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Abstract

This is an intuitive and accelerate introduction for beginners to
approach to the realm of Differential Geometry.

1 Starters: space curves

Definition 1.1. A curve in R3 is a map

α : I → R3, α(t) = (α1(t), a2(t), α3(t)) ,

where I ⊂ R is open and the functions αi(t) admit continuous derivatives of
any order.

Definition 1.2. The velocity vector or tangent vector of α(t) is the map

α′ : I → R3, α′(t) =
(
α′1(t), α

′
2(t), α

′
3(t)

)
.

Remark 1.1. If α takes values in R2, then α will be called a plane curve.

Example 1.1. (1) The curve α(t) = (a cos t, a sen t, b t), with a, b > 0, is
called cylindrical helix.

(2) The curve α(t) = (t3, t2) is differentiable, however there exists the
velocity vector α′(0) = (0, 0) at t = 0, though it has no direction. We will
not consider such a situation.

(3) It is clear that α(t) = (t3−4t, t2−4) is nos an injective map (observe
that α(2) = α(−2) = (0, 0)). Then we will say that α(t) is not simple.

(4) The map α(t) = (t, |t|) is not differentiable, so it will be dropped in
our study.

I wish to thank the organizers for the opportunity to disseminate the nice world of
Differential Geometry and for their hospitality during the meeting.
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Why the curve should be differentiable? Why we wish to avoid the
vanishing of the tangent vector at a point? The answer will implicitly be
given in the following definition.

Definition 1.3. A curve α : I → R3 will be called regular when α′(t) 6= 0,
for all t ∈ I.

When α′(t) 6= 0, we can consider the tangente line of α at the point α(t),
i. e., the straightline through α(t) and direction given by α′(t) (so the curve
must be regular).

Otherwise, if t0 ∈ I is such that α′(t0) = 0, we will say that α has a
singular point at t0.

We only consider simple (without self-intersections) and regular curves.

1.1 The arclength function

Definition 1.4. Let α : I → R3 be a curve. A parameter change is any
differentiable map

h : J → I,

J ⊂ R open, whose inverse function h−1 is also differentiable.
The curve β = α ◦ h : J → I → R3 will be called a reparametrization of

α.

Example 1.2. Take the circle α(t) = (cos t, sen t). The map h(s) = 2s
preserves the orientation, while h(s) = −s reverses it.

Definition 1.5. The arclength between the points α(a) and α(b) is given by

Lb
a(α) =

∫ b

a
|α′(t)| dt.

A curve α : I → R3 is said to be arclength parametrized (a.l.p.) provided
|α′(t)| = 1, for all t ∈ I.
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Remark 1.2. In that case we have

Lt
0(α) =

∫ t

0
|α′(u)| du =

∫ t

0
du = t.

Proposition 1.1. Any regular curve can always be arclength parametrized.

Example 1.3. The catenary is the curve defined by α(t) = (t, cosh t). Its
arclength parameter is

s =
∫ t

0
|α′(u)| du =

∫ t

0
coshu du = senhu.

1.2 Curvature and torsion functions. The Frenet trihedron

Let α : I → R3 an a.l.p. regular curve and let s be the arclength parameter.
It then has unit tangent vector T(s) = α′(s), i. e., 〈T(s),T(s)〉 = 1. Then
〈T′(s),T(s)〉 = 0 and T′(s) ⊥ α′(s).

Definition 1.6. The function

k(s) = |T′(s)| = |α′′(s)|

will be called the curvature of α at the point α(s).

Remark 1.3. We have that k(s) ≥ 0. Furthermore, α is a straightline if,
and only if, k(s) ≡ 0.

Definition 1.7. Let α be an a.l.p. regular curve. For any s ∈ I, such that
k(s) 6= 0, the vector

N(s) =
T′(s)
k(s)

=
α′′(s)
|α′′(s)|

will be called the normal vector of α at the point α(s).

Definition 1.8. Let α be an a.l.p. regular curve such that k(s) 6= 0 any-
where. The plane {T(s),N(s)} will be called the osculating plane of α at
the point α(s).

Henceforth we will assume that k(s) 6= 0 anywhere.

Definition 1.9. B(s) = T(s)×N(s) will be called the binormal vector.

It is easy to see that |B(s)| = 1 and B(s) is orthogonal to the osculating
plane.
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Definition 1.10. For any s ∈ I, where k(s) > 0, the set {T(s),N(s),B(s)}
is an orthonormal basis of R3, usually called the Frenet trihedron or Frenet
frame along α(s).

Remark 1.4. How vectors T(s), N(s) and B(s) evolve along α(s)?

To see that, write

T′(s) = k(s)N(s),
B′(s) = T(s)×N′(s) ⇒ B′(s) ⊥ T(s),
|B(s)| = 1, so B′(s) ⊥ B(s).

Then B′(s) and N(s) should be collinear, so that

B′(s) = 〈B′(s),N(s)〉N(s) = 〈T(s)×N′(s),N(s)〉N(s).

It seems natural the following

Definition 1.11. The torsion of α is the function τ : I −→ R defined by

τ(s) := 〈T(s)×N′(s),N(s)〉 = 〈B′(s),N(s)〉.

Frenet formulas.

B′(s) = τ(s)N(s).
N′(s) = 〈N′(s),T(s)〉T(s) + 〈N′(s),N(s)〉N(s) + 〈N′(s),B(s)〉B(s).

• 〈N′(s),N(s)〉 = 0, because 〈N(s),N(s)〉 = 1);
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• 〈N′(s),T(s)〉 = −〈N(s),T′(s)〉 = −k(s), because 〈N(s),T(s)〉 = 0;
and

• 〈N′(s),B(s)〉 = −〈N(s),B′(s) = −τ(s), because 〈N(s),B(s)〉 = 0.

