
Memory Hierarchy Performance
Characterization of SPEC CPU2017
Agustín Navarro-Torres∗,1,
Pablo Ibáñez-Marín∗,1,
Jesús Alastruey-Benedé∗,1,
Víctor Viñals-Yúfera∗,1

∗ Universidad de Zaragoza, I3A, Spain

ABSTRACT

SPEC CPU is one of the most common suite of benchmarks used in computer architecture research.
On June 2017, a new version was released to replace the old version, CPU2006, which remained
state-of-the-art for 11 years. We present a detailed memory hierarchy performance analysis of all
single-thread benchmarks that made up the new suite.

KEYWORDS: SPEC CPU2017; characterization; memory hierarchy; performance analysis; benchmarks;
hardware counters

1 Introduction

SPEC CPU is one of the most widely used benchmark suites for high performance com-
puting research on academia and industry. The new version, CPU2017 [1], released on June
2017 is called to replace the 2006 version. Thus, new characterization is necessary in order to
help researchers to select the benchmarks with particular characteristics or pick simulation
points.

In this work we analyze the memory hierarchy performance of SPEC CPU2017. Namely,
we study all the single-thread benchmarks, identify the memory-intensive ones, and analyze
the sensitivity of them to the last-level cache size and the different hardware prefetchers.

2 Experimental methodology

We execute all the SPEC CPU2017 single-thread benchmarks in an Intel Xeon Skylake-SP
Gold 5120 (Xeon-SP in short). Several hardware performance counters were collected with
the perf profiler[4] to measure the following metrics: cycles per instruction (CPI), misses
per kilo instruction (MPKI) in all cache levels and bytes read from main memory per kilo
instruction (BPKI).

1E-mail: {agusnt, imarin, jalastru, victor}@unizar.es



Our Xeon-SP has 14 cores, two levels of private cache (32 KB for instructions and 32 KB
for data in the first level, and 1 MB in the second level) and a shared last-level cache (LLC,
19.25 MB, 11-way set-associative). The processor disposes of four hardware prefetchers [3]:
L1 Data cache unit prefetcher (DCUI), L1 Data cache instruction pointer stride prefetcher (DCUP),
L2 Data cache spatial prefetcher (L2A), and L2 Data cache streamer (L2P).

We use the Intel Cache Allocation Technology (CAT) feature to modify the LLC capacity that
a program has available during its execution. Hardware prefetchers are selectively enabled
or disabled by writing their corresponding Model Specific Registers (MSRs). This way we can
evaluate the application performance with multiples LLC configurations on a real system.

3 Evaluation

3.1 Identification of Memory Intensive Benchmarks

We executed all CPU2017 single-thread applications with all the inputs provided by SPEC
in a limited resources context: all hardware prefetchers disabled and the smallest LLC size
that can be assigned to an application (1.75 MB). For each application/input pair we mea-
sured misses per kilo instructions for the three cache levels (MPKI1, MPKI2 and MPKI3).
These metrics are shown in Figure 1. We plot in red the bars associated to applications that
have very low MPKI2 and MPKI3 ratio, even in a limited resources context. These appli-
cation/input pairs have little interest for memory hierarchy studies. Among the remaining
application/input pairs, we have selected an input for each application, plotted in green,
that will be used in the following experiments.

