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• AWiFi passive localization system to offer occupancy services is proposed.
• The system is able to track unmodified mobile devices after a fast training phase.
• Several representation and metrics are proposed to cope with device heterogeneity.
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a b s t r a c t

Occupancy is relevant information about key aspects, such as energy consumption or comfort manage-
ment. Energy-saving and environmental quality strategies can be carried out in response to real-time
facility occupancy. Some relevant solutions to measure and monitor occupancy information leverage
radio-based indoor localization systems and employ Received Signal Strength (RSS) as the main source
of data for location determination. However, those approaches usually require a previous training and
calibration stage that involves a time-consuming and labor intensive site survey process, and which is
also readily affected by environmental dynamics. In this paper, we propose a practical passive localization
system for fast deployment of occupancy services able to track unmodified and heterogeneous devices
after a quick and straightforward training phase. We present an experimental validation of the system
that was conducted for 9 months in a lecture building of 6000 square meters with 20 classrooms and
4000 frequent users, where the existing teaching computers themselveswere used asmonitors to capture
802.11 traffic. In this environment, we test different representations and metrics to process the RSSI
information and perform a thorough analysis of some important design parameters, which have a direct
impact on both accuracy and time granularity of the localization system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, building energy and environmental qualitymanage-
ment is an important aspect which requires solutions and strate-
gies that can be carried out in response to real-time changes. In this
sense, and especially in dynamic environments, occupancy data
represent the most relevant building information in terms of both
energy consumption and overall indoor environmental quality.
The presence of occupants will have a direct impact on, for ex-
ample, heating, ventilation, and air conditioning (HVAC) systems,
influencing variables like heat loads, system running time, heating
required, cooling and distribution of conditioned air or preferred
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temperature set points. Occupancy information can also be ben-
eficial in many other application areas such as safety, security or
emergency response, to mention but a few.

In recent years, several solutions have been proposed to de-
sign occupancy sensing systems [1]. Due to the high density of
access points in typical urban and indoor environments, many of
these solutions are based on wireless localization schemes, where
the Received Signal Strength (RSS) is the main source of data
for location determination [2]. In these methods, the localization
process is usually divided into two phases, namely, the training
phase and the online operation, each with its own implementation
issues. The training phase involves a site survey process in which
the RSSIs at every point of interest are recorded in order to build
the fingerprinting database, a manual task which is traditionally
supposed to be time consuming, labor intensive, and easily affected
by environmental changes. As for the online operation phase, most
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of these systems assume that a specific software component is run-
ning on the mobile devices in order to send signal observations to
a particular localization server. This is another potential drawback
as, generally speaking, it is well known that users are reluctant
to install apps that are battery consuming. Moreover, certain mo-
bile operating systems present some limitations in obtaining the
needed RSS information. Another important issue is that different
device models tend to generate signals with very different RSSI
and temporal patterns, making calibration techniques that tolerate
device diversity necessary in both the training and online stages.
These calibration procedures usually need device-specific data,
which are not always easy to obtain.

In this paper we propose a fast deployment system for measur-
ing building occupancy information that overcomes many of those
potential drawbacks:

• First, our proposal is able to track unmodified mobile de-
vices using monitoring equipment in the areas of interest
–i.e., it performs passive localization – and therefore does
not require the explicit collaboration of the users. Taking
advantage of the fact that mobile devices periodically scan
802.11 channels for access points –which involves the trans-
mission of probemessages – or send data frames – if they are
already connected to some existing wireless network – we
can, in both cases, capture the corresponding radio signals
generated in order to perform the localization. Note that this
does not necessarily imply the deployment of newelements,
since we can make use of existing hardware in order to add
the monitoring functionality.

• Second, our proposal is able to cope with the device het-
erogeneity problem by using different data representation
methods which are mainly based on the order relation-
ship information between RSS values, thus discarding the
absolute values which require the adoption of calibration
methods.

• Finally, our proposed training stage involves only a
lightweight site survey based on the definition of a min-
imum number of points of interest and a non-exhaustive
recording procedure. Aswewill see, this lightweight process
is suitable and feasible thanks to the adapted representation
methods and associated metrics that we will define.

In order to evaluate our proposal, we present an experimental
validation that was conducted in a lecture building of 6000 square
meters with 20 classrooms. This scenario was defined mainly for
classification purposes, that is, to infer occupancy of the different
classrooms during the day. During a 9-month operation period we
detected more than 200,000 different MAC addresses, though a
more detailed temporal analysis determined that the actual num-
ber of frequent userswas only around4000 (after eliminating those
MACs simply corresponding to sporadic or nearby passing devices).
These remaining devices still constitute a challenging heteroge-
neous dataset, with many different device models generating a
widely diverse set of signal strengths and temporal patterns. We
have tested several representation methods and distance metrics
that, when applied to a simple k-nearest neighbors (k-NN) clas-
sifier, provide satisfying results in terms of classification accuracy,
which confirms the suitability of our proposal for occupancy-based
applications.