We finally get N′(s) = −k(s)T(s) − τ(s)B(s). Summarizing, we have ob-
tained the so called Frenet formulas:

T′(s) = k(s)N(s),
N′(s) = −k(s)T(s) −τ(s)B(s),
B′(s) = τ(s)N(s).

Proposition 1.2. A curve α(s) with curvature function k(s) 6= 0 is a plane
curve if, and only if, its torsion function vanishes everywhere.

Remark 1.5. If k(s) ≡ 0, then α is a straightline, and then a plane curve.
When k(s) = 0 the torsion can not be defined, so this case is not included
in the above proposition.

Example 1.4. Let α be the cylindrical helix α(s) = (a cos s, asins, bs), a, b >
0, which we assume a.l.p. (so |α′(s)|2 = |(−asins, a cos s, b)|2 = a2+b2 = 1).

The Frenet trihedron of the helix:

T(s) = (−asins, a cos s, b),
N(s) = (− cos s,−sins, 0),
B(s) = (bsins,−b cos s, a).

The curvature of the helix: k(s) = |α′′(s)| = |(−a cos s,−asins, 0)| = a.
The torsion of the helix: τ(s) = 〈N(s),B′(s)〉 = −b.

Summarizing.

k(s) : measures to what extent α is far from a straightline
τ(s) : measures to what extent α is far from a plane curve

A special case: a plane curve.

The curvature function is now defined by

k(s) =
〈
α′′(s),N(s)

〉
and the Frenet formulas are{

T′(s) = k(s)N(s),
N′(s) = −k(s)T(s).
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Remark 1.6. If α(s) is a plane curve, its curvature k(s) is signed.
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2 The main course: surfaces in R3

Definition 2.1. A non-empty set S ⊂ R3 is a regular surface if, for any
point p ∈ S, there exist an open U ⊂ R2, a neighborhood V of p in S (with
the relative topology of S ⊂ R3) and a map X : U −→ R3, such that

(S1) X(U) = V and X : U −→ R3 is differentiable;

(S2) X : U −→ V is a homeomorphism (i. e., the inverse map X−1 : V −→
U is continuous); and

(S3) for any q ∈ U , the differential dXq : R2 −→ R3 is injective.

The map X will be called a parametrization, chart or coordinate system.
The neighborhood V is called coordinate neighborhood.

6

-

=

-

6

-

W

X(q) = p

�
V = W ∩S

S

R
3

U
X(u,v) =

(
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)

X

R
2

U

q

(u,v)
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As for the meaning of the above conditions we have:

(i) The differentiability of X : U −→ V means that if we write X(u, v) =(
x(u, v), y(u, v), z(u, v)

)
, the functions x, y, z : U −→ R are differen-

tiable having continuous derivatives of any order.
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(ii) The condition (S1) allows us to ensure that the surface S is smooth
in the sense that it has neither edges nor vertices.

(iii) The condition (S2) avoids that S has self-intersections. This is quite
important in order to achieve uniqueness when we want to define the
tangent plane to the surface at a point.

(iv) The condition (S3) will become crucial to ensure the existence of
tangent planes at any point of S. This is a similar hypothesis to
that of α′(t) 6= 0 for regular curves.

An informal way to get a surface. A surface is obtained when we
take pieces of a sheet, distort and fold them, then fit them together in such
a way that the resulting figure has neither vertices, nor edges and nor self-
intersections.

Example 2.1. Regular surfaces.

Plane. Take the set Π =
{
(x, y, z) ∈ R3 : ax+ by + cz = d

}
,

where a, b, c do not vanish simultaneously. Assume, without loss of gen-
erality, that c 6= 0. Then we can write z = (d − ax − by)/c. Take now
U = R2, V = Π (the coordinate neighborhood will be the whole surface), and
let X : U −→ V be the map given by

X(u, v) =
(
u, v,

d− au− bv

c

)
.

Then we see that:

(i) X is differentiable, because is linear.

(ii) X−1 : Π −→ U is the orthogonal projection over the plane z = 0,
which is obviously continuous. Therefore, X is a homeomorphism.

(iii) Vectors Xu = (1, 0,−a/c) and Xv = (0, 1,−b/c) are linearly indepen-
dent, so that the map dXq is injective for all q.

Sphere. Take the set S2 =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
.
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Define X1 : U −→ R3 by

X1(u, v) =
(
u, v,

√
1− u2 − v2

)
,

where U =
{
(u, v) ∈ R2 : u2 + v2 < 1

}
.

It is clear that X1 is differentiable in U , then we get (S1). Furthermore,
X−1

1 is the orthogonal projection over the plane z = 0, which is also con-
tinuous. Hence, X1 is a homeomorphism on the image X1(U), so it holds
(S2). Finally, we have that

(X1)u =
(

1, 0,
−u√

1− u2 − v2

)
, (X1)v =

(
0, 1,

−v√
1− u2 − v2

)
are linearly independent, and so (dX1)q is injective and (S3) holds. As a
consequence, X1 is a parametrization. To show that S2 is a regular surface
we have to find a parametrization at any point of S2. We see that X1 covers
all points such that z > 0, but... how many parametrizations we need? The
answer is easily obtained, because you have to cover now (i) all points such
that z < 0; (ii) all points such that x > 0; (iii) all points such that x < 0;
(iv) all points such that y > 0; and (v) all points such that y < 0. Summing
up, six parametrizations are needed.

