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Abstract

The increase in the number of cores and threads per processor over the last
15 years has allowed continuous improvements in system performance to be
maintained. This design trend has involved major changes in the memory
hierarchy. This dissertation explores new approaches to improve the perfor-
mance of a multicore processor’s memory hierarchy. Specifically, we analyze
the utilization of its shared resources and propose mechanisms to improve the
management of these resources from different levels ranging from the hardware
to the application.

First, memory hierarchy performance has been evaluated for two SPEC
CPU suites, CPU2006 and CPU2017, on an Intel Xeon Skylake-SP. This char-
acterization has provided us with interesting findings, such as, for example,
the unequal use of cache space by different applications or the effectiveness of
hardware prefetching to reduce cache misses and improve system performance.
This information served as a basis for defining new concrete objectives.

Next, we characterize the relationship between cache occupation, hardware
prefetch and memory bandwidth consumption to understand their interactions.
From this characterization work, we have proposed Balancer, a mechanism that
dynamically imposes limits on LLC space usage and memory traffic to specific
applications. These constraints improve performance and/or fairness in the
execution of multiprogrammed workloads compared to an uncontrolled system.
Balancer requires no hardware or operating system modifications.

As observed in the previous characterizations, data prefetching is a crucial
technique as it allows hiding long-latency memory accesses and improving per-
formance on modern high-performance processors. However, these prefetchers
load a large number of useless blocks. This results in an unnecessary increase in
the consumption of shared and scarce resources such as cache space and memory
bandwidth. We propose Berti, a lightweight, highly accurate, energy-efficient,
and high-performing local delta prefetcher that outperforms state-of-the-art
prefetchers. Berti is an L1D prefetcher that orchestrates its requests across the
entire cache hierarchy. Thanks to its high accuracy, Berti neither pollutes the
caches nor wastes memory hierarchy bandwidth.
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Synchronization between threads of the same application is another context
where there can also be a high demand for shared resources in the memory hier-
archy as the number of cores per processor increases. This dissertation presents
a comprehensive study on the scalability of the different strategies that have
been used for implementing synchronization solutions. The main conclusions
that can be drawn are 1) hardware transactional memory scales better than fine-
grained and non-blocking locks as the number of threads increases; 2) hardware
transactional memory adoption is easy in real-world scientific applications and
obtains performance comparable to that of a highly optimized locking scheme;
and 3) enabling simultaneous multithreading for applications that access large
memory blocks within their critical sections significantly affects the hardware
transactional memory commit rate. In this context, we propose a novel cache
replacement algorithm that aims to mitigate the negative effects of simultane-
ous multithreading on the transactional capacity abort rate.
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Resumen

El aumento del número de núcleos e hilos por procesador en los últimos 15 años
ha permitido mantener mejoras continuas en el rendimiento de los sistemas.
Esta tendencia de diseño ha implicado importantes cambios en la jerarquía de
memoria. Esta tesis explora nuevos enfoques para mejorar el rendimiento de la
jerarquía de memoria de un procesador multinúcleo. En concreto, analizamos la
utilización de sus recursos compartidos y proponemos mecanismos para mejorar
la gestión de estos recursos en distintos niveles que van desde el hardware hasta
la aplicación.

En primer lugar, se ha evaluado el rendimiento de la jerarquía de memoria
para dos suites de SPEC, CPU2006 y CPU2017, en un Intel Xeon Skylake-SP.
Esta caracterización nos ha proporcionado hallazgos interesantes, como, por
ejemplo, el uso desigual del espacio de cache por parte de distintas aplicaciones
o la eficacia de la prebúsqueda hardware para reducir los fallos de cache y
mejorar el rendimiento del sistema. Esta información sirvió de base para definir
nuevos objetivos concretos.

A continuación, caracterizamos la relación entre la ocupación de la cache, la
prebúsqueda hardware y el consumo de ancho de banda con memoria para com-
prender sus interacciones. A partir de este trabajo de caracterización, hemos
propuesto Balancer, un mecanismo que impone dinámicamente límites en el
uso del espacio de la LLC y el tráfico con memoria a aplicaciones específicas.
Estas restricciones mejoran el rendimiento y/o la equidad en la ejecución de
cargas de trabajo multiprogramadas en comparación con un sistema no con-
trolado. Balancer no requiere modificaciones en el hardware ni en el sistema
operativo.

Como se ha observado en las caracterizaciones anteriores, la prebúsqueda
de datos es una técnica crucial, ya que permite ocultar los accesos a memoria
de larga latencia y mejorar el rendimiento en los procesadores modernos de
alto rendimiento. Sin embargo, estos prebuscadores cargan un gran número
de bloques inútiles. Esto se traduce en un aumento innecesario del consumo
de recursos compartidos y escasos, como el espacio de cache y el ancho de
banda con memoria. Proponemos Berti, un prebuscador hardware ligero, muy
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preciso, eficiente energéticamente y de alto rendimiento basado en deltas locales
que supera a los prebuscadores que conforman el estado del arte actual. Berti
es un prebuscador de L1D que organiza sus peticiones a lo largo de toda la
jerarquía de caches. Gracias a su gran precisión, Berti no contamina las caches
ni desperdicia ancho de banda de la jerarquía con memoria.

La sincronización entre hilos de una misma aplicación es otro contexto en el
que también puede haber una gran demanda de recursos compartidos en la jer-
arquía de memoria a medida que aumenta el número de núcleos por procesador.
Esta tesis presenta un estudio exhaustivo sobre la escalabilidad de las diferentes
estrategias que se han utilizado para implementar soluciones de sincronización.
Las principales conclusiones que se pueden extraer son: 1) la memoria transac-
cional hardware escala mejor que los fine-grain locks y algoritmos lock-free a
medida que aumenta el número de hilos; 2) la adopción de la memoria transac-
cional hardware es fácil en aplicaciones científicas y obtiene un rendimiento
comparable al de un esquema de fine-grain locks altamente optimizado; y 3)
habilitar el multihilo simultáneo para aplicaciones que acceden a grandes blo-
ques de memoria dentro de sus secciones críticas afecta significativamente a la
tasa de retiro de la memoria transaccional hardware. En este contexto, pro-
ponemos un novedoso algoritmo de reemplazo de cache que pretende mitigar
los efectos negativos del multithreading simultáneo sobre la tasa de abortos por
capacidad.
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Chapter 1

Introduction

1.1 Rationale

Over the past 50 years, the industry has enjoyed a continuous improvement in
processor performance fueled by Moore’s Law [101] and Dennard Scaling [30].
During the early years, this performance improvement was coupled with in-
creasing processor frequency. However, when the power dissipation limit was
reached, processor designers reduced the processors’ frequency and resorted to
multiple cores integration on the same chip to maintain performance growth
over time. Figure shows how the number of transistors (yellow triangle) has
grown exponentially over the years (X-axis), while frequency (blue circles) and
power (red diamonds) grew exponentially until 2005 when they stabilized, and
the number of cores (black squares) began to increase.

Today chip multicore processors (CMPs) integrate several tens of cores,
sometimes grouped in clusters. Each core, that can run one or more threads,
has private resources (e.g.: the pipeline) and resources that are shared with
other cores e.g.: a major part of the memory hierarchy. The memory hierarchy
is a common solution for hiding part of the costly off-chip main memory access
latency and avoiding the power consumption associated with its use. It is
organized into levels, which increase in size, energy consumption and access
latency. Usually, the first cache levels, those closest to the core, are private,
while the last level of cache (LLC1) is a shared resource. Likewise, the main
memory access channels and the interconnection network that communicates
cores, SLLC banks and memory channels are also shared resources.

This paradigm shift of processors, from a single fast core to many cores that
share resources, has driven major changes in their design. Researchers and en-
gineers do not have to achieve only the highest performance in an individual
application, they must also improve the performance of the system as a whole
and prevent applications from harming each other. Thus, the memory hierar-
chy, being the main shared resource, requires special attention in this context.

1In this dissertation LLC and SLLC are used indistinctly.
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Figure 1.1: 50 years of microprocessor trend data [134].

Memory hierarchy design constantly demands new architectural solutions as
new trade-offs arise due to the significant increase in the number of cores on
the chip, and the increased pressure on the hierarchy that comes with it.

1.2 Contributions

The main objective of this thesis is to improve the efficiency in the use of
shared resources in the memory hierarchy of a CMP. This goal can be achieved
from different approaches, and by acting at different levels ranging from hard-
ware to application. The contributions of the thesis attempt to improve our
understanding of how applications use resources and to improve the way they
use them. These contributions are four: 1) characterization of application use
of shared resources such as LLC space and memory bandwidth, 2) shared re-
source control mechanisms in the memory hierarchy, 3) resource-efficient hard-
ware data prefetcher, and 4) study of the use of shared resources by different
synchronization mechanisms.

This section motivates the research lines, details the contributions, and

16



includes the results of the work.

1.2.1 Characterization of Application Use of Shared
Resources

The experimental part of most research work in computer architecture consists
of feeding a simulator or a real machine with programs representative of cur-
rent or future software. There are a multitude of collections of such programs,
each associated with a particular field of application [46, 44, 42, 112]. Under-
standing the behavior of each of these programs facilitates all experimentation
tasks. It allows for example to select suitable samples to demonstrate the feasi-
bility of an idea, or to analyze the results obtained when applying a technique
taking into account the characteristics of the executed software. Consequently,
application characterization is one of the first tasks of many research works and
even the target of specific publications recurrently in the computer architecture
community [83, 92, 15, ?].

At the beginning of the work of this thesis, several events occur that make
the specific characterization work even more relevant: i) SPEC releases a new
suite for general purpose computing, CPU2017, after eleven years since the pre-
vious version, CPU2006, ii) some vendors such as Intel significantly improve the
tools for both information retrieval (hardware counters) and resource control
(cache partitioning, prefetcher disconnection), and iii) Intel adopts for the first
time the content management model of its LLC mostly in exclusion. Thus, the
first objective raised in the thesis is the characterization of the new set of SPEC
CPU2017 programs in the new Intel Xeon Skylake-SP memory hierarchy, and
its comparison with the previous version, SPEC CPU2006. This characteriza-
tion will provide information to define new concrete objectives in the rest of
the work, and will facilitate all the experimentation work.

This characterization work is presented in Chapter . We evaluate the
memory hierarchy behavior of the CPU2006 and CPU2017 SPEC single-thread
benchmarks using different shared LLC sizes and prefetch configurations, on
an Intel Xeon Skylake-SP. The evaluation is performed on a real machine,
running the complete applications with all their reference inputs and using
hardware counters to take the measures. This work has been published in Plos
One (2019) [?]. All code and data are available at https://github.com/agusnt/
Xeon-SP_Memory_Characterization_SPEC-CPU-2K6-2K17/.

1.2.2 Shared Resource Control Mechanisms in the Memory
Hierarchy

Advances in the scale of integration allow processors to have more and more
cores. This trend means that shared resources, especially space in the LLC
and memory bandwidth, are under increasing pressure. On the other hand, the
execution of workloads composed of independent applications generates uneven
resource demands. For example, some programs may require a lot of cache
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space while others may consume a lot of memory bandwidth. Shared resource
management is key to efficiently running such workloads on today’s processors.
In this regard, many proposals have been published with hardware mechanisms
to share SLLC space between cores or the applications they run. Most of
these proposals require hardware modifications and have been evaluated with
a reduced number of cores.

Recently, several commercial processors have incorporated technologies that
allow 1) monitoring the use of cache space and memory bandwidth by different
cores, and 2) imposing limits on the consumption of these shared resources. For
example, starting with the Skylake family, Intel processors have Intel Cache
Allocation Technology (CAT) [74], AMD EPYC processors have AMD64 Tech-
nology Platform Quality of Service Extensions [65]. These functionalities allow
the design of software mechanisms that implement shared resource manage-
ment policies and require no hardware or operating system modifications for
their operation.

Since hardware support for memory traffic management is more recent,
works for controlling this resource are scarcer. Specifically, we are aware of
only three proposals that address memory bandwidth sharing [121, 160, 122].
Moreover, almost all previous works focus on Intel’s memory hierarchies, where
the LLC is shared among all cores, so there are no proposals specifically de-
signed for a clustered LLC organization, such as the one used by AMD in its
current EPYC processors.

The goal of this thesis in this line of research is to design a mechanism that
improves system performance and fairness by dynamically sharing LLC cache
space and main memory bandwidth among running applications. To this end,
Chapter presents a detailed characterization of the shared cache and memory
bandwidth usage of an AMD Rome processor running multiprogrammed work-
loads. Then, it proposes Balancer, a set of mechanisms that control the use of
these shared resources to improve system performance and fairness. Balancer
requires no hardware or operating system modifications.

Balancer has been designed and evaluated in a clustered LLC such as that
of the AMD Rome. Hence, it can make different decisions in each cluster in
a decentralized manner, in response to their particular cache utilization and
bandwidth consumption.

This work has been accepted for publication in the Journal of Supercom-
puting (2023). All code and data are available at https://github.com/agusnt/
BALANCER.

1.2.3 Resource-efficient Hardware Data Prefetcher
Prefetching has proven to be a powerful mechanism for reducing the memory
access penalty. Hardware prefetchers learn memory access patterns and use
those patterns to load data into the cache hierarchy before the processor re-
quests it. In this way, future processor accesses to memory will fetch the data
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from nearby caches, with low latency. Prefetching techniques can be employed
in the first-level private data cache (L1D), second-level cache (L2) or last-level
shared cache (SLLC). Recently proposed prefetchers target both the L2 cache
(Bingo [9]) and the L1 data cache (IPCP [114]). A common problem with all
of them is their low accuracy. Often, the prefetchers make mistakes and load
blocks that will never be used, causing pollution in the caches and extra con-
sumption of memory bandwidth. This problem becomes more relevant as the
number of cores increases as it causes an inefficient use of increasingly satu-
rated shared resources. Ultimately, this inappropriate use results in a decrease
in overall system performance and an increase in energy consumption.

Several mechanisms have been proposed to reduce the polution of prefetch-
ers. For example, the Perceptron-based prefetch filter (PPF) is a filter that
decides whether prefetched blocks are loaded in L2 or not [13]. Similar to PPF,
there are proposals that control the aggressiveness of prefetchers by controlling
their prefetch degree and prefetch distance, or decide whether to prefetch in
L2 or in LLC [6, 41, 62, 117, 115, 116, ?]. These techniques achieve partially
improved accuracy but entail additional storage.

The goal of this thesis with respect to prefetching is to propose a prefetch
mechanism with very high accuracy, so that it minimizes the wasteful con-
sumption of shared multicore processor resources such as shared cache space
and bandwidth with main memory. Berti is proposed in Chapter , a new
first-level data prefetcher that orchestrates prefetch requests to the memory
hierarchy. Berti learns the best deltas per IP by a mechanism that calculates
the coverage of each delta and selects those deltas that provide the highest
coverage. Berti pushes further the limits of hardware prefetchers with minimal
space storage requirements and high accuracy. This work has been published
in the IEEE/ACM International Symposium on Microarchitecture (2022) [?].
All code and data are available at the artifact which received three badges
at MICRO 2022: Artifacts Available, Artifacts EvaluatedFunctional, Results
Reproduced) https://github.com/agusnt/Berti-Artifact.

1.2.4 Study of the Use of Shared Resources by Different
Synchronization Mechanisms

Previous contributions in this thesis are focused on improving the performance
of systems running multiprogrammed workloads, i.e, a set of independent pro-
grams running simultaneously in the same computer. However, it is also im-
portant to improve the execution of parallel workloads, i.e., those composed of
simultaneously running threads that collaborate to solve the same problem.

The stagnation in single-threaded performance improvement and its result-
ing shift toward multithreaded execution has changed how applications are
developed. An application that wishes to take full advantage of the potential
of a multicore processor should use as many threads as possible. This implies
the use of several execution threads per core, or simultaneous multithreading

19

https://github.com/agusnt/Berti-Artifact


(SMT ), which increases the pressure on the private and shared resource of the
memory hierarchy.

The use of a larger number of threads implies more concurrency, making
synchronization mechanisms more important. The use of classical mechanisms
such as fine-grain locks or lock-free mechanisms are complex, require in-depth
knowledge of the program, and are error-prone. Transactional memory was
developed to make this synchronization easier and improve its performance. In
transactional memory, data conflicts are detected and handled by the memory
hierarchy, making content management within the memory hierarchy even more
important. With the appearance of the first hardware transactional memory
implementations on commercial processors [93, 152, 79], numerous mechanisms
have appeared that evaluate and compare their performance with classical syn-
chronization mechanisms [18, 120, 135, 165].

However, to the best of our knowledge, there is no study that evaluates
the scalability of all synchronization mechanisms together on many-core sys-
tems and that takes into account the impact of simultaneous multithreading
(SMT). Furthermore, while SMT is recognized as a limiting factor for HTM
performance [154], its impact is not clearly quantified and no solution has been
proposed to mitigate it.

Chapter focuses on evaluating the performance and operation latency
of the most widely-used synchronization mechanisms: hardware transactional
memory (HTM), software transactional memory (SMT), locks and lock-free.
This chapter also study the impact of simultaneous multithreading (SMT)
technology on HTM performance and propose a mechanism to reduce SMT-
inducted aborts. This work has been published in the IEEE International Sym-
posium on Computer Architecture and High Performance Computing, SBAC-
PAD (2021) [?]. All code and data are available at https://github.com/agusnt/
Synchronization-Strategies-on-Many-Core-SMT-Systems.