0
5
10
15
20
25
30
35
40

M
PK

I3

0
10
20
30
40
50
60

M
PK

I2

0
20
40
60
80
100
120

50
0.
pe
rlb
en
ch
_r
.2

50
0.
pe
rlb
en
ch
_r
.3

50
2.
gc
c_
r.1

50
2.
gc
c_
r.2

50
2.
gc
c_
r.3

50
2.
gc
c_
r.4

50
2.
gc
c_
r.5

50
3.
bw

av
es
_r
.1

50
3.
bw

av
es
_r
.2

50
3.
bw

av
es
_r
.3

50
3.
bw

av
es
_r
.4

50
5.
m
cf
_r
.1

50
7.
ca
ct
uB
SS

N
_r
.1

50
8.
na
m
d_
r.1

51
0.
pa
re
st
_r
.1

51
1.
po
vr
ay
_r
.1

51
9.
lb
m
_r
.1

52
0.
om

ne
tp
p_
r.1

52
1.
w
rf_
r.1

52
3.
xa
la
nc
bm

k_
r.1

52
5.
x2
64
_r
.1

52
5.
x2
64
_r
.2

52
5.
x2
64
_r
.3

52
6.
bl
en
de
r_
r.1

52
7.
ca
m
4_
r.1

53
1.
de
ep
sj
en
g_
r.1

53
8.
im
ag
ic
k_
r.1

54
1.
le
el
a_
r.1

54
4.
na
b_
r.1

54
8.
ex
ch
an
ge
2_
r.1

54
9.
fo
to
ni
k3
d_
r.1

55
4.
ro
m
s_
r.1

55
7.
xz
_r
.1

55
7.
xz
_r
.2

55
7.
xz
_r
.3

60
0.
pe
rlb
en
ch
_s
.1

60
0.
pe
rlb
en
ch
_s
.2

60
0.
pe
rlb
en
ch
_s
.3

60
2.
gc
c_
s.
1

60
2.
gc
c_
s.
2

60
2.
gc
c_
s.
3

60
5.
m
cf
_s
.1

62
0.
om

ne
tp
p_
s.
1

62
3.
xa
la
nc
bm

k_
s.
1

62
5.
x2
64
_s
.1

62
5.
x2
64
_s
.2

62
5.
x2
64
_s
.3

63
1.
de
ep
sj
en
g_
s.
1

64
1.
le
el
a_
s.
1

64
8.
ex
ch
an
ge
2_
s.
1

M
PK

I1

Figure 1: MPKI1, MPKI2 and MPKI3 for all SPEC CPU2017 single-thread benchmarks.

3.2 Sensitivity to the LLC Size and to Hardware Prefetching

In this experiment we study the sensitivity of the memory-intensive benchmarks to the LLC
size and to the hardware prefetcher. The 15 workloads selected in the previous subsection
were executed with different LLC sizes. All these runs were performed in two different
ways: one with all the prefetchers enabled and the other with all disabled.



Five LLC sizes, 19.25 MB, 14 MB, 7 MB, 3.5 MB and 1.75 MB, were configured by limiting
the number of ways available for the program to 11, 8, 4, 2 and 1, respectively. This resource
allocation was performed by CAT. Figure 2 shows the MPKI3 for the selected LLC sizes and
benchmarks.

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

500.perlbench_r.3

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

502.gcc_r.5

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

503.bwaves_r.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

505.mcf_r.1

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

507.cactuBSSN_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

510.parest_r.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

519.lbm_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

520.omnetpp_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

521.wrf_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

523.xalancbmk_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

526.blender_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

527.cam4_r.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

549.fotonik3d_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25
M

PK
I3

LLC (MB)

554.roms_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

557.xz_r.1

3.2 Sensitivity to the LLC Size and Hardware Prefetchers

In this experiment we study the sensitivity of the memory-intensive benchmarks to the LLC
size and the hardware prefetcher. The workloads selected in the previous subsection were
executed with different LLC sizes. All these runs were performed two times: one with all
the prefetchers enabled and the other with all disabled.

The LLC sizes used were: 19.25MB, 14MB, 7MB, 3.5MB and 1.75MB. To establish the five
sizes, the Intel cache allocation technology[2] was used to limit the number of ways available
for the program to 11, 8, 4, 2 and 1 respectively.

0

1

2

3

4

5

1.75 3.5 7 14 19.25
M

PK
I3

LLC (MB)
Without Prefetch With Prefetch

(a) 500.perlbench_r.3

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(b) 502.gcc_r.5

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(c) 503.bwaves_r.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(d) 505.mcf_r

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(e) 507.cactuBSSN_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(f) 510.parest_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(g) 519.lbm_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(h) 520.omnetpp_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(i) 521.wrf_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(j) 523.xalancbmk_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(k) 526.blender_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(l) 527.cam4_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(m) 549.fotonik3d_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(n) 554.roms_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(o) 557.xz_r.1

Figure 2: MPKI3 of the selected application according to the multiple LLC size

Without prefetching, the increase in LLC size produces a significant reduction of MPKI3
in all applications except 503.bwaves. This improvement decreases considerably when using
prefetching in several applications: 510.parest, 519.lbm, 521.wrf, 549.fotonik3d and 554.roms.

Prefetching is very effective in 12 of them and gets minor improvements in 2 more for
small sizes of LLC (500.perlbench and 557.xz). One application (520.omnetpp) does not im-
prove in any case, and even slightly increases the MPKI with the largest LLC.

3.3 Hardware prefetcher characterization

In this section we analysis the influence of different hardware prefetchers on application
performance (CPI, left axis in Figure 3). In addition, we analyze the increase in number
of bytes read from main memory caused by the use of hardware prefetching (BPKI, right
axis in Figure 3). Every application was executed with all prefetchers activated, with all
of them disabled and with each one of them activated individually. The experiment was
accomplished with the maximum size of LLC.

In general, L2P is the prefetcher that has the best result of all. For the 12 prefetching-
sensitive applications, L2P alone gets always more than 82% of the CPI reduction, and more

Figure 2: LLC cache misses (MPKI3) of the selected application for different LLC sizes.

Without prefetching, an increase in the LLC size translates to a significant MPKI3 re-
duction in all applications except 503.bwaves. This improvement decreases considerably
when prefetching is enabled for several applications: 510.parest, 519.lbm, 521.wrf,
549.fotonik3d and 554.roms.