The main aim of the paper, therefore, is to get clear insights
into all the practical considerations to take into account when
deploying a fully operational passive localization system based on
wireless signals, suitable to offer indoor occupancy information
based services in a practical and agile way. There are several real
life scenarios that could adopt this approach to infer occupancy
information and to make use of that information for higher level
services. Indeed, our testing environment has evolved and is being

used in our own University as the starting point for an HVAC sys-
tem based on occupancy. Additionally, other real applications are
feasiblewith our system, like the one presented by Ruiz et al. [3] for
a large hospital complex regarding people’s presence, movement
and roles.

The rest of the paper is structured as follows. Section 2 discusses
the related work. The main elements of our system and its distinc-
tive training and operational phases are presented in Section 3.
The various representations proposed and the associated metrics
are presented in Section 4, while Section 5 describes the experi-
mental environment and Section 6 reports a thorough evaluation
to illustrate the performance of our proposal. Finally, conclusions
are drawn and future work is outlined in Section 7.

2. Related work

Occupancy sensing systems have become the subject of much
attention recently due to the increasing number of sensors and
devices with wireless connectivity. Many works follow a similar
approach to the one we present here, that is, to infer information
from existing infrastructure elements [4]. Kjaergaard et al. [5]
provide a categorization framework for these kind of systems.
According to their framework, the type of information provided by
our proposal is presence-count, with a spatial granularity of room-
level, a temporal coverage ranging from the past to the present
time, and a sensor modality based on infrastructure.

Several works providing passive localization solutions to track
unmodified smartphones have been described in the literature.
For example, Musa and Eriksson [6] performed tests on a busy
road detecting 802.11 devices to estimate trajectories. They also
presented several methods to prompt passing devices to send ad-
ditional messages, thus increasing detection rates. Their proposal,
though, was tailored specifically to be used in places adjacent to
roads, which is not our case since we aim to provide information
about the behavior of usersmonitored passively in indoor environ-
ments. More recently, Ruiz et al. [3] proposed a WiFi monitoring
system to inform facility planning. Location was estimated taking
into account the location of access points (APs), using a lateration
algorithm and then mapping to the location of the nearest AP.
The resulting mean accuracy of 15 m is nevertheless insufficient
for our targeted environment. Moreover, they relied on absolute
RSS values, which, as discussed in the introduction, are clearly not
suitable for heterogeneous devices.

Most of the proposed indoor positioning techniques based on
Wi-Fi signals provide fine-grained device locations at the price of
assuming that the device to be positioned is correctly calibrated
with respect to the device employed during the training phase [7].
In fact, there is a challenging problem for all the methods based
on fingerprinting, namely, that the received signal strength values
at a given fixed location may widely vary if they are measured
by different devices. It is impractical to manually calibrate each
new device and hence some calibration-free solutions have been
proposed which make use of alternative features such as RSSI
relative magnitude order or hypothesizing a linear dependency
between the strength of the signals in order to address the device
heterogeneity problem [8]. One such system is Yang et al.’s Free-
Loc [9]. As we will see, FreeLoc is one of the techniques in which
our proposal is inspired, although we introduce some differences
in the way we represent the information to make it more suitable
for generic machine learning techniques.

Finally, and regarding the possible drawbacks of a potentially
cumbersome training phase, solutions that deploy wireless localiza-
tion systems avoiding an intensive site survey process have also
been described in the literature [10]. In this sense, in [11] Wu et al.
proposed exploiting user motions from mobile phones to crowd-
source the training data. However, their technique required a spe-
cific software component installed in the mobile device, which as
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we have already discussed might have some inconveniences from
the point of view of the final user. An alternative solution was
described in [12], where a clustering method classified the rooms
in an unsupervised manner. Although all these solutions avoid
a previous site survey process, they generally tend to make the
localization system more complex and consequently less robust.
Finally, Gao and Harle [13] analyze different methods based on
light path surveys instead of dense and detailed manual surveys.
As we will show, our training stage follows a similar approach,
although in contrast to the latter proposal, our training system
does not require sub-meter ground truth geopositioning based on
ultrasound techniques. Instead, we adopt a much simpler method
in which an operator assisted by a training application running on
a simple tablet or smartphone will be able to generate a complete
fingerprinting database for a target building in a fast and easy way.

3. System description

3.1. Main elements

As in any other passive localization system, monitors are cen-
tral elements in our proposal. In a broad sense, a monitor is any
hardware element running software able to capture 802.11 traf-
fic and export the relevant information of that data to a central
server. The required density of monitors can be relatively low for
many occupancy estimation scenarios, but this, of course, depends
greatly on both the desired accuracy (i.e., the spatial granularity
of the localization system) and the physical characteristics of the
environment itself. As we have already explained, our monitors
rely only on monitoring the frames normally transmitted by user
devices as part of their usual 802.11 connections or active scanning
periods, without using prompting techniques to increase the num-
ber of packets received from them (like the aforementioned system
which Musa et al. proposed in [6]). Instead, in order to perform its
scanning, each of our monitors simply scans the different 802.11
channels periodically, following a plain round-robin schedule. Pa-
rameters of this continuous process, such as the scan time for each
channel, the set of channels to scan, or the maximum amount of
time before a monitor transmits the collected information to the
server, are fully configurable. For each captured packet the only
information which is used is the MAC address of the emitting
mobile device –which is key-hashed for privacy reasons –, the RSSI
value and the corresponding time stamp.

