
How to make R packages

- use C, C++, and Fortran code in R

Eun-kyung Lee

February 4, 2004



Outline

• What is R?

• What is R package?

• Package structure

• How to build package

• How to call C/Fortran function in R

• Summary



R

• open source statistical analysis software, similar to S-plus

• provides a wide variety of statistical and graphical techniques

• is highly extensible.

• for computationally-intensive tasks, C, C++ and Fortran

code can be linked and called at run time.

• can be extended (easily) via packages.



R packages

• provide a mechanism for loading optional code and attached

documentation as needed.

• Once a source package is created, it must be installed. (use

R CMD INSTALL)

• library(package.name)



Package Structure

• DESCRIPTION

• INDEX - optional

• R/

• data/

• man/

• src/

* package.skeleton



DESCRIPTION file

• Package : the name of the package

• Version : the version of the package

• Title : a short description of the package.

• Description : a comprehensive description.

• Author : describe who wrote the package.

• Maintainer : single name with email address

• License :



INDEX file - optional

• contains a line for each sufficiently interesting object in the

package, giving its name and a description.

• it can be automatically generated from the documentation

sources.



R/

• contain R code files

• it should be possible to read in the files using source()

• if necessary, one file(historically “zzz.R”) should use

library.dynam() inside .First.lib() to load compiled code.

eg) .First.lib< −function(lib,pkg){

library.dynam("ClassPP",pkg,lib) }



man/

• contain documention files for the objects in the package in

R docoumentation(.Rd) format

• all user-level objects in a package should be documented.

• it is used for writing package vignettes.



src/

• contain C, C++, or FORTRAN source files

• optionally “Makevars” or “Makefile”

data/

• contain additional data files

• load using data()

• plain R code, tables, or images from save()



check and build package

• R CMD check pkgname (Rcmd check)

– provide subdirectory pkgname.Rcheck/

– install package

– provide pkgname-manual.tex

• R CMD build pkgname(Rcmd build)

– provide pkgname version.tar.gz

– to install this library, R CMD INSTALL pkgname version.tar.gz



Interface functions .C and .Fortran

• the mapping between the modes of R vectors and the types

of arguments to a C and Fortran

R storage mode C Fortran
logical int* INTEGER
integer int* INTEGER
double double* DOUBLE PRECISION
character char** CHARACTER*255

• the compiled code should not return anything except through

its arguments :

– C function : type void

– Fortran function : should be subroutines.



• For C function,

– #include <t.h>

– memory allocation

1. R alloc() : R manages the clean-up

2. Calloc()/Free() : user has full control



Creating shared objects

• R CMD SHLIB fun1.c fun2.c · · · : create fun1.so

• in Makevars file

– PKG FLAGS : for ’-I’ flags

– PKG LIBS : for ’-l’ or ’-L’ flags



How to use your functions in the shared objects

• dyn.load(‘‘*.so’’) : load the shared object

• is.loaded(sumbol.C(‘‘function.name’’))

: check whether your function is loaded properly or not

• test <- .C(‘‘function.name’’,arg1, x=arg2, y=arg3, · · · )
: It returns test$x,test$y, · · ·

• dyn.unload(‘‘*.so’’) : unload the shared object



Summary

• R can be extended (easily) via packages

• R has its own LaTeX-like documentation format, which is
used to supply comprehensive documentation, both on-line
in a number of formats and in hardcopy.

• For computationally-intensive tasks, C, C++ and Fortran
code can be linked and called at run time.

• If you want to submit your package, upload the ’tar.gz’ file
to
ftp://ftp.ci.tuwien.ac.at/incoming

and send a message to cran@r-project.org

• For more information, visit http://www.r-project.org/


