conclusions and future work are drawn in Section 6.

2 SCENARIO AND LOCALIZATION SYSTEM
Our system is deployed in a truck repair and service shop with an
area of 5800 square meters, where 2800 square meters are indoors
and the rest outdoors (Fig. 1). Employees, trucks and certain work
materials are equipped with BLE devices (beacons) which will be
tracked by the localization service. They are mainly wristbands,
bracelets and tags without any computing capabilities, since they
must not interfere with the usual work routines and therefore the
use of smartphones or other similar devices is not suitable for this
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Figure 1: Scenario, training path and monitor positions.

environment. Consequently, there is no specific software compo-
nent running on the devices other than a BLE emitter transmitting
advertisement data on a regular basis. Although the advertising
rate can be as frequent as required, beacons typically emit 1 frame
per second in order to guarantee a long battery lifetime (around 2
years). Additionally, since every kind of asset to be tracked might
require a different type of device, we must assume a wide variety
of hardware, antennas, transmitting power and the like.

Most of the logic of the location system is performed by central
elements called monitors, which must be geographically distributed
throughout the environment. We use 25 Raspberry PI 3 units1,
which have many advantages against other alternatives, particu-
larly their small size, low-cost, open source deployment libraries
and built-in support for BLE. Every unit continuously runs a moni-
toring software able to capture BLE traffic and transmit the relevant
information via Gigabit Ethernet to a central server. In order to
perform its scanning, each monitor scans the different advertise-
ment channels periodically, following a plain round-robin schedule.
For each captured packet the only information which is used is the
MAC addresses of both the emitting beacon and the monitoring
device, the RSSI value, and the corresponding timestamp.

Once that both beacons and monitors have been correctly de-
ployed, a training phase must be performed in order to get the
fingerprinting database. Our training process implies the gener-
ation of a geo-tagged radio map of signals emitted by the BLE
beacons and acquired by the monitors, which will be used as both
training data and ground truth to test the regression procedures.
Using a mobile app, the operator first defines a set of connected
waypoints (training walk shown in blue in Fig. 1) that forms the
path to survey the zones of interest. Then the operator takes a set
of different BLE devices and distributes them throughout different
parts of his body (pockets, backpack, jacket, etc.) and follows the
survey path synchronized with the mobile app. Once the survey
is finished, the operator can visualize and validate the geo-tagged
radio map using the mobile app itself.

1Out of which only 23 were fully operative during our tests, located in the positions
indicated by yellow rounded boxes in Fig. 1.



Beyond the RSSI value in BLE-based passive indoor localization: let data speak MobiQuitous 2018, Nov. 2018, New York, USA

Finally, in the operational phase of the system the central server
continuosly registers and stores the updated information of cap-
tures sent to it by the monitors, while simultaneously runs the
localization software responsible for calculating occupancy and po-
sitioning information when required. In order to do that, the server
provides an API that will be used by higher-level location-based
services. In our particular scenario, for example, the system can re-
port where a particular worker or piece of equipment is located just
now, the repair time dedicated by workers in each truck, the mean
repair time to fix a particular truck fault, or alert with warning
messages in real time regarding any service or security condition
related to space/time location for any particular beacon, among
other similar services.

3 DATA ANALYSIS
3.1 Raw data
One of the advantages of the passive approach -i.e., using the BLE
beacons as mobile elements to be localized, instead of as fixed
anchors- is that we can obtain lots of training data in short pe-
riods of time. With the operator carrying many of these devices
simultaneously during the training, as described in the previous
section, and by controlling the frame emission period of the devices,
the number of monitored samples gets easily incremented. In this
section we describe the original dataset of raw samples in which
we based all our data analysis and posterior experimental results.