It seems then not easy to find all parametrizations of any surface, even
if the surface is as well known as the sphere. Actually, any surface can be
parametrized in many different ways, and the experience will show us that
some parametrizations will be more suitable than others according to the
aim we wish to achieve.

2.1 Practical criteria for determining surfaces

Criterion 1: Graphs. Let f : U −→ R be a differentiable function,
U ⊂ R2 being open. Then the set

G(f) =
{(
u, v, f(u, v)

)
: (u, v) ∈ U

}
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is a regular surface in R3. Actually, any graph of a differentiable function is
a regular surface.

Criterion 2: Regular values. Let f : V ⊂ R3 −→ R be a differen-
tiable function and let a be a regular value of f (i. e., dfp is surjective for
all p ∈ f−1(a)). Then S = f−1(a) is a regular surface in R3, which will be
called level surface.

Ellipsoid. Take the set

E =
{

(x, y, z) ∈ R3 :
x2

a2
+
y2

b2
+
z2

c2
= 1

}
.

To show that E is a regular surface we define f : R3 −→ R as

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
,

and look for its critical points. It is easy to see that the ellipsoid E = f−1(1)
is a regular surface.

Hyperboloids.

The above criterion can be used to show that the following sets
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H =
{
(x, y, z) ∈ R3 : x2 + y2 − z2 = 1

}
(One-sheet hyperboloid)

H ′ =
{
(x, y, z) ∈ R3 : x2 + y2 − z2 = −1

}
(Two-sheets hyperboloid)

are regular surfaces by using the function

f : R3 −→ R dada por f(x, y, z) = x2 + y2 − z2.

The only critical value of f is 0, so H = f−1(1) and H ′ = f−1(−1) are
regular surfaces.

The regular value criterion applies not only to show that quadrics are
regular surfaces, but also for another kind of surfaces as we exhibit in the
following example.

Torus of revolution. Take the circle S1(r) in the plane x = 0 whose
centre is the point (0, a, 0), with a > r > 0. A generic point of that circle is
given by (0, y, z), so that r2 = z2 + d2. By rotating the circle S1(r) around
the z-axis, we obtain a surface of revolution.

Then we see that

T2 =
{

(x, y, z) ∈ R3 : (
√
x2 + y2 − a)2 + z2 = r2

}
and T2 = f−1(r2), where f : V −→ R is given by

f(x, y, z) =
(√

x2 + y2 − a
)2

+ z2,

and V = R3\
{
(0, 0, z) : z ∈ R

}
.

2.2 The tangent plane

Definition 2.2. Let S ⊂ R3 be a regular surface and take a point p ∈ S. We
will say that v ∈ R3 is a tangent vector to S at p if there exist a differentiable
curve α : (−ε, ε) −→ S such that α(0) = p and α′(0) = v.
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Definition 2.3. The set TpS of all tangent vectors to S at p, i. e.,

TpS =
{
v ∈ R3 : ∃α : (−ε, ε) −→ S differentiable : α(0) = p, α′(0) = v

}
,

said otherwise,
TpS = dXq(R2),

is a vectorial plane in R3 which will be called the tangent plane to S at p.

Basis of TpS. In order to find a basis of TpS, let
{
(1, 0), (0, 1)

}
be

a basis of R2. As dXq is injective, we have that
{
dXq(1, 0), dXq(0, 1)

}
={

Xu(q), Xv(q)
}

is a basis of TpS.

We can consider now the orthogonal complement (TpS)⊥ of TpS in R3,
as a Euclidean vector space, to get a vector line that we will call the normal
straightline to S at p. We then write R3 = TpS ⊕ (TpS)⊥.

Definition 2.4. For any p ∈ S, we can find a unit vector N(p) generating
the normal straightline to S at p, so that we will write (TpS)⊥ =

{
N(p)

}
.

The vector N(p) is uniquely determined (up to the sign) and will be called
the normal vector to S at p.

As
{
Xu(q), Xv(q)

}
is a basis of TX(q)S, then we get an explicit expression

of the normal vector

N
(
X(q)

)
= ± Xu(q)×Xv(q)∣∣Xu(q)×Xv(q)

∣∣ .
2.3 Intrinsic geometry: the first fundamental form

Definition 2.5. The map

Ip : TpS −→ R, Ip(v) = 〈v,v〉p

will be called the first fundamental form (1st f.f.) of S.

In what follows, and unless we want to pinpoint the point on which we
are working, we simply write 〈 · , · 〉 instead of 〈 · , · 〉p.

Local expression of Ip. Set v ∈ TpS and α : I → S with initial
conditions p and v (that is, α(0) = p and α′(0) = v). Let (U,X) be a
parametrization of S and let α̃(t) =

(
u(t), v(t)

)
the coordinate expression

of α. Then v = α′(0) = u′(0)Xu(q) + v′(0)Xv(q) = aXu(q) + bXv(q), where
a, b are real numbers and X(q) = p. Now we compute Ip(v) to find

Ip(v) = |aXu + bXv|2 = a2 〈Xu, Xu〉+ 2ab 〈Xu, Xv〉+ b2 〈Xv, Xv〉 .
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Definition 2.6. Set E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 and G = 〈Xv, Xv〉. These
functions (with values in U) are clearly differentiable and will be called the
coefficients of the 1st f.f.

Example 2.2. Coefficients of the 1st f.f.

Plane. Π =
{
v = (v1, v2, v3),w = (w1, w2, w3)

}
, through the point

p = (p1, p2, p3) can be parametrized by

X(u, v) = (p1 + uv1 + vw1, p2 + uv2 + vw2, p3 + uv3 + vw3).

