
MemoryHierarchyPerformanceCharacterization
ofSPECCPU2017

Agustín Navarro-Torres, Jesús Alastruey-Benedé, Pablo Ibáñez-Marín, Víctor Viñals-Yúfera
{agusnt, jalastru, imarin, victor}@unizar.es

This work was supported in part by grants TIN2016-76635-C2-1-R (AEI/ERDF, EU)

and gaZ: T58_17R research group (Aragón Gov. and European ESF).

1. Introduction

SPEC CPU is one of the most widely used
benchmark suites for high performance com-
puting research on academia and industry. The
last version, CPU2017 [1], was released on June
2017.

In this work we analyze the memory hierarchy
performance of SPEC CPU2017. Namely, we
study all the single-thread benchmarks, iden-
tify the memory intensive ones, and analyze
their sensitivity to the last-level cache (LLC)
size and to the different hardware prefetchers.

The characterization was performed on an In-
tel Xeon Skylake-SP Gold 5120. Several hard-
ware performance counters were collected with
the Perf profiler. We used the Intel Cache Al-
location Technology (CAT) [2] to modify the
available LLC capacity.

2. Identification of Memory Intensive Benchmarks

0
10
20
30
40
50
60

M
PK

I3

0
10
20
30
40
50
60
70
80

M
PK

I2

0
20
40
60
80
100
120

50
0.
pe
rlb
en
ch
_r
.1

50
0.
pe
rlb
en
ch
_r
.2

50
0.
pe
rlb
en
ch
_r
.3

50
2.
gc
c_
r.1

50
2.
gc
c_
r.2

50
2.
gc
c_
r.3

50
2.
gc
c_
r.4

50
2.
gc
c_
r.5

50
3.
bw

av
es
_r
.1

50
3.
bw

av
es
_r
.2

50
3.
bw

av
es
_r
.3

50
3.
bw

av
es
_r
.4

50
5.
m
cf
_r
.1

50
7.
ca
ct
uB
SS

N
_r
.1

50
8.
na
m
d_
r.1

51
0.
pa
re
st
_r
.1

51
1.
po
vr
ay
_r
.1

51
9.
lb
m
_r
.1

52
0.
om

ne
tp
p_
r.1

52
1.
w
rf_
r.1

52
3.
xa
la
nc
bm

k_
r.1

52
5.
x2
64
_r
.1

52
5.
x2
64
_r
.2

52
5.
x2
64
_r
.3

52
6.
bl
en
de
r_
r.1

52
7.
ca
m
4_
r.1

53
1.
de
ep
sj
en
g_
r.1

53
8.
im
ag
ic
k_
r.1

54
1.
le
el
a_
r.1

54
4.
na
b_
r.1

54
8.
ex
ch
an
ge
2_
r.1

54
9.
fo
to
ni
k3
d_
r.1

55
4.
ro
m
s_
r.1

55
7.
xz
_r
.1

55
7.
xz
_r
.2

55
7.
xz
_r
.3

60
0.
pe
rlb
en
ch
_s
.1

60
0.
pe
rlb
en
ch
_s
.2

60
0.
pe
rlb
en
ch
_s
.3

60
2.
gc
c_
s.
1

60
2.
gc
c_
s.
2

60
2.
gc
c_
s.
3

60
5.
m
cf
_s
.1

62
0.
om

ne
tp
p_
s.
1

62
3.
xa
la
nc
bm

k_
s.
1

62
5.
x2
64
_s
.1

62
5.
x2
64
_s
.2

62
5.
x2
64
_s
.3

63
1.
de
ep
sj
en
g_
s.
1

64
1.
le
el
a_
s.
1

64
8.
ex
ch
an
ge
2_
s.
1

M
PK

I1

Misses per kilo-instruction (MPKI) for the three cache levels. All
CPU2017 single-thread benchmark-input pairs were executed without hard-
ware prefetching and 1.75MB of LLC. Benchmarks that have very low MPKI2
and MPKI3 ratios are plotted in red.

Only 16 out of 23 benchmarks are memory intensive

For these benchmarks only one input will be considered in the following
experiments (green bars).

3. Performance Impact of Prefetch/LLC Size

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
p
e
e
d
U
p

S
iz
e

SpeedUp Prefetch

Integer Floating Point

500.perlbench
502.gcc

507.cactuBSSN

510.parest

519.lbm

520.omnetpp

523.xalancbmk

554.roms

521.wrf

525.x264 503.bwaves

505.mcf

549.fotonik3d
527.cam4

5
2
6
.b
le
n
d
e
r

5
5
7
.x
z

Performance impact of hardware prefetching (x axis) and LLC size (y axis).
Speed-ups with respect to the smallest LLC without hardware prefetching.

4. Sensitivity to Prefetch and to LLC Size

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

500.perlbench_r.3

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

502.gcc_r.5

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

503.bwaves_r.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

505.mcf_r.1

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

507.cactuBSSN_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

510.parest_r.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

519.lbm_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

520.omnetpp_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

521.wrf_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

523.xalancbmk_r.1

0

1

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

525.x264_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

526.blender_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

527.cam4_r.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

549.fotonik3d_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

554.roms_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
P

K
I3

LLC (MB)

557.xz_r.1

MemoryCharacterizationofSPECCPU2017
Suite

Agustín Navarro Torres, Jesús Alastruey Benedé, Pablo Enrique Ibañez
Marin, Victor Viñals Yúfera

{agusnt, jalastru, imarin, victor}@unizar.es

7. Acknowledgement
This work was supported in part by grants TIN2016-76635-C2-1-
R (AEI/FEDER, UE) and Consolider NoE TIN2014-52608-REDC
(Spanish Gov.), gaZ: T48 research group (Aragn Gov. and European
ESF), and HiPEAC4 (European H2020/687698).