We used up to 11 BLE devices of three different types: 3 BlueBar
beacons (BBnn), 7 Nordic beacons (GT_nnn), and 1 iPod (IPOD)
executing a dedicated BLE app, whose advertising periods were
adjusted to 0.75, 1.0 and 0.2 seconds, respectively. The operator car-
ried these beacons in different parts of his body (front, back, upper
and lower pockets, different places inside and outside a backpack,
etc.), while walking through the guided training path shown in blue
in Fig. 1. The whole controlled training time interval took just 2116
seconds (approximately 35 mins), during which a total of 84072
frames emitted by the 11 devices were captured by the 23 installed
and fully operative monitors (Rnn in Fig. 1). Table 1 shows the total
number of samples obtained per each device/monitor (𝑑𝑒𝑣,𝑚𝑜𝑛)
pair. The corresponding distributions of values for the obtained
RSSI and elapsed time between successive samples captured for a
same (𝑑𝑒𝑣,𝑚𝑜𝑛) pair is shown using box plots2 in Fig. 2 below the
table, for one device of each of the three types.

From the RSSIs plot we can observe a great variability in the
strength of the signal depending not only on the device but, all
about, in the monitors themselves, with some monitors (i.e. R09 or
R15) clearly receiving weaker signals, mainly due to physical obsta-
cles near their respective locations in the scenario. The much larger
observed variability in elapsed time between successive samples
is directly related to the different frame emission periods of each
type of device, and also to the fact that, of course, not every place
in the map is reached by every monitor. Of course, this variability
is also closely correlated with the position of the beacon, and it
is this correlation that is typically exploited by machine learning
based methods as the ones that we use in our localization system.
This correlation between the strength of the signal and the distance

2The limits of the box plots (out of which the data are considered outliers) are placed
in the 1% and 99% percentile, respectively.

to the monitor is also illustrated in Figs. 3 and 4, which also show
the typical noise of the BLE RSSI signal (both in time and space)
which makes the localization problem harder. Again, somemonitors
have less geographical scope than others due to physical occlusions
(compare, for example, R01 vs. R10 in Fig. 4).

3.2 Processed data
As practically all machine learning techiques work with vectors as
input, the next step we had to do was to perform a uniform sampling
of the whole set of 84072 (dev,mon, timestamp, rssi) obtained tuples
in order to vectorize them over time. The exact sampling interval
used clearly determines here the final number of vectors obtained,
as well as the quality of the obtained information. In this sense, two
important parameters when generating both the training and test
vectorized datasets from the continuous in time input data are the
following:

• Persistence 𝑇𝑝 , which is the time interval during which the
influence of each RSSI sample is "lengthened": values are
filled forward in time with the last available value up to
this maximum tolerance, or until a new, fresh sample is
received for the same (𝑑𝑒𝑣,𝑚𝑜𝑛) pair. For monitors that
did not receive a sample for the given device in the last 𝑇𝑝
seconds, the corresponding vector elements are filled with a
minimum value of -120 dBm3.

• Uniform sampling interval𝑇𝑠 : the larger, the smaller number
of vectors, but also the greater number of input samples to
consider when computing a component in the vector, which
will be hopefully more reliable.

Through the rest of this paper, except where otherwise specified,
we have considered a value of 𝑇𝑠 = 1 seconds, with a persistence
value of 𝑇𝑝 = 5 seconds. These values are justified because all the
devices emmit a new frame in, as much, 1 second, though some
of these frames can eventually get lost in the capturing process,
which makes a value of 𝑇𝑝 > 1 necessary. Following this sampling
policy, and being𝑀 = 23 the number of monitors, we generated up
to four different types of sampled vectors:

• Received signal strength intensity (rssi)𝑀-dimensional vec-
tors, where each individual component corresponds to a RSSI
measure in 𝑑𝐵𝑚.

• Simple𝑀-dimensional binary vectors (binary), which only
preserve information about presence/ausence of captured
frames during the sampling interval, discarding any original
RSSI, time or number of frames information.

• Frame proportion 𝑀-dimensional vectors (frames), which
store in each component the fraction of total number of
received frames with respect to the maximum emitted by
the beacon for a given sampling period. The resulting value
will be in the interval [0.0, 1.0].