Prefetching is very effective in terms of MPKI3 reduction for 12 benchmarks: it reduces
MPKI3 in all cache sizes, specially in the smaller ones. For two benhmarks (500.perlbench
and 557.xz), it gets minor improvements only for small LLC sizes. And finally, for one ap-
plication (520.omnetpp), prefetching does not reduce LLC cache misses in any case, and
even slightly increases the MPKI3 with the largest LLC.

3.3 Performance of the Hardware Prefetchers

In this section, we analyze the impact of the different hardware prefetchers on the appli-
cations performance and on the applications memory bandwidth consumption. All the se-
lected workloads were executed with different configurations: with all prefetchers enabled,
with all of them disabled, and with each one of the prefetchers enabled individually (one
at a time). The experiment was accomplished with the maximum LLC size. Figure 3 shows
the performance in terms of cycles per instruction (CPI, left axis), and memory bandwidth
in terms of bytes read from main memory (BPKI, right axis) for the selected benchmarks.

In general, L2P is the best prefetcher. For the 12 prefetch-friendly applications, L2P alone
achieves more than 82% of the CPI reduction, and more than 90% for 7 of them. The second
best prefetcher is DCUI followed by DCUP. L2A gets the least improvement. It only reduces
CPI more than 5% for 6 applications, with a maximum of 15% for 554.roms.

Hardware prefetching is bandwidth-efficient since it causes significant extra bandwidth
consumption in only three benchmarks (520.omnetpp, 549.fotonik3d and 554.roms).



Considering that LLC MPKI is improved for two of these three benchmarks (except 520.omnetpp),
the overall result is positive.

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2
N

on
e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

502.gcc_r.5

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.2

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I
519.lbm_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0
25
50
75
100
125
150
175
200
225
250

C
PI

BP
K

I

549.fotonik3d_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

than 90% for 7 of them. The second best pre-fetcher is DCUI followed by DCUP. L2A gets
the least improvement. It only reduces CPI more than 5% in 6 application with a maximum
of 15% in 554.roms.

The hardware prefetching is very precise in most of the applications, since it does not
significantly increase the number of bytes read from main memory. 502.gcc_r and 520.om-
netpp_r are the application which have the most significant increases. In all cases, except
520.omnetpp, the increase in BPKI is accompanied with significant reductions of MPKI. So
the overall result is positive.

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I
500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.2

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

519.lbm_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

175

200

225

250

C
PI

BP
K

I

549.fotonik3d_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

Figure 3: CPI and BPKI with different hardware prefetcher of the selected benchmarks

4 Conclusions

In this work we have analyzed the memory hierarchy performance of the single-thread ap-
plications of SPEC CPU2017. We have identified 19 out of 50 application/input pairs, from 9
applications, with little use of the memory hierarchy. They have very low miss ratios in the
second and third level caches, even in a limited resources context.

We analyze the 15 memory-intensive applications in terms of their sensitivity to the LLC
size and the different hardware prefetchers. Prefetching is very effective in 12 of them, and
the L2P preftcher is responsible of a big fraction of the improvement. 9 applications show
important MPKI reduction when increasing the LLC size even with prefetching.

References

[1] SPEC, SPEC CPU R� 2017, https://www.spec.org/cpu2017/

[2] Nguyen, Khang T, Introduction to Cache Allocation Technology in the Intel R� Xeon R� Pro-
cessor E5 v4 Family, Intel software developer zone 2016, https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology

[3] Intel, Intel R� 64 and IA-32 Architectures Optimization Reference Manual. Intel 2016, update
April, 2018.

Figure 3: Impact of the hardware prefetchers on the application performance (CPI) and on
the memory bandwidth (BPKI).

4 Conclusions

In this work we analyzed the memory hierarchy performance of the SPEC CPU2017 single-
thread applications. We identified 19 out of 50 application/input pairs, from 9 applications,
with little use of the memory hierarchy. They have very low miss ratios in the second and
third level caches, even with small LLC sizes and without hardware prefetching.

We analyzed the sensitivity to the LLC size and to the different hardware prefetchers of
the 15 memory-intensive applications. Prefetching is very effective in 12 of them, and the
L2P prefetcher is responsible of a large fraction of the improvement. 9 applications show
important MPKI reduction when increasing the LLC size even with prefetching.

References

[1] SPEC, SPEC CPU R© 2017, https://www.spec.org/cpu2017/

[2] Nguyen, Khang T, Introduction to Cache Allocation Technology in the Intel R© Xeon R© Pro-
cessor E5 v4 Family, Intel software developer zone 2016, https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology

[3] Intel, Intel R© 64 and IA-32 Architectures Optimization Reference Manual. Intel 2016, update
April, 2018.

[4] Arnaldo Carvalho de Melo. The new linux ’perf’ tools. 2010.

https://www.spec.org/cpu2017/
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology

	Introduction
	Experimental methodology
	Evaluation
	Identification of Memory Intensive Benchmarks
	Sensitivity to the LLC Size and to Hardware Prefetching
	Performance of the Hardware Prefetchers

	Conclusions