As Xu = (v1, v2, v3) = v and Xv = (w1, w2, w3) = w, we get E = 〈v,v〉,
F = 〈v,w〉 and G = 〈w,w〉. Observe that when the basis is orthonormal
then E = G = 1 and F = 0.

Cylinder. Let C =
{
(x, y, z) ∈ R3 : x2 + y2 = r2

}
be the cylinder

parametrized by

X(u, v) = (r cosu, rsinu, v).

As Xu = (−rsinu, r cosu, 0) and Xv = (0, 0, 1), then E = r2, F = 0 and
G = 1 are the coefficients of the 1st f.f. with respect to X.

Helicoid. Take a parametrized helix α(u) = (cosu, sinu, au), with a > 0.
Observe that this curve is screwing around the z-axis, so for each point α(u)
we take the straightline joining α(u) and the point (0, 0, au) on the z-axis.
All those straightlines generate a regular surface which will be called helicoid.
A parametrization is given by

X(u, v) = (v cosu, vsinu, au), con u, v ∈ R.



A crash course in Differential Geometry 13

As Xu = (−vsinu, v cosu, a) and Xv = (cosu, sinu, 0), we find that E =
a2 + v2, F = 0 and G = 1 are the coefficients of the 1st f.f. with respect to
X.

Elementary properties of the coefficients of the 1st f.f.

(i) E,G > 0,

(ii) EG− F 2 > 0.

2.4 Aplications of the 1st f.f.

2.4.1 Measure of lengths

Let α : I −→ S be a parametrized curve. Its arclength is given by

s(t) =
∫ t

0

∣∣α′(r)∣∣ dr =
∫ t

0

√
〈α′(r), α′(r)〉 dr =

∫ t

0

√
Iα(r)

(
α′(r)

)
dr.

In particular, when α(t) = X
(
u(t), v(t)

)
= X

(
α̃(t)

)
, (U,X) being a parametriza-

tion of S, the arclength can be expressed as

s(t) =
∫ t

0

√
E

(
α̃(r)

)
u′(r)2 + 2F

(
α̃(r)

)
u′(r)v′(r) +G

(
α̃(r)

)
v′(r)2 dr.

Therefore,

s′(t) =
√
E

(
α̃(t)

)
u′(t)2 + 2F

(
α̃(t)

)
u′(t)v′(t) +G

(
α̃(t)

)
v′(t)2,

that is,(
ds

dt
(t)

)2

= E
(
α̃(t)

) (
du

dt
(t)

)2

+2F
(
α̃(t)

)du
dt

(t)
dv

dt
(t)+G

(
α̃(t)

) (
dv

dt
(t)

)2

,

which is usually written as (ds)2 = E(du)2 + 2Fdudv + G(dv)2, and it is
said that ds is the arc element or line element of S.
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2.4.2 Measure of angles

Let α : I −→ S and β : I −→ S be two regular parametrized curves crossing
each other at a point α(t0) = β(t0), t0 ∈ I. The angle θ between them, i.
e., the angle of their tangent vectors at that point, is given by

cos θ =
〈α′(t0), β′(t0)〉∣∣α′(t0)∣∣∣∣β′(t0)∣∣ .

In particular, given a parametrization (U,X), by taking its coordinate curves
(when v0 and u0 are fixed, that is, α(u) = X(u, v0), β(v) = X(u0, v)), then
the angle they form at X(u0, v0) is

θ = arccos
〈Xu, Xv〉
|Xu||Xv|

(u0, v0) = arccos
F√
EG

(u0, v0).

Observe that θ ≥ 0 and the coordinate curves of X are orthogonal if, and
only if, F ≡ 0. If this is the case, we will say that X is an orthogonal
parametrization.

2.4.3 Measure of areas

Definition 2.7. Let R ⊂ S be a region of a regular surface S, such that
there exists a parametrization (U,X) with R ⊂ X(U). The area of R is
defined as

A(R) =
∫

X−1(R)
|Xu ×Xv| dudv.

The following technical result shows that this is a good definition.

Lemma 2.1. The number A(R) does not depend on the chosen parametriza-
tion. Furthermore,

A(R) =
∫∫

X−1(R)

√
EG− F 2 dudv.

Example 2.3. As we saw before, the torus of revolution T2 is a regular
surface
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that can be parametrized by

X(u, v) =
(
(r cosu+ a) cos v, (r cosu+ a)sinv, rsinu

)
,

where (u, v) ∈ U = (0, 2π) × (0, 2π). The coefficients of the 1st f.f. re-
garding that parametrization are E = r2, F = 0, G = (a + r cosu)2. Then√
EG− F 2 = r(a+r cosu) and, for any region R contained in the coordinate

neighborhood X(U), we will have

A(R) =
∫∫

X−1(R)

√
EG− F 2 dudv =

∫∫
X−1(R)

r(a+ r cosu) dudv = 4arπ2.

2.5 Orientability of surfaces

Let us start with two important examples.

Möbius strip. The Möbius strip was independently discovered by the
German mathematicians August Ferdinand Möbius and Johann Benedict
Listing in 1858. It is a regular surface which can be obtained as follows:
take a rectangle made of paper sheet with length, say 4π and width, say 2.
The Möbius strip is obtained when gluing the shortest sides but reversing
the ends. A parametrization of this surface is given by

X(u, v) =
((

2− vsin(u/2)
)
sinu,

(
2− vsin(u/2)

)
cosu, v cos(u/2)

)
,

where 0 < u < 2π and −1 < v < 1. As we need another parametrization
to cover all points, it is enough to let the parameter u move in the interval
(−π, π).