7. References
1. SPEC CPU1917, Standard Performance Evaluation Corpora-

tion, https://www.spec.org/cpu1917/

2. Introduction to Cache Allocation Technology in the Intelő Xeonő
Processor E5 v4 Family, Intel, https://goo.gl/oZaVQ7

1. Introduction
SPEC CPU is one of the most widely used benchmark suites for high
performance computing research on academia and industry. CPU2017,
released on June 2017, is called to replace the 2006 version. Thus, new
characterization is necessary in order to help researchers to select the
benchmarks with particular characteristics or pick simulation points.

In this work we analyze the memory hierarchy performance of SPEC
CPU2017. Namely, we study all the single-thread benchmarks, identify

the memory-intensive ones, and analyze the sensitivity of them to the
last-level cache size and the different hardware prefetchers.

We execute the benchamrks in an Intel Xeon Skylake-SP Gold 5120 and
several hardware performance counters were collected with the Perf pro-
filer. We use the Intel Cache Allocation Technology (CAT) to modify
the LLC capacity that a program has available during its execution

2. Identification of Memory Intensive

0
10
20
30
40
50
60

M
PK

I3

0
10
20
30
40
50
60
70
80

M
PK

I2

0
20
40
60
80
100
120

50
0.
pe
rlb
en
ch
_r
.1

50
0.
pe
rlb
en
ch
_r
.2

50
0.
pe
rlb
en
ch
_r
.3

50
2.
gc
c_
r.1

50
2.
gc
c_
r.2

50
2.
gc
c_
r.3

50
2.
gc
c_
r.4

50
2.
gc
c_
r.5

50
3.
bw

av
es
_r
.1

50
3.
bw

av
es
_r
.2

50
3.
bw

av
es
_r
.3

50
3.
bw

av
es
_r
.4

50
5.
m
cf
_r
.1

50
7.
ca
ct
uB
SS

N
_r
.1

50
8.
na
m
d_
r.1

51
0.
pa
re
st
_r
.1

51
1.
po
vr
ay
_r
.1

51
9.
lb
m
_r
.1

52
0.
om

ne
tp
p_
r.1

52
1.
w
rf_
r.1

52
3.
xa
la
nc
bm

k_
r.1

52
5.
x2
64
_r
.1

52
5.
x2
64
_r
.2

52
5.
x2
64
_r
.3

52
6.
bl
en
de
r_
r.1

52
7.
ca
m
4_
r.1

53
1.
de
ep
sj
en
g_
r.1

53
8.
im
ag
ic
k_
r.1

54
1.
le
el
a_
r.1

54
4.
na
b_
r.1

54
8.
ex
ch
an
ge
2_
r.1

54
9.
fo
to
ni
k3
d_
r.1

55
4.
ro
m
s_
r.1

55
7.
xz
_r
.1

55
7.
xz
_r
.2

55
7.
xz
_r
.3

60
0.
pe
rlb
en
ch
_s
.1

60
0.
pe
rlb
en
ch
_s
.2

60
0.
pe
rlb
en
ch
_s
.3

60
2.
gc
c_
s.
1

60
2.
gc
c_
s.
2

60
2.
gc
c_
s.
3

60
5.
m
cf
_s
.1

62
0.
om

ne
tp
p_
s.
1

62
3.
xa
la
nc
bm

k_
s.
1

62
5.
x2
64
_s
.1

62
5.
x2
64
_s
.2

62
5.
x2
64
_s
.3

63
1.
de
ep
sj
en
g_
s.
1

64
1.
le
el
a_
s.
1

64
8.
ex
ch
an
ge
2_
s.
1

M
PK

I1

We executed all CPU2017 single-thread applications with limited re-
sources: all hardware prefetchers disabled and 1.75 MB of LLC. For
each application/input pair we measured misses per kilo instructions
for the three cache levels (MPKI1, MPKI2 and MPKI3). We plot in
red the bars associated to applications that have very low MPKI2 and
MPKI3 ratio. We have selected an input for each application, plotted
in green, that will be used in the following experiments.

3. Size/Prefetch SpeedUp performance

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee
dU

p
Ta
m
añ
o

SpeedUp Pre-búsqueda

401.bzip2

403.gcc
429.mcf

434.zeusmp

436.cactusADM

437.leslie3d
470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

410.bwaves

447.dealII 481.wrf

433.milc
450.soplex

465.tonto

459.GemsFDTD

462.libquantum

44
5.
go
bm

k

We show the speed-up achieved by increasing the LLC size from
1.75MB to 19.25MB without prefetch (axis x) and the speed-up by
turning on hardware prefetching (axis y).

4. LLC Size and to Hardware Prefetching

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
1
2
3
4
5
6
7
8
9

10

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
1
2
3
4
5
6
7
8
9

10

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

3.2 Sensitivity to the LLC Size and Hardware Prefetchers

In this experiment we study the sensitivity of the memory-intensive benchmarks to the LLC
size and the hardware prefetcher. The workloads selected in the previous subsection were
executed with different LLC sizes. All these runs were performed two times: one with all
the prefetchers enabled and the other with all disabled.

The LLC sizes used were: 19.25MB, 14MB, 7MB, 3.5MB and 1.75MB. To establish the five
sizes, the Intel cache allocation technology[2] was used to limit the number of ways available
for the program to 11, 8, 4, 2 and 1 respectively.

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(a) 500.perlbench_r.3

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(b) 502.gcc_r.5

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(c) 503.bwaves_r.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(d) 505.mcf_r

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(e) 507.cactuBSSN_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(f) 510.parest_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(g) 519.lbm_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(h) 520.omnetpp_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(i) 521.wrf_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(j) 523.xalancbmk_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(k) 526.blender_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(l) 527.cam4_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(m) 549.fotonik3d_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(n) 554.roms_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(o) 557.xz_r.1

Figure 2: MPKI3 of the selected application according to the multiple LLC size

Without prefetching, the increase in LLC size produces a significant reduction of MPKI3
in all applications except 503.bwaves. This improvement decreases considerably when using
prefetching in several applications: 510.parest, 519.lbm, 521.wrf, 549.fotonik3d and 554.roms.