Our occupancy sensing system has to provide a flexible charac-
terization for all the mobile devices being monitored. We assume
that they will show a wide variety of hardware, WiFi interfaces,
antennas, operating systems, and the like. Consequently, they will
produce signals with very different strength and temporal pat-
terns. Sincewewant to use the frames normally transmitted by the
devices as carried by any type of users during their daily routines,
we cannot impose any restrictions on the specific device or make
any assumptions on its current state (whether it is switched on or
in a low-power suspended state, whether or not it is connected
to any WiFi access point, etc.) This total absence of control will
involve some key system design decisions that will be explained
in Section 4.

Finally, a central server will be in charge of hosting the local-
ization engine itself. A central element of this engine will be a
database containing both the fingerprinting data collected during
the training phase and the continuously updated information of
the captures sent to it by the monitors. The server will be also
in charge of running the localization software responsible for cal-
culating occupancy and positioning information when required.
In order to do this, the server provides an API that will be used
by higher-level location-based services according to each specific
scenario. In Section 3.3 we will provide some examples of the kind
of services that can be deployed during the online phase.

Fig. 1. User interface of the training application based on waypoints.

3.2. Training phase

Our training phase involves a site survey process to build the
corresponding geopositioned fingerprinting database. This process
is traditionally assumed to be time consuming, but we have used
a different approach to make it faster and more straightforward.
Occupancy is mainly based on a per-zone classification problem,
rather than exact position regression, which alleviates the need for
an otherwise typically exhaustive sampling procedure.

Our monitors can be configured to act as conventional access
points (AP). This configuration is used during the training phase
since we adopt a classical –active–approach to create a fingerprint
map of radio signals for every zone of interest. Using a mobile
device running a customized training application, we obtain the
RSS values of the beacon frames transmitted by our monitors in AP
mode. The corresponding observations are then tagged (x, y) using
a locally defined coordinate system.

We do not rely on any additional localization system for loca-
tion ground truth. Instead, approximate geopositions are obtained
as the operator follows the indications of the training app, which
provides continuous visual feedback about the required walking
path for the site survey. As the example in Fig. 1 shows, a set
of connected waypoints forms the path to be followed by the
operator. The app is also responsible for collecting the 802.11
fingerprints that will be geo-tagged using the coordinates where
the operator has to be physically at that moment (enclosing black
circle shown in the example). All the operator has to do is to follow
the path shown as accurately as possible and remain still at the
designated waypoints (smaller red points in the figure) for the
required scanning time. Given aparticular scenario, our application
provides themechanisms to define these waypoint based paths, as
well as how much scan time is required for each waypoint. The
walking speed of the operator can also be configured. A typical
path involves only a few dozen waypoints, with 5–10 s stops at
each, for a total of a few minutes to cover relatively large portions
of building, such as that shown in the figure.

We are aware that this method can generate some noisy obser-
vations, since the current position of the operator does not always
match the exact coordinates shown by the application. The set of
obtained samples also tends to be relatively sparse, due to the rel-
atively short sampling periods. However, for occupancy purposes,
the resulting fingerprinting maps offer an excellent trade-off be-
tween the accuracy subsequently obtained in the online phase and
the invested training times. As we will demonstrate in Section 6,
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Fig. 2. Example heatmap obtained during the online operation of the system.

this light survey technique does not significantly affect the correct
classification rate, and it makes the training stage clearly feasible
even for relatively large scale scenarios.

3.3. Online operation

The particular services to be provided by our location engine
in each scenario will be highly dependent on the targeted applica-
tions, but we present two examples that could be meaningful for
illustration purposes. On the one hand, as Fig. 2 shows, it is possible
to obtain occupancy heat maps, which are useful to show real-
time information or to analyze occupancy during a given period
of time. In the example shown, the system provides the number
of occupants in every zone of the building. On the other hand, we
can also analyze the temporal occupancy pattern of a building (or
just a particular zone) over a given period. For example, as Fig. 3
shows, we can determine the number of devices that were present
in the building for every hour of a particular day. It is worth noting
that since our localization engine will be able to provide not only
the location of the devices, but also the amount of time they spend
at each location, we can provide two kinds of data. Gray bars in
the figure refer to the total number of different devices that were
present at each particular hour in the zone of interest. But, addi-
tionally, we also display a finer-grained information, shown in the
corresponding blue bars, which is directly related to the amount of
time that those devices remained in that zone. This information
is measured in devices*hour units, and is calculated taking into
account the total time spent by each device in the targeted zone. In
terms of this measure, amobile device which remained in the zone
for a whole hour would contribute with 1 device*hour unit, while
another that only stayed there for, say, 6 min, would contribute
with 0.1. This constitutes a very useful indicator to distinguish
passing areas from other zones where users tend to stay for longer
periods of time.

4. Data representation and distance metrics

4.1. Raw measures

Aswe have already stated, ourmonitors are in charge of collect-
ing the 802.11 frames emitted by the user devices, and then they
send the relevant information to a central server to be processed.
Using a sufficiently long sampling period ∆ (typically 1 to 3 min-
utes; see next section for a sensible choice for this parameter), we
build raw vectors r = (r1, . . . , rM ) ∈ RM for every captured device
during that sampling period, where ri refers to the maximum RSSI
value (in dBms) observed by monitor i for the different frames

Fig. 3. Temporal occupancy analysis for a given period (one day in the example).

transmitted by that particular device in the corresponding ∆-
length time interval. We use of the maximum value in order to
attenuate fading and multipath effects that might affect the RSSI
received, and also to minimize the impact of those values obtained
when the monitors were capturing in channels which are not the
central frequency used by the device to transmit the frames. If any
ri value is unavailable (because the corresponding monitor did not
capture any frame from the corresponding device), a minimum
value of -100 dBm is assigned to it, in order to get a completely
defined vector.