• Finally, larger 𝑀′-dimensional ternary vectors built from
RSSI magnitude comparisons between all the 𝑀′ =

(𝑀
2
)
=

𝑀∗(𝑀−1)
2 combinations of the𝑀 monitors by pairs. In our

case𝑀′ =
(23
2
)
= 253. The name ternary comes from the fact

that each individual component in these vectors will always

3This corresponds to an arbitrary lower threshold smaller than the overall minimum
observed RSSI value, -113 dBm in our study.
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Monitor R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 R14 R15 R16 R17 R18 R21 R22 R23 R24 R25
Device

BB6A 105 138 105 50 616 47 23 189 3 421 208 74 20 285 8 279 245 88 166 246 92 50 47
BB87 279 581 178 147 1071 124 89 343 73 970 584 343 70 559 111 659 547 306 442 524 328 261 334
BBFC 308 654 224 201 1139 145 165 369 94 1000 645 380 93 586 142 684 580 366 480 558 384 296 362
GT_034 125 266 81 94 563 56 45 169 14 462 290 133 35 290 38 342 268 127 180 265 156 95 85
GT_055 27 40 32 15 191 20 4 57 0 139 49 28 14 84 2 114 92 34 63 85 25 16 13
GT_056 83 182 56 57 392 25 28 128 11 326 193 80 21 187 10 235 170 106 147 184 81 51 57
GT_057 91 223 93 81 548 49 51 151 15 382 250 113 25 239 20 307 221 104 177 223 133 43 55
GT_1002 142 351 125 119 747 75 68 202 38 612 392 202 41 376 60 435 345 187 270 313 204 93 86
GT_1003 158 343 95 112 678 68 65 208 33 586 347 209 42 349 52 412 347 211 278 339 201 123 167
GT_1005 123 267 95 89 609 57 52 187 30 494 285 147 35 290 51 324 292 148 241 270 172 64 95
IPOD 1128 2252 623 696 4323 468 374 1322 221 3614 2351 1298 334 2424 369 2600 2178 1272 1761 2021 1335 805 970

Table 1: Total number of captured frames per (𝑑𝑒𝑣,𝑚𝑜𝑛) pair.
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Figure 2: Distribution of RSSI (top) and last sample time (bottom) values for three devices of different types.
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Figure 3: RSSI vs. time for a given monitor (R01) and three
different type of devices. Top: Whole training interval (35
minutes). Bottom: Zoomed one minute interval.

take one of the three values {−1, 0, +1}, depending on the
magnitude comparison between the RSSI values correspond-
ing to the compared values [7]. The values -1/+1 stand for
dominance of the first or second compared monitor, while 0
means equality -typically, because neither of both monitors
captured any frame for the given device and pair of consid-
ered monitors during the corresponding sampling interval-.
The effect of one of these monitors comparison is illustrated
in Fig. 5.

Fig. 6 (top and center) shows graphically the sequence in time of
obtained rssi and frames vectors for three devices of the three differ-
ent classes4. The total number of rssi vectors is 2116, as corresponds
to a value of 𝑇𝑠 = 1, while we only got 2116/5=424 frames vectors,
because we had to use a larger sampling period of 𝑇𝑠 = 5 seconds
to get more reliable values of proportion of captured frames per
interval for the slower emitting Nordic devices. On the bottom part
of the figure we also show the evolution in time of the number
𝑛𝑎 (𝑣𝑡 ) of active components for each vector 𝑣𝑡 (i.e. values ≠ −120
dBm for rssi, and ≠ 0 for binary and frames vectors, as corresponds
to no frames captured for the given (dev,mon) pair in the corre-
sponding sampling period). Of course, the persistence value 𝑇𝑝
directly influences this 𝑛𝑎 number in all vector types: the longer𝑇𝑝 ,
the more information will be captured by more active components
in the vectors, but also the less precise will be the ground truth
location information, due to the operator movement. The relative
increments of 𝑛𝑎 as we increase 𝑇𝑝 are shown in Fig. 7, and its
decisive influence on the quality of the position regression will be
demonstrated in Section 5.

4Binary vectors are not shown, as they are simply binarized versions of the corre-
sponding rssi vectors, while ternary vectors are not shown either, due to lack of space
and also because they do not have such a clear visual interpretation.
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Figure 4: Interpolated heatmap of RSSI superimposed on the
scenario, with corresponding sampling points: (BB87,R01),
279 samples (top). (GT_1003,R10), 586 samples (bottom).
Slight random noise (up to 2 meters) has been added to sam-
pling positions to improve readability.