Prefetching is very effective in 12 of them and gets minor improvements in 2 more for
small sizes of LLC (500.perlbench and 557.xz). One application (520.omnetpp) does not im-
prove in any case, and even slightly increases the MPKI with the largest LLC.

3.3 Hardware prefetcher characterization

In this section we analysis the influence of different hardware prefetchers on application
performance (CPI, left axis in Figure 3). In addition, we analyze the increase in number
of bytes read from main memory caused by the use of hardware prefetching (BPKI, right
axis in Figure 3). Every application was executed with all prefetchers activated, with all
of them disabled and with each one of them activated individually. The experiment was
accomplished with the maximum size of LLC.

In general, L2P is the prefetcher that has the best result of all. For the 12 prefetching-
sensitive applications, L2P alone gets always more than 82% of the CPI reduction, and more

In this experiment we study the sensitivity of the memory-intensive
benchmarks to the LLC size and to the hardware prefetching. All
these runs were performed in two different ways: one with all the
prefetchers enabled and the other with all disabled. Five LLC sizes,
19.25 MB, 14 MB, 7 MB, 3.5 MB and 1.75 MB, were configured by
limiting the number of ways available for the program to 11, 8, 4, 2
and 1, respectively. This resource allocation was performed by CAT.

5. Hardware Prefetchers

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

502.gcc_r.5

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.3

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

519.lbm_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

175

200

225

250

C
PI

BP
K

I

549.fotonik3d_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

than 90% for 7 of them. The second best pre-fetcher is DCUI followed by DCUP. L2A gets
the least improvement. It only reduces CPI more than 5% in 6 application with a maximum
of 15% in 554.roms.

The hardware prefetching is very precise in most of the applications, since it does not
significantly increase the number of bytes read from main memory. 502.gcc_r and 520.om-
netpp_r are the application which have the most significant increases. In all cases, except
520.omnetpp, the increase in BPKI is accompanied with significant reductions of MPKI. So
the overall result is positive.

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.2

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I
519.lbm_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100
C

PI

BP
K

I

520.omnetpp_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

175

200

225

250

C
PI

BP
K

I

549.fotonik3d_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

Figure 3: CPI and BPKI with different hardware prefetcher of the selected benchmarks

4 Conclusions

In this work we have analyzed the memory hierarchy performance of the single-thread ap-
plications of SPEC CPU2017. We have identified 19 out of 50 application/input pairs, from 9
applications, with little use of the memory hierarchy. They have very low miss ratios in the
second and third level caches, even in a limited resources context.

We analyze the 15 memory-intensive applications in terms of their sensitivity to the LLC
size and the different hardware prefetchers. Prefetching is very effective in 12 of them, and
the L2P preftcher is responsible of a big fraction of the improvement. 9 applications show
important MPKI reduction when increasing the LLC size even with prefetching.

References

[1] SPEC, SPEC CPU R� 2017, https://www.spec.org/cpu2017/

[2] Nguyen, Khang T, Introduction to Cache Allocation Technology in the Intel R� Xeon R� Pro-
cessor E5 v4 Family, Intel software developer zone 2016, https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology

[3] Intel, Intel R� 64 and IA-32 Architectures Optimization Reference Manual. Intel 2016, update
April, 2018.

All the selected workloads were executed with different configurations:
with all prefetchers enabled, with all of them disabled, and with each
one of the prefetchers enabled individually (one at a time). The ex-
periment was accomplished with the maximum LLC size.
In general, L2P is the best prefetcher, followed by DCUI and DCUP.
L2A gets the least improvement
Hardware prefetching is bandwidth-efficient since it causes sig-
nificant extra bandwidth consumption in only three benchmarks
(520.omnetpp, 549.fotonik3d and 554.roms)

6. Conclusions
In this work we analyzed the memory hierarchy performance of the
SPEC CPU2017 single-thread applications. We identified the applica-
tion/input pairs with intensive use of memory hierarchy. We analyzed
the sensitive to the LLC size and to the different hardware prefetching
of theses application/input pairs.

Sensitivity of the memory intensive benchmarks to the hardware prefetching
and to the LLC size.

Hardware prefetching is very effective in reducing MPKI3 even
with the smallest LLC size

With hardware prefetching, increasing LLC size translates to
significant MPKI3 reductions for 9 out of 16 benchmarks

5. Hardware Prefetchers Performance

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
P

I

B
P

K
I

502.gcc_r.5

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100
C

P
I

B
P

K
I

503.bwaves_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
P

I

B
P

K
I

505.mcf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

507.cactuBSSN_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

510.parest_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
P

I

B
P

K
I

519.lbm_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
P

I

B
P

K
I

520.omnetpp_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

521.wrf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

523.xalancbmk_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

525.x264_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

526.blender_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

527.cam4_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

175

200

225

250

C
P

I

B
P

K
I

549.fotonik3d_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
P

I

B
P

K
I

554.roms_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
P

I

B
P

K
I

557.xz_r.1

MemoryCharacterizationofSPECCPU2017
Suite

Agustín Navarro Torres, Jesús Alastruey Benedé, Pablo Enrique Ibañez
Marin, Victor Viñals Yúfera

{agusnt, jalastru, imarin, victor}@unizar.es

7. Acknowledgement
This work was supported in part by grants TIN2016-76635-C2-1-
R (AEI/FEDER, UE) and Consolider NoE TIN2014-52608-REDC
(Spanish Gov.), gaZ: T48 research group (Aragn Gov. and European
ESF), and HiPEAC4 (European H2020/687698).