These raw measures are then transformed into two alternative
representation methods, which we call order vectors and ternary
vectors. The purpose of these alternative representations is to build
a vector that is well-fitted to apply different distance metrics in
the k-NN classifier, while still being suitable for heterogeneous
devices.

4.2. Order vectors

The idea behind order vectors is to represent just the magnitude
relationship between the RSSI measurements of a raw vector, thus
discarding the specific ri values, which might not be very useful,
due to the already discussed issue of device heterogeneity. In this
case, the output vector obtained represents the relative positions
of the RSSI signals perceived by each monitor when the input raw
vector components are sorted into a descending order. This way,
fluctuations in the RSSI values will not alter the resulting vectors
as long as the relative order of the signal strengths for the differ-
ent monitors is maintained, which is very suitable when dealing
with heterogeneous devices. We will illustrate the idea with a
very simple example. Suppose that we had only four monitors
(M = 4) and that we obtained a raw sample r = (r1, . . . , r4) =

(−60, −80, −50, −62) (all ri measures in dBms). The correspond-
ing order vector o = (o1, . . . , o4) ∈ N4 would be (2, 4, 1, 3),
reflecting the corresponding magnitude order of the signals.

In fact, order vectors can be computed depending also on an
additional tolerance parameter δ, such that two components oi and
oj are considered to have the same order when |ri − rj| <= δ dBm.
The δ parameter is used here to enforce a significant difference
between the RSSI values for it to be considered really relevant,
just as in the cited FreeLoc system [9]. Thus, the former vector
(o1, . . . , o4) = (2, 4, 1, 3)was computed for a value of δ = 0, while
it would have been (2, 4, 1, 2) if we had used a value of δ = 5 dBm,
for example. Since it is difficult to determine a priori an optimal δ,
we will obtain a reasonable value for it for our application scenario
by cross-validation.
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4.3. Ternary vectors

Ternary vectors are just another alternative to avoid using
absolute RSSI values, while still keeping the relevant magnitude
order relationships among every pair of monitors. This time the
ternary vector is built using all the

(M
2

)
=

M∗(M−1)
2 combinations of

monitors by pairs. Using again a prespecified δ parameter, each of
these pairwise comparisons can give rise to three different values
+1, −1 or 0 (thus the name of ternary vectors): ∀c ∈ {(i, j) | i, j ∈

{1, . . . ,M}, i < j}, we define tc = +1 if ri − rj >= δ (or simply
monitor j did not receive any frame from the device); tc = −1 if
ri − rj <= −δ (or monitor i did not receive any frame from the
device); and tc = 0 when |ri − rj| < δ (or neither monitor i nor
monitor j was able to receive any frame from the device). Again,
the aim of the δ parameter is to enforce a significant difference
between the RSSI values.

As an illustrating example, and using the same input raw
vector as before, r = (r1, . . . , r4) = (−60, −80, −50, −62),
the corresponding output vector t = (t1, . . . , t6) would be
(+1, −1, +1, −1, −1, +1) for δ = 0, or (+1, −1, 0, −1, −1, +1)
for δ = 5, where the positions 1 . . . 6 of the vector represent the

(4
2

)
possible pair comparisons {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
in that exact lexicographical order.

4.4. Distance metrics

Given an existing raw vector ra in the training dataset, and a
new input query raw vector rb obtained by the passive monitoring
system for a given device and time interval, we experimentwith k-
NN classification using the following seven different distancemet-
rics1:

1. Euclidean distance: This is the metric we will use when
working directly with raw vectors. Given two such vectors
ra and rb, it is defined as

EUra,rb =

M∑
i=1

√
(ra,i − rb,i)2 (1)

where ra,i and rb,i are the ith component of the ra and rb
vectors, ∀p ∈ 1 . . .M . That is, the ra,i and rb,i values come
from the raw RSSIs measures obtained for the whole set of
M monitors during the training (ra) and the online phase
(rb), respectively. Aswewill show, thismetric is not suitable
to work with heterogeneous environments, and will only be
used as a basis for comparison with the rest of metrics.

2. Weighted Pearson correlation distance: This distance is a
measure of the statistical dependence between two vectors.
It uses order vectors oa and ob computed from the input raw
vectors ra and rb, and is defined as one minus the weighted
Pearson correlation coefficient similarity [14], as shown in
Eq. (2):

PEoa,ob = 1 −

∑
p∈I (oa,p − ōa)(ob,p − ōb)√∑

p∈I (oa,p − ōa)2
√∑

p∈I (ob,p − ōb)2

·
|I|
M

(2)

where I is the set of common monitors,M the total number
of them, and o•,p and ō• are the pth component and the
mean of all the o•,p ∀p ∈ 1 . . .M components, respectively,
for the corresponding oa and ob vectors.