1.3 Dissertation Overview

This dissertation is organized as follows. Chapter characterizes SPEC CPU2006
and CPU2017 and its interaction with the Intel Xeon Skylake-SP memory hi-
erarchy. In Chapter presents Balancer a software mechanism that improve
the system’s performance and fairness. Then Chapter presents Berti our
proposal for a new L1D prefetcher.Chapter shows an evaluation of different
thread synchronization mechanisms in terms of performance an operation la-
tency. Finally in Chapter concludes the dissertation summarizing the work
done and discusses about the new research lines.

A variety of methodologies and tools have been used during the comple-
tion of this doctoral thesis. In Chapter , a characterization work has been
performed on a real system equipped with an Intel Skylake processor using
hardware tools for resource monitoring and control (counters, model-specific
registers, Intel CAT). Chapter presents an experimentation and evaluation
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work on a real system, this time on a computer with an AMD EPYC pro-
cessor using the hardware support of the platform (hardware counters, AMD
QoSE). In Chapter the proposal has been evaluated on a processor modeled
with the ChampSim simulator. Chapter includes experiments with real hard-
ware (hardware transactional memory on Intel Cascade Lake) and simulation
(Gem5). Therefore, the experimental environment and methodology are pre-
sented in each chapter since there is no common framework.

1.4 Thesis project framework

This thesis has been developed at the Grupo de Arquitectura de Computadores
de la Universidad de Zaragoza (gaZ), in the Departamento de Informática e
Ingeniería de Sistemas (DIIS) and Instituto de Investigación en Ingeniería de
Aragón (I3A).

The thesis and its research work has been funded by:

• Grant (BES-2017-079790) para la Formación de Personal Investigador
(FPI) from the Spanish Ministry of Economy and Competitive.

• Project PID2019-105660RB-C21: Jerarquía de memoria, gestión de tar-
eas y optimización de aplicaciones, from the Agencia Estatal de Inves-
tigación and TIN2016-76635-C2-1-R: Arquitectura y programación de
computadores escalables de alto rendimiento y bajo consumo, from the
Spanish Ministry of Economy and Competitive. Both projects are in
collaboration with the University of Cantabria which led to a fruitful
collaboration in this thesis.

• The Aragón Government has partially funded the work through the Re-
search group recognition: T58_20R research group from Aragón Gov-
ernment and European Social Fund, and (3) 2014-2020 "Construyendo
Europa desde Aragón" from European Regional Development Fund.

I have developed two research internships. One of them at the Huawei
research lab in Zürich (Switzerland) under the supervision of Maria Carpen-
Amarie, funded by Huawei, and a second one at Grupo de Arquitectura de
Computadores y Sistemas Paralelos (CAPS) of the Universidad de Murcia un-
der the supervision of Alberto Ros Bardisa, thanks to a competitive grant for
short stays associated to the FPI.
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Chapter 2

Memory Hierarchy Characterization of
SPEC CPU2006 and CPU2017

SPEC CPU is one of the most common benchmark suites used in computer
architecture research. In this chapter we present a detailed evaluation of the
memory hierarchy performance for the CPU2006 and single-threaded CPU2017
benchmarks. The experiments were executed on an Intel Xeon Skylake-SP,
which is the first Intel processor to implement a mostly non-inclusive SLLC.
First, we present a classification of the benchmarks according to their memory
pressure and analyze the performance impact of different SLLC sizes. Then,
we test all the hardware prefetchers showing that they improve performance in
most of the benchmarks. After a comprehensive experimentation, we can high-
light the following conclusions: i) almost half of SPEC CPU benchmarks have
very low miss ratios in the second and third level caches, even with small SLLC
sizes and without hardware prefetching, ii) overall, the SPEC CPU2017 bench-
marks demand even less memory hierarchy resources than the SPEC CPU2006
ones, iii) hardware prefetching is very effective in reducing SLLC misses for
most benchmarks, even with the smallest SLLC size, iv) the SLLC utilization
is uneven among applications, and v) from the memory hierarchy standpoint
the methodologies commonly used to select benchmarks or simulation points do
not guarantee representative workloads.

2.1 Introduction

The majority of experimental research in computer architecture is based on
feeding a simulator or a real machine with benchmarks that are representative
of current or future software in a certain application field. The benchmark
characterization is one of the first tasks to be carried out by the computer
architecture community. Among its goals, we can highlight the classification
of applications according to certain characteristics, the selection of samples for
simulation, or the detection of non-optimal behaviors to detect flaws in the
designs and improve it. These benchmarks suites can be developed by diverse
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corporations (e.g. SPEC [112]), research groups (e.g. CloudSuite [46]), commu-
nities (e.g. TACLeBench [44]) and even certain companies (e.g. EEMBC [42])
propose benchmark suites composed of a number of applications focused on
specific fields such as general purpose computing, cloud computing, real time
or embedded processing, respectively. According to SPEC Corporation, SPEC
CPU2017 contains a collection of next-generation and industry-standardized
benchmarks aimed at stressing the processor, memory subsystem and com-
piler [111].

Implementing a new hardware concept in a real system is unfeasible in most
cases, due to its high cost or the impossibility of its subsequent modification.
An alternative is to use a simulator which models at the desired level of detail
(e.g. cycle-level) the behavior of a complex system such as a multicore processor
with a multi-level memory hierarchy and an interconnection network. However,
the complete execution of a benchmark in these simulators may require months
or even years. Thus, sampling techniques are used to identify small sections of
a benchmark that approximate the behavior of the full application [155, 123].

Benchmarks with certain characteristics are selected to evaluate the perfor-
mance of new proposals. For example, research on shared cache replacement
algorithms frequently selects a mix of benchmarks with different degrees of
pressure on the memory hierarchy: some of them show high cache utilization
while others do the opposite [82, 1].

In this chapter, we characterize the interaction of the SPEC CPU2006 and
CPU2017 suites with the Intel Xeon Skylake-SP memory hierarchy. The anal-
ysis of CPU2017 is of special interest since it is a recent suite [118]. Regarding
the processors, it also brings relevance to this study because the Intel Xeon
Skylake-SP family has been released in July 2017 and incorporates significant
changes in the memory hierarchy: the private L2 cache size has quadrupled
and the SLLC, unlike all previous Intel processors, has been designed following
a mostly non-inclusive policy. AMD chose similar policies since its inception,
namely strict exclusion between the private cache levels, and mostly-exclusion
between private cache levels and the SLLC. So we think non-inclusive content
policies seem to be a consolidating trend worth focusing.

The remaining of this chapter is organized as follow. Section describes the
state of the art. Section explains the hardware framework used in this chapter.
Section presents the detailed characterization. And section summarizes the
conclusion remarks.

2.2 State of the Art

The characterization of a new benchmark suite is a recurrent research activity
in the computer architecture community. In this section, we present the state
of the art in two areas: benchmark characterization and selection of simulation
intervals.
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2.2.1 Benchmark Characterization Methodologies

Benchmark characterization may be carried out through simulation or by us-
ing hardware counters. On the one hand, simulation provides a flexible exper-
imentation framework that allows the evaluation of different memory hierar-
chy configurations, such as cache sizes or replacement policies. Unfortunately,
hardware components in recent processors, such as prefetchers, can not be ac-
curately modelled since their implementation details are not fully disclosed.
Moreover, a complete benchmark simulation may require weeks or months, so
studies based on simulation typically characterize only a small section of the
selected benchmarks.

On the other hand, real execution is able to capture the behavior of state-
of-the-art hardware components. Performance monitoring support included
in commercial systems collects execution events that can be used to obtain
metrics that characterize benchmark behavior during their real execution with
a very low overhead. However, using real execution makes it difficult to perform
design space exploration, since hardware configuration capabilities are limited.

There are many papers devoted to the SPEC CPU2006 characterization.
For instance, Jaleel et al. characterize the behavior of the suite with different
cache sizes on a simulator [83], Korn et al. study its performance according to
page size [92].

Regarding SPEC CPU2017, we have only found two characterization stud-
ies: Limaye et al. [95] and Panda et al. [118]. They analyze the behavior of
benchmarks on an Intel processor from the Haswell family. Hardware coun-
ters are used to collect the amount and type of executed instructions, memory
footprint, and cache misses at all levels of the memory hierarchy. Both papers
end up presenting a methodology to classify benchmarks. Regarding the char-
acterization of the use of the memory hierarchy, they show some limitations.
Namely, characterization is performed on old systems, local miss ratios are
used as performance metric instead of MPKI, and the sensitivity to cache size
or hardware prefetching is not studied.

With respect to the content management in shared LLCs, many processors
use an inclusive policy (LLC content is a superset of all private caches), however,
using instead a mostly non-inclusive policy (LLC acts as a victim cache which
may, or may not, evict cache lines on hits) seems to gain momentum through
more elaborated coherence protocols. AMD calls the same policy "mostly-
exclusive", and started using it in its first processor with shared LLC, the 2007
4-core Opteron Barcelona [?]. All the following AMD processors, such as the
6-core Istanbul (2009), the 12-core Magny Cours (2010), the 16-core Bulldozer
(2011) or, recently the 4-core Zen Core Complex (2016) evolved in cache sizes,
coherency protocols and core features, but all have maintained the same mostly-
exclusive contents policy. So we think characterizing benchmarks through the
Intel Skylake-SP fits well with this trend.

In this work, hardware counters have been used to obtain metrics about the
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execution of the benchmarks on a Skylake-SP processor. Intel’s Model Specific
Registers (MSR) allow us to independently enable or disable the different hard-
ware prefetchers. The Intel Cache Allocation Technology (CAT) allows us to
vary the LLC space occupied by an application modifying its number of allo-
cated ways. In this way, we characterize the behavior of the entire benchmark
with different hardware configurations of the memory hierarchy.

2.2.2 Selection of Benchmarks and Simulation Intervals
SPEC CPU2006 and CPU2017 are composed of several applications, some
of them with different inputs, resulting in multiple application-input combi-
nations. We define benchmark as an application-input pair. For example,
there are 29 applications and 55 benchmarks (application-input pairs) in the
CPU2006 suite. The execution time of a complete benchmark on a simulator
may last weeks or even months, which makes the simulation of a suite unfeasible.
To reduce this time, a two-level sampling can be carried out. First, a subset
of benchmarks is selected. Second, one or more fragments of the complete exe-
cution representing the overall behavior are chosen as simulation intervals. In
the literature, several successful sampling techniques have been proposed, such
as Hierarchical Clustering [95] for benchmark selection, and SimFlex [155] or
SimPoint [123] for intervals selection.

Hierarchical Clustering [95]. The Hierarchical Clustering methodology
is applied in three steps: i) execution of all benchmarks to obtain 20 metrics
through hardware counters, ii) analysis of the main components to reduce the
number of metrics to 4, and iii) clustering of similar benchmarks.

In the first step, the authors select microarchitecture-independent metrics
which are related to the type of instructions executed and their proportions.
Therefore, this methodology does not consider the behavior of the memory
hierarchy as a parameter to guide sampling.

SimFlex [155]. The SimFlex methodology uses statistical sampling theory
to select simulation intervals. It identifies numerous small-sized intervals that
are distributed throughout all the application execution, ensuring that they are
representative of the benchmark.

However, SimFlex has an important drawback when it is applied to cache
memory hierarchy research: the simulation intervals do not have enough ex-
tension to provide accurate data without a previous cache warm-up. Warming
memory structures has an unacceptable overhead when simulating large caches
or a large number of intervals.

SimPoint [123]. SimPoint is one of the most used methodologies to select
simulation intervals. First, it splits up the execution of a benchmark into in-
tervals of equal number of instructions. For each interval, Simpoint calculates
a signature that contains the number of executions of each basic block. Then,
SimPoint executes the k-Means algorithm to group different intervals into clus-
ters called phases. The intervals of a given phase execute similar code and
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therefore are expected to exhibit a similar behavior in the system (misses in
the memory hierarchy, CPI . . . ). Finally, the centroid is selected as the most
representative interval of each phase.

Although SimPoint offers several simulation intervals for each benchmark,
most research related to memory hierarchy design uses only the most represen-
tative interval.

One of the contributions of this chapter is to assess the representativeness
of the intervals selected by SimPoint regarding the interaction with the mem-
ory hierarchy. Towards that end we analyze the temporal evolution of different
metrics, namely CPI, MPKI2 and MPKI3, across the whole application exe-
cution. By plotting such metrics as a function of time and superposing the
first three intervals selected by SimPoint, we will see how well they match the
memory hierarchy dynamics.

2.3 Experimental Framework

2.3.1 Intel SKL-SP Memory Hierarchy

Intel launched in 2017 its new family of processors targeting high-performance
servers, the Intel Xeon Skylake-SP (Skylake Scalable Performance, SKL-SP for
short). Specifically we use an Intel Xeon Gold 5120. The processor integrates
14 cores. Each core contains a split first level cache (32 KiB for instructions
and 32 KiB for data) with two data hardware prefetchers, a 1 MiB unified
second level cache with 16 ways, with another two hardware prefetchers. All
cores share a 19.25 MiB mostly non-inclusive SLLC with 11 ways that works as
a victim cache. On a demand miss, a demand memory or L2 prefetch request
fills only the private levels, but not the SLLC. When a block is evicted from
L2, a reuse filter decides whether the block is filled into SLLC or not. In all of
its previous cache organizations, Intel used an inclusion policy, which enforces
that all the private caches (L1 and L2) content of all the cores are also stored
in the SLLC. Inclusion leads to designs with relatively small private caches and
a large SLLC. By contrast, in non-inclusive hierarchies, the SLLC content is
largely independent of the private caches content. Changing the policy from
inclusive to mostly non-inclusive design has allowed Intel to redistribute the
cache chip area, by enlarging private caches (from 256 KiB to 1 MiB) and
diminishing the SLLC (from 2.5 MiB to 1.375 MiB per core). However, since
now SLLC stores less replicated content, reducing its size does not necessarily
imply lowering its effective capacity. According to D. Kanter, “the new cache
design reduces the processor reducing L2 miss rate by about 40% on average for
the SPECint_rate2006 suite, whereas the L3 miss rate barely increases” [27].

SKL-SP processors have four hardware prefetchers associated with the first
and second cache levels which can be selectively enabled or disabled by the
user through the 0x1A4 Model Specific Register (MSR) [73].
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2.3.2 Runtime Environment

In order to ensure the reproducibility of the experiments each execution thread
is pinned to the first core and TurboBoost has been disabled.

The system runs a CentOS 7 Linux with the 3.10 kernel. The system
specifications are shown in Table .

Table 2.1: SKL-SP system specifications.

Processor Intel Xeon Gold 5120 (Skylake-SP)
Cores × Threads 14 × 2
L1 I-Cache 32 KiB, 64 B line size, 8 ways
L1 D-Cache 32 KiB, 64 B line size, 8 ways
L2C 1 MiB, 64 B line size, 16 ways
LLC 19.25 MiB, 64 B line size, 11 ways
Main Memory 96 GiB DDR4

Nominal peak BW: 115.2 GB/s
TurboBoost Disabled
Hyperthreading Disabled (1 thread/core)
OS CentOS 7, kernel: 3.10

2.3.3 Control Tools

We use Intel Cache Allocation Technology (Intel-CAT for short) [74], a tool
included in the Intel Resource Director, to limit the amount of SLLC, from
1.375 MiB (1 way) to 19.25 MiB (11 ways) in steps of 1.375 MiB (1 way)
available for each thread. The available space is configured by writing a binary
mask in a per-thread MSR register. Each bit of the mask represents a way, a
fraction of the space, of SLLC that can be used. Therefore, changing the SLLC
size implies a change in SLLC associativity for that thread. Several threads
can use the same fraction, which implies a competitive sharing of the same
subset of SLLC.

2.3.4 Monitoring and Instrumentation Tools

We use hardware counters to analyze the behavior and interaction of the ap-
plications executed on a real system. Hardware counters allow us to record
events that occur during the execution of an application. For example, we
can measure retired instructions, elapsed cycles, or misses experienced in the
SLLC. The use of hardware counters allows us to analyze applications on a
real systems. In Figure we outline the relevant hardware components and raw
measures we use in our methodology.
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Figure 2.1: Outline of the methodology.

All measures of hardware events have been taken from hardware counters
driven by perf, a GNU/Linux profiler tool [29]. Table shows the correspon-
dence between monitored hardware counters and the symbolic events of perf.

Table 2.2: Perf symbolic event types used.

Symbolic event types
Cycles cycles
Retired Instructions instructions
L1D Demand Misses r08d1
L2 Demand Load Misses LLC-load
L2 Demand Store Misses LLC-store
LLC Demand Load Misses LLC-load-misses
LLC Demand Store Misses LLC-store-misses
Memory Read Access uncore_imc_{0-5}/event=0x4,umask=0xC/
Memory Write Access uncore_imc_{0-5}/event=0x4,umask=0x3/

To measure the evolution of an event with respect to the number of occur-
rences of another event over time (e.g.: a graph with Y-axis the number of
failures in SLLC and X-axis the number of instructions) we have developed
perf++ [107]. Perf++ is a new tool that allows us to measure the occurrences
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of an event every x occurrences of another event.
Moreover, we also resort to the instrumentation tool PIN to analyze instruc-

tion operation codes [98], and feed them into the simpoint package to obtain
representative simulation intervals according to that proposal [123].