Later, by using the theory we are going to exhibit, we will see that the
Möbius strip is not orientable.

Klein bottle. The Klein bottle was first described by the German
mathematician Felix Klein, in 1882, and was originally dubbed Klein surface.
A mistranslation from the German language (Flasche = bottle by Fläche =
surface) led to the name as today is known.
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Theorem 2.1. Theorem of Brouwer-Samelson. Any compact regular
surface in R3 is orientable.

As the Klein bottle is compact and non orientable, it can not be a regular
surface in the sense of our stated definition.

To precise the concept of orientability we need some definitions.

Definition 2.8. Let S be a regular surface. A vector field ξ on S is a
vectorial function ξ : S −→ R3, where ξ(p) is a vector of R3 for any p ∈ S.
We will say that ξ is differentiable when it is differentiable as a function
from S to R3.

Definition 2.9. A vector field ξ on S will be called a tangent vector field if
ξ(p) is tangent to S at p, for any p ∈ S. We will say that ξ is normal to S
when ξ(p) is normal to S at p, for any p ∈ S. Finally, remember that ξ is
called unit when

∣∣ξ(p)∣∣ = 1, for any p ∈ S.

As for differentiable vector fields, X(S) will denote those tangent to S
and X(S)⊥ those normal to S.

Definition 2.10. A regular surface S will be called orientable if there exists
a globally defined differentiable unit vector field N normal to S.
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If S is orientable, each vector field N as above will be called an orienta-
tion of S. An orientable surface will be say oriented provided an orientation
has been chosen.

This definition requires some comments.

Remark 2.1. (1) Say that S has a normal vector field N(p) at any point
p ∈ S is the same as saying that the tangent plane TpS is oriented and a
direction of rotation is well defined through the vector cross product in R3.
In other words, the existence of a globally defined normal vector field on the
surface determines a direction of rotation at any point of S.

(2) If S is orientable, we can distinguish two sides of the surface: the
side to which N is pointing and the opposite one. Then, orientable surfaces
have been also called two-sided surfaces.

Otherwise, non orientable surfaces have an only side. This is the case
of the Möbius strip: someone walking on the surface would come back to the
starting point but in the bottom side.

(3) We can not build a globally defined normal vector field on the Möbius
strip. However, we can do that on each coordinate neighborhood, but in
the intersection of two of them (which has two connected components) both
normal vector fields do not agree whatever the choice of each.

2.6 Curvatures of a surface

Definition 2.11. A normal section Cv is the plane curve obtained when
intersecting the surface S with the plane Πv = {v, N(p)}.

Then Cv = Πv ∩ S, and we can find an a.l.p. parametrization of Cv

given by α : I −→ Cv ⊂ S, so that α(0) = p and α′(0) = v. As v ∈ TpS,
then v ⊥ N(p) and the curve α has normal vector n = JΠvv = N(p), where
JΠv is the π

2 -rotation in the plane Πv. Therefore〈
α′′(0), N(p)

〉
= 〈k(0)n(0), N(p)〉 = k(0),

k being the curvature of α as a plane curve lying in the vectorial plane Πv,
which is oriented by the positively oriented orthonormal basis

{
v, N(p)

}
.

Example 2.4. Normal sections.

Plane. It is easy to see that they are straightlines.
Sphere. Let S2(r) be the sphere of radius r, which we suppose oriented

by the normal N(p) = (1/r)p pointing outside. If v ∈ TpS2(r), then the
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normal sections are great circles in the sphere, i. e., circles of radius r
whose curvature, as a plane curve, is −1/r.

Observe that the minus sign comes from the chosen orientation: the
acceleration vector of the normal sections is always pointing inside, while
the orientation of the surface we have chosen is that given by the normal
pointing outside.

Cylinder. Let C be the cylinder given by the equation x2 + z2 = r2

(cylinder whose generatrices are parallel to the y-axis) and take the point p =
(r, 0, 0). The tangent plane TpC is generated by the vectors v1 = (0, 1, 0) and
v2 = (0, 0, 1), while the normal is N(p) = (1, 0, 0), where we are choosing
the orientation pointing outside.

The plane Πv1 is nothing but z = 0, so that

Πv1∩C =
{
(x, y, z) ∈ R3 : x2+z2 = r2, z = 0

}
=

{
(x, y, z) ∈ R3 : x = ±r, z = 0

}
,

which are two parallel straightlines. The only one through p is {x = r, z = 0},
whose curvature is 0.

The plane Πv2 is now y = 0, so that

Πv2 ∩ C =
{
(x, y, z) ∈ R3 : x2 + z2 = r2, y = 0

}
,

v1

-

6

/v2

N(p)
p

�

-
N(p)

v3

which is a circle of radius r in the plane y = 0, whose curvature is −1/r (the
minus sign comes from the normal to the cylinder pointing in the opposite
direction to that of the acceleration of the circle).

Finally, by taking v3 = av1 + bv2, with a, b 6= 0, an easy computation
shows that Πv3 ∩ C is an ellipse, whose curvature falls within (−1/r, 0).

The curvatures of a surface can be described by two numbers.
To see that, let S be a regular surface oriented by N and let Π be a plane
through p containing N . Then Π ∩ S is a plane curve γ ⊂ Π trough p. We
compute the curvature k(p) of γ with respect to N and do the same for any
plane containing N .
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Surfaces in Space 5

N

p

γ

Π

FIGURE 1.2. Computing principal curvatures.

1. Choose a plane Π through p that contains N . The intersection of Π
with S is then a plane curve γ ⊂ Π passing through p (Figure 1.2).