1 In fact, we tested a much larger set of distance metrics in our initial experi-
ments. Herewehave shownonly those thatwe consideredmore illustrative in order
to compare several different strategies. Of course, the best performers in terms of
both accuracy and efficiency (or a trade-off between them, as we will illustrate in
the posterior experimental results section), have been included in the final version
of the paper.

3. Levenshtein distance: This is a string metric for measuring
the difference between two sequences [15]. Again, it uses
order vectors oa and ob. Informally, this distance measures
the number of single position edition operations (insertion,
deletion and substitution) to transform vector oa into vector
ob, if they are considered strings, rather than vectors. Algo-
rithmically, it is defined by Eq. (3):

LVoa,ob = levoa,ob (M,M) (3)

with:

levoa,ob (i, j)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(i, j) ifmin(i, j) = 0,

min

⎧⎪⎨⎪⎩
levoa,ob (i − 1, j) + 1
levoa,ob (i, j − 1) + 1
levoa,ob (i − 1, j − 1)

+1(oa,i ̸=ob,j)

otherwise. (4)

where1pred is the indicator function, valued 0 or 1 depending
on the truth value of the Boolean predicate pred.

4. Freeloc distance: Inspired in [9], this distance works on
ternary vectors ta and tb, and is defined by

FLta,tb = M − |Cta,tb | (5)

where Cta,tb represents the set of pairs {(ta,i, tb,i) | i ∈

{1, . . . ,
(M
2

)
} and ta,i = tb,i = +1 or − 1}.

5. Only-active distance: It again uses ternary vectors ta and tb,
but considers only active pairs. It is defined as

OAta,tb =
|Sta,tb |
|Ata,tb |

(6)

whereAta,tb is the set of pairs (ta,i, tb,i)with at least one value
̸= 0, and Sta,tb is the subset of Ata,tb where ta,i ̸= tb,i.

6. CombinedFreeloc andweighted-correlation: This seeks to
improve the Freeloc distance by incorporating the statistical
dependence between the two vectors. It uses both order and
ternary vectors and is defined by Eq. (7):

FPoa,ob,ta,tb = FLta,tb · (1 + PEoa,ob ) (7)

7. Weighted Freeloc distance: Finally, this distance again
combines order and ternary vectors, and considers the num-
ber of common monitors detected. It is defined by Eq. (8):

FCoa,ob,ta,tb = FLta,tb · (1 +
|Ioa,ob |
M

) (8)

where Ioa,ob represents the set of common detected moni-
tors andM is again the total number of them.

5. Experimental environment

We conducted all our experiments in a lecture building of 6000
square meters with 20 classrooms whose floor plan is shown in
Fig. 4. Every classroom, except one, is equipped with a teaching
computer connected to the university intranet (represented as
green circles in Fig. 4). We use this computer to install monitoring
software able to capture 802.11 traffic and transmit the relevant
information via Gigabit Ethernet to a central server. The use of
teaching computers as monitors has the twofold advantage of
avoiding the ad-hoc deployment of new equipment and saving
costs. The only additional hardware needed was an inexpensive
off-the-shelf WiFi card installed in each of those computers to
perform the monitoring. The required density of monitors to infer
occupancy in a per-classroom basis is relatively low, so one moni-
tor in each classroom is enough for our purposes.
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Fig. 4. Floor plan of the lecture room building used for our experiments.

Fig. 5. Probability distributions of the number of monitors capturing signals from a device depending on the time window ∆.

We have defined zones of interest (represented by red dotted
rectangles in Fig. 4) which refer to the different classrooms and
the main hall. Our occupancy sensing system has to provide a
characterization of the different passing users (i.e., students and
professors) and their usual behavior. MAC addresses are key-
hashed for privacy reasons.

5.1. Characterization of the passive sensing

As has been made apparent, our system is based on passive
sensing, i.e. it does not require sensory information from the user
devices. Instead, we rely on the data frames sent to the APs per-
taining to the network infrastructure (represented as black WiFi
icons in Fig. 4) or on the probe requests transmitted by the user
devices. One well known issue in this kind of passive systems is
that, due to both temporal and spatial sparsity of observations, it
is not possible to guarantee a tracking performance similar to that
of active systems. Therefore, and in order to characterize our par-
ticular environment, we conducted a statistical analysis to aid us
in determining some important design and validation parameters
which clearly distinguish us from typical active systems.

One of the most important design parameters of a passive
system is the timewindow∆. It should benoted thatwedonot have
any control of the exact time when each device emits a frame to
be captured by our monitors. Moreover, the monitors themselves
could also be desynchronized when scanning the different chan-
nels. So, monitors just capture a set of individual raw RSSI samples

per (device,monitor) pair for irregularly sampled timestamps. In
order to collect usefulmonitoring data for classification, the central
server groups these individual samples by time intervals to obtain
vectors including RSSIs for several monitors. Of course, there will
be a clear dependence of the number of active (i.e., capturing)mon-
itors for each vector on this∆ value. Fig. 5 showsdifferent probabil-
ity distributions of the number of monitors capturing signals from
a device depending on this time window value, as obtained in our
scenario. Of course, the greater the time window, the more likely
a given device will be captured by more monitors, thus getting
more informative vectors. On the downside, the greater the time
window, the less precise will be our system for tracking moving
devices. Nevertheless, people in a lecture room building tend to
stay relatively static for long periods of time and ∆ values of up
to 2 or 3 min are assumable. We also observe that for values of
∆ > 180 s the number of active monitors per aggregated vector
tends to stay stable.