Finally, we also considered important to study the robustness of
the RSSI based representation to device heterogeneity. Fig. 8 serves
us to visually represent this issue. The shown graphs represent the
evolution over time of the monitor dominance for the three classes
of devices. In this representation, the used quantity of color for
each column is proportional to the observed RSSI signal by each
monitor for the corresponding device at that precise instant of time.
Though there are certainly differences of detail between different
devices, there is a clear tendency to be observedwith similar relative
strengths by the same monitors for the three types of devices. It is
these small differences that the position regression methods will
have to absorb to deal with the heterogeneity of devices.

3.3 Discussion
From the data analysis performed in this section we can conclude
that, in general, RSSI is very noisy in both the time and space do-
mains, being this noise even more pronounced in a BLE setting than
in the more classical 802.11 one. But we have also visualized how, by
adjusting the values of important design parameters –such as the
persistence 𝑇𝑝 and the sampling interval 𝑇𝑠–, as well as adequately
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Figure 5: Individual component of ternary vectors for device
GT_1005, corresponding to the pair of monitors (R04,R16).
Red means -1, blue +1.
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Figure 6: Set of rssi (top) and frames (center) vectors for
the training time interval. Corresponding number of active
components vs. time (bottom).

preprocessing data with techniques specifically designed to deal
with device heterogeneity –such as just comparing signal strength
between monitors, or measuring the proportion of missed frames
for a given sampling interval, in both cases discarding RSSI–, we
can still get different vectorial data representations that, as will
be shown in the next sections, will prove perfectly valid to obtain
good localization results, specially when boosted by using time
consistency in the regression procedures.
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4 REGRESSION METHODS
In order to verify the validity of using the different vector types
defined in the previous section to solve the localization problem,
we will make use of three different kind of regression methods. The
first two are two classical machine learning methods, k-nearest
neighbour (kNN ) and naive Bayes (NB), that do not take into ac-
count temporal consistency, and that therefore work by considering
both the input training and test vectors as independent and iden-
tically distributed. The third method adds temporal consistency
constraints, which basically exploit the fact that a given device
can’t move long distances in short periods of time. Our choice for
this is to use a classical hidden Markov model (HMM) over a dis-
crete grid space of configurable cell size defined over the scenario
map. In what follows we will describe the details of our tested
implementations.

4.1 K-nearest neighbour regression
The use of the kNN model for regression is justified by its good
performance when the size of the training data is limited. Though
obviously very simple, it is a very powerful alternative that tends
to give very good results in situations of homogeneity of devices,
and that does not require a previous grid discretization, as it can
directly work with ground truth positions (𝑥,𝑦) over the map. The
most important free parameter of this model is the number of
neighbours 𝑘 , which can be cross validated as we will describe later
in the results section (Fig. 12). As of the metric to use, we will use
the usual simple euclidean distance (though certainly many more
alternatives could be used; see, for example [8] for other meaningful
possibilities).

4.2 Naive Bayes on grid of positions
One problem with kNN is that it is not trivial to get a conditioned
probability density 𝑝 ((𝑥,𝑦) |𝑣𝑡 ), especially when the number of
training samples is relatively low with respect to the input space
dimensionality. In our case, the input measurements vector dimen-
sion is directly related to the number of monitors 𝑀 , while the
available number of vectors for a given location is necessary low,
due to the fast training period and large dimensions of the scenario
(remember, slighty more than half an hour walk through a 5800
𝑚2 scenario). Fig. 9 shows, for example, the number of available
training vectors for a particular subset of three devices in each of
the grid positions resulting of dividing the whole scenario in square
cells of 3 × 3 meters. For completeness, we also show in that map
circular marks with different colors for different devices in their cor-
responding (x,y) sampling positions (adding a small random noise
on it to avoid overlapping and improve visibility), and with radius
proportional to number of active monitors for the corresponding
vector. More importantly, the figure also shows the total number of
vectors sampled in each grid cell. As can be seen, the total number
of samples per cell is relatively low in many cells (though obviously
it would be multiplied by a factor of 11/3 if using all the available
beacons).