2.3.5 Workloads

In this chapter we use the SPEC CPU2006 [110] (CPU2006 for short) and
single-thread CPU2017 [111] (CPU2017 for short) benchmark suites. SPEC
CPU benchmark suites are one of the most widely used suites in the computer
architecture research. SPEC CPU2017 benchmarks was released in 2017 in or-
der to replace the previous version (CPU2006) According to SPEC Corporation:
“The SPEC CPU 2017 benchmark package contains SPEC’s next-generation,
industry-standardized, CPU intensive suites for measuring and comparing com-
pute intensive performance, stressing a system’s processor, memory subsystem
and compiler” [111].

Both suites have been compiled following the official documentation pro-
vided by SPEC [145, 146]. CPU2006 has been compiled with gcc 4.9.2 and
the options -O3 -fno-strict-aliasing. CPU2017 has been compiled with
gcc 6.3.1 and the base flags. -DBIG_MEMORY has been used for deepsjeng
and -m64 when required.

We do not consider the multi-threaded applications, CPU2017 speed ver-
sions of xz and the floating point (fp), because their characterization requires a
different methodology. Therefore, all CPU2006 and single-threaded CPU2017
applications have been executed with all the “reference” inputs (one or more
input data sets representative of real behavior).

Table shows the 106 benchmarks tested across the two suites, from a total of
43 applications, 17 integer and 26 floating point. Some applications appear only
in one suite, as astar (SPEC CPU2006 int) or blender (SPEC CPU2017 fp),
while some others have evolved and are in both suites, as gcc. Moreover, some
CPU2017 applications have both speed and rate versions. For instance, the
integer application mcf has one CPU2006 version and two CPU2017 versions,
one to produce the SPECrate metric (_r), and the other one the SPECspeed
metric (_s). For each benchmark, the table specifies an input identifier (#),
the input name (Input) and the measured instruction count (Inst.).

As a general rule, we can see a significant increase of individual instruction
counts in the CPU2017 benchmarks with respect to the CPU2006 ones, even
though if we take into account the aggregate figures the difference flattens.

2.3.6 Metrics

The most relevant metric for measuring the performance of an application run-
ning on a system is execution time. Any other metric helps to understand the
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Table 2.3: Benchmarks tested, divided between integer (int column) and float-
ing point (fp column). Filled cells in columns 2006" and 2017" mean the bench-
mark appears in the corresponding suite. The columns labeled _r and _s refer
to the application versions producing SPECrate and SPECspeed metrics, re-
spectively. Columns Inst." and "#" show instruction count (x1012) and input
identifier, respectively.

2006 int 2017 2006 fp 2017
Inst. Input # Name # Input Inst. Inst. Input # Name # Input Inst.

_r _s _r
0.36 BigLakes 1 astar blender 1 sh3 1.73
0.75 rivers 2 2.56 None 1

bwaves

1 bwaves_1 1.30
0.41 source 1

bzip2

2 bwaves_2 1.57
0.17 chicken.jpg 2 3 bwaves_3 1.40
0.29 liberty.jpg 3 4 bwaves_4 1.83
0.53 program 4 cactuBSSN 1 spec_ref 1.11
0.58 text.html 5 2.73 benchADM 1 cactusADM
0.33 combined 6 4.25 hypervis 1 calculix

deepsjeng 1 ref 1.87 2.18 cam4 1 None 2.69
exchange2 1 6 2.91 2.91 1.65 23 1 dealII

0.07 166 1

gcc

1 pp.c -O3 0.20 fotonik3d 1 None 1.95
0.14 200.00 2 2 pp.c -O2 0.23 0.11 cytosine 1

gamess0.12 c-typeck 3 3 small.c -O3 0.23 0.09 h2ocu2+ 2
0.09 cp-decl 4 4 ref32.c -O5 0.19 0.37 triazolium 3
0.10 expr 5 5 ref32.c -O3 0.26 1.72 None 1 gemsFDTD
0.14 expr2 6 1 -fipa-pta 1.21 1.95 gromacs 1 gromacs
0.17 g23 7 2 -fin=1000 0.52 imagick 1 refrate 4.59
0.15 s04 8 3 -fin=24000 0.50 1.24 reference 1 lbm 1 reference 1.28
0.05 scilab 9 0.18 leslie3d 1 leslie3d
0.02 13x13 1

gobmk

0.10 su3imp 1 milc
0.06 nngs 2 nab 1 1am0 2.09
0.03 score2 3 2.28 namd 1 namd 1 apoa1 1.78
0.02 trevorc 4 parest 1 ref 3.39
0.03 trevord 5 0.94 SPEC-ref 1 povray 1 SPEC-ref 3.31
0.50 baseline 1

h264ref
roms 1 ocean2 2.71

0.32 main 2 0.34 pds-50 1 soplex2.89 sss_main 3 0.35 ref 2
0.86 nph3 1 hmmer 3.39 ctlfile 1 sphinx3
1.82 retro 2 3.44 None 1 tonto

leela 1 ref 2.11 2.11 2.93 None 1 wrf 1 None 4.20
1.65 1397 1 libquantum 1.92 None 1 zeusmp
0.32 inp 1 mcf 1 inp 0.92 1.65
0.54 omnetpp 1 omnetpp 1 General 1.09 1.06
1.05 checkspam 1

perlbench
1 checkspam 1.22 1.22

0.36 diffmail 2 2 diffmail 0.70 0.70
0.66 splitmail 3 3 splitmail 0.67 0.67
2.26 ref 1 sjeng

x264
1 -pass 1 0.52 0.52
2 -pass 2 1.96 1.96
3 -seek 500 1.99 1.99

0.99 t5 1 xalancbmk 1 t5 1.27 1.27

xz
1 cld 0.40
2 cpu2006 1.04
3 combined 0.57

Total Total Total Total Total
18.84 20.34 20.46 32.51 36.91

AVG AVG AVG AVG AVG
0.54 1.02 1.36 1.63 2.31

execution time and the influence of some subsystem on it. Therefore, a perfor-
mance metric is only useful if it gives insight into execution time variations.

When measuring performance of an application running on a system, the
ultimate metric is execution time. Any other metric is intended to help un-
derstand why an execution time is obtained or to show the influence of some
subsystem on it. Therefore, a performance metric is only useful if it gives
insight into execution time variations. Since we are interested in character-
izing the memory hierarchy as a performance enabler or limiter, we measure
miss ratios and memory bandwidth consumption in addition to execution time.
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Specifically, we consider number of cycles per instruction (CPI), number of
demand misses per thousand instructions in the different cache levels (demand
misses per kilo instruction, DMPKI), and number of bytes read and written
from/to main memory per thousand instructions (bytes per kilo instruction,
BPKI), as performance metrics. BPKI accounts for both blocks fetched on
demand and blocks fetched by prefetch, and it can be used to show the extra
traffic induced by the hardware prefetchers, if we compare the same application
running with and without hardware prefetching. Table summarizes the main
metrics used in this chapter.

Table 2.4: Used metrics.

Name Acronym Definition
Cycles per Instruction CPI Cycles / Retired Instructions
Demand Misses per
Kilo Instruction DMPKI Demand Misses / (Retired Instructions ÷ 1000)

Access per Kilo Instruction APKI Access / (Retired Instructions ÷ 1000)
Hit per Kilo Instruction HPKI Hit / (Retired Instructions ÷ 1000)
Bytes per Kilo Instruction BPKI Bytes / (Retired Instructions ÷ 1000)

Previous works often use the SLLC local miss ratio (#SLLC misses / #SLLC
accesses) instead of DMPKI [95]. However, the SLLC local miss ratio does not
consider how often the SLLC is accessed and thus, it does not correlate well
with execution time. For instance, a large reduction in the local SLLC miss
ratio may not decrease the execution time if the average number of SLLC ac-
cesses per instruction is very low. Conversely, a slight SLLC local miss ratio
reduction can significantly reduce the execution time if the number of SLLC
accesses per instruction is high. On the other hand, DMPKI is a metric that
correlates much better with execution time. DMPKI is a global metric, since
it is relative to the number of instructions executed. Few misses per instruc-
tion should imply little penalty in time and vice versa, although the effect of
DMPKI can be influenced by instruction parallelism.

Regarding main memory bandwidth consumption, we use BPKI instead of
bytes per time (i.e. bytes per kilo cycle, BPKC) because we want to quantify
prefetching overhead. As we will see in section , prefetching usually results
in a significant decrease in the execution time, which in turns causes a BPKI
increment, even when the number of bytes read from memory is not increased.
BPKI, on the other hand, measures bandwidth consumption per unit of work
performed. The value of BPKI in the system without prefetching can be con-
sidered a minimum. Any increase in this metric when prefetching is enabled
indicates a waste of the memory bandwidth resource due to inaccurate prefetch-
ing.
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2.4 Evaluation

2.4.1 Identification of Memory Intensive Benchmarks
All the CPU2006 benchmarks (55 from 29 applications) and the CPU2017
single-threaded benchmarks (51 from 23 applications) have been executed first
with limited memory resources, disabling all hardware prefetchers and using
the minimum SLLC size available, 1.75 MiB, resulting from enabling only one
of the eleven SLLC ways.

For each benchmark, we have measured its miss ratios in the three data
cache levels (DMPKI1, DMPKI2, DMPKI3). These metrics are shown in Fig-
ures and for SPEC CPU2006 and CPU2017, respectively.
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Figure 2.2: DMPKI1, DMPKI2 and DMPKI3 for all SPEC CPU2006 bench-
marks, sorted by benchmark number.

If we select for each benchmark the input set with the highest DMPKI3,
the average value of DMPKI1 is similar for CPU2006 and CPU2017 (21.9 and
21.8, respectively). However, the average values of DMPKI2 and DMPKI3
are clearly higher in CPU2006 (12.4 and 10.2) than in CPU2017 (8.1 and 6.6).
Therefore, a first conclusion is that SPEC CPU2017 does not put more pressure
on the memory hierarchy, rather the opposite.

In order to select a set of memory-intensive benchmarks we proceed as fol-
lows. Firstly, we identify benchmarks with very low DMPKI2 and DMPKI3
ratios, namely (both below 1.0). Under these circumstances the SKL-SP pri-
vate caches are sufficient to meet the storage needs and we assume that the
SLLC behavior has no interest. Thus, we propose to leave out from further
analysis the 43 benchmarks indicated by white-filled bars in the DMPKI1 axes
(22 out of 55 in CPU2006, and 21 out of 51 in CPU2017). Secondly, for all
the remaining benchmarks we select a single representative for each applica-
tion, the one with the highest DMPKI2-3 miss ratios (black-filled bars in the
figure). Notice that in some cases, the specific application selection extends to
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Figure 2.3: DMPKI1, DMPKI2 and DMPKI3 for all SPEC CPU2017 single-
threaded benchmarks, sorted by benchmark number.

Table 2.5: Selected benchmarks and their performance metrics for minimum
SLLC size and no prefetching.

2006 2017
Benchmark DMPKI1 DMPKI2 DMPKI3 CPI Benchmark DMPKI1 DMPKI2 DMPKI3 CPI
401.bzip2.3 18.4 10.2 4.5 0.88 500.perlbench_r.3 5.8 1.9 1.5 0.71
403.gcc.7 38.1 20.6 13.0 1.99 502.gcc_r.5 47.2 29.3 19.1 2.16
410.bwaves.1 17.5 14.8 14.6 0.96 503.bwaves_r.3 12.5 9.9 9.7 0.75
429.mcf.1 116.3 75.9 59.0 5.08 505.mcf_r.1 65.8 34.2 25.7 1.97
433.milc.1 26.2 25.1 24.4 1.92 507.cactuBSSN_r.1 118.3 8.8 8.4 1.02
434.zeusmp.1 21.5 5.4 5.0 0.78 510.parest_r.1 31.5 18.7 12.5 1.34
436.cactusADM.1 8.0 5.1 4.5 0.91 519.lbm_r.1 50.9 30.7 29.0 1.59
437.leslie3d.1 29.0 18.3 17.0 1.16 520.omnetpp_r.1 32.3 14.1 11.3 1.84
447.dealII.1 18.7 6.6 3.8 0.72 521.wrf_r.1 10.9 5.6 4.7 1.26
450.soplex.2 31.9 29.1 27.6 2.35 523.xalancbmk_r.1 44.2 6.7 4.4 1.11
459.GemsFDTD.1 27.1 18.8 17.5 1.39 526.blender_r.1 7.5 1.9 1.5 0.68
462.libquantum.1 32.8 32.2 30.5 1.22 527.cam4_r.1 18.5 4.4 3.0 0.73
470.lbm.1 52.3 31.6 30.2 1.42 549.fotonik3d_r.1 32.3 27.8 27.0 2.06
471.omnetpp.1 34.6 22.9 18.4 1.52 554.roms_r.1 27.6 14.4 10.9 1.07
473.astar.1 24.8 12.4 9.8 1.08 557.xz_r.1 11.9 5.4 4.3 1.34
481.wrf.1 12.2 6.4 6.0 0.82
482.sphinx3.1 16.3 12.4 6.9 0.68
483.xalancbmk.1 26.3 9.1 6.1 0.64

both CPU2006 and 2017, as is the case, for example, of mcf. Table shows the
resulting 33 benchmarks (18 from CPU2006 and 15 from CPU2017) that form
our selected workload of memory-intensive benchmarks which will be analyzed
in depth in the next subsections.

Characterization highlights:

• SPEC CPU2017 puts less pressure than CPU2006 on the memory
hierarchy.

• Less than 50% of the SPEC CPU2006 and CPU2017 benchmarks
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show DMPKI2 and DMPKI3 ratios above one, even with hardware
prefetching disabled and with the minimum allocatable size of SLLC.

2.4.2 Sensitivity to LLC Size and Hardware Prefetching

In this experiment, we study the sensitivity of the memory intensive bench-
marks to SLLC size and hardware prefetching. The benchmarks selected in
the previous section have been executed with five SLLC sizes. For each SLLC
size, two executions have been performed: all prefetchers enabled and all dis-
abled.

The evaluated SLLC sizes are: 1.75 MiB, 3.5 MiB, 7 MiB, 14 MiB and
19.25 MiB, corresponding to associativities of 1, 2, 4, 8 and 11, respectively.

Figures and show the DMPKI3 of the selected benchmarks for the different
SLLC sizes, with and without hardware prefetching.

Without hardware prefetching, increasing the SLLC size results in an DMPKI3
reduction for almost all benchmarks of both suites, with the exception of
410.bwaves, 434.zeusmp, and 459.GemsFDTD in CPU2006, and 503.bwaves
in CPU2017.

With hardware prefetching, the DMPKI3 improvement achieved by in-
creasing the SLLC size is considerably reduced for six CPU2006 benchmarks
(433.milc, 437.leslie3d, 447.dealII, 450.soplex.2, 462.libquantum and
481.wrf), and for five CPU2017 benchmarks (510.parest, 519.lbm, 521.wrf,
549.fotonik3d and 554.roms).

Both hardware prefetching and increasing SLLC size have the same goal,
improving performance by decreasing cache misses. Therefore, when either
one of these two techniques acts effectively, it removes part of the problem
and reduces the need for the other one. Hardware prefetching is very effective
for many applications. Even with the minimum SLLC size (1.75 MiB in our
system), DMPKI3 is very low for many benchmarks running with prefetching
activated. In all these cases, increasing the SLLC size does not provide any
benefit. For instance, 510.parest_r.1 clearly shows this behavior. Without
prefetching, DMPKI3 decreases from 12.5 to 0.6 by increasing the SLLC size
from 1.75 to 14 MiB. However, when enabling the prefetchers, the DMPKI3
with 1.75 MiB is already 1.0, so any further increase in the SLLC size pro-
vides very little benefit. This reduction of DMPKI3 happens even though the
SKL-SP hardware prefetching only fill the prefetch request into L1D and L2.
DMPKI3 can decrease with hardware prefetch, because a block prefetched into
private levels can eliminate a future demand request, therefore eliminating the
SLLC demand miss.

It also reduces DMPKI3 for small SLLC sizes in other four CPU2006
benchmarks (401.bzip2, 473.astar, 482.sphinx3 and 483.xalancbmk) and

35



Without Prefetching With Prefetching

0

1

2

3

4

5

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

401.bzip2.3

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

403.gcc.7

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

410.bwaves.1

0

10

20

30

40

50

60

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

429.mcf.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25
D
M
P
K
I3

LLC (MiB)

433.milc.1

0
1
2
3
4
5
6
7
8
9
10

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

434.zeusmp.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

436.cactusADM.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

437.leslie3d.1

0

1

2

3

4

5

1.75 3.5 7 14 19.25

M
D
P
K
I3

LLC (MiB)

447.dealII.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

450.soplex.2

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
D
P
K
I3

LLC (MiB)

459.GemsFDTD.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

462.libquantum.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

470.lbm.1

0

5

10

15

20

25

30

1.75 3.5 7 14 19.25

M
D
P
K
I3

LLC (MiB)

471.omnetpp.1

0
1
2
3
4
5
6
7
8
9
10

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

473.astar.1

0
1
2
3
4
5
6
7
8
9
10

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

481.wrf.1

0
1
2
3
4
5
6
7
8
9
10

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

482.sphinx3.1

0
1
2
3
4
5
6
7
8
9
10

1.75 3.5 7 14 19.25

D
M
P
K
I3

LLC (MiB)

483.xalancbmk.1

Figure 2.4: DMPKI3 vs. SLLC size for the selected CPU2006 benchmarks,
with and without prefetching.
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Figure 2.5: DMPKI3 vs. SLLC size for the selected CPU2017 benchmarks,
with and without prefetching.

two CPU2017 ones (510.parest and 523.xalancbmk). For one benchmark,
omnetpp, which is included in both suites, SLLC misses are not reduced for
any SLLC size, and even are slightly increased with the largest SLLC size.