We have also analyzed the variability of the RSSIs for different
802.11 frames captured by a monitor for a given device in the
same time window interval. This variability strongly depends on
the value of ∆, and clearly states how challenging the passive
localization problem can be. Assuming again that the devices to
be classified tend to be relatively static, and therefore the signal
variability tends to be caused by occlusions, adjacent channel
displacements, and uncontrolled capturing conditions, the system
always takes the maximum RSSI obtained in the whole sampling
interval, which should add more robustness to the order based
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Fig. 6. Probability distributions of max–min RSSI values per monitor for a given device using several time window sizes.

Fig. 7. Spatial sampling coverage for three arbitrary monitors (using training set).

metrics and techniques described in the next section. Fig. 6 shows
some probability distributions of these max–min RSSI values per
AP for several values of ∆. Again, the corresponding normalized
histograms show that the variability in the max–min RSSIs values
per AP tends to stabilize for time windows from 2 or 3 min on.

The spatial coverage of eachmonitor is another important value
to take into account when designing passive localization systems.
In our deployment, every monitor covers device locations up to
35–40 m from its corresponding position, or even up to 55 m in
some cases (see Fig. 7, which is based on the dataset we obtained
during the training phase, and that will be described in Section 6
below). Given our spatial distribution of monitors, the system has
a minimum coverage of 5–6 monitors on every position of the
building (and up to 12–13 on some specific, centered positions).
Given an adequate ∆ sampling time interval, this is more than
enough to obtain quite meaningful raw measurements vectors.

Another important issue that must be evaluated is the rela-
tionship between the distance of a device to a given monitor and
the corresponding received signal strength. This is illustrated in
Fig. 8 (again based on the same training dataset). We observe
that, though there is a clear negative correlation between RSSI
and distance, the signal is in general very noisy, which translates
into a relatively large variance in the direction perpendicular to
the regression line. This explains the large degree of uncertainty
regarding the direct use of lateration methods in unconstrained
indoor environments, which justifies the need to create a finely
trained fingerprinting map, which adapts much better to the pe-
culiarities of each building.

Table 1
Training, validation and test datasets. The complete test environment had 21 zones
and 19 monitors. The Galaxy, S3 and Nexus 5 are different smartphone models, Tab
2 and Infinitab are tablets, and the Asus Zenbook is an ultrabook laptop.

Devices #Vectors #Zones #RSSIs/vec ∆base

Training Samsung Tab2 226 21 8.27 10 s

Validation Samsung Tab2, 415 7 8.10 10 s
Samsung Galaxy,
Samsung S3

Test Samsung Tab2 101 8 5.35 90 s
Samsung Galaxy
Samsung S3
Asus ZenBook
Nexus 5
Infinitab

6. Experimental results

6.1. Datasets description

We have performed a set of experiments in our environment
using simple k-NN techniques based on the distance metrics pre-
sented above. The simple nature of our training process makes
k-NN a good machine learning technique candidate, with a
good balance between complexity, accuracy and execution time,
given the relatively small size of the resulting typical training
datasets [16]. More specifically, all our experiments were per-
formed using the datasets described in Table 1. While both the
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Fig. 8. Distribution of RSSI vs distance to monitor values for our testing environment (using training set). Marginal distributions of RSSI values and distances from captured
devices to corresponding monitors appear on top and to the right of the figure, respectively.

Fig. 9. Confusion matrices for classification using raw, sorted and ternary vectors when cross-validated (10-folded) on the training set.

training and validation datasets were obtained in active mode,
using the lightweight survey process described in Section 3.2 (for
example, the training dataset was composed of 5977 raw RSSI
captured signals, which required about 1 h of training time to cover
thewhole building, and thesemeasurementswere aggregated into
226 vectors when using a sampling time period of ∆ = 10 s, as
shown in the table), the test dataset was obtained from different
mobile devices not running any specific localization software (just
sending probe or data frames). This is a challenging set that in-
cludes six different mobile devices. The mean number of active
monitors by vector (#RSSIs/vec column in table) is clearly lower
than the training and validation datasets, due to the harder frame
capturing conditions of the passive mode. The size of this dataset
is also smaller, due to the need of a much larger ∆ time window.

6.2. Training process evaluation

Given the lightweight nature of our training procedure, the first
thing that we need to assess is the relative quality of our training
dataset when cross-validated with itself. In order to evaluate this,
we performed a standard k-fold cross validation [16], with k =

10 (that is, a random partition of the dataset in 10 subsets and
using 9 of them to train a model, leaving the remaining one to
test its accuracy). Although this method will, clearly, overestimate
the obtained the classification accuracy that would be obtained in
more realistic conditions, it is still useful to get an upper bound
of the capacity of each method. Fig. 9 shows the obtained results
when using raw, sorted and ternary vectors, respectively. The
metrics used were Euclidean (Eq. (1)), weighted Pearson (Eq. (2))
and Freeloc (Eq. (5)), respectively. In all cases five nearest training
neighbors were used to make the classification. As can be seen,
any of the metrics behaves relatively well, thus ensuring that the
fast training process does not imply a dramatic performance loss.
It is also interesting to note that the raw vectors are those that
behave the best (96.46% accuracy), given that the training and
the testing conditions (i.e. device, environmental conditions, etc.)
are almost identical (by definition of the k-fold evaluation). Still,
ternary vectors using the Freeloc measure achieve quite a similar
overall accuracy, 94.25%, which is also encouraging for us, given
that these vectors throw all the absolute value RSSI information,
and thus we expect them to be much more resilient to the device
heterogeneity issue that we will evaluate later. Sorted vectors are
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Fig. 10. Confusion matrices for classification using raw, sorted and ternary vectors when tested on the validation set.