In order to get a reliable a posteriori probability density 𝑝 ((𝑥,𝑦) |𝑣𝑡 )
(with 𝑣𝑡 being any measure vector of the types described in Section
3 above) from such a low number of samples per cell, we will use the
simple –though still powerful and very popular technique among
the machine learning community– naive Bayes model (NB). NB
models make an assumption of independence among the compo-
nents (features) of the input vectors. In our case, this assumption
is clearly acceptable only because, once a position (𝑥,𝑦) on the
map is given and kept fixed, the random variables corresponding to
vector components associated to different monitors can be certainly
assumed as independent. This is known as conditional indepen-
dence [1], and will allow us to compute a reasonable approximation
of the a posteriori probability for each given cell position in the
grid using simple histograms. By choosing adequate bins size and
extents (depending on the chosen vector types), we will show in
the results section that this method is suitable for all the classes of
features mentioned in Section 3.

NB models will therefore be completely defined by a list of prob-
ability tables, one for each (𝑥,𝑦) point on the grid. Each table will
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Figure 9: Number of samples per grid cell (vectors positions
also shown, size proportional to number of active monitors;
6348 total vectors).

be characterized by a 𝑁 × 𝐵 dimensional matrix, being 𝑁 the di-
mension of the input vectors (i.e., the number of monitors 𝑀 for
rssi, binary and frames vector types, or𝑀′ = 𝑀∗(𝑀−1)

2 for ternary
vectors). As for the number of bins 𝐵, it will be two ({0, 1}) and
three ({−1, 0, +1}) for binary and ternary vectors, respectively, and
definable at will in the case of rssi and frames vectors, by dividing
the range of valid values ([−120;−20] dBm and [0.0; 1.0], respec-
tively) in the desired number and extents of intervals. Given these
definitions, the computation of each element of these matrices is
performed by usual relative frequency counting over the whole set
of traning vectors, independently for each vector component as
corresponds to the conditional independence assumption.

Another important parameter in the probabilistic model is the
grid resolution. Of course, there is a balance here betweenmaximum
achievable position accuracy and obtaining a reasonable number of
samples per grid point to elaborate the probabilistic models. Also
related to it, and given that the number of samples per grid point
can be relatively low in a fast training on a large scenario like ours,
we also define a maximum distance threshold that will be used to
consider a sample when computing the model at a point (𝑥,𝑦) of
the given grid. By default, 5.0 meters will be used, which will result
in taking into account not only the samples falling in the same grid
point, but also some of the ones falling on any of the adjacent cells.
Of course, the higher this threshold, the greater number of samples
are taken into account in updating the corresponding histograms,
but at the cost of a slightly reduced location accuracy. Finally, we
also introduce a minimum probability for each element of the his-
tograms to avoid situations of zero probability which could lead to
possible numerical issues in certain cases.

Once the a posteriori probability 𝑝 ((𝑥,𝑦) |𝑣𝑡 ) has been computed
for each cell using the histograms model, final regression can be
performed by choosing between a MAP decision (grid point with
maximum a posteriori estimated probability) or mathematical ex-
pectation (weighted average of positions using the estimated vector
of probabilities). We opt for this second possibility, which tends
to soften the obtained regression results. It should be emphasized,

though, that it is the ability of estimating the 𝑝 (·) density function,
rather than this possibility of direct regression using theNBmethod,
which will prove absolutely essential to be able to apply the HMM
technique described in the following section.

4.3 Hidden Markov model
This method extends the previous static probabilistic model to intro-
duce dynamic estimation with history, which takes time constraints
into account. We implement a classical HMM that relies on a prob-
abilistic movement model where, given a (𝑥 (𝑡), 𝑦 (𝑡)) position at in-
stant 𝑡 , assigns a probability to each grid position (𝑥 (𝑡 +1), 𝑦 (𝑡 +1))
which is inversely proportional to the traversed distance [10]. In
our case, the state transition matrix for this movement model is
computed using an exponential fall of the probability to an adjacent
state, parametrizable by a 𝜎 value in meters. Again, a minimum
probability value is assigned to every grid position to avoid numeri-
cal errors caused by zero probabilities. In the results section we will
illustrate that values of 𝜎 between 3.0 and 5.0 meters make perfect
sense for𝑇𝑠 = 1 second, and in fact the influence of 𝜎 on the overall
regression results will not prove that important.