DMPKI3 can decrease with hardware prefetching even if the prefetched
blocks are not filled into SLLC (SKL-SP hardware prefetch requests are filled
into L1 or L2). This is because a block prefetched that is only filled into the
private levels can eliminate a future demand request, therefore eliminating the
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Figure 2.6: Speed-ups enabled either by hardware prefetching, with the mini-
mum cache size (X axis) or maximum SLLC size, without prefetching (Y axis)
over a baseline configuration without prefetching and minimum SLLC size for
the selected CPU2006 and CPU2017 benchmarks. Integer and floating point
benchmarks are represented by gray circles and black squares, respectively.

SLLC demand miss.
To summarize, Figure shows the speedups of benchmarks when prefetching
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is enabled with the minimum cache size (X axis), and when the SLLC size
is increased up to 19.25 MiB without prefetching (Y axis) with respect to a
baseline system with the minimum SLLC size and without prefetching. Figure
facilitates the classification of benchmarks according to their sensitivity to both
parameters. Integer and floating point benchmarks are plotted with gray circles
and black squares, respectively. For instance, we can see a group of CPU2006
benchmarks that are very sensitive to hardware prefetching but show little
sensitivity to SLLC size increase (462.libquantum, 481.wrf, 459.GemsFDTD,
410.bwaves, 470.lbm, 437.leslie3d and 450.soplex).

Figure also allows us to analyze whether the clustering of applications made
by other proposals is in agreement with the sensitivity of these applications
with respect to the prefetch and the increase in SLLC size. As an example,
Limaye et al. [95] classify 510.parest and 503.bwaves of SPEC CPU2017
as very similar benchmarks. However, in our classification we can see that
510.parest is the CPU2017 benchmark which is most sensitive to the SLLC
size while 503.bwaves is the least sensitive one.

Characterization highlights:

• Hardware prefetching is very effective in reducing DMPKI3 for all
SLLC sizes in 14 and 10 CPU2006 and CPU2017 benchmarks, respec-
tively. This is because prefetching, regardless of the size of the cache,
detects the right patterns and goes ahead of the memory reference
stream correctly. Therefore, in those benchmarks where DMPKI3 is
high for all SLLC sizes, hardware prefetching is effective in reducing
the DMPKI3 also for all SLLC sizes.

• The utilization of SLLC is uneven among the applications. Some
applications take advantage of a larger SLLC size, and others are
cache size-independent.

Correlation between DMPKI3 and CPI

Figures and show the correlation between DMPKI3 (X axis) and CPI (Y
axis) for the different SLLC sizes, with (square marks) and without (x marks)
prefetching. The slope of the CPI/DMPKI3 linear interpolation gives thou-
sand of cycles per SLLC miss: (cycles/instruction)/(SLLC misses/Kinstruc-
tion). For instance, the slope of 401.bzip2.3 in Figure is 0.084 Kcycles/S-
LLC_miss. For the sake of clarity, inside the figures we write instead 84 cy-
cles/SLLC_miss. This number represents the average SLLC miss penalty for
the benchmark.

As can be seen in Figures and , the linear relationship between DMPKI3
and CPI is strong, although the DMPKI3 increase has different impacts on
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Figure 2.7: CPI vs. DMPKI3 for the selected CPU2006 benchmarks, varying
SLLC size and with prefetching (square marks) and without prefetching (x
marks). Slope units are cycles/miss. Slopes are comparable in all graphs
because the ratio between X and Y scales is constant (10:1).

the benchmarks’ CPI. The slope of the interpolation line varies between 30
cycles per miss for several benchmarks in both suites and 187 cycles per miss
for 500.perlbench_r.3. The slope value provides another criteria to classify
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Figure 2.8: CPI vs. DMPKI3 for the selected CPU2017 benchmarks, varying
SLLC size and with prefetching (square marks) and without prefetching (x
marks). Slope units are cycles/miss. Slopes are comparable in all graphs
because the ratio between X and Y scales is constant (10:1).

benchmarks according to the amount of instruction-level and memory level-
parallelisms [64]. For instance, a large slope value means a low instruction-level
and memory-level parallelism (low temporal overlapping among computation
and SLLC misses, and low temporal overlapping of SLLC misses with them-
selves), as seen in 482.sphinx3.1 and 500.perlbench_r.3.

Characterization highlight: Not all applications benefit equally, perfor-
mance wise, from a decrease in DMPKI3.

41



2.4.3 Performance of the Hardware Prefetchers
In this subsection we analyze the impact of the different hardware prefetchers
on the benchmarks’ performance and bandwidth consumption. SKL-SP proces-
sors have four hardware prefetchers associated with the first and second cache
levels [73]: L1 Data cache unit prefetcher (DCUI), L1 Data cache instruction
pointer stride prefetcher (DCUP), L2 Data cache spatial prefetcher (L2A) and
L2 Data cache streamer prefetcher (L2P).

All the benchmarks selected in Section have been executed with differ-
ent configurations: all prefetchers enabled, all prefetchers disabled and each
prefetcher individually enabled. The experiments have been performed with
the maximum SLLC size. Figures and show performance measured in cycles
per instruction (CPI, left axis, bars) and bandwidth consumption measured in
bytes read from main memory per kilo instruction (BPKI, right axis, line).

L2P is by far the best prefetcher. For the 14 CPU2006 benchmarks whose
miss ratios are reduced by turning on hardware prefetching with the maxi-
mum SLLC size, L2P, by itself, achieves more than 70% of the CPI reduction
obtained with all prefetchers enabled. Furthermore, for 10 of these 14 bench-
marks, L2P is responsible for more than 90% of the CPI reduction obtained
with all the prefetchers enabled. Similar results are observed for the CPU2017
suite. For the 10 benchmarks that even with the biggest SLLC size take advan-
tage of hardware prefetching, L2P alone achieves more than 82% of the CPI
reduction obtained when all prefetchers are active. This percentage is greater
than 90% for 7 out of these 10 benchmarks.

The second-best prefetcher is DCUI, followed by DCUP. L2A obtains the
worst results, since it only reduces CPI in more than 5% for 8 and 6 of the
CPU2006 and CPU2017 benchmarks, respectively, with a maximum of 20% for
450.soplex.

Characterization highlights. Hardware prefetching is very accurate,
since it only causes a significant increase of bandwidth consumption in 3 bench-
marks of the CPU2006 suite (403.gcc.7, 433.milc and 471.omnetpp) and in
3 CPU2017 benchmarks (520.omnetpp, 549.fotonik3d and 554.roms). More-
over, in most of these benchmarks prefetching causes a considerable CPI re-
duction despite the increase in bandwidth consumption, with the exception of
omnetpp (both 471.omnetpp and 520.omnetpp).

2.4.4 Temporal Evolution of the Benchmarks
This subsection analyzes the temporal evolution of the benchmarks. Figures
and show DMPKI3 (Y axis) for every million of executed instructions (X
axis). This allows us to know the different phases of a benchmark and can help
select simulation intervals. The execution was performed with the minimum
SLLC size (1.75 MiB) and with all the hardware prefetchers enabled. We did
the same analysis using other SLLC configurations and even using the metrics
of the other cache levels (DMPKI1 and MPKI2), and a total similarity was
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Figure 2.9: Impact of the different hardware prefetchers on performance (CPI,
bars) and bandwidth consumption (BPKI, line) for the selected CPU2006
benchmarks.

observed in all experiments. Thus, the temporal evolution of the applications
seems to be very independent of the SDLLC configuration.

The graphs in Figures and also plot three vertical lines of different patterns
representing the first three simulation intervals obtained by SimPoint with the
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Figure 2.10: Impact of the different hardware prefetchers on performance (CPI,
bars) and bandwidth consumption (BPKI, line) for the selected CPU2017
benchmarks.

parameters MaxK = 3 and interval size = 300 million instructions. The solid,
dotted, and dashed lines correspond to the most, second most, and third most
representative intervals, respectively. The thickness of each vertical line is not
proportional to the number of instructions that it represents. It has been
increased in order to improve visibility.

The simulation intervals selected by SimPoint are not always representative
of all the different phases of a benchmark. As an example, we can observe that
401.bzip2 in Figure clearly has three phases with different DMPKI3 values
and similar duration, approximately 100 million instructions each one. The
DMPKI3 of each phase is very different with values around 2.0, 4.1 and 5.2,
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Figure 2.11: Temporal evolution of DMPKI3 and SimPoint selection for the se-
lected CPU2006 benchmarks, with minimum SLLC size and hardware prefetch-
ing.
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Figure 2.12: Temporal evolution of DMPKI3 and SimPoint selection for the se-
lected CPU2017 benchmarks, with minimum SLLC size and hardware prefetch-
ing.

respectively. However, SimPoint selects its first interval from the first phase,
the next two intervals from the second phase, and does not select any interval
from the third phase. This is because Simpoint, as the methodology used to
select applications, focuses on memory unrelated parameters, giving accurate
outcomes, but only to evaluate design tradeoffs related to those parameters.
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Characterization highlight: SimPoint has limitations to obtain repre-
sentative intervals of a benchmark execution from the memory hierarchy
point of view. The problem gets worse because most research papers based
on this methodology only select the first interval.

Selection of benchmarks and simulation intervals

SPEC CPU2006 and SPEC CPU2017 are composed of several applications,
some of them with different inputs, resulting in multiple application-input com-
binations. We define benchmark as an application-input pair. For example,
there are 29 applications and 55 benchmarks (application-input pairs) in the
CPU2006 suite. On one hand, the execution time of a complete benchmark on
a simulator may last weeks or even months, which makes the simulation of a
suite unfeasible. On the other hand, running all benchmarks on a real machine
may be possible, but uninteresting. Since we may only be interested in test-
ing benchmarks with certain characteristics, e.g. benchmarks that put pressure
into the cache hierarchy or into the branch predictor, it is of no interest to run
all benchmarks on a real machine. To address these issues, a one or two-level
sampling can be carried out. First, a subset of benchmarks with the character-
istics we are interested in is selected. Second, in case of time constrain due to
simulation, one or more fragments of the complete execution representing the
overall behavior are chosen as simulation intervals. In the literature, several
successful sampling techniques have been proposed, such as Hierarchical Clus-
tering [95] for benchmark selection, and SimFlex [155] or SimPoint [123] for
intervals selection.

Hierarchical Clustering [95] The Hierarchical Clustering methodology is
applied in three steps:

1. Execution of all benchmarks to obtain 20 metrics through hardware coun-
ters.

2. Analysis of the main components to reduce the number of metrics to 4.

3. Clustering of similar benchmarks.

In the first step, the authors select microarchitecture-independent metrics
which are related to the type of instructions executed and their proportions.
Therefore, this methodology does not consider the behavior of the memory
hierarchy as a parameter to guide sampling.

SimFlex [155] The SimFlex methodology uses statistical sampling theory
to select simulation intervals. It identifies numerous small-sized intervals that
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are distributed throughout all the application execution, ensuring that they are
representative of the benchmark.

However, SimFlex has an important drawback when it is applied to cache
memory hierarchy research: the simulation intervals do not have enough ex-
tension to provide accurate data without a previous cache warm-up. Warming
memory structures has an unacceptable overhead when simulating large caches
or a large number of intervals.

SimPoint [123] SimPoint is one of the most used methodologies to select
simulation intervals. First, it splits up the execution of a benchmark into in-
tervals of equal number of instructions. For each interval, Simpoint calculates
a signature that contains the number of executions of each basic block. Then,
SimPoint executes the k-Means algorithm to group different intervals into clus-
ters called phases. The intervals of a given phase execute similar code and
therefore are expected to exhibit a similar behavior in the system (misses in
the memory hierarchy, CPI . . . ). Finally, the centroid is selected as the most
representative interval of each phase.

Although SimPoint offers several simulation intervals for each benchmark,
most research related to memory hierarchy design uses only the most represen-
tative interval.

One of the contributions of this chapter is to assess the representativeness of
the intervals selected by SimPoint regarding the interaction with the memory
hierarchy. Towards that end we analyze the temporal evolution of different
metrics, namely CPI, DMPKI2 and DMPKI3, across the whole application
execution. By plotting such metrics as a function of time and superposing the
first three intervals selected by SimPoint, we will see how well they match the
memory hierarchy dynamics.

2.5 Concluding Remarks

In this chapter we have analyzed the performance of the memory hierarchy of
an SKL-SP processor executing the SPEC CPU2006 benchmarks and CPU2017
single-threaded benchmarks. Below, we summarize the main conclusions that
we can draw from this characterization.

A significant number of the benchmarks have very low miss ratios in the
second and third level caches, even with a small SLLC size and without hard-
ware prefetching. The CPU2017 demand for memory hierarchy resources is
lower than the CPU2006 one.

We offer a classification of the benchmarks that demand resources in SLLC
according to their sensitivity to SLLC size and hardware prefetching. Hardware
prefetching is very effective in reducing SLLC misses for most benchmarks,
even with the smallest SLLC size. Increasing the SLLC size is also effective in
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reducing SLLC miss counts for many benchmarks. The effect of SLLC size is
uneven across the different benchmarks.

The best prefetcher implemented in the SKL-SP processor is L2P. For most
benchmarks, it is responsible for 90% of the CPI reduction when using prefetch-
ing. Hardware prefetching is very accurate. In general, the number of bytes
read from main memory hardly increases.

Our analysis shows that the methodologies used in other works to select
benchmarks [95] and simulation points [123] do not guarantee that representa-
tive workloads from the memory hierarchy point of view are obtained.
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Chapter 3

Balancer: Bandwidth Allocation and
Cache Partitioning

In recent years, processors brands like Intel or AMD have included technolo-
gies for SLLC content and/or bandwidth control between the different levels
of memory hierarchy. The inclusion of these technologies has enabled the im-
plementation of software control mechanisms that allow system administrators
and/or users to achieve performance, fairness, power consumption or quality
of service (QoS) objectives. In this chapter, we extend the characterization
done in chapter by analyzing the behavior of the SPEC CPU2006 and SPEC
CPU2017 benchmark suites in an AMD EPYC Rome, and how applications in-
terfere with each other in multiprogrammed workloads. We also characterize the
performance of the benchmarks for different SLLC sizes and contention levels
with memory bandwidth. Then, we present Balancer, a new set of mechanism
that control the SLLC space and the DRAM memory traffic to improve the per-
formance and fairness of a system when executing multiprogrammed workloads.

3.1 Introduction

Processors have an increasing number of cores and execution threads. For
instance, AMD integrates up to 64 cores capable of executing 128 threads
in the Rome and Milan microarchitectures [55, 59], Intel Xeon Skylake-SP
processors can integrate up to 28 cores with 56 threads [27], and the IBM
Power10 processors can integrate up to 120 threads, either with 15 SMT8
or 30 SMT4 core configurations [57]. This trend places greater pressure on
shared resources whose capabilities, especially the SLLC and off-chip memory
bandwidth, should be scaled and shared in the best possible way.

Shared resources, like SLLC or DRAM bandwidth, can be managed by im-
posing limits on their use by one or more threads. In this way, each thread can
only use its allocated quota, reducing the interference with other threads. In re-
cent years, commercial processors such as Intel Xeon [65], Arm ThunderX [153],
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or AMD EPYC [55, 59], have included hardware support for users to control the
allocation of both SLLC space and memory bandwidth to processor threads.

Hardware support for SLLC space management has given rise to many pro-
posals pursuing one or more goals, such as improving system performance [43,
159, 90, 161, 121, 26, 148, 163, 153, 91] or fairness [136, 51], facilitating server
consolidation and/or ensuring quality of service (QoS) [122, 150, 96, 109, 121,
166, 23], isolating tasks to decrease the worst case execution time (WCET) [162],
decreasing the Turnaround Time [124], or seeking Social Welfare [49].

However, since processor support for memory traffic management is more
recent, work on this topic is scarcer. Specifically, we are aware of only three
proposals that control the memory bandwidth allocation to improve perfor-
mance [121] or to support server consolidation [160, 122].

Table 3.1: Summary of papers on resource management with real machine
experimentation. LLC: last-level cache, which can be inclusive (I) or non-
inclusive (NI). BWmem: memory bandwidth, IC: interconnect, MC: memory
controller, Freq: core frequency, BWdisk: disk bandwidth, #Cores: number of
cores, Prefhw: hardware prefetcher, Net: Internet connection. The rows are
arranged in chronological order of the processor on which the mechanisms are
applied.