7. References
1. SPEC CPU1917, Standard Performance Evaluation Corpora-

tion, https://www.spec.org/cpu1917/

2. Introduction to Cache Allocation Technology in the Intelő Xeonő
Processor E5 v4 Family, Intel, https://goo.gl/oZaVQ7

1. Introduction
SPEC CPU is one of the most widely used benchmark suites for high
performance computing research on academia and industry. CPU2017,
released on June 2017, is called to replace the 2006 version. Thus, new
characterization is necessary in order to help researchers to select the
benchmarks with particular characteristics or pick simulation points.

In this work we analyze the memory hierarchy performance of SPEC
CPU2017. Namely, we study all the single-thread benchmarks, identify

the memory-intensive ones, and analyze the sensitivity of them to the
last-level cache size and the different hardware prefetchers.

We execute the benchamrks in an Intel Xeon Skylake-SP Gold 5120 and
several hardware performance counters were collected with the Perf pro-
filer. We use the Intel Cache Allocation Technology (CAT) to modify
the LLC capacity that a program has available during its execution

2. Identification of Memory Intensive

0
10
20
30
40
50
60

M
PK

I3

0
10
20
30
40
50
60
70
80

M
PK

I2

0
20
40
60
80
100
120

50
0.
pe
rlb
en
ch
_r
.1

50
0.
pe
rlb
en
ch
_r
.2

50
0.
pe
rlb
en
ch
_r
.3

50
2.
gc
c_
r.1

50
2.
gc
c_
r.2

50
2.
gc
c_
r.3

50
2.
gc
c_
r.4

50
2.
gc
c_
r.5

50
3.
bw

av
es
_r
.1

50
3.
bw

av
es
_r
.2

50
3.
bw

av
es
_r
.3

50
3.
bw

av
es
_r
.4

50
5.
m
cf
_r
.1

50
7.
ca
ct
uB
SS

N
_r
.1

50
8.
na
m
d_
r.1

51
0.
pa
re
st
_r
.1

51
1.
po
vr
ay
_r
.1

51
9.
lb
m
_r
.1

52
0.
om

ne
tp
p_
r.1

52
1.
w
rf_
r.1

52
3.
xa
la
nc
bm

k_
r.1

52
5.
x2
64
_r
.1

52
5.
x2
64
_r
.2

52
5.
x2
64
_r
.3

52
6.
bl
en
de
r_
r.1

52
7.
ca
m
4_
r.1

53
1.
de
ep
sj
en
g_
r.1

53
8.
im
ag
ic
k_
r.1

54
1.
le
el
a_
r.1

54
4.
na
b_
r.1

54
8.
ex
ch
an
ge
2_
r.1

54
9.
fo
to
ni
k3
d_
r.1

55
4.
ro
m
s_
r.1

55
7.
xz
_r
.1

55
7.
xz
_r
.2

55
7.
xz
_r
.3

60
0.
pe
rlb
en
ch
_s
.1

60
0.
pe
rlb
en
ch
_s
.2

60
0.
pe
rlb
en
ch
_s
.3

60
2.
gc
c_
s.
1

60
2.
gc
c_
s.
2

60
2.
gc
c_
s.
3

60
5.
m
cf
_s
.1

62
0.
om

ne
tp
p_
s.
1

62
3.
xa
la
nc
bm

k_
s.
1

62
5.
x2
64
_s
.1

62
5.
x2
64
_s
.2

62
5.
x2
64
_s
.3

63
1.
de
ep
sj
en
g_
s.
1

64
1.
le
el
a_
s.
1

64
8.
ex
ch
an
ge
2_
s.
1

M
PK

I1

We executed all CPU2017 single-thread applications with limited re-
sources: all hardware prefetchers disabled and 1.75 MB of LLC. For
each application/input pair we measured misses per kilo instructions
for the three cache levels (MPKI1, MPKI2 and MPKI3). We plot in
red the bars associated to applications that have very low MPKI2 and
MPKI3 ratio. We have selected an input for each application, plotted
in green, that will be used in the following experiments.

3. Size/Prefetch SpeedUp performance

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee
dU

p
Ta
m
añ
o

SpeedUp Pre-búsqueda

401.bzip2

403.gcc
429.mcf

434.zeusmp

436.cactusADM

437.leslie3d
470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

410.bwaves

447.dealII 481.wrf

433.milc
450.soplex

465.tonto

459.GemsFDTD

462.libquantum

44
5.
go
bm

k

We show the speed-up achieved by increasing the LLC size from
1.75MB to 19.25MB without prefetch (axis x) and the speed-up by
turning on hardware prefetching (axis y).

4. LLC Size and to Hardware Prefetching

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

500.perlbench_r.3

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

502.gcc_r.5

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

503.bwaves_r.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

505.mcf_r.1

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

507.cactuBSSN_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

510.parest_r.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

519.lbm_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

520.omnetpp_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

521.wrf_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

523.xalancbmk_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

526.blender_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

527.cam4_r.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

549.fotonik3d_r.1

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

554.roms_r.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)

557.xz_r.1

MemoryCharacterizationofSPECCPU2017
Suite

Agustín Navarro Torres, Jesús Alastruey Benedé, Pablo Enrique Ibañez
Marin, Victor Viñals Yúfera

{agusnt, jalastru, imarin, victor}@unizar.es

7. Acknowledgement
This work was supported in part by grants TIN2016-76635-C2-1-
R (AEI/FEDER, UE) and Consolider NoE TIN2014-52608-REDC
(Spanish Gov.), gaZ: T48 research group (Aragn Gov. and European
ESF), and HiPEAC4 (European H2020/687698).

7. References
1. SPEC CPU1917, Standard Performance Evaluation Corpora-

tion, https://www.spec.org/cpu1917/

2. Introduction to Cache Allocation Technology in the Intelő Xeonő
Processor E5 v4 Family, Intel, https://goo.gl/oZaVQ7

1. Introduction
SPEC CPU is one of the most widely used benchmark suites for high
performance computing research on academia and industry. CPU2017,
released on June 2017, is called to replace the 2006 version. Thus, new
characterization is necessary in order to help researchers to select the
benchmarks with particular characteristics or pick simulation points.