The HMM model then basically combines the current position
estimation with a measurement model just as the one described in
the previous subsection, assigning a posterior distribution 𝑝 ((𝑥 (𝑡 +
1), 𝑦 (𝑡 + 1)) |𝑣𝑡 ) to every (𝑥,𝑦) position in the grid. In fact, this
HMM method exhibits a similar behavior to the Kalman filter and
its different extensions (such as EKF, UKF of particle filters [1, 10]),
but working with a discrete state space (the grid) instead of using
continuous variables.

5 EXPERIMENTAL RESULTS
5.1 Datasets
In this section we describe several experiments that we performed
to evaluate the regression results obtained when testing the three
methods described in section 4 on the different vector representa-
tions described in section 3. In order to do it, we first define four
different training/test partitions of our data (see Table 2):

• Dataset A: Typical calibrated (homogeneous devices) case,
using only beacons of one type (Nordic GT_nnn devices), all
functioning correctly, for both training and test subsets.

• Dataset B: Same as A, but testing with a poor functioning
beacon (Nordic GT_055 device; this device was deliberately
put in a pocket together with a metallic object -a key ring-
which attenuated the emitted BLE frames).

• Dataset C: Typical uncalibrated (heterogeneous devices) case,
in which the training set was obtained using the IPOD device,
but test was performed by using Nordic GT_nnn beacons.

• Dataset D: A different heterogeneous case, in which the
training and test were of the Blue Bar (BBnn) and Nordic
(GTnn) devices classes, respectively.

As discussed in subsection 3.2, an important issue for a given
training or test vector is its number of active components 𝑛𝑎 (𝑣𝑡 ).
Given that all the regression methods base their operation in using
mainly the active components (think of this number as directly
related to the quantity of information provided by a given measure-
ment vector), Fig. 10 also shows the total amount of training vectors
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Dataset A Dataset B Dataset C Dataset D

training GT_034, GT_056, GT_034, GT_056, IPOD BB6A, BB87
devices GT_057, GT_1002, GT_057, GT_1002, BBFC

GT_1003 GT_1003, GT_1005

testing GT_1005 GT_055 GT_034, GT_056, GT_034, GT_056,
devices (bad functioning) GT_057, GT_1002, GT_057, GT_1002,

GT_1003, GT_1005 GT_1003, GT_1005

Table 2: Different dataset partitions (A, B, C, D) used for the
experiments (see text).

retained after removing those which do not have a minimum num-
ber of active components, 𝑛𝑚𝑖𝑛

𝑎 . We can clearly appreciate that, of
course, as we increment this value, we end up discarding a greater
percentage of training (and subsequently testing) vectors. But, as
we will see in what follows, the higher this value, the lower will
also consequently be the obtained regression error of all methods.
The price to pay will be, of course, that when discarding training
vectors we are effectively reducing our training data, while when a
given test vector is discarded it means that we must give up trying
to perform the regression, at least until a new measurement vector
with the minimum number 𝑛𝑚𝑖𝑛

𝑎 of active elements is obtained.
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Figure 10: Percentage of preserved vectors vs. minimum
number of active monitors required per vector (𝑛𝑚𝑖𝑛

𝑎 ), for all
four datasets (training devices).

5.2 Study of parameters
Wewill start studying the influence of𝑛𝑚𝑖𝑛

𝑎 in the regression results.
In order to do it we will employ the simplest kNN method, using
𝑘 = 3 neighbours and the euclidean distance on rssi vectors on
dataset A (see Fig. 11). We can see that, as we advanced in the
previous subsection, the greater the demanded 𝑛𝑚𝑖𝑛

𝑎 , the better the
results, though this progressive improvement somehow diminishes
for values of 𝑛𝑚𝑖𝑛

𝑎 > 4. Given also that for 𝑛𝑚𝑖𝑛
𝑎 > 4 the proportion

of discarded vectors also dramatically increases (Fig. 10), in the rest
of the experiments we will fix this number of required minimum
active components by vector to four. Though not shown in this
paper due to lack of space, this value also leads to similar results
when testing the rest of vector types and regression methods.