Processor Resources Goal
Merlin [150] Intel Westmere LLCI, IC, MC Consolidation

Cook et al. [26] Intel Sandy Bridge LLCI Performance
Sun et al. [148] Intel Sandy Bridge LLCI, Prefhw Performance
Pons et al. [124] Intel Sandy Bridge LLCI Turnaround Time

Heracles [96] Intel Haswell LLCI, Freq, Net Consolidation
Ginseng [49] Intel Haswell LLCI Social Welfare

Dirigent [166] Intel Haswell LLCI, Freq Consolidation
Selfa et al. [136] Intel Haswell LLCI Fairness

vCAT [162] Intel Haswell LLCI WCET
DCAPS [159], DCAT [163] Intel Haswell LLCI Performance

Chen et al. [23] Intel Haswell LLCI, Freq, BWdisk, #Cores, Net Consolidation
Kpart [43] Intel Broadwell LLCI Performance
Dicer [109] Intel Broadwell LLCI Consolidation

SWAP [153] Cavium ThunderX LLC Performance
Kim et al. [91], CPPF [161] Intel Skylake-SP LLCNI Performance

Hypart [121] Intel Skylake-SP BWmem Performance
Copart [122] Intel Skylake-SP LLCNI, BWmem Consolidation
EMBA [160] Intel Skylake-SP BWmem Consolidation
LFOC [51] Intel Skylake-SP LLCNI Fairness

As shown in Table , almost all previous works focus on Intel memory hier-
archies, where the SLLC is shared among all cores, but there are no proposals
specifically designed for a clustered SLLC organization, such as the one used
by AMD in its contemporary processors [55, 59]. Focusing on the AMD EPYC,
the SLLC is shared among only a few cores and the main memory access links
form a hierarchical tree that terminates in several DRAM channels (details in
Section ). In this memory hierarchy design, the management of SLLC and
memory bandwidth may become more complex, as the potential occurrence of
local, intermediate, and/or global bottlenecks have to be taken into account.
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Therefore, this chapter focuses on the efficient execution of multiprogrammed
workloads on a real instance of a clustered core-LLC organization. However,
the ideas used in the design could be applied to other processors, even with
shared LLC. We propose very simple mechanisms, with negligible software
overhead, that rely on existing monitoring and control support and require
no hardware or operating system changes. The goal is to improve the system
performance and thread fairness by selecting certain cores, for which the space
they occupy in the LLC and/or the memory bandwidth available to them will
be dynamically limited or increased.

We believe that this type of clustered organization is a promising trend,
since increasing the number of processor cores makes a cache shared by all cores
more inefficient in terms of access latency and interconnect network traffic. In
fact, clustered organizations can be found in recent high-performance proces-
sors such as AMD EPYC [?, ?], IBM Power 10 [?], Fujitsu A64FX [?]. Moreover,
a clustered design it allows the desired growth in the number of transistors to
be achieved economically by integrating a set of separately manufactured dies
(chiplets in AMD terminology [104]) into a passive module. Moreover, the
application behavior in clustered hierarchies, especially when all the cores are
running threads, has also not been studied. Not knowing if this behavior makes
it difficult to choose existing control mechanisms or to propose new ones.

The remaining of this chapter is organized as follows. Section describes the
execution environment, the monitoring and control tools, and the workloads
used in the characterization and the evaluation. Section analyzes the impact of
LLC occupancy and main memory traffic on the execution of multiprogrammed
workloads and Section details the Balancer mechanisms. Section shows and
analyzes the experimental results regarding performance and fairness. Section
describes the related works. The chapter ends with the concluding remarks in
Section

3.2 Experimental Framework and Methodology

This section shows the main features of the selected server, the monitoring and
control tools, and the employed workloads.

3.2.1 AMD Rome Core Organization
AMD launched in 2019 a family of processors aimed at the high-performance
server segment. These models are based on the Zen2 microarchitecture, code-
named Rome [55]. Specifically, we use a server with a 64-core EPYC 7702P
processor. The 7702P processor is made up of up to eight compute core dies
(CCDs) that are connected to each other and to the off-chip memory via an I/O
die (Figure ). Each CCD integrates two core complex (CCX) units that share
an I/O connection. In turn, each CCX has four cores capable of executing
eight threads sharing a 16 MiB victim SLLC with 16 ways, i.e. the LLC gets
populated with the cache blocks evicted from the four L2 caches of a CCX.
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This non-inclusive content management is also implemented in other recent
processors such as Arm Neoverse [?] and Intel Skylake-SP [?]. Although there
are 256 MiB of SLLC in total, note that the four cores of a CCX cannot store
cache blocks outside of their 16 MiB SLLC. Each core contains a 512 KiB
unified second level cache with 8 ways, and a split first level cache (32 KiB
for instructions and 32 KiB for data, both with 8 ways). It also has two L1D
hardware prefetchers (stride and region), and two L2C prefetchers (stream and
next-line) [7]. Unlike in the Intel systems the hardware prefetchers can not be
selectively enabled or disabled.

CCX #16CCX #15

CCX LLC

L1/L2
2SMT C

CCX #2CCX #1

CCX LLC

L1/L2
2SMT C

I/O Die

CCD I/O

16  MiB 16  MiB

CCD I/O

16  MiB 16  MiB

…

CCD #1 CCD #8

DDR
8-channel

Figure 3.1: AMD Rome 7702P clustered memory hierarchy. The multichip
module has nine dies: eight CCD dies and one I/O die. In total there are 64
2-SMT cores (2SMT C) organized in 8 CCDs, each one with 2 CCX. Each CCX
has a 16 MiB LLC shared by four cores [55].

3.2.2 Runtime Environment

In order to ensure the reproducibility of the experiments, unless otherwise
stated, each execution thread is pinned to a core, TurboBoost has been disabled,
and the energy governor is set to performance.

The system runs a CentOS 8.2 GNU/Linux with the 4.18.0 kernel. The
Table details the main features of the system.

3.2.3 Monitoring and Control Tools

The monitoring of the events that allow to characterize the applications and
then guide the Balancer control mechanisms has been done using hardware
counters, see section . Unlike in the previous chapter, we manage them by read-
ing and writing the corresponding model-specific register (MSR) [32]. GNU/Linux
makes the MSR registers accessible through access to the files /dev/cpu/[0-N-1]/msr,
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Table 3.2: Main features of the selected server.

Processor AMD EPYC 7702P
Cores × Threads 64 × 2
L1 I-Cache 32 KiB, 64 B line size, 8 ways
L1 D-Cache 32 KiB, 64 B line size, 8 ways
L2C 8-ways 512 KiB, 8-ways
LLC 16 MiB, 16-ways, non-inclusive (per CCX)
Main Memory 256 GiB DDR4, 8 channels

Nominal peak BW: 204.8 GB/s
TurboBoost Disabled
Hyperthreading Disabled (1 thread/core)
OS CentOS 8.2, kernel 4.18.0
Python 3.6.8

where N is the number of cores. Table shows the formulas used to calculate
each metric from specific hardware counters of core or CCX scope.

Table 3.3: Metrics calculation from hardware counters [32, 31].

Metric Formula Scope
CPI PMCx076 / PMCx0C0 Core
DMPKI PMCx043 / (PMCx0C0 / 1000) Core
MPKI L3PMCx06 / (PMCx0C0 / 1000) Core
HPKI (PMCx043 + PMCx071 + PMCx05A) / (PMCx0C0 / 1000) Core
L3Lat (L3PMCx90 * 16) / L3PMCx9A CCX
L3Occ QOS L3 Occupancy Core
rBW ((L3PMCx06 * 64) / 230) / Time Core

We use AMD64 Technology Platform Quality of Service Extensions(AMD
QoSE) [31] to monitor and enforce limits on the amount of SLLC and read
bandwidth available to each thread. AMD-QoSE is similar to Intel-RDT tech-
nology explained in Section .

There are specific banks of MSRs registers, belonging to AMD64 Technology
Platform Quality of Service Extensions (AMD QoSE) [65] devoted to monitor-
ing and enforcing limits on LLC allocation and memory read bandwidth on a
per-thread basis. This is achieved with a 16-bit per-thread binary mask. Each
bit of the mask enables each thread to use a particular sixteenth fraction of the
LLC (1/16 = 1 MiB). Several threads can mark the same fraction(s), imply-
ing competitive sharing of the same LLC subset1. Similarly, the memory read

1Changing the space allocated in the SLLC does not have to imply a change in associa-
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bandwidth can be limited per thread. This is achieved by writing an unsigned
integer to a specific MSR register that sets a maximum read bandwidth in 1/8
GB/s increments2.

3.2.4 Workloads

The workload involves a subset of the single-threaded, memory-intensive ap-
plications from SPEC CPU2006 and CPU2017. 33 applications have been
selected, as suggested in [?]. As in Section , both suites have been compiled fol-
lowing the official documentation and multi-thread applications have not been
considered [110, 111].

We will first characterize each application running alone on the system and
then in a variety of multiprogrammed situations. For the latter, we generated
one hundred mixes, which we use in the characterization and evaluation sec-
tions, made up of applications from the SPEC subset. In addition, we generated
another ten different mixes that we use in Section to adjust the parameters of
our proposal.

Each mix consists of 64 instances (one for each core) randomly chosen from
the 33 applications, so that any of the 33 applications have the same probability
of occurrence, regardless of their execution time. For each application, we
randomly selected a reference input data set from among those offered by SPEC
(excluding test and train input data sets). Hence, zero, one, or more instances
of the same application, with the same or different inputs, may appear in a
particular mix.

During a mix execution, each application/input pair is pinned to a different
core. A mix ends when its slowest application finishes its first execution (e.g.
thread D in Figure ). The rest of the threads are restarted with the same
input and on the same core as they finish. Only complete executions are taken
into account; this avoids over-representing the first phases of an application.
In addition, in order to characterize each application, its behavior is first aver-
aged within each mix, considering all the cores in which it appears and all the
instances running on them; the same application in another mix with different
partners maybe executed a different number of times in a different number of
cores, and might behave in a different way.

Consequently, to obtain the metrics of an application we proceed as follows:
first for each mix, compute the average of each application (all the completed
instances in all cores); then for each application compute the average again
over the values obtained across the one hundred mixes.

This method of mixing and collecting results has been used, except for the
variation in inputs, in previous works [159, 91, 161].

tivity, unlike in Intel Skylake.
2The bandwidth restriction in Intel is from L2 to LLC/main memory and in AMD it is

from LLC to main memory.
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Figure 3.2: Example of aplications completions in a mix execution.

3.2.5 Metrics

Regardless of whether the applications are run alone or in a multiprogrammed
way, we use seven metrics to characterized them: 1) CPI, cycles per instruction,
2) DMPKI, demand misses in the SLLC per thousand instructions, 3) MPKI,
total misses (demand + prefetch) in the SLLC per thousand instructions, 4)
HPKI, total hits (demand + prefetch) in the SLLC per thousand instructions,
5) L3Lat, memory latency of SLLC read misses, common to the four CCX cores,
6) L3Occ, average SLLC occupancy, and 7) rBW, read traffic with memory, in
GB/s. Table summarizes the main metrics used in this chapter.

Table 3.4: Used metrics.

Name Acronym Definition
Cycles per Instruction CPI Cycles / Retired Instructions
Instruction per cycles IPC Retired Instructions / Cycles
Demand Misses per
Kilo Instruction DMPKI Demand Misses / (Retired Instructions ÷ 1000)

Misses per Kilo Instruction MPKI Misses / (Retired Instructions ÷ 1000)
Hit per Kilo Instruction HPKI Hit / (Retired Instructions ÷ 1000)
Bytes per Kilo Instruction BPKI Bytes / (Retired Instructions ÷ 1000)
Read Bandwidth rBW (LLC Misses · 64) ÷ 230 / Execution Time
LLC Latency L3Lat Average LLC miss latency
LLC Occupancy L3Occ Average LLC occupancy

As a performance metric to compare two shared resources control mecha-
nisms, we use the speedup relative to a baseline system.
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To assess execution fairness, we use the metric M1 defined by Kim et al [90].
Unlike other metrics such as the harmonic CPI, M1 is a pure unfairness metric,
independent of performance rewards. For a mechanism mec controlling the
execution of a mix of applications, M1 is calculated as:

M1(mec) =
∑

i

∑
j

(∣∣∣ IPC_stai

IPC_meci
− IPC_staj

IPC_mecj

∣∣∣)
where IPC_meci is the IPC of application i when running in a system

controlled by the mec mechanism, and IPC_stai is the IPC when running in
the baseline system.

3.3 Characterization

In the first two subsections, we analyze the relationship between the perfor-
mance of each application running alone and the availability of LLC space and
memory read bandwidth. In the third subsection, we study the use that appli-
cations make of both resources when running in a multiprogrammed context,
modeled with the mixes discussed above.

3.3.1 Performance vs. SLLC Capacity
In this subsection, we characterize the behavior of the applications running
alone when varying the SLLC capacity from 0 to 16 MiB with 1 MiB steps,
with hardware prefetching enabled.

Figure shows in the graphs, from left to right, CPI, DMPKI, and MPKI for
each allocated SLLC capacity. Each graph shows three lines corresponding to
410.bwaves (blue), 471.omnetpp (green), and 554.roms (red), representative
of the three main trends observed in all applications.
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Figure 3.3: CPI, DMPKI, and MPKI for increasing LLC allocation limits
(1/16 MiB steps).

Most cache partitioning mechanisms proposed so far use miss and speedup
curves, similar to those of CPI and DMPKI shown in Figure , to decide how
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much SLLC space should be allocated to each application [126, 43, 51]. In these
two graphs we can distinguish two behaviors. On the one hand, 471.omnetpp
clearly takes advantage of its available space in the SLLC: CPI and DMPKI
decrease significantly as the allocated space in the SLLC increases. We can say
that the behavior of 471.omnetpp is sensitive to the available SLLC size.

In contrast, 410.bwaves and 554.roms clearly waste the space they take
in the SLLC. Both metrics remain virtually constant as the SLLC allocation
bounds extend. We would say that the behavior of these two applications is
insensitive to the available SLLC size. Consequently, partitioning mechanisms
based on these metrics would take cache space away from applications such
as 410.bwaves, and 554.roms and give more space to applications such as
471.omnetpp.

But if we analyze the MPKI graph, the miss rate considering both demand
and prefetch requests, while 471.omnetpp and 410.bwaves maintain the same
behavior, 554.roms now shows a large decrease in MPKI as the available SLLC
space increases. Therefore, the MPKI metric would lead us to classify 554.roms
as sensitive to SLLC size, contrary to the DMPKI and CPI metrics. This
behavior is due to the prefetcher being effective in preloading the private caches
with the data to be used, which eliminates demand misses. In other words, the
prefetcher reuses the data stored in the SLLC and, therefore, the more capacity
the SLLC has, the higher the hit rate. As a result, giving more SLLC capacity
to this type of applications does not imply a direct benefit for them but it does
for the system, since it decreases the traffic with memory.

As far as we know, the behavior observed in 554.roms with respect to the
MPKI metric has not been previously highlighted and therefore it has not been
considered when designing resource allocation mechanisms. Balancer will con-
sider these applications as being cache sensitive and therefore will not limit
their available SLLC space so as not to increase bandwidth consumption. As
we will show in Section , higher bandwidth consumption can increase memory
access latency, which in turn implies a performance degradation of all applica-
tions running on the system.

The CPI or DMPKI curves may show reasonable values and/or very little
variation around small SLLC capacities. However, sometimes this insensitivity
to size is hiding very noticeable prefetching performance. For these applications,
keeping small capacities does not affect their performance, but it does degrade
system performance. Considering the effect of prefetching (MPKI or HPKI) to
guide SLLC quotas therefore seems more appropriate.

Characterization highlights: The MPKI metric, or its complementary
HPKI, measures the benefit associated with SLLC occupancy more com-
prehensively than CPI or DMPKI, which are the metrics commonly used
in previous work. The variation in CPI or DMPKI only reflects the ben-
efit that affects the application itself, while MPKI or HPKI, in addition,
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reflects the benefit that is achieved for the system.

3.3.2 Performance vs. Memory Bandwidth

Next, we characterize the behavior of applications not running alone with in-
creasing throttling of the available memory bandwidth or, in other words, as
memory contention grows due to increasing aggregate traffic, in the AMD Rome.
For this purpose, we have used the Triad application.

Triad belongs to the STREAM benchmark [97]. STREAM is considered as
the de-facto benchmark to measure sustainable main memory bandwidth. It
is a simple synthetic program that we use to generate data traffic between the
CPU and main memory.

Triad performs simple operations on vectors: A[j] = B[j] + scalar ∗ C[j].
Vectors A, B, and C are larger than L2 + SLLC to ensure that there is no data
reuse. We ran each of the selected applications alongside 0, 3, 7, 15, 31, and 63
Triad instances. The application to be characterized is pinned on the first core
of the first CCX, and each Triad is pinned on another core, trying to occupy
the maximum number of CCDs with an even split between CCXs. This thread
scheduling runs the application on the AMD EPYC 7702P in configurations
that first increase the number of active CCDs (from one to four and eight), then
increase the number of active CCX per CCD (from one to two), and finally the
number of cores per CCX (from one to two and four), see Table ??.

Table 3.5: Activation of AMD EPYC 7702P components according to the
number of Triad instances that are executed together with the application to
be characterized. Recall that this processor integrates 64 cores organized in
eight CCDs, each with two CCXs, which in turn have four cores each.

# Triads # active CCD # active CCX per CCD # active cores per CCX
0 1/8 1/2 1/4
3 4/8 1/2 1/4
7 8/8 1/2 1/4
15 8/8 2/2 1/4
31 8/8 2/2 2/4
63 8/8 2/2 4/4

Figure shows read traffic with main memory (gray bars, left Y-axis) and
memory latency (black bars, right Y-axis), both averaged for all applications vs.
the number of co-executed Triads (X-axis). The read traffic saturation point
is reached at around 105 GB/s with only seven Triad instances. However,
latency continues to grow as the number of Triad instances increases beyond
seven, from 378 to 676 cycles with equal data traffic.
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Figure 3.4: Read memory traffic (left Y-axis) and memory access latency (right
Y-axis) vs. number of Triads (X-axis).