Fig. 11. Evolution of accuracy when varying ∆ (in seconds), for a fixed value of δ = 0 dBm (computed on test set). Sorted vector based metrics: weighted Pearson (PE)
and Levenshtein (LE). Ternary vector based metrics: FreeLoc distance (FL) and Only active (OA). Mixed sorted and ternary vector metrics: Combined FreeLoc and weighted
correlation (FP) and weighted FreeLoc distance (FC).

here the worst performers, with only 88.5% accuracy, since they
aremore affected than ternary vectors by the absolute information
thrown away when building them from the raw measurements.

A more useful evaluation, however, should include an evalu-
ation dataset completely different from the training dataset. In
Fig. 10we show the evaluation of the training phasewhen it is used
to classify the validation dataset, using the same representations,
metrics and number of neighbors as above. The difference here
is that the validation data were obtained with three different
devices, on different days and using different sampling paths than
those used when performing the training. The results are again
encouraging, with 85.06% accuracy for the ternary vectors, which
clearly prove to bemuchmore robust to device heterogeneity than
raw vectors (which fall to a rather poor 42.41% accuracy), and again
better than sorted vectors (which are still much better than raw
vectors, with an overall 79.76% accuracy).

6.3. Analysis of the ∆ and δ parameters of the passive system

We must nevertheless remember that the results illustrated
in the above subsection are still obtained in the (easier) active
conditions, that is, the located device is actively sampling the RSSIs
of the beacon frames emitted by our monitors in AP mode. We

must evaluate now the expected performance of the system when
working in passive mode. But in order to do this, we must first
determine adequate values of themain passive systemparameters,
that is, ∆ and δ.

We will first analyze the influence of the ∆ parameter. Fig. 11
shows the evolution of 5-NN classification accuracy on the test
set when varying the passive time window interval (in seconds),
for a fixed value of δ = 0 dBm, and all the metrics described
in Section 4.4 (except the Euclidean distance, which is clearly
inadequate for heterogeneous devices, as shown in the previous
subsection). We clearly observe how for too small values of ∆,
the accuracy clearly degrades (independently of the metric), while
∆ = 90 s offers a good compromise between accuracy and time
granularity of the resulting passive classification system. We also
appreciate that the FreeLoc distance on ternary vectors (FL) and
both theweighted FreeLoc distance (FC) and the combined FreeLoc
andweighted correlation (FP) onmixed sorted and ternary vectors
metrics are in general the best performing, with levels of accuracy
of around 80%. These are very good results, taking into account
that they were already obtained on the challenging test dataset of
six different devices, with none of them executing any specifically
dedicated software.

Another important issue was to determine a good δ parameter
for our environment (see Section 4). Although when using the
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Fig. 12. Evolution of accuracy when varying δ (in dBm), for fixed value of ∆ = 90 s (computed on test set).

Fig. 13. Confusion matrices for classification using sorted and ternary vectors when applied to the test set (using ∆ = 90 s and δ = 0 dBms).

independent validation set to cross-validate we obtained a best
performing value of δ = 5 dBm, for the test set (see Fig. 11) this
parameter does not seem to have a clear influence, maybe due to
the smaller number of monitors per sample, which tends to aug-
ment the difference between the available RSSIs, thus attenuating
the influence of this parameter (see Fig. 12).

6.4. Passive system evaluation

Once we have determined adequate values of ∆ and δ, we
can now study in more detail the overall accuracy of the passive
system. Given that there do not seem to be significant differences
between the ternary vector representation using the FreeLoc met-
ric (FL) and the more involved mixed representations and metrics
(FP and FC), in the results shown hereinafter we will focus on
the simpler (and thus more efficient) FL variant. In any case, we
will also test the alternative representations of sorted vectors with
Pearson metric (PE) and raw vectors with Euclidean metrics (EU),
just for illustration purposes. Fig. 13 shows the detailed confusion
matrices obtained when performing the classification of the test
set using sorted and ternary vectors. Just as expected, the ternary
vector approach proves clearly superior with 81.19% accuracy –

much better than the 64.36% obtained by sorted vectors. Confu-
sion matrix for raw vectors is not shown, as classification drops
to a very poor overall accuracy of 18.81% (still well above the
pure random classification rate of 1/21=4.76%, but clearly unac-
ceptable for any practical purpose in this much more realistic
scenario).