We study now the influence of 𝑘 in the kNN method. Again we
use rssi vectors on dataset A and show the obtained regression error
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Figure 11: Regression error for increasing number of mini-
mum active monitors (𝑛𝑚𝑖𝑛

𝑎 ) allowed in vectors.

in meters for different values of 𝑘 in Fig. 12. We see that best results
are obtained for 𝑘 = 5 though, in fact, any value between 3 and 9
could also be equally acceptable.
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Figure 12: Positioning error for different values of 𝑘 .

Another adjustable parameter that deserves attention is the 𝜎
parameter in the HMM model. Remember that this parameter is
related to the uncertainty in the movement model described in
subsection 4.3: greater values allow for faster movements of the
beacons, thus assigningmore relative weight to the current measure
than to former state (i.e., position). Fig. 13 graphically shows this
influence in the final obtained positioning error. For this particular
graph we used dataset A, a minimum number of monitors 𝑛𝑚𝑖𝑛

𝑎 =

4 and binary vectors, though, again, the results are qualitatively
similar when we test the rest of vector types described in subsection
3.2.
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Figure 13: Positioning error for increasing number of 𝜎 in
HMM.

One interesting thing to note in this graph is that in the extreme
case of 𝜎 = 100 we are allowing any possible instant movement to
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anywhere in the scenario –i.e., we are effectively discarding tempo-
ral consistency, assigning all credibility to the current measure in
each instant 𝑡–. A low value of 𝜎 of, say, 2 or 3 meters, on the con-
trary, only allows effective movements of a beacon from one grid
cell to an adjacent one in the following instant (i.e., in 𝑡𝑖+1 = 𝑡𝑖 +𝑇𝑠 ;
remember from subsection 3.2 that in our case 𝑇𝑠 had a value of
one second when using rssi, binary and ternary vectors, and five
seconds for frames vectors). This way, by increasing 𝜎 from these
lower values to extremely large ones we can observe the gradual
influence of adding temporal consistency to the regression models.
It is remarkable that the obtained regression error can be lowered
by approximately 1 meter (from 3.64 to 2.65, using 𝜎 = 5.0) by
taking this kind of temporal consistency into account, in contrast
to the more naive possibility of regressing the position for each new
measure from scratch, as many classical fingerprinting approaches
do.

5.3 Study of vector representations
We will now compare the effect of using vector representations
alternative to the classical rssi one. Fig. 14 shows the distribution
of positioning errors for several alternative representations, again
on dataset A, and using the simple kNN model. For each histogram,
a yellow line marks the mean positioning error, while a green one
marks the median of the distribution. It is remarkable that though
rssi gets the best results (∼ 3𝑚), the alternative representations
which effectively discard the RSSI values, taking into account only
the presence/comparison/counting of frames in the respective sam-
pling intervals, achieve very similar results. This is specially the
case in binary and ternary vectors, with frames vectors achieving
worst, but still acceptable, positioning errors in the ∼ 5𝑚 average
range. This is quite interesting, given that it is precisely the vari-
ability of the RSSI between different types of devices what makes
the positioning problem for heterogeneus devices hard [11]. Note
also that though these mean and median positioning errors are kept
in average relatively low, still very large positioning errors (say
> 10𝑚) still appear in the histograms. It is this kind of errors the
ones that tend to be absorbed by temporal consistency in the HMM
model.

As for the geographical distribution of these positioning errors, it
is shown in Fig. 15 for the case of rssi vectors (not shown for the rest
of vector types due to lack of space, though it is again qualitatively
similar). Observe that positioning error is clearly smaller in the
interior of the building, where more training data were available
(the training walk was lighter and more spaced outdoors, see Fig.
1).

5.4 Global results
Table 3 summarizes the mean positioning error for the three regres-
sion procedures described in section 4 tested on all vector represen-
tations over the four proposed datasets partitions. For each dataset,
the best results are highlighted in bold. Clearly, the most difficult
task is to correctly localize the malfunctioning beacon (GT_055),
for which most of the emitted frames were lost (see corresponding
row in Table 1) due to occlusion of the metallic key chain that was
in the same backpack pocket when performing the data gathering
walk. Best results are also logically obtained for dataset A, (training
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Figure 14: Regression error distributions for the four studied
vector types.