Figure shows the performance impact of increased latency. For each ap-
plication it can be seen how its CPI increases as memory contention grows.
On average, the progressive growth of traffic induces an increase in execution
time of 5, 20, 34, 49, and 61% when an application contends with 3, 7, 15, 31,
and 63 Triads, respectively. In 5 applications, increases of more than 80% are
observed when co-executing with 63 Triads.

Characterization highlights: Memory access latency is a better indica-
tor than memory traffic for assessing memory contention. The increase in
latency is a more direct measure of the impact on application execution
time. In addition, memory latency increases if the request rate increases
beyond the point of traffic saturation, allowing different degrees of con-
tention to be identified.

3.3.3 Multiprogrammed Workload
Finally, we analyze the behavior of the applications on a fully loaded system,
running one application on each of the AMD Rome 64 cores. Each applica-
tion appears about two hundred times in the one hundred mixes, and is run
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Figure 3.5: CPI increase when running with multiple Triads.

under different conditions, determined by the other sixty-three co-executing
applications.

Figure shows the averages of the metrics (CPI, DMPKI, etc.) for those
two hundred instances, along with a vertical bar linking the minimum and
maximum values. Average memory latency is between 500 and 600 cycles for
all applications, reaching peaks of 650 for most of them. This indicates that
memory traffic is always well above the saturation point.

Regarding SLLC occupancy, application behavior is very diverse. Eight
applications occupy on average more than 6 MiB, three of them reaching max-
imums of 12 MiB, while five other applications occupy on average less than
2 MiB. The variation among runs of the same application is also large. The
difference between the minimum and maximum is greater than 3 MiB in 24
applications.

The benefit applications get from the space they occupy in the SLLC is also
very diverse as noted in Section and Section . Applications such as 410.bwaves,
433.milc, 434.zeusmp, 462.libquantum, and 481.wrf waste the space they
occupy in the SLLC since HPKI is practically zero in all their executions, re-
gardless of the SLLC capacity they fill. On the contrary, applications such
as 471.omnetpp, 403.gcc, 429.mcf, 450.soplex, and 473.astar show signif-
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Figure 3.6: CPI, DMPKI, MPKI, HPKI, L3Occ, and L3Lat. For each metric
and application, the mean value and a vertical bar linking the minimum and
maximum values are shown.

icant differences between maximum and minimum values in occupancy, CPI,
MPKI, and HPKI. These applications take advantage of the space in SLLC in
a clear way, reducing their execution time if they get more space. Finally, in ap-
plications such as 436.cactusAMD, 437.leslie3d, 519.lbm, 549.fotonik3d,
and 554.roms we note significant variations in SLLC occupancy that do not
translate into CPI and DMPKI differences, but do translate into MPKI and
HPKI differences. Therefore, these applications do not get a direct benefit by
occupying more space in the SLLC, but they can bring a benefit to the system
by reducing the traffic with the main memory.

Characterization highlights: When running multiprogrammed work-
loads, it is common for the traffic generated by memory requests to con-
gest the DRAM channels. This results in high memory latencies, which in
turn affects application execution time. The SLLC space occupied by ap-
plications is very diverse and varies a lot among executions. The behavior
reported in Section and Section is repeated when running applications
on multiprogrammed workloads.
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3.4 Balancer

This section introduces Balancer, a set of new mechanisms for allocating shared
resources to the cores of a multicore processor. The first one, CCO (Control
of SLLC Occupancy), manages the sharing of space in the SLLC. The sec-
ond, CMT (Control of Memory Traffic), manages the amount of read memory
bandwidth. Both can be tuned to act together in SLLC occupancy and read
bandwidth (CCO+CMT).

Unlike other proposals, Balancer can be easily applied to clustered organi-
zations because it can make different decisions in each cluster in a decentralized
manner, in response to their particular cache utilization and bandwidth con-
sumption.

These mechanisms have been implemented on a server based on an AMD
7702P processor. The scripts have been developed in Python3, and are exe-
cuted in user space. A specific thread, called Balancer, executes such scripts
every second. We define epoch as the time interval that elapses between two
executions of the scripts triggered by Balancer. First, the monitored events
recorded in the hardware counters are read, and the metrics of interest are
calculated. The last ten values of these metrics are then averaged. This cal-
culation prevents one-off peaks from triggering the imposition of constraints,
and also prevents events in the distant past that are no longer relevant from
affecting the values of the metrics. The Balancer thread is pinned to the first
core of the first CCX, being this core the only one that has hyperthreading
enabled. The other cores run their applications with hyperthreading disabled
and zero overhead due to the execution of Balancer. This spatial decision to as-
sign the Balancer thread to one or another CCX is irrelevant since its overhead
is absolutely negligible. We have measured with perf the CPU time consumed
by the Balancer thread (monitoring + control). This time represents 0.1% of
the execution time of all system cores.

3.4.1 Control of SLLC Occupancy (CCO)

Motivation. SLLC space can become a scarce resource if there is compe-
tition among applications. Considering the overall benefit to the system, it
would be desirable to allocate more space to the applications that can take
the most advantage of it. As discussed in Section , monitoring of HPKI and
MPKI metrics can identify such applications. The idea is to foster a good
reuse of the data stored in the SLLC to improve the performance of individual
cores and, in the process, generate less main memory traffic. We calculate the
reuse ratio as the number of hits that each block fetched to LLC receives, i.e.
HitsLLC/MissesLLC . However, different applications may need more or less
LLC space to achieve the same reuse ratio. It would be desirable to give prior-
ity to those applications that achieve a higher reuse ratio while occupying less
LLC space.
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Proposal. We define a new metric, the number of hits per miss and MiB
occupied (HpMO), to compare the LLC space usage efficiency of applications.
This metric is directly proportional to the reuse ratio and inversely proportional
to the space occupied in LLC. Hit, miss, and occupancy rates (HPKI, MPKI,
and L3Occ) are sampled in each CCX SLLC. For each core of a CCX the
number of hits per miss and MiB occupied, HpMO, is calculated as follows:

HpMO =
HitsSLLC

MissesSLLC ·OccupancySLLC

HpMO quantifies for each core the profit obtained with the cache blocks it has
in the SLLC, either evicted from L2 or brought by prefetching. The higher
the HpMO, the better the space utilization in the SLLC and vice versa. For
example, a core with a 20% reuse rate and 5 MiB occupancy has a very low
HpMO value of 0.05, evidencing little benefit from SLLC occupied space.

Balancer considers that a core is using the space it occupies in LLC inef-
ficiently if its HpMO is less than a certain threshold X. In this case, the core
will be constrained in a shared 1 MiB partition. This SLLC partition is shared
by all cores, constrained or not. Consequently, the LLC size occupied by all
restricted cores is at most 1 MiB, leaving the other 15 MiB for the exclusive
use of the unrestricted cores. In this way, CCO allows other applications to
take advantage of the space left over in the SLLC, reducing MPKI and main
memory traffic. Figure .a shows the CCO control algorithm for one core, which
applies to all cores in the system every epoch. The proper values for the HpMO
threshold depend slightly on the mechanism target, performance or fairness,
and will be studied in subsection .

In the unlikely event that there is only one unconstrained core in a CCX,
no new limits will be imposed. Finally, constraints on a core are removed when
a phase change is detected. We assume that a phase change has occurred when
the behavior of the program with respect to the LLC has experienced a sig-
nificant change, which justifies Balancer to re-evaluate the metrics of interest.
Therefore, the metric to detect a phase change must be related to LLC, since a
change in other metrics such as branch predictor misses or L1D accesses might
not correlate with a significant change with respect to LLC. We used total
requests (demand and prefetch) instead of misses because they are not affected
by external behaviors, e.g.: change in LLC partition or phase change in other
applications. Balancer considers that a phase change exists if the number of
SLLC prefetch and demand requests per kilo instructions (HPKI + MPKI ) of
a core differs by more than 20% from the previous measurement.

3.4.2 Control of Memory Traffic (CMT)
Motivation. As we have seen in Section , memory latency is a good proxy
of communication contention between the executing cores and main memory.
That is, when memory traffic reaches the limit supported by the system, the
increased rate of requests to main memory translates into an increase in memory
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latency which, in turn, affects the performance of running applications, see
Figure .

Proposal. Balancer considers that memory access congestion exists if the
memory access latency exceeds a certain threshold Y. Figure shows the CMT
control algorithm for one core, which applies to all cores in the system every
epoch. The average latency of the off-chip memory requests made by each CCX
is monitored. If it exceeds the threshold Y, the read bandwidth consumption
of each core in that CCX is examined. The core responsible for the largest one
is selected, and its bandwidth limited to 2.5 GB/s. If the selected core was
already limited, its bandwidth limit is further decreased by 10%, until reaching
a minimum that would correspond to an equal distribution between cores, i.e.,
1/64 of 105 GB/s, the peak rBW measured. Again, the proper values for the
CCX latency threshold depend slightly on the mechanism target, performance
or fairness, and will be studied in Section .

As in CCO, constraints on a core are removed when a phase change is
detected.
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Figure 3.7: COC (a) and CMT (b) control algorithms.
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3.4.3 Balancer: Simultaneous Control of SLLC Occupancy
and Memory Traffic (CCO+CMT)

CCO and CMT can be combined to obtain better performance than that
achieved by each mechanism separately. CCO is conservative in that it lim-
its occupancy to cores that waste SLLC, in the hope that the freed capacity
will be leveraged by the remaining cores to improve overall performance. In
contrast, CMT is aggressive in that it limits traffic in applications that con-
sume high memory bandwidth, even though it may be contributing to good
performance. Therefore, we propose combining both controls, but first apply-
ing CCO, to gradually improve SLLC occupancy in successive epochs and then
CMT. Thus, when a control epoch starts, firstly CCO acts: the HpMO of each
core is compared with threshold X in each CCX, and the cores without SLLC
occupancy limits that are below the threshold are confined in the 1 MiB parti-
tion. Secondly, CMT will act as explained only on those CCXs that have not
experienced new confinements, i.e. on CCXs with latency above threshold Y
the highest traffic core is selected and its bandwidth limited.

3.5 Evaluation

In this section, we evaluate our proposal (Balancer), and compare it with a
system without control (Uncontrolled) and with three control mechanisms using
cache partitioning: 1) equal sharing of resources through static allocation, i.e.
4 MiB of SLLC and 1.6 GB/s bandwidth per core (Static), 2) static UCP guided
by DMPKI (UCPd), and 3) static UCP guided by MPKI (UCPm). UCP stands
for Utility-based Cache Partitioning [126].

3.5.1 Metrics and Baseline System
As a baseline system we will use Static, which is positioned at one extreme
of the performance/fairness tradeoff: it does not allow dynamic sharing (i.e.
surplus hardware resources cannot be exploited by cores with scarcity), and
it is intrinsically fair in terms of hardware resources (i.e. equal resource parti-
tioning). Of course, reporting values relative to the baseline system does not
exclude mutual comparison between the rest of the mechanisms, but it facil-
itates discussion when focusing on individual application behaviors, which in
some metrics have very different absolute values.

3.5.2 Design Space Exploration
For decision making Balancer uses two thresholds on HpMO and CCX latency
values, Sections and , respectively. To analyze their impact on performance and
fairness, we ran ten new mixes under Balancer control using a set of thresholds
for HpMO (from 0.03 to 0.07 with steps of 0.01) and CCX latency (from 300 to
450 with steps of 50). Figure shows the average value of Speedup (Y-axis) and
M1(X-axis) obtained by each configuration across all the mixes in our workload.
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The results of each evaluated configuration are shown with the combination of
a shape and a color. The shapes specify the latency thresholds while the colors
indicate the HpMO thresholds. For example, a yellow square represents the
speedup and unfairness for a configuration with thresholds of 0.05 and 400
cycles for the HpMO and latency thresholds, respectively. The gray shapes
show the results of CTM-only Balancer while the circles show the results of
CCO-only Balancer. The horizontal and vertical dashed lines represent the
speedup and M1 results, respectively, for Uncontrolled.

Figure 3.8: Speedup and unfairness for Balancer with different thresholds.
Different colors and shapes represent results for different HpMO and latency
thresholds, respectively. Green dashed lines correspond to an Uncontrolled sys-
tem.

Variations in the CCX memory latency threshold significantly affect fairness
and performance. Reductions in the latency threshold improve fairness, as the
CMT mechanism imposes more traffic constraints on cores, approaching an
equal sharing of memory bandwidth among all cores. CMT always achieves
drastic reductions in unfairness, although in some configurations it produces
performance losses. In the best case, CMT manages to divide the M1 metric
by 3.17 with respect to Uncontrolled.

On the other hand, variations in the HpMO threshold affect performance
but have negligible effects on fairness. CCO always has a positive impact on
performance. It achieves a speedup varying between 0.1 and 4.0% with a small
loss of fairness.

By combining CCO and CMT and properly selecting thresholds, the Bal-
ancer resource control can be directed to different targets, matching the per-
formance/fairness tradeoff at will. For their detailed evaluation with the one
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hundred mixes cited in Section we select two control solutions, Balancer-P and
Balancer-F, see Table . Balancer-P is intended to optimize performance, uses
values of 0.06 and 450 for the HpMO and latency thresholds respectively, and
achieves a speedup of 7.01% with respect to Uncontrolled, with a 32.9% reduc-
tion in unfairness. Balancer-F is designed to optimize fairness, uses values of
0.04 and 300 for the HpMO and latency thresholds respectively, and achieves
a 66.0% reduction in unfairness, although it produces a 1.2% performance loss
with respect to Uncontrolled. As an example of minimum unfairness we have
discarded the CMT-only system (gray inverted triangle in Figure ), because it
achieves a slight reduction in unfairness but with a significant loss of perfor-
mance.

Table 3.6: Balancer-P and Balancer-F thresholds.

Metrics Balancer-P Balancer-F
HpMO, hits/(misses·MiB) X = 0.06 X = 0.04
CCX mem. latency, cycles Y = 450 Y = 300

3.5.3 Performance
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Figure 3.9: Speedup of the selected SPEC CPU2006 and CPU2017 applications
for all control mechanisms relative to Static.

Figure shows for each application the speedup obtained by all mechanisms
with respect to the Static baseline system. The last group of bars on the right
shows that, on average, all mechanisms improve performance against Static.
However, only Balancer-P outperforms Uncontrolled. Balancer-P focuses on
improving overall system performance. Since it limits bandwidth to those cores
that cause high memory latencies, it causes 7 applications out of 33 to lose
performance with respect to Uncontrolled, being 549.fotonik3d_r the worst
case with a 0.45 slowdown. However, Balancer-P outperforms Uncontrolled in
14 out of 18 CPU2006 applications and 12 out of 15 CPU2017 applications,
and achieves an average improvement of 7.1%, with a maximum speedup of
42.4% on 429.mcf.
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Balancer-F, on the other hand, improves fairness by more aggressively lim-
iting main memory traffic, resulting in performance losses relative to Uncon-
trolled in 10 applications out of 33 selected. Yet Balancer-P outperforms Un-
controlled in 11 out of 18 SPEC CPU2006 applications and in 12 out of 15
SPEC CPU2017 applications, with average performance only 1.3% worse.

Notice that Balancer-P slows down five applications with respect to Static
(471.omnetpp, 473.astar, 500.perl, 520.omnetpp, 557.xz). These are weak
applications in the sense that they take up few resources when in competition
with other applications, as can be seen from the L3Occ data in Figure . There-
fore, these applications achieve better performance if they are allocated 4 MiB
of LLC without competition. The two Balancer configurations lose the least
with respect to Static, with quite a difference in some cases with respect to all
other mechanisms. In other words, Balancer manages to protect these weak
applications better than the other mechanisms.

3.5.4 Fairness

Table shows the average value of M1 obtained by each mechanism for all the
mixes in our workload. Note that M1 is an unfairness metric and therefore the
lower the better.

Uncontrolled presents the highest value of unfairness (M1=851). This is an
expected result as each application uses the resources it needs without regard
to the impact on other applications. UCPd and UCPm manage to reduce the
unfairness by 25% and 18% with respect to Uncontrolled, but at the cost of
a significant loss of performance, as we have seen in the previous subsection.
Balancer-F, on the other hand, achieves a much larger reduction in unfairness,
64.5% less than Uncontrolled, with a performance loss of only 1.3%. Even
the performance optimized version, Balancer-P, manages to reduce the unfair-
ness to values similar to those of UCPd and UCPm with a very significant
performance improvement.

Table 3.7: Average M1 execution fairness

Balancer-P Balancer-F Uncontrolled UCPd UCPm
693 302 851 634 698

An important benefit of improving system fairness is that execution time
predictability increases. Less variability in the execution time of applications
facilitates scheduling decisions and minimizes unexpected charges for services.

Figure shows, for each application, the maximum, minimum, 75th, and
25th percentiles of the IPC values obtained for all application instances run in
the different workload mixes. Values are shown for the two Balancer configu-
rations and for Uncontrolled.
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Balancer-F reduces the variability in IPC with respect to Uncontrolled in
all applications except 502.gcc. The reduction is very significant in many ap-
plications. As an example, with Balance-F, the difference between the 25th and
75th percentiles is less than 10.0% in 20 of the 33 applications, and greater than
20.0% in only 5 applications. With Uncontrolled, the difference is greater than
10.0% for all applications and greater than 20.0% for 23 out of 33. Balancer-P
also reduces the variability compared to Uncontrolled in most applications, 26
out of 33, but to a lesser extent than Balancer-F.
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Figure 3.10: IPC variability: 75th and 25th percentiles and maximum and
minimum values.