In this work we analyze the memory hierarchy performance of SPEC
CPU2017. Namely, we study all the single-thread benchmarks, identify

the memory-intensive ones, and analyze the sensitivity of them to the
last-level cache size and the different hardware prefetchers.

We execute the benchamrks in an Intel Xeon Skylake-SP Gold 5120 and
several hardware performance counters were collected with the Perf pro-
filer. We use the Intel Cache Allocation Technology (CAT) to modify
the LLC capacity that a program has available during its execution

2. Identification of Memory Intensive

0
10
20
30
40
50
60

M
PK

I3

0
10
20
30
40
50
60
70
80

M
PK

I2

0
20
40
60
80
100
120

50
0.
pe
rlb
en
ch
_r
.1

50
0.
pe
rlb
en
ch
_r
.2

50
0.
pe
rlb
en
ch
_r
.3

50
2.
gc
c_
r.1

50
2.
gc
c_
r.2

50
2.
gc
c_
r.3

50
2.
gc
c_
r.4

50
2.
gc
c_
r.5

50
3.
bw

av
es
_r
.1

50
3.
bw

av
es
_r
.2

50
3.
bw

av
es
_r
.3

50
3.
bw

av
es
_r
.4

50
5.
m
cf
_r
.1

50
7.
ca
ct
uB
SS

N
_r
.1

50
8.
na
m
d_
r.1

51
0.
pa
re
st
_r
.1

51
1.
po
vr
ay
_r
.1

51
9.
lb
m
_r
.1

52
0.
om

ne
tp
p_
r.1

52
1.
w
rf_
r.1

52
3.
xa
la
nc
bm

k_
r.1

52
5.
x2
64
_r
.1

52
5.
x2
64
_r
.2

52
5.
x2
64
_r
.3

52
6.
bl
en
de
r_
r.1

52
7.
ca
m
4_
r.1

53
1.
de
ep
sj
en
g_
r.1

53
8.
im
ag
ic
k_
r.1

54
1.
le
el
a_
r.1

54
4.
na
b_
r.1

54
8.
ex
ch
an
ge
2_
r.1

54
9.
fo
to
ni
k3
d_
r.1

55
4.
ro
m
s_
r.1

55
7.
xz
_r
.1

55
7.
xz
_r
.2

55
7.
xz
_r
.3

60
0.
pe
rlb
en
ch
_s
.1

60
0.
pe
rlb
en
ch
_s
.2

60
0.
pe
rlb
en
ch
_s
.3

60
2.
gc
c_
s.
1

60
2.
gc
c_
s.
2

60
2.
gc
c_
s.
3

60
5.
m
cf
_s
.1

62
0.
om

ne
tp
p_
s.
1

62
3.
xa
la
nc
bm

k_
s.
1

62
5.
x2
64
_s
.1

62
5.
x2
64
_s
.2

62
5.
x2
64
_s
.3

63
1.
de
ep
sj
en
g_
s.
1

64
1.
le
el
a_
s.
1

64
8.
ex
ch
an
ge
2_
s.
1

M
PK

I1

We executed all CPU2017 single-thread applications with limited re-
sources: all hardware prefetchers disabled and 1.75 MB of LLC. For
each application/input pair we measured misses per kilo instructions
for the three cache levels (MPKI1, MPKI2 and MPKI3). We plot in
red the bars associated to applications that have very low MPKI2 and
MPKI3 ratio. We have selected an input for each application, plotted
in green, that will be used in the following experiments.

3. Size/Prefetch SpeedUp performance

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Sp
ee
dU

p
Ta
m
añ
o

SpeedUp Pre-búsqueda

401.bzip2

403.gcc
429.mcf

434.zeusmp

436.cactusADM

437.leslie3d
470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

410.bwaves

447.dealII 481.wrf

433.milc
450.soplex

465.tonto

459.GemsFDTD

462.libquantum

44
5.
go
bm

k

We show the speed-up achieved by increasing the LLC size from
1.75MB to 19.25MB without prefetch (axis x) and the speed-up by
turning on hardware prefetching (axis y).

4. LLC Size and to Hardware Prefetching

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
1
2
3
4
5
6
7
8
9

10

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
1
2
3
4
5
6
7
8
9

10

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

3.2 Sensitivity to the LLC Size and Hardware Prefetchers

In this experiment we study the sensitivity of the memory-intensive benchmarks to the LLC
size and the hardware prefetcher. The workloads selected in the previous subsection were
executed with different LLC sizes. All these runs were performed two times: one with all
the prefetchers enabled and the other with all disabled.

The LLC sizes used were: 19.25MB, 14MB, 7MB, 3.5MB and 1.75MB. To establish the five
sizes, the Intel cache allocation technology[2] was used to limit the number of ways available
for the program to 11, 8, 4, 2 and 1 respectively.

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(a) 500.perlbench_r.3

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(b) 502.gcc_r.5

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(c) 503.bwaves_r.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(d) 505.mcf_r

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(e) 507.cactuBSSN_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(f) 510.parest_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(g) 519.lbm_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(h) 520.omnetpp_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(i) 521.wrf_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(j) 523.xalancbmk_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(k) 526.blender_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(l) 527.cam4_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(m) 549.fotonik3d_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(n) 554.roms_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(o) 557.xz_r.1

Figure 2: MPKI3 of the selected application according to the multiple LLC size

Without prefetching, the increase in LLC size produces a significant reduction of MPKI3
in all applications except 503.bwaves. This improvement decreases considerably when using
prefetching in several applications: 510.parest, 519.lbm, 521.wrf, 549.fotonik3d and 554.roms.

Prefetching is very effective in 12 of them and gets minor improvements in 2 more for
small sizes of LLC (500.perlbench and 557.xz). One application (520.omnetpp) does not im-
prove in any case, and even slightly increases the MPKI with the largest LLC.