A classification accuracy around 80% is a good overall result
for a passive system, but it would also be nice to get a visual
idea of where exactly the remaining 20% classification errors go.
Fig. 14 illustrates this. Here, we perform k-NN regression on the
validation set, in order to get not just the zone, but rather the
inferred (x, y) position when using the average position of the 5
nearest neighbors of each validation sample in the training set
(using again the FL metric and δ = 5 dBm). Circles represent
the real device positions and triangles are the estimated positions.
Whilemost of the estimations go to the correct zone, the remaining
errors almost always go to adjacent zones, thus demonstrating the
relative robustness of the regression. The average distance error
was 3.40 m, though we have to take into account here that this
result was obtained using the actively obtained validation dataset.
The reason is that, given the much larger time windows needed
by the passive system, it would have been very time consuming to
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Fig. 14. Regression results on validation set, using FreeLoc metric on ternary vectors, δ = 5 dBm, 5 neighbors (mean error = 3.40 m).

Fig. 15. Accuracy results per device in the test set (using Euclidean distance on raw vectors, weighted Pearson metric on sorted vectors, and FreeLoc metric on ternary
vectors; δ = 5 dBm and k = 5 neighbors in all cases).

obtain a passive regression ground truth test set of an acceptable
size. Thus, this value of approximately 3.40 m should be only
considered as a lower bound on the real error that would be ob-
tained by the passive systemwhen performing position regression.
However, and as we have already justified throughout the paper,
for occupancy purposes we are more interested in classification
than in exact regression.

To end this subsection, in Fig. 15 we show again the classi-
fication results already illustrated in Fig. 13, although this time
disaggregated by device model. We also show now the accuracy
when we consider a location estimation wrongly assigned to an
adjacent zone as approximately correct (note, of course, that this
could be more or less adequate depending on the specific applica-
tion of the occupancy sensing system). We observe that results are
thenwell above ranges of 90%–95% accuracy, with slight variations
depending on the specific devices. In general, we also observed
that the laptop seems to be slightly better located than smart-
phones and tablets, and that some mobile devices (Samsung S3
andGalaxy smartphones) are better located than others (i.e. Galaxy
Tab2 tablet), although in fact this could be just an artifact caused
by the relatively small size of the testing dataset. A detailed study

by type of device is therefore an issue that would warrant further
research.

6.5. Fault tolerance to monitor failures

Finally, and given the special characteristics of our envi-
ronment, where practically every relevant zone (mostly lecture
rooms) has its own dedicated monitor, the reader might be won-
dering how a simple ‘‘zone with monitor with strongest RSSI’’
classification technique would perform. This is shown in Table 2.
For some specific values of ∆, we can obtain even slightly better
individual classification results (up to 90%). However, not only that
type of classification would not be adequate for many other types
of less structured environments, but also the resulting passive clas-
sification systems would be much less robust to sporadic monitor
failures. Fig. 16 illustrates the resilience of our system to such
events, which were simulated by removing a varying number of
monitors when classifying the test set. Given that in these tests the
hybrid metrics (FP and FC) tend to be slightly more robust to large
number of failures than the others, in this figure we show again all
the metrics described in Section 4.4 (again, except the raw vector
based Euclideanmetric, completely useless in the passive setting).
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Table 2
Classification by zone with highest RSSI of the corresponding monitor.

∆ (s) 0 30 60 90 120 150 180 210 240

Accuracy 33.4% 81.0% 81.6% 88.1% 84.5% 89.8% 92.5% 90.7% 80.4%
#Samples 512 158 125 101 84 59 53 54 51

Fig. 16. Robustness to monitor removal.

7. Conclusions and future directions

We have presented a passive localization system based on
wireless signals which is suitable to offer indoor occupancy infor-
mation based services. Our lightweight training procedure, based
on waypoints and real-time feedback, is a key stone to reduce the
time required to deploy such kind of systems in a practical way. In
addition, we have also performed an exhaustive experimental case
study which is a valuable contribution to characterize the main
features of our proposal. We studied the performance of several
representation and metrics based on relative signal strength order
(rather than raw measures) which are suitable to cope robustly
with the device heterogeneity expected in typical unconstrained
environments. We have shown that the ternary vector represen-
tation and its associated FreeLoc metric offers a well balanced
solution to copewith the challenges posed by these kind of scenar-
ios. Finally, we have tested several parameters that influence the
estimation accuracy and we have also analyzed the implications of
monitor failures.

Our results can be considered satisfying for occupancy estima-
tion purposes on a per-zone classification basis. Finally, it is worth
noting that the obtained classification success rates of around 80%
were attained for individual vectors obtained for a time interval of
just 90 s, without taking into account any additional type of tem-
poral consistency. It is clear, therefore, that this accuracy could be
easily boosted by using some simple probabilistic technique incor-
porating time evolution, such as aHidden stateMarkovModel [16].
A thorough practical study of this additional feature, together with
a higher level interpretation of the users behavior using clustering
techniques will be the subject of our future research.

As an additional statement of direction, we are also analyzing
whether the use of different radio technologies, like Ultra Wide
Band (UWB) or Bluetooth Low Energy (BLE) or even a combina-
tion of both, may provide different results in terms of accuracy
and practical deployment. More specifically, we are employing a
dataset from an industry environment, which contains UWB and
BLE signals obtained over 2 months from hundreds of tags carried
by operators in a refinery.

Finally, we are also currently studying the application of dimen-
sionality reduction techniques to RSSIs vectors in order to augment
both the efficiency and robustness of the system [17].
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