3.5.5 Number of Cores and Scalability
An alternative to limiting memory bandwidth is to decrease the number of
cores used to run applications. By loading the system with a smaller number
of applications, each application has a larger fraction of resources at its disposal.

To test the impact on system performance of leaving cores idle, we ran
10,000 SPEC CPU2006 and CPU2017 applications on our system using 64
cores (all active, one pinned application per core), 56 cores (1 idle core per
CCD) and 48 cores (1 idle core per CCX). In all experiments, the Balancer
thread is active, and when an application terminates and frees a core, the next
application to run on it is the one with the lowest cumulative execution time.
This ensures that all applications are represented uniformly, regardless of their
individual running time.

Running the 10,000 applications on 64 cores took 15 hours 52 minutes, on
56 cores (87% of our processor’s total capacity) it took 17 hours 27 minutes
(10% more), and on 48 cores (75% of our processor’s total cores) it took 18
hours 10 minutes (13% more). Therefore, we have not seen any performance
improvement from leaving cores idle. In terms of performance it is best to keep
the system at its maximum possible load.

Works such as García et al. [51] or Xiao et al. [161] use a maximum of
80% and 40% of the processor cores respectively to evaluate their mechanisms.
García et al. uses 8, 12 and 16 cores to analyze the impact of the number of
applications on fairness. Xiao et al. uses only 8 cores because they do not
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have enough masks to run their algorithm with a larger number of cores. Our
algorithm does not have any limitation on masks. Nor have we perceived a
performance improvement that would justify the use of fewer cores than the
maximum available in our processor.

3.6 Related Work

Most previous proposals for shared resource control act on the SLLC to improve
overall system performance or fairness [43, 159, 90, 161, 121, 26, 148, 163, 153,
91, 136, 51, 126, 122], or turnaround time [124]. Among them we highlight
KPART [43], DCAPS [159] and LFOC [51]. They use demand miss rate and
IPC curves, which are dynamically computed, to guide application clustering
and SLLC partitioning. LFOC identifies in a first step the applications with
IPC insensitive to the SLLC capacity and isolates them in a single partition
with two cache ways. Balancer uses this same technique with two differences:
i) LFOC uses DMPKI to guide this decision while Balancer uses he number of
hits per misses and MiB occupied. This implies that in some cases LFOC may
increase bandwidth consumption. ii) Balancer uses a single cache way partition
to isolate applications because its selection algorithm is more restrictive than
that of LFOC.

Some of these proposals also use memory traffic to drive their decisions [43,
150, 96, 23, 109]. However, only CoPart acts directly on this resource in addi-
tion to acting on SLLC [122]. Our proposal acts on both resources. So, CoPart
is the proposal that most closely resembles ours. CoPart acts on the SLLC and
memory traffic of a 16-core Intel Xeon to improve fairness. It first performs
profiling to determine the sensitivity of each application to the slowdown it
experiences when the cache or available bandwidth gets reduced. Then, appli-
cations are dynamically ranked according to whether they need more resources
or are able to give up the ones they have. CoPart formulates SLLC and memory
bandwidth allocation as an economy problem, where resources are reallocated
from one application to another using a heuristic looking for maximum fairness.

The main problem of all these mechanisms is the complexity of the control/-
monitoring actions that classify the applications. An example is the use of the
miss rate curve. Usually, the mechanisms require the execution of each appli-
cation with different resource limits to obtain such behavior models. This clas-
sification has to be repeated periodically to detect application phase changes.
Moreover, this problem is more critical as the number of cores increases. In
contrast, our proposals monitor simple metrics to detect inefficient use of SLLC
or excessive latency due to bandwidth abuse.

Another important limitation of these mechanisms is that their heuristics,
when changing the allocation of resources to an application, only consider the
achieved self-profit, without taking into account the impact on the system. On
the contrary, the mechanisms proposed in Balancer identify inappropriate uses
of resources in order to prevent them and improve system performance.
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On the other hand, other proposals only act on memory traffic [121, 160,
67, 40, 78, 103, 108]. EMBA limits the memory traffic of the applications that
use more bandwidth [160]. It does this progressively and observes the impact
on system performance. The mechanism stops increasing the limitations when
it detects a loss in performance. In addition, it restarts when it detects a phase
change in one of the applications. The mechanism is tested with only eight
cores, and unlike our proposal, it does not control SLLC allocation.

PABST focuses on controlling memory traffic by restricting request rates
and changing the priority of memory requests [67]. However, it is evaluated on
a simulator, and requires extra hardware. In contrast, our proposal runs on
real hardware. Other works that also use simulation instead of real hardware
are [40, 78, 103, 108]. These works propose new schedulers for the main memory
controller to improve system performance and/or fairness.

Finally, we have considered comparison with several of these state-of-the-
art SLLC control mechanisms, but it has not been possible for several reasons.
Most authors rely on closed source codes, making it very difficult to ensure
that a third-party implementation is truthfully conforming to their approach.
We are aware of only two works that provide open source codes, ElSayed et
al. [43] and Pons et al. [124]. However, both mechanisms are intended for Intel
processors with an inclusive SLLC and no clustering of cores and resources.
In contrast the AMD organization uses non-inclusive LLCs grouped in CCXs
serving clusters of cores, which compete for main memory bandwidth through
two levels of routing, first the CCD I/O and then the die I/O. Therefore,
adjusting these mechanisms to a hierarchical organization requires in-depth
changes that go beyond code adaptation. For example, it is necessary to decide
whether to establish a single control mechanism throughout the system or a
mechanism per shared SLLC in every CCX. Moreover, it is necessary to find
the AMD hardware counters, if they exist, equivalent to the Intel ones. In our
attempt to port these mechanisms, we were unable to compile the code of Pons
et al. and obtained unsatisfactory results when running that of ElSayed et al.
For these reasons, we decided to leave them out of comparison.

3.7 Concluding Remarks

This chapter presents a detailed characterization of the execution of the sub-
set of single-threaded, memory-intensive test programs of the SPEC CPU2006
and CPU2017 SPEC suites on an AMD Rome processor. This analysis focuses
on the impact of available SLLC and memory bandwidth on the performance
of an application. We have expanded on the knowledge of the uneven use of
resources by applications show in chapter identifying a type of application
whose performance is barely affected when its allocated SLLC space decreases,
but whose memory bandwidth consumption increases significantly, negatively
affecting system performance. We have also found that memory access la-
tency is a better indicator than memory traffic for assessing memory access
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contention. As far as we know, this is the first time that these findings have
been highlighted.

From the characterization work, we have proposed strategies that impose
limits on SLLC space utilization and memory traffic to specific applications.
These constraints improve performance and/or fairness of multiprogrammed
workloads, on average, with respect to a system with no control. Specifically,
Balancer-P, tuned for performance, improves IPC 7.1% and reduces unfairness
18.6% compared to the system without control, while Balancer-F, tuned for
fairness, reduces unfairness 64.5% in exchange for a 1.3% loss in performance.
Balancer requires no hardware or operating system modifications. Our proposal
is the only one, to our knowledge, that controls SLLC occupancy and memory
traffic on an AMD processor with 64 cores organized in clusters.
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Chapter 4

Berti: an Accurate Local-Delta Data
Prefetcher

As we state in Chapter , data prefetching is a technique that plays a crucial role
in modern high-performance processors by hiding long latency memory accesses
and improving performance. Several state-of-the-art hardware prefetchers ex-
ploit the concept of deltas, defined as the difference between the cache line ad-
dresses of two demand accesses. Existing delta prefetchers, such as best offset
prefetching (BOP) and multi-lookahead prefetching (MLOP), train and predict
future accesses based on global deltas. We observed that the use of global deltas
results in missed opportunities to anticipate memory accesses. In this chap-
ter, we propose Berti, a first-level data cache prefetcher that selects the best
local deltas, i.e., those that consider only demand accesses issued by the same
instruction. Thanks to a high-confidence mechanism that precisely detects the
timely local deltas with high coverage, Berti generates accurate prefetch requests.
Then, it orchestrates the prefetch requests to the memory hierarchy, using the
selected deltas.

4.1 Introduction

Data prefetching techniques play an important role in hiding long-latency mem-
ory accesses. Hardware prefetchers learn memory access patterns and fetch
data into the cache hierarchy before time so that future memory accesses get
cache hits. Data prefetching techniques can be employed either at the private
first-level data cache (L1D), second-level cache (L2), or at the shared last-level
cache (SLLC).

Most of the recently proposed storage-efficient spatial prefetchers target
L2 [99, 139, 9, 88, 13]. Exceptions are the multi-lookahead offset prefetching
(MLOP) [137] and the instruction pointer classifier-based prefetching (IPCP) [9],
which are L1D prefetchers. It is well known that an L1D prefetcher provides
better performance than an L2 prefetcher as the prefetched lines are brought
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into L1D and not till L2. In addition, an L1D prefetcher sees unfiltered mem-
ory access patterns and can predict the future accesses better than an L2 or
SLLC prefetcher. L1D also sees a sequence of virtual addresses as compared to
physical addresses at the L2 and LLC, which can facilitate cross-page prefetch-
ing [52]. Also, compared to L1D, additional contextual information is not easy
to propagate to L2 and LLC, such as instruction pointer (IP) [89], which is
usually available at the L1D (e.g., Intel’s IP-stride at the L1D [36]). However,
designing a high-performance L1D prefetcher is hindered by (i) storage over-
head, (ii) starved L1D bandwidth, (iii) L1D pollution because of inaccurate
prefetching, and (iv) narrow scope for aggressive prefetching because of the
limited size of the prefetch queue (PQ) and the miss status holding registers
(MSHR).

State-of-the-art data prefetchers push the limit of single-thread performance
with average performance boosts of 3% to 5% [88, 13, 9, 87]. However, as shown
in Figure (a), these prefetchers load a large number of useless blocks, ranging
from 22.6% to 35.1% for SPEC CPU2017 and from 35.8% to 81.2% for GAP
workloads, which results in sub-optimal performance and additional dynamic
energy consumption [8]. Figure (b) shows that state-of-the-art prefetchers sig-
nificantly increase the dynamic energy consumption at the memory hierarchy
(caches and DRAM) up to 30.1% and 86.9% for SPEC CPU2017 and GAP
workloads, respectively.

Our proposal, Berti, provides an accuracy of almost 90%, which translates
into a dynamic energy overhead of only 9.0% and 14.3% for SPEC CPU2017
and GAP, respectively.

4.1.1 Our Approach

We ask the following simple question in designing our approach: “for an L1D
access to addresses X, what is the timely and accurate delta (d) that should be
used for prefetching?” The best offset prefetcher (BOP) inspires us to ask this
question [99]. However, our approach is different from BOP and other offset
prefetchers [137, 80]. Our key observation is that the best delta for access is
dependent on the local contextual information, such as an instruction pointer
(IP), and it varies based on the context (e.g., the best delta for IPX is different
from IPY ). We argue that prefetching based on global (context-agnostic) deltas
results in missing opportunities [113].

We propose Berti, a cost-effective, per-IP best request time delta L1D prefetcher
that makes a strong case for timeliness and accuracy. For each IP, Berti learns
the deltas that result in timely prefetch requests, and issue prefetch requests
only for the deltas predicted to provide high coverage, which translates to over-
all high prefetch accuracy. Sited at the L1D and seeing all virtual addresses
generated by the processor, Berti orchestrates the prefetch requests to the
memory hierarchy. Our Berti prefetcher is inspired by Berti from DPC-3 [132].
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Figure 4.1: Prefetch accuracy and dynamic energy consumption of the mem-
ory hierarchy for state-of-the-art prefetchers (IPCP [114], MLOP [137], SPP-
PPF [13], and Bingo [9]) averaged across single-threaded traces from memory-
intensive SPEC CPU2017 [111] and GAP [10] workloads.

4.1.2 Accurate and Timely Local Deltas

We define local delta as the difference in cache line adresses between two de-
mand accesses that are issued by the same IP. The definition of delta differs
from the definition of stride, being the later the difference between addresses
of consecutive load accesses with the same IP. For example, an IPX that ac-
cesses the following cache line addresses: X, X+2, X+4, X+6, sees a sequence
of strides as follows: +2, +2, and +2. In this case, the stride is 2. However,
access X+6 sees the following deltas: +6, +4, and +2. Figure shows an exam-
ple differentiating strides, local deltas, and timely local deltas. If the goal of a
prefetcher is to cover addresses 15, then the prefetcher can initiate prefetching
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(c) Timely local deltas

Figure 4.2: Strides, local deltas and timely local deltas. The values on the time-
lines (7, 10, 12 . . . ) represent the addresses referenced by the same instruction.

with deltas +3, +5, and +8 whenever it sees the demand accesses to adresses
12, 10, and 7, respectively. However, if we consider time to prefetch adress 15,
then deltas of +3, and +5 will not completely mitigate the L1D miss latency,
as they will be late prefetch requests. Instead, if a prefetcher issues a request
for adress 15 with deltas of +8 on demand accesses to adress 7, respectively, it
can prefetch adress 15 well ahead of time.

With Berti, we find the timely local deltas, and compute its respective
coverage. We prefetch using deltas that used to show high coverage, which
translates to overall high prefetch accuracy as we show in this work. We call
these deltas the accurate and timely deltas.

The rest of the chapter is organized as follow. Section motivates the need
for a new prefetcher. Berti is detailed in Section . Section ?? describes the ex-
perimental methodology: simulation framework, energy model, workload and
baseline. In Section the evaluation of Berti is presented. Section comments
related research. Finally, the chapter ends with the concluding remarks, Sec-
tion .
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4.2 Recent Works and Motivation

4.2.1 Recent Advances in Data Prefetching

Data prefetching plays an important role in designing high performance pro-
cessors. Recent developments in this field mainly come from the last two
data prefetching championships, DPC-2 [3] and DPC-3 [4], co-located with
ISCA 2015 and ISCA 2019, respectively.

Best offset prefetching (BOP)

The winner of DPC-2 is a degree-one L2 prefetcher that finds an offset that
provides the maximum likelihood of future use at the L2 cache [99]. An offset
of k means that a cache line is k cache lines away from the current demand
addresses. BOP takes timeliness into account while selecting the best offset per
application phase. Multi-lookahead offset prefetching (MLOP) [137] is an ex-
tension on BOP that is motivated by Jain’s Ph.D. thesis [80]. MLOP considers
multiple lookaheads for each offset and selects the offset and lookahead cover-
ing a specific cache miss. Both BOP and MLOP treat the demand addresses
in isolation, and for each demand access, trigger prefetch requests based on
the prefetch offset1. In general, MLOP provides better prefetch coverage than
BOP.

Variable Length Delta Prefetching (VLDP)

This spatial data prefetcher uses multiple histories of deltas between successive
cache lines observed within an operating system (OS) page to predict the future
memory accesses in other OS pages [139]. One of the key features of VLDP is
that it uses multiple prediction tables and makes predictions based on different
lengths of history in terms of deltas.

Signature path prefetching (SPP)

This state-of-the-art delta prefetcher predicts irregular strides at the L2 cache [88].
SPP works by relying on the signatures (hashes of consecutive strides) observed
within an OS page to index into a table that predicts future deltas. SPP uses
a lookahead mechanism that recursively finds out deltas to prefetch until a
delta falls below a confidence. Perceptron prefetch filtering (PPF) is a filter
that further improves the effectiveness of SPP by deciding whether to prefetch
into L2 or not [13]. In general, SPP combined with PPF (SPP-PPF) provides
better prefetch coverage than VLDP.

1For BOP and MLOP, we use the term global delta instead of offset for the rest of the
chapter.
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Bingo

This L2 prefetcher makes a case for associating spatial access patterns to both
short (such as IP) and long events (such as IP, IP+offset, and memory region)
and selecting the best pattern for prefetching [9]. A key point of Bingo is
the use of only one hardware table for both short and long events. This table
enables multiple predictions from a single entry, providing better coverage than
single-event prefetching. In general, Bingo outperforms VLDP and SPP-PPF
for SPEC CPU2017 traces. However, it requires significantly more storage than
VLDP and SPP-PPF.

Instruction pointer classifier prefetching (IPCP)

The winner of DPC-3 is a state-of-the-art L1D data prefetcher that is composite
in nature [114]. It classifies an IP into three classes: constant stride (CS),
complex stride (CPLX), and global stream (GS). IPCP uses three lightweight
prefetchers that issue prefetch requests according to the IP class. If it fails to
classify an IP into one of the three classes, it uses a next-line prefetcher.

4.2.2 Motivation: Why a New Delta Prefetcher?

Why not a global delta prefetcher?

We observe that finding the best delta for an entire application results in miss-
ing opportunities because the best delta varies based on the program context,
e.g., an IP or the OS page. Figure shows the best deltas selected by BOP (red
line) and Berti (gray lines) for different IPs of the mcf-1554B benchmark. We
can see that the best delta is different for distinct IPs making a strong case for
prefetching local, local deltas instead of a global best delta (oblivious to per-IP
best deltas). We can also see that the global delta (+62) as selected by BOP
does not cover all cache accesses, and it is not the best delta. For mcf-1554B,
BOP provides coverage of only 2%, whereas Berti, that selects local deltas (per
IP), provides better coverage as shown in Figure . As we will see in Section ,
the use of a global delta may be beneficial in some cases (e.g., in CactuBSSN),
but this is not the common case.