3.3 Hardware prefetcher characterization

In this section we analysis the influence of different hardware prefetchers on application
performance (CPI, left axis in Figure 3). In addition, we analyze the increase in number
of bytes read from main memory caused by the use of hardware prefetching (BPKI, right
axis in Figure 3). Every application was executed with all prefetchers activated, with all
of them disabled and with each one of them activated individually. The experiment was
accomplished with the maximum size of LLC.

In general, L2P is the prefetcher that has the best result of all. For the 12 prefetching-
sensitive applications, L2P alone gets always more than 82% of the CPI reduction, and more

In this experiment we study the sensitivity of the memory-intensive
benchmarks to the LLC size and to the hardware prefetching. All
these runs were performed in two different ways: one with all the
prefetchers enabled and the other with all disabled. Five LLC sizes,
19.25 MB, 14 MB, 7 MB, 3.5 MB and 1.75 MB, were configured by
limiting the number of ways available for the program to 11, 8, 4, 2
and 1, respectively. This resource allocation was performed by CAT.

5. Hardware Prefetchers

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

502.gcc_r.5

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.3

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

519.lbm_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

175

200

225

250

C
PI

BP
K

I

549.fotonik3d_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

than 90% for 7 of them. The second best pre-fetcher is DCUI followed by DCUP. L2A gets
the least improvement. It only reduces CPI more than 5% in 6 application with a maximum
of 15% in 554.roms.

The hardware prefetching is very precise in most of the applications, since it does not
significantly increase the number of bytes read from main memory. 502.gcc_r and 520.om-
netpp_r are the application which have the most significant increases. In all cases, except
520.omnetpp, the increase in BPKI is accompanied with significant reductions of MPKI. So
the overall result is positive.

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.2

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

519.lbm_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

175

200

225

250

C
PI

BP
K

I

549.fotonik3d_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

Figure 3: CPI and BPKI with different hardware prefetcher of the selected benchmarks

4 Conclusions

In this work we have analyzed the memory hierarchy performance of the single-thread ap-
plications of SPEC CPU2017. We have identified 19 out of 50 application/input pairs, from 9
applications, with little use of the memory hierarchy. They have very low miss ratios in the
second and third level caches, even in a limited resources context.

We analyze the 15 memory-intensive applications in terms of their sensitivity to the LLC
size and the different hardware prefetchers. Prefetching is very effective in 12 of them, and
the L2P preftcher is responsible of a big fraction of the improvement. 9 applications show
important MPKI reduction when increasing the LLC size even with prefetching.

References

[1] SPEC, SPEC CPU R� 2017, https://www.spec.org/cpu2017/

[2] Nguyen, Khang T, Introduction to Cache Allocation Technology in the Intel R� Xeon R� Pro-
cessor E5 v4 Family, Intel software developer zone 2016, https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology

[3] Intel, Intel R� 64 and IA-32 Architectures Optimization Reference Manual. Intel 2016, update
April, 2018.

All the selected workloads were executed with different configurations:
with all prefetchers enabled, with all of them disabled, and with each
one of the prefetchers enabled individually (one at a time). The ex-
periment was accomplished with the maximum LLC size.
In general, L2P is the best prefetcher, followed by DCUI and DCUP.
L2A gets the least improvement
Hardware prefetching is bandwidth-efficient since it causes sig-
nificant extra bandwidth consumption in only three benchmarks
(520.omnetpp, 549.fotonik3d and 554.roms)

6. Conclusions
In this work we analyzed the memory hierarchy performance of the
SPEC CPU2017 single-thread applications. We identified the applica-
tion/input pairs with intensive use of memory hierarchy. We analyzed
the sensitive to the LLC size and to the different hardware prefetching
of theses application/input pairs.

In this experiment we study the sensitivity of the memory-intensive
benchmarks to the LLC size and to the hardware prefetching. All
these runs were performed in two different ways: one with all the
prefetchers enabled and the other with all disabled. Five LLC sizes,
19.25 MB, 14 MB, 7 MB, 3.5 MB and 1.75 MB, were configured by
limiting the number of ways available for the program to 11, 8, 4, 2
and 1, respectively. This resource allocation was performed by CAT.

5. Hardware Prefetchers

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

502.gcc_r.5

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.3

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

519.lbm_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0
25
50
75
100
125
150
175
200
225
250

C
PI

BP
K

I

549.fotonik3d_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

CPI BPKI

MemoryCharacterizationofSPECCPU2017
Suite

Agustín Navarro Torres, Jesús Alastruey Benedé, Pablo Enrique Ibañez
Marin, Victor Viñals Yúfera

{agusnt, jalastru, imarin, victor}@unizar.es

7. Acknowledgement
This work was supported in part by grants TIN2016-76635-C2-1-
R (AEI/FEDER, UE) and Consolider NoE TIN2014-52608-REDC
(Spanish Gov.), gaZ: T48 research group (Aragn Gov. and European
ESF), and HiPEAC4 (European H2020/687698).

7. References
1. SPEC CPU1917, Standard Performance Evaluation Corpora-

tion, https://www.spec.org/cpu1917/

2. Introduction to Cache Allocation Technology in the Intelő Xeonő
Processor E5 v4 Family, Intel, https://goo.gl/oZaVQ7

1. Introduction
SPEC CPU is one of the most widely used benchmark suites for high
performance computing research on academia and industry. CPU2017,
released on June 2017, is called to replace the 2006 version. Thus, new
characterization is necessary in order to help researchers to select the
benchmarks with particular characteristics or pick simulation points.

In this work we analyze the memory hierarchy performance of SPEC
CPU2017. Namely, we study all the single-thread benchmarks, identify

the memory-intensive ones, and analyze the sensitivity of them to the
last-level cache size and the different hardware prefetchers.