2. Compute the signed curvature κN of γ at p with respect to the chosen
unit normal N .

3. Repeat this for all normal planes Π. The principal curvatures of S at
p, denoted κ1 and κ2, are defined to be the minimum and maximum
signed curvatures so obtained.

Although the principal curvatures give us a lot of information about the
geometry of S, they do not directly address a question that turns out to
be of paramount importance in Riemannian geometry: Which properties
of a surface are intrinsic? Roughly speaking, intrinsic properties are those
that could in principle be measured or determined by a 2-dimensional being
living entirely within the surface. More precisely, a property of surfaces in
R3 is called intrinsic if it is preserved by isometries (maps from one surface
to another that preserve lengths of curves).
To see that the principal curvatures are not intrinsic, consider the fol-

lowing two embedded surfaces S1 and S2 in R3 (Figures 1.3 and 1.4). S1
is the portion of the xy-plane where 0 < y < π, and S2 is the half-cylinder
{(x, y, z) : y2 + z2 = 1, z > 0}. If we follow the recipe above for computing
principal curvatures (using, say, the downward-pointing unit normal), we
find that, since all planes intersect S1 in straight lines, the principal cur-

Definition 2.12. The principal curvatures k1(p) and k2(p) of S at p are
the minimum and maximum of the curvatures of the plane curves obtained
as above.

Definition 2.13. The Gaussian curvature of S at p ∈ S is

K(p) = k1(p)k2(p).

Definition 2.14. The mean curvature of S at p ∈ S is

H(p) =
k1(p) + k2(p)

2
.

Remark 2.2. It is quite important to note that the principal curvatures are
not intrinsic quantities.

Proposition 2.1. (1) The Gaussian curvature does not depend on the cho-
sen orientation of the surface.

(2) The sign of the mean curvature depends on the chosen orientation of
the surface.

Classifying the points of a surface. Depending on the sign of the
Gaussian curvature, the points of a surface can be classified as follows.

Let S be an oriented regular surface and let p ∈ S. Then we will say
that

(i) p ∈ S is elliptic provided K(p) > 0;

(ii) p ∈ S is hyperbolic provided K(p) < 0;

(iii) p ∈ S is parabolic provided K(p) = 0, but at least one of the principal
curvatures at p does not vanish;

(iv) p ∈ S is flat provided k1(p) = k2(p) = 0.
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Example 2.5. We will see how we can distinguish points of some surfaces:

(i) Any point of a sphere is elliptic, indeed K ≡ 1/r2 > 0.

(ii) In the monkey saddle, parametrized by X(u, v) = (u, v, v2 − u2), the
point p = (0, 0, 0) is hyperbolic, because k1(p) = −2 and k2(p) = 2, so
that K(p) = −4 < 0.

(iii) Any point of a cylinder is parabolic, because k1 ≡ −1/r and k2 ≡ 0,
and then K ≡ 0 for any p.

(iv) Any point of a plane is a flat point. They are not the only examples
of flat points. In fact, by taking the revolution surface generated by
z = y4 (revolving around the z-axis), then the origin is a flat point of
a surface which is not a plane.

Monkey saddle z = y4

To spread the beauty of Geometry, in recent public exhibition of Science,
we have given -to current people- some examples showing some different
points on well known surfaces.
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22 Ángel Ferrández Izquierdo

2.7 Isometries

Definition 2.15. A local isometry between two regular surfaces S1 and S2

is a differentiable map ϕ : S1 −→ S2 preserving the 1st f.f., i. e., preserving
the scalar product: for any p ∈ S1 and any v,w ∈ TpS1,

〈dϕp(v), dϕp(w)〉 = 〈v,w〉 .

Definition 2.16. A global isometry between two regular surfaces S1 and
S2 is a local isometry which is also a global diffeomorphism. Then we will
say that S1 and S2 are (globally) isometric. Furthermore, S1 and S2 will be
locally isometric if, for any p ∈ S1, there exist a neighborhood V ⊂ S1 of p
and a global isometry ϕ : V −→ ϕ(V ) ⊂ S2; and similarly for S2.

Therefore, if two regular surfaces are (globally) isometric, then they
are exactly alike from topological, differentiable and metric points of view.
There exist, of course, surfaces which are locally isometric but not globally
isometric. We will see the example we proposed at the beginning of this
section.

Example 2.6. The plane and the cylinder are locally isometric, but not
globally isometric.

Theorem 2.2. Let ϕ : S1 −→ S2 be a local isometry between two regular
surfaces. Then, for any p ∈ S1, there exist parametrizations X : U −→ S1,
X : U −→ S2 around p ∈ S1 and ϕ(p) ∈ S2, respectively, such that E = E,
F = F and G = G.

A sort of converse to this result is as follows.

Theorem 2.3. Let S1, S2 be regular surfaces and X : U −→ S1, X : U −→
S2 parametrizations of S1 and S2, respectively, such that E = E, F = F
and G = G. Then, the map ϕ = X ◦X−1 : X(U) ⊂ S1 −→ X(U) ⊂ S2 is a
(global) isometry between the open sets X(U) and X(U) of the surfaces S1

and S2.

2.8 Christoffel symbols

Let S be a regular surface oriented by N and let X : U −→ V a positively
oriented parametrization of S, i. e., such that {Xu, Xv, N} is a basis of R3

positively oriented. We can express the derivatives of those vectors in that
basis {Xu, Xv, N} in terms of some suitable functions Γk

ij , which we will call
Christoffel symbols.
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To do that we write the derivatives as follows:

Xuu = Γ1
11Xu + Γ2

11Xv + L1N,

Xuv = Γ1
12Xu + Γ2

12Xv + L2N,

Xvu = Γ1
21Xu + Γ2

21Xv + L3N,

Xvv = Γ1
22Xu + Γ2

22Xv + L4N,

for suitable coefficients Γk
ij and Lm, where i, j, k ∈ {1, 2} andm ∈ {1, 2, 3, 4}.