Figure 15: Geographic distribution of errors for rssi vectors .

and test using same type of devices, i.e. homogeneous case). In any
case, if we look at the global results, there are a few considerations
that are worth remarking:

• Many combinations of vector representations and regression
methods lead to location errors in the range 3 ∼ 5 meters,
with some of them even below, for the easiest case of homo-
geneous devices.

• In general, temporal consistency introduced byHMM always
tends to improve the regression results by 1 ∼ 1.5 meters.

• Though the rssi representation behaves the best, interest-
ingly, some of the other three representations that discard
this measure can achieve very similar results. See, for exam-
ple, the behaviour of binary, ternary and frames represen-
tation on the homogeneous case (dataset A, HMM), or the
simple binary representation for the harder datasets B and
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Dataset A Dataset B Dataset C Dataset D
kNN NB HMM kNN NB HMM kNN NB HMM kNN NB HMM

rssi 2.96 3.43 2.42 5.44 5.94 7.18 5.37 7.01 5.43 4.52 5.13 3.90
binary 3.30 3.65 2.65 5.53 5.13 5.74 6.34 6.07 4.87 5.36 5.38 4.27
ternary 3.10 3.65 3.00 5.69 5.86 5.74 4.88 6.21 4.90 4.66 5.25 4.31
frames 4.85 4.65 2.63 6.80 7.61 5.38 7.37 7.54 5.86 7.02 6.46 4.71

Table 3: Results for the three regression methods on all tested combinations of datasets / vector types.

C. Ternary vectors also behave close to optimal in datasets
C and D (HMM), which represent the heterogeneous device
cases (remember that ternary vectors were specifically de-
signed to deal with the problem of locating heterogeneous
types of devices [8, 11]).

• The frames representation consistently gets the worst results
in all datasets. Remember, though, that to obtain reliable com-
ponent vector values when counting the number of frames
of a given period, we had to augment the sample interval
to 𝑇𝑠 = 5 seconds, due to the fact that most of the devices
(all the Nordic GT_nnn ones) only emitted one frame per
second. Given that the operator covered the whole 5800𝑚2

scenario in just over half an hour at a normal walking speed,
clearly he had to move about 4 ∼ 5 meters during many of
these sample intervals. This, of course, clearly affected the
quality of the ground truth positions attached to the training
examples, and divided the total number of vectors by a factor
of five (compare Figs. 6 top and center). We can conclude to
this respect that, in order to successfully use this alternative
representation, we should perform slower trainings or, alter-
natively, faster frame emission periods for the devices5 (just
like the IPOD device does; see Table 1).

6 CONCLUSIONS
In this paper we have performed an exhaustive experimental anal-
ysis in a large, commercial and realistic scenario of BLE based
indoor localization. We have emphasized the main advantages of
our adopted approach, based on mobile beacons and passive moni-
torization, in contrast to the opposite, more classical approach of
performing the localization on mobile smart devices with available
computing capabilities. These advantages are mainly the much
lower implementation cost, as well as the much lighter training
efforts needed to get a reliable training dataset for fingerprinting.

We have also demonstrated the importance of a previous good
data analysis, based on adequate visualization techniques which,
in our case, even led us to successfully try alternative data repre-
sentations to the classical RSSI values, getting comparable posi-
tioning results, specially when using temporal consistency through
HMM models. These alternative representations can help in cor-
rectly addressing the problematic issue of device heterogeneity that
characterizes many localization systems both passive and active.
Furthermore, we have also shown how a thorough analysis of the
sampled data can provide fast, helpful and intuitive visual feed-
back about the nature and issues of the training process, as well
as the influence that different implementation details can have in
5Though this last option would of course negatively affect the battery life of the
beacons.

the quality of the positioning results. We strongly believe that this
kind of analysis can be an exceptional tool to aid in the deployment
cycle of commercial indoor positioning systems based on radio
fingerprinting.

As a statement of direction we are currently working on elabo-
rating a much larger dataset, including different days of operation,
as well as longer duration training walks, to make it available to
the research community as a public dataset and further test on it
additional machine learning techniques. Introducing the Viterbi
algorithm [1] to further improve the beneficial effects of temporal
consistency, as well as extending our study to the problem of loca-
tion by zone classification (instead of position regression) will also
be our focus of interest in the near future.
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