We execute the benchamrks in an Intel Xeon Skylake-SP Gold 5120 and
several hardware performance counters were collected with the Perf pro-
filer. We use the Intel Cache Allocation Technology (CAT) to modify
the LLC capacity that a program has available during its execution

2. Identification of Memory Intensive

0
10
20
30
40
50
60

M
PK

I3

0
10
20
30
40
50
60
70
80

M
PK

I2

0
20
40
60
80
100
120

50
0.
pe
rlb
en
ch
_r
.1

50
0.
pe
rlb
en
ch
_r
.2

50
0.
pe
rlb
en
ch
_r
.3

50
2.
gc
c_
r.1

50
2.
gc
c_
r.2

50
2.
gc
c_
r.3

50
2.
gc
c_
r.4

50
2.
gc
c_
r.5

50
3.
bw

av
es
_r
.1

50
3.
bw

av
es
_r
.2

50
3.
bw

av
es
_r
.3

50
3.
bw

av
es
_r
.4

50
5.
m
cf
_r
.1

50
7.
ca
ct
uB
SS

N
_r
.1

50
8.
na
m
d_
r.1

51
0.
pa
re
st
_r
.1

51
1.
po
vr
ay
_r
.1

51
9.
lb
m
_r
.1

52
0.
om

ne
tp
p_
r.1

52
1.
w
rf_
r.1

52
3.
xa
la
nc
bm

k_
r.1

52
5.
x2
64
_r
.1

52
5.
x2
64
_r
.2

52
5.
x2
64
_r
.3

52
6.
bl
en
de
r_
r.1

52
7.
ca
m
4_
r.1

53
1.
de
ep
sj
en
g_
r.1

53
8.
im
ag
ic
k_
r.1

54
1.
le
el
a_
r.1

54
4.
na
b_
r.1

54
8.
ex
ch
an
ge
2_
r.1

54
9.
fo
to
ni
k3
d_
r.1

55
4.
ro
m
s_
r.1

55
7.
xz
_r
.1

55
7.
xz
_r
.2

55
7.
xz
_r
.3

60
0.
pe
rlb
en
ch
_s
.1

60
0.
pe
rlb
en
ch
_s
.2

60
0.
pe
rlb
en
ch
_s
.3

60
2.
gc
c_
s.
1

60
2.
gc
c_
s.
2

60
2.
gc
c_
s.
3

60
5.
m
cf
_s
.1

62
0.
om

ne
tp
p_
s.
1

62
3.
xa
la
nc
bm

k_
s.
1

62
5.
x2
64
_s
.1

62
5.
x2
64
_s
.2

62
5.
x2
64
_s
.3

63
1.
de
ep
sj
en
g_
s.
1

64
1.
le
el
a_
s.
1

64
8.
ex
ch
an
ge
2_
s.
1

M
PK

I1

We executed all CPU2017 single-thread applications with limited re-
sources: all hardware prefetchers disabled and 1.75 MB of LLC. For
each application/input pair we measured misses per kilo instructions
for the three cache levels (MPKI1, MPKI2 and MPKI3). We plot in
red the bars associated to applications that have very low MPKI2 and
MPKI3 ratio. We have selected an input for each application, plotted
in green, that will be used in the following experiments.

3. Size/Prefetch SpeedUp performance

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Sp
ee
dU

p
Ta
m
añ
o

SpeedUp Pre-búsqueda

401.bzip2

403.gcc
429.mcf

434.zeusmp

436.cactusADM

437.leslie3d
470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

410.bwaves

447.dealII 481.wrf

433.milc
450.soplex

465.tonto

459.GemsFDTD

462.libquantum

44
5.
go
bm

k
We show the speed-up achieved by increasing the LLC size from
1.75MB to 19.25MB without prefetch (axis x) and the speed-up by
turning on hardware prefetching (axis y).

4. LLC Size and to Hardware Prefetching

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
1
2
3
4
5
6
7
8
9

10

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
1
2
3
4
5
6
7
8
9

10

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

5

10

15

20

25

30

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0
2
4
6
8

10
12
14
16
18
20

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

0

1

2

3

4

5

1.75MB 3.5MB 7MB 14MB 19.25MB

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

3.2 Sensitivity to the LLC Size and Hardware Prefetchers

In this experiment we study the sensitivity of the memory-intensive benchmarks to the LLC
size and the hardware prefetcher. The workloads selected in the previous subsection were
executed with different LLC sizes. All these runs were performed two times: one with all
the prefetchers enabled and the other with all disabled.

The LLC sizes used were: 19.25MB, 14MB, 7MB, 3.5MB and 1.75MB. To establish the five
sizes, the Intel cache allocation technology[2] was used to limit the number of ways available
for the program to 11, 8, 4, 2 and 1 respectively.

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(a) 500.perlbench_r.3

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(b) 502.gcc_r.5

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(c) 503.bwaves_r.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(d) 505.mcf_r

0
1
2
3
4
5
6
7
8
9

10

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(e) 507.cactuBSSN_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(f) 510.parest_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(g) 519.lbm_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(h) 520.omnetpp_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(i) 521.wrf_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(j) 523.xalancbmk_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(k) 526.blender_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(l) 527.cam4_r

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(m) 549.fotonik3d_r

0
2
4
6
8

10
12
14
16
18
20

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(n) 554.roms_r

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
PK

I3

LLC (MB)
Without Prefetch With Prefetch

(o) 557.xz_r.1

Figure 2: MPKI3 of the selected application according to the multiple LLC size

Without prefetching, the increase in LLC size produces a significant reduction of MPKI3
in all applications except 503.bwaves. This improvement decreases considerably when using
prefetching in several applications: 510.parest, 519.lbm, 521.wrf, 549.fotonik3d and 554.roms.

Prefetching is very effective in 12 of them and gets minor improvements in 2 more for
small sizes of LLC (500.perlbench and 557.xz). One application (520.omnetpp) does not im-
prove in any case, and even slightly increases the MPKI with the largest LLC.