A key point. It is easy to see that they only depend on the 1st f.f. of
the surface. Namely,

(
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

)
=

1
EG− F 2

(
G −F

−F E

) 
Eu

2
Ev

2
Fv −

Gu

2

Fu −
Ev

2
Gu

2
Gv

2

 .

2.9 The Gauss Egregium Theorem

A straightforward computation allows us to deduce the so called Gauss equa-
tion of a surface:

Γ1
11Γ

2
12 + (Γ2

11)v + Γ2
11Γ

2
22 − Γ1

12Γ
2
11 − (Γ2

12)u − Γ2
12Γ

2
12 = EK.

This equation represented one of the great advances in Differential Geometry
of surfaces, because it is implicitly saying that the Gaussian curvature only
depends on Christoffel symbols and, therefore only depends on the 1st f.f.
In other words, K is an intrinsic concept, which is quite surprising such as
already mentioned, if we consider that the Gaussian curvature is defined
from the Gauss map, that is, from the normal to the surface.

Gauss’s equation allows to show a major result in Differential Geometry,
the so called Gauss Egregium Theorem. This result was proved by Gauss in
1828, and published for the first time in his great work Disquisitiones circa
general curved surfaces.

Theorem 2.4. (The Gauss Egregium Theorem) The Gaussian curvature
of a regular surface is invariant by local isometries. Said otherwise, if ϕ :
S1 −→ S2 is a local isometry, then K1(p) = K2

(
ϕ(p)

)
, for any p ∈ S1,

where K1 and K2 are, respectively, the Gaussian curvatures of S1 and S2.

Remark 2.3. The converse is not true, in general.
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2.10 Geodesics

Given a curve α in a surface S, we can split the vector space R3 as R3 =
Tα(t)S ⊕

{
N

(
α(t)

)}
. Then, α′′(t) ∈ R3 is written in a unique way as

α′′(t) = α′′(t)> + α′′(t)⊥.

The vector field α′′(t)> will be called the tangent acceleration or intrinsic
acceleration of α. It represents the acceleration of a particle whose two-
dimensional trajectory is described by α.

The vector field α′′(t)⊥ is called the normal acceleration or extrinsic
acceleration. In particular we have α′′(t)⊥ = λ(t)N

(
α(t)

)
, for a suitable

differentiable function λ(t). To compute it we have λ(t) =
〈
α′′(t), N

(
α(t)

)〉
,

so we can write α′′(t)⊥ =
〈
α′′(t), N

(
α(t)

)〉
N

(
α(t)

)
. The following notation

is usual

α′′(t)> =
Dα′

dt
(t),

so we get

α′′(t) =
Dα′

dt
(t) +

〈
α′′(t), N

(
α(t)

)〉
N

(
α(t)

)
.

If we work in a plane (or in general, in any surface containing a straight-
line) we know that straightlines are a very special kind of curves. For in-
stance,

(i) they minimizes the length between two points;

(ii) they have zero constant curvature.

Then, working on a surface S, can we always find curves having similar
characteristics to those of straightlines in a plane? We will shortly give an
affirmative answer, and such curves will be called the geodesic of S.

Definition 2.17. Let γ : I → S a parametrized curve. We will say that γ
is a geodesic of S if its acceleration γ′′ is normal to S.

Properties of geodesics. Let γS be a geodesic of a regular surface S.

(i) |γ′(t)| is constant.

(ii) Geodesics are preserved by local isometries, because they only depend
on the covariant derivative, and then on Christoffel symbols. Geodesic
is an intrinsic property.
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(iii) Assume that γ is an a.l.p. curve and γ′′(s) 6= 0 for any s. We know
that γ is geodesic if, and only if, (Dγ′/ds)(s) =

(
γ′′(s)

)> = 0, i. e.,
γ′′(s) = kγ(s)nγ(s) points towards the normal vector of the surface at
the point γ(s). Then γ is a geodesic if, and only if, nγ(s) = ±N(s).

(iv) For any couple (p,v), with p ∈ S and v ∈ TpS, there exists a unique
geodesic γ ⊂ S such that γ(0) = p and γ′(0) = v.

Example 2.7. Geodesics

Plane. Given a unit vector a, consider the plane Π =
{
p ∈ R3 : 〈a, p〉 =

c
}
, and take N(p) = a as normal vector, for any p ∈ Π. A curve γ in the

plane is geodesic if, and only if, γ′′(t) = 0, i. e., γ(t) = p+ tv. The unique
geodesics of a plane are, as predictably, straightlines.

Sphere. Set p ∈ S2(r) and v ∈ TpS2(r). Assume that the normal to the
sphere is N(p) = (1/r)p. Take the plane generated by v and N(p), whose
intersection with the sphere is a great circle, which is also a normal section.
Therefore, the normal vector of this curve is n = ±N(p), which shows that
the curve is a geodesic. All great circles of a sphere are geodesics, and they
are the only geodesics.

Cylinder. There exist three kind of geodesics: helices, circles (parallel
of the cylinder) and straightlines (meridians).