3.3 Hardware prefetcher characterization

In this section we analysis the influence of different hardware prefetchers on application
performance (CPI, left axis in Figure 3). In addition, we analyze the increase in number
of bytes read from main memory caused by the use of hardware prefetching (BPKI, right
axis in Figure 3). Every application was executed with all prefetchers activated, with all
of them disabled and with each one of them activated individually. The experiment was
accomplished with the maximum size of LLC.

In general, L2P is the prefetcher that has the best result of all. For the 12 prefetching-
sensitive applications, L2P alone gets always more than 82% of the CPI reduction, and more

In this experiment we study the sensitivity of the memory-intensive
benchmarks to the LLC size and to the hardware prefetching. All
these runs were performed in two different ways: one with all the
prefetchers enabled and the other with all disabled. Five LLC sizes,
19.25 MB, 14 MB, 7 MB, 3.5 MB and 1.75 MB, were configured by
limiting the number of ways available for the program to 11, 8, 4, 2
and 1, respectively. This resource allocation was performed by CAT.

5. Hardware Prefetchers

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

502.gcc_r.5

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.3

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

519.lbm_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

125

150

175

200

225

250

C
PI

BP
K

I

549.fotonik3d_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

3

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

than 90% for 7 of them. The second best pre-fetcher is DCUI followed by DCUP. L2A gets
the least improvement. It only reduces CPI more than 5% in 6 application with a maximum
of 15% in 554.roms.

The hardware prefetching is very precise in most of the applications, since it does not
significantly increase the number of bytes read from main memory. 502.gcc_r and 520.om-
netpp_r are the application which have the most significant increases. In all cases, except
520.omnetpp, the increase in BPKI is accompanied with significant reductions of MPKI. So
the overall result is positive.

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2
N

on
e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

500.perlbench_r.3

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

503.bwaves_r.2

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

505.mcf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

507.cactuBSSN_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

510.parest_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

C
PI

BP
K

I

519.lbm_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

520.omnetpp_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

521.wrf_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

523.xalancbmk_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

526.blender_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

527.cam4_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

125

150

175

200

225

250

C
PI

BP
K

I

549.fotonik3d_r.1

CPI BPKI

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

75

100

C
PI

BP
K

I

554.roms_r.1

0

1

2

N
on

e

D
C

U
I

D
C

U
P

L2
A

L2
P

A
ll

0

25

50

C
PI

BP
K

I

557.xz_r.1

Figure 3: CPI and BPKI with different hardware prefetcher of the selected benchmarks

4 Conclusions

In this work we have analyzed the memory hierarchy performance of the single-thread ap-
plications of SPEC CPU2017. We have identified 19 out of 50 application/input pairs, from 9
applications, with little use of the memory hierarchy. They have very low miss ratios in the
second and third level caches, even in a limited resources context.

We analyze the 15 memory-intensive applications in terms of their sensitivity to the LLC
size and the different hardware prefetchers. Prefetching is very effective in 12 of them, and
the L2P preftcher is responsible of a big fraction of the improvement. 9 applications show
important MPKI reduction when increasing the LLC size even with prefetching.

References

[1] SPEC, SPEC CPU R� 2017, https://www.spec.org/cpu2017/

[2] Nguyen, Khang T, Introduction to Cache Allocation Technology in the Intel R� Xeon R� Pro-
cessor E5 v4 Family, Intel software developer zone 2016, https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology

[3] Intel, Intel R� 64 and IA-32 Architectures Optimization Reference Manual. Intel 2016, update
April, 2018.

All the selected workloads were executed with different configurations:
with all prefetchers enabled, with all of them disabled, and with each
one of the prefetchers enabled individually (one at a time). The ex-
periment was accomplished with the maximum LLC size.
In general, L2P is the best prefetcher, followed by DCUI and DCUP.
L2A gets the least improvement
Hardware prefetching is bandwidth-efficient since it causes sig-
nificant extra bandwidth consumption in only three benchmarks
(520.omnetpp, 549.fotonik3d and 554.roms)

6. Conclusions
In this work we analyzed the memory hierarchy performance of the
SPEC CPU2017 single-thread applications. We identified the applica-
tion/input pairs with intensive use of memory hierarchy. We analyzed
the sensitive to the LLC size and to the different hardware prefetching
of theses application/input pairs.

All the selected workloads were executed with different configurations:
with all prefetchers enabled, with all of them disabled, and with each
one of the prefetchers enabled individually (one at a time). The ex-
periment was accomplished with the maximum LLC size.
In general, L2P is the best prefetcher, followed by DCUI and DCUP.
L2A gets the least improvement
Hardware prefetching is bandwidth-efficient since it causes sig-
nificant extra bandwidth consumption in only three benchmarks
(520.omnetpp, 549.fotonik3d and 554.roms)

6. Conclusions
In this work we analyzed the memory hierarchy performance of the
SPEC CPU2017 single-thread applications. We identified the applica-
tion/input pairs with intensive use of memory hierarchy. We analyzed
the sensitive to the LLC size and to the different hardware prefetching
of theses application/input pairs.

Cycles per instruction (CPI) and bytes read from main memory per kilo-
instruction (BPKI) for different prefetching configurations.

Hardware prefetching is very efficient because it achieves
noticeable CPI reductions with low bandwidth overhead

6. Conclusions
• Several benchmark-input pairs show very low MPKI2/3 ratios even

with 1.75MB of LLC and no hardware prefetching.

• Hardware Prefetching is very effective in 13 out of 16 benchmarks.

• Increasing LLC size with hardware prefetching reduces MPKI3 in 9
out of 16 benchmarks.

• Hardware prefetching is bandwidth-efficient.

• L2P prefetcher achieves most of the CPI reduction.

7. References
1. SPEC CPU2017, Standard Performance Evaluation Corporation,

https://www.spec.org/cpu2017/

2. Introduction to Cache Allocation Technology in the Intel R© Xeon R©
Processor E5 v4 Family, Intel, https://goo.gl/oZaVQ7