3 Dessert: manifolds

Preparing the ground:

• The normal space to a curve in R2 is 1-dimensional;

• The normal space to a curve in R3 is 2-dimensional;

• The normal space to a surface in R3 is 1-dimensional;

• The normal space to a surface in R4 should be 2-dimensional;

• The normal space to a curve in Rn is (n− 1)-dimensional;

• The normal space to a surface in Rn should be (n− 2)-dimensional;

• A curve is “something” 1-dimensional; a surface is “something” 2-
dimensional; but R3 es 3-dimensional.

• Our world is 4-dimensional, is not it?
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• And that world ... is it lying in any bigger space?

We have to do a geometry as independent of the ambient space as we
can.

We have to define something new to generalize curves and surfaces. That
will be the notion of Differentiable Manifold.

Definition 3.1. Let M a set. An n-dimensional chart on M is a bijective
map ϕ : U ⊂ M → Rn whose image V = ϕ(U) is an open set in the
Euclidean space.

As in surfaces, we will find sets which can not be covered by a single chart,
so that we will need some collections of charts satisfying some compatibility
conditions in a sense that we have to precise.

Definition 3.2. Two charts n-dimensional charts (U,ϕ) and (V, ψ) on a
set M will be said compatible when either U ∩ V = ∅ or U ∩ V 6= ∅, the
sets ϕ(U ∩ V ) and ψ(U ∩ V ) are open in Rn and the maps ψ ◦ ϕ−1 are
diffeomorphisms.

We are now able to define one of the key concepts.

Definition 3.3. An n-dimensional differentiable atlas on a set M is a family
of charts A = {(Ui, ϕi)}i∈A satisfying the following conditions:

(1) ∪i∈AUi = M .
(2) For any pair of indices i and j, the charts (Ui, ϕi) and (Uj , ϕj) are

compatible.
Then we will say that the atlas A determines a differentiable structure on
M .

We will always consider atlas of class C∞, that is, all maps ψ ◦ ϕ−1 are
differentiable of class C∞.
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Definition 3.4. An n-dimensional differentiable manifold is a pair (M,A)
of a set M and an n-dimensional atlas A on M .

To stand out the dimension n, sometimes we will write Mn instead of M ,
and when the differentiable structure is known we will omit any reference
to it.

Example 3.1. Manifolds

(1) In the Euclidean space Rn we can define a differentiable structure by
taking the identity map as a global chart. We will refer to it as the
standard differentiable structure of Rn.

(2) Let ϕ : R → R be the map defined by ϕ(s) = s3. Then ϕ provides a
differentiable structure on R different from the standard one. This is
so because the map ϕ−1(s) = 3

√
s is not differentiable on the whole R.

(3) A curve, wherever it is, is a 1-dimensional differentiable manifold.

(4) A surface, wherever it is, is a 2-dimensional differentiable manifold.

Definition 3.5. Let M be a differentiable manifold. A submanifold of M
is a pair (N, j) of a manifold N and an injective map j : N →M such that,
at any point p ∈ N , TpN is a subspace of Tj(p)M .

3.1 Tangent space

Definition 3.6. Sea M una diferenciable manifold. A curve in M is a
differentiable map α : I → M of an open set I ⊂ R in M . Without loss of
generality, we can assume that 0 ∈ I. Given a point p ∈ M and a curve
α in M , we will say that α pass through p if there exists a value t0 ∈ R
such that α(t0) = p. When a curve α pass through a point p, we can always
reparametrize the curve in such a way that α(0) = p.

Definition 3.7. A tangent vector to M at p is a tangent vector of a curve α
at the point p. The set of all tangent vectors to M at p is called the tangent
space to M at p and it will be denoted by TpM .

Proposition 3.1. Let p ∈Mn. The tangent space TpM is an n-dimensional
(real) vector space.
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3.2 Metric on a manifold

A metric on a manifold M is a 1st f.f. Ip ≡ 〈 , 〉p defined on each tangent
space TpM , which changes smoothly, that is,

Ip : TpM × TpM −→ R, Ip(v,w) = 〈v,w〉p .

3.3 Curvatures of a manifold (Mn, 〈 , 〉)

When studying surfaces S we defined two curvatures:

• The Gaussian curvature K, which is intrinsic, i. e., K does not depend
on the space where the surface S is lying;

• The mean curvature H, which is extrinsic, i. e., H depends on the
space where the surface S is lying.

Let (Mn, 〈 , 〉) be a manifold equipped with a metric. As we are now free
of an ambient space, it only makes sense to define an intrinsic curvature of
Mn to generalize the Gaussian curvature in surfaces.

To do that, we proceed as follows at a point p ∈Mn.

The sectional curvature. Set a plane Π ⊂ TpM . We look for all
geodesics determined by p and vectors in Π. They generate a surface SΠ ⊂
Mn, which inherits the metric of (Mn, 〈 , 〉).

Now we compute the Gaussian curvature of SΠ at the point p, which will
be denoted by K(Π) and called sectional curvature of Mn at p with respect
to the plane Π.

From the sectional curvature K of Mn, we build two new curvature
functions:

The Ricci curvature. Let v ∈ TpM be a unit tangent vector, we
construct a basis of TpM of the form {v, e2, . . . , en}. The Ricci curvature in
the direction of v is defined by

Ric(v) =
n∑

i=2

K(Πi),

donde Πi = {v, ei}.
The scalar curvature. Given p ∈ Mn and an orthonormal basis

{e1, e2, . . . , en} of TpM , the scalar curvature is defined as the map

Scal : Mn → R, Scal = 2
∑
i<j

K(Πij),
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where Πij = {ei, ej}.

Remark 3.1. Let M2 be a 2-dimensional differentiable manifold, i. e., a
surface. Then

(1) The Gaussian and Ricci curvatures provide the same information about
the surface;

(2) Scal(p) = 2K(p).
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