Why not existing local L1D prefetchers?

A conventional IP-stride prefetcher covers consecutive constant strides and not
necessarily timely deltas. For example, IP 0x401cb0 from lbm-2676B, Figure ,
generates the following stride sequence: +1, +2, +1, +2, ... +1, +2. For
this pattern, an IP-stride prefetcher will provide zero coverage and will not
gather enough confidence to prefetch either with stride +1 or +2. IPCP’s
CPLX prefetcher will be able to detect this pattern. However, IPCP ignores the
timeliness of prefetching. In contrast to IP-stride and IPCP’s CPLX prefetcher,
a more accurate, and flexible approach would be to prefetch with deltas +3 or
+6 that provide 100% coverage. Moreover, for the irregular stride sequence:
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-1, -5, -2, -1, -4, -1 associated to IP 0x402dc7 from mcf-1554B, IPCP’s CPLX
prefetcher fails to predict a pattern through its lookahead based on confidence.
However, a local delta prefetcher with a delta of -1 can provide better coverage.

@0 @1 @3 @4 @6 @7 @9 @10 @12 @13 @15

3 3

3 3

Figure 4.4: +1, +2, . . . memory miss pattern. Prefetching with delta 3 get
100% coverage

Effect of out-of-order loads at the L1D

In an out-of-order processor, memory accesses get reordered due to out-of-order
scheduling. Hence, the training of a delta prefetcher may be affected by the
ordering of memory accesses. Let’s consider a loop with a single IP accessing
memory addresses 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 with constant strides of +1.
An out-of-order processor can reorder, for example, the accesses to addresses
2, 3, 7, 8, and 9, resulting in the following sequence of addresses: 0, 1, 2, 4,
3, 5, 6, 9, 8, 7, 10 and strides +1, +1, +2, -1, +2, +1, +3, -1, -1, +3 at the
L1D. This cannot be covered by an IP-stride or an IPCP’s CPLX prefetcher
unless a specific mechanism can provide the commit order [52, 149]. However,
deltas have the important property of seeing past accesses already in order,
thus there is no requirement of such in-order commit mechanisms. Indeed, the
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last three accesses in our example will see the following past deltas: addresses
8 will see -1, +2, +3, +5, +4, +6, +7, +8, addresses 7 will see +1, -2, +1, +2,
+4, +3, +5, +6, +7, and addresses 10 will see +3, +2, +1, +4, +5, +7, +6,
+8, +9, +10 that is, all possibilities regardless of their order. The prefetcher
then can choose the deltas that can provide the best coverage from these set
of values. Figure shows a +1 memory access pattern with memory reordering
due to out-of-order and prefetching with delta 5.

@0 @1 @2 @4 @3 @5 @6 @9 @8 @7 @10

5

5

Figure 4.5: Memory reordering due to out-of-order processors. Prefetching
with delta 5 get 100% coverage

Why a timely local delta prefetcher?

If the goal of a prefetcher is to cover address 15 (see Figure ), then the prefetcher
can initiate prefetching with deltas +3, +5, and +8 whenever it sees the de-
mand accesses to addresses 12, 10, and 7, respectively. However, if we consider
time to prefetch address 15, then deltas of +3, +5, and +8 will not completely
mitigate the L1D miss latency, as they will be late prefetch requests. Instead,
if a prefetcher issues a request for address 15 with deltas of +10 or +13 on
demand accesses to address 5 or 2, respectively, it can prefetch address 15 well
ahead of time.

@2 @4 @6 @8 @10 @12

Delta 10

Delta 4

Time to fetch @12

Figure 4.6: +2 Memory miss pattern, with multiple possible deltas but only
delta +10 can hide the latency of @12 miss

4.3 Berti: A Local-Delta Prefetcher

Berti is a data prefetcher sited at the L1D, where it can see all the requests
generated by the processor and orchestrate the prefetch requests to the memory
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hierarchy. Berti makes a strong case for prefetch accuracy. For each IP, it
selects the deltas2 that are timely and computes their respective local coverage.
High accuracy is achieved by only using deltas with high coverage. Additionally,
Berti is trained with virtual addresses, which helps in finding larger deltas
and facilitates cross-page prefetching. Next, we describe how Berti performs
training and prediction. Then, we propose a simple and cost-effective hardware
implementation.

4.3.1 Training the Prefetcher
The goal of the training mechanism is to estimate the coverage of each seen
delta, considering only those deltas that would result in a timely prefetch. The
training consists of the following actions: measuring fetch latency, learning
timely deltas, and computing the coverage of the deltas.

Measuring fetch latency

In order to learn the deltas that are timely it is necessary to measure the time
required to fetch data to the L1D, i.e., the L1D miss latency. This measurement
is performed for any cache line in L1D, both for demand misses and prefetch
requests. Computing latency for prefetch requests is fundamental because, in
an ideal scenario, there would not be L1D misses but just L1D hits due to timely
prefetch requests. In addition, the latency of prefetch requests may be larger
than the latency of demand requests due to prefetch queue (PQ) contention or
L1D port contention. Fetch latency can be measured by keeping a timestamp
for any L1D miss inserted into the MSHR and any prefetch request inserted
into the PQ. On an L1D fill, the latency is simply computed by subtracting
the stored timestamp from the current one.

Learning timely and accurate deltas

Once the fetch latency is obtained for each L1D fill, our prefetcher can pre-
cisely learn timely deltas, given that the history of accesses and timestamps
by the same IP is recorded. By searching in the history of recent accesses and
comparing the timestamp of each previous access with the timestamp when a
prefetch should be issued to be timely, the accesses that would trigger timely
prefetch requests are detected. Deltas are then computed by subtracting the
addresses of each timely request in the history from the current addresses. Fig-
ures , , and depict how timely deltas are detected. All addresses represented
in the timeline are accessed by the same IP. When addresses 10 is demanded
and its fetch latency computed (Figure ), the history of accesses for that IP is
searched, from the point in time, a timely prefetch should have been triggered.
In this case, no previous accesses are found. After accessing addresses 12 and
computing its fetch latency (Figure ), a timely delta corresponding to addresses

2For the rest of the chapter, unless specified we use the terms delta and local delta
interchangeably.
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timeline
2 5 7 10

time to fetch 10

Figure 4.7: Access address 10: no timely delta found.

timeline
2 5 7 10 12

time to fetch 12

timely delta (+10)

Figure 4.8: Access address 12: one timely delta found.

timeline
2 5 7 10 12 15

time to fetch 15

timely deltas (+13, +10)

Figure 4.9: Access address 15: two timely deltas found.

2 is found. That is, addresses 2 should initiate the prefetch request for 12 in
order to be timely. The timely delta +10 is therefore learned. Similarly, when
computing the latency for access 15 (Figure ), two deltas, +10 and +13, are
detected as timely.

Berti triggers the procedure to learn timely deltas for each miss that would
have occurred in the baseline, which translates to two scenarios. First, when a
demand miss fills the L1D with the requested data. Second, when a cache line
brought into L1D by a prefetch request is demanded (i.e., misses that would
have occurred without a prefetcher). Berti does not learn deltas on a cache fill
caused by a prefetch request since its demand time is not known. Therefore,
it is necessary to keep the latency of prefetch requests until the core demands
the cache line.

Computing the coverage of deltas

On every search in the history, Berti obtains a set of timely deltas. Deltas
that frequently appear in the searches would cover a significant fraction of
misses, while deltas that rarely appear would result in low coverage. It is easy
to compute the coverage by dividing the number of occurrences of a delta by
the number of searches in the history. For example, in Figure , after three
accesses, the delta +10 has the higher coverage, being in two out of three
searches (66.7%). If the same access pattern continues, the delta +10 will
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reach close to 100% coverage. It is important to note that this local (per IP)
coverage translates into accuracy. If a delta covers 100% of cache lines, since
each access-delta pair results in only one prefetch request, that delta will bring
100% accuracy.

4.3.2 Prediction: Issuing Prefetch Requests
Once we know the deltas and their associated coverage, we can orchestrate the
prefetch requests across the cache hierarchy. Based on both the coverage of
each delta and the L1D MSHR occupancy, we decide which deltas to use and
till which cache level to prefetch. We use four watermarks to decide where to
issue the prefetch requests. If the coverage of a delta is above a high-coverage
watermark and the L1D MSHR occupancy is below the occupancy watermark,
then prefetch requests using that delta get filled at all the cache levels till L1D.
Otherwise, if the coverage is above a medium-coverage watermark, irrespective
of the L1D MSHR occupancy, prefetch requests get filled till L2. Finally, if
the coverage is above a low-coverage watermark, requests get filled only in the
LLC.

To generate a prefetch request, we add the selected delta to the addresses of
the current access and the resulting addresses is inserted in the PQ. Requests in
the PQ are processed in a first-in-first-out (FIFO) order. Since our prefetcher
is trained with virtual addresses, the generated prefetch requests are also in
the virtual addresses space. A prefetch request obtains the physical addresses
from the L2 translation look-ahead buffer (STLB). If the translation misses
in the STLB, the prefetch request is dropped. If the translation is obtained,
the prefetch request checks if the target block is already present in the cache
it wants to fill. In case of a miss, the block is prefetched, and the request is
inserted into the MSHR.

4.3.3 Hardware Implementation
As outlined in Figure , Berti can be implemented with a small hardware budget
and using simple structures and logic. Next, we describe the structures required
to train the prefetcher and decide on the prefetch requests to issue to each cache
level.

Measuring fetch latency

In order to be able to measure the fetch latency, the MSHR is extended with a
16-bit field (represented in Figure in gray) that stores a timestamp on a demand
L1D miss. Similarly, the PQ is also extended with an analogous field that stores
the timestamp when a new prefetch request is added. The timestamp can be
obtained from the clock of the local processor [133] or any other metric to
approximate time (e.g., number of cache accesses). In our implementation,
we use the former. When a prefetch request misses L1D, the timestamp is
transferred from the PQ to the newly allocated MSHR entry. On an L1D fill,
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Figure 4.10: Berti design overview. Hardware extensions are shown in gray.
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Figure 4.11: History table and Table of deltas entry format.

the latency of the request can be computed with a simple subtraction. The
latency is stored using 12 bits. If an overflow is detected when computing the
latency, it is set to zero, and therefore not considered for learning timely deltas.
Based on our empirical results, on average across GAP and SPEC CPU2017
traces, we see 1.08 overflows per kilo L1D fills.

Learning timely deltas

To be able to learn timely deltas, the most recent accesses need to be tracked.
The History table (see Figure ) records that information and is organized as an
8-set, 16-way cache with a FIFO replacement policy and indexed and searched
with the IP. The format of each entry in the history table is depicted in Figure .
Each entry keeps a tag corresponding to the seven least significant bits of the
IP (after removing the bits used for indexing the cache), the 24 least significant
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bits of the target cache line addresses, and a 16-bit timestamp. A new entry is
inserted in the history table (Write port in Figure ) either on-demand misses
(Miss arrow from the L1D in Figure ) or on hits for prefetched cache lines (Hitp
in Figure ). The virtual addresses (VA) and the IP (IP, VA arrow in Figure )
are stored in the new entry along with the current timestamp (not shown in
the figure).

The search for timely deltas (Search port in Figure ) is performed either
on a fill due to a demand access (Fill arrow from the MSHR in Figure ) or
on a hit due to a prefetched cache line (Hitp in Figure ). In the first case, the
search is done using the information from the MSHR (IP, VA, latency arrow in
Figure ). In order to enable the search on L1D hits, we keep the latency of the
prefetch request (12 bits) along with each entry in the L1D (see Figure L1D
shadow part). Alternatively, an L1D shadow tag could be employed. A latency
field set to zero indicates either an overflow when computing the latency or an
already demanded cache line. In that case, a search in the history table is not
performed. Otherwise, the search is done when the demand hit takes place,
using the stored latency (Latency arrow in Figure ), which is reset after the
search. On every search, the 16-ways of the history table are looked up for a
matching IP tag. A maximum of eight timely deltas, the ones corresponding to
the youngest entries that would result in timely prefetch requests, are collected.

Computing the coverage of deltas

The results of each search in the history table (Timely deltas arrow in Figure )
are accumulated in the Table of deltas, a 16-entry fully-associative cache with
a FIFO replacement policy. The format of each entry in the table of deltas
is depicted in Figure . Each entry consists of a 10-bit tag (based on hash
function of the IP), a 4-bit counter, and an array of 16 deltas, each of them
containing the delta itself (13 bits), the coverage (4 bits), and the status (2
bits) indicating till which cache level to prefetch. The counter is increased
on each search in the history table. For each timely delta found during the
search, its coverage counter is increased. When the counter overflows (its value
increases to 16), we compute the coverage. Deltas that cross the high-coverage
watermark (65% of coverage, i.e., a coverage value higher than 10) set their
status to L1D_pref . Deltas in between the high-coverage watermark and
the medium-coverage watermark (between 65% and 35%, i.e., a coverage value
lower or equal than 10 and higher than 5) set the status to L2_pref . The
maximum number of deltas selected for any of those status is bounded to 12.
The remaining deltas’ status is set to No_pref (i.e., do not issue prefetch
requests for this delta). Once the status is set, the counter and the array of
confidences are reset, and a new learning phase begins.

While warmingup the status fields, prefetch requests are also issued if at
least eight deltas have been gathered, increasing the high-coverage watermark
to 80%, as with just four deltas the prefetcher needs more confidence. Our
empirical study shows that using watermarks higher that 65% leads to high
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accuracy.
Although Berti opens the possibility of prefetching to LLC only for low-

coverage deltas, our evaluation showed no performance improvements when
choosing this option. Hence, we set the low-coverage watermark to 35% (equal
to the medium-coverage one), to disable prefetching to LLC only.

In order to constantly learn new deltas, evictions of deltas may be necessary.
On the arrival of a non stored delta, deltas with less than 50% coverage in the
previous phase are candidates for evictions in the current phase. To this end, if
the coverage when selecting the L2_pref status is lower than 50%, the status is
set to L2_pref_repl. The eviction policy selects the delta with lower coverage
whose status is L2_pref_repl or No_pref . In case no such delta exists, the
new delta is discarded.

Issuing prefetch requests

On every L1D access, the table of deltas is searched looking with a matching IP
(IP, VA arrow pointing to the table of deltas in Figure ). Since we use an L1D
with two read ports and one write port, the table of deltas requires three search
ports. The deltas with status L1D_pref or L2_pref are added to the current
VA to form the prefetch requests that are inserted into the PQ (Pref. requests
arrow in Figure ). Those prefetch requests get filled into all cache levels till
L1D when the status is L1D_pref and the MSHR occupancy is below 70%
(the occupancy watermark). Otherwise, prefetch requests get filled till L2.

Storage overhead

Berti does not require any complex operation (e.g., multiplications) nor com-
plex logic. Our history table has two read ports and one write port. The latency
of this structure is two cycles, based on CACTI-P [94]. Since prefetching train-
ing is out of the critical path of memory accesses, the history table does not
affect the cycle time. The storage requirements of Berti, whose breakdown per
structure is provided in Table , is just 2.55 KB.

4.4 Experimental Environment and Methodology

4.4.1 Simulation Framework

For the evaluation of our proposal we use a modfied version of ChampSim [22].
ChampSim is a trace-driven simulator used for the 2nd and 3rd Data Prefetch-
ing Championships (DPC-2 [3] and DPC-3 [4]). Recent prefetching propos-
als [9, 13, 114, 137] are also coded and evaluated on Champsim. The recently
modified Champsim extends the one provided with the DPC-3 with a decou-
pled front-end [130] and a detailed memory hierarchy support for addresses
translation that further improve the baseline performance. We model a three
level non-inclusive cache, cache lines are filled in all levels but the eviction of
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Table 4.1: Storage overhead of Berti.

Structure Storage
History table 8-set, 16-way (128-entry) cache, FIFO re-

placement policy. Each set: 4 bits (replace-
ment policy). Each entry: 7-bit IP tag,
24-bit address, 16-bit timestamp

0.74 KB

Table of deltas 16-entry, fully-associative, 4-bit FIFO re-
placement policy. Each entry: 10-bit IP
tag, 4-bit counter, and an array of 16
deltas (13-bit delta, 4-bit coverage, 2-bit
status)

0.62 KB

PQ + 16+16 entries, 0.06 KB
MSHR 16-bit timestamp per entry
L1D 768 cache lines, 12-bit latency per line 1.13 KB
Total 2.55 KB

a block from a level is not notified to the rest of the cache levels. The L1D
cache has an IP-Stride prefetcher that mimics the Intel prefetcher [36]. We
faithfully model DRAM, including the queuing delays that contributes to the
variable access time because of close vs. open page, page hit vs miss, DRAM
bank conflicts, etc. Table summarizes our system configuration, mimicking an
Intel Sunny Cove microarchitecture [48, 156, 5].

We evaluate our proposal with single-core and multi-core simulations. We
warmup the caches for 50M sim-point instructions [138] and collect statistics for
the next 200M sim-point instructions. For multi-core simulations, we use het-
erogeneous mixes of single-threaded traces. For each mix, when a core finishes
its 200M instructions, it gets replayed until all the cores finish their respective
200M instructions. For both single- and multi-core, we report performance in
terms of IPC improvement (speedup) with respect to an L1D with an IP-stride
prefetcher. We use the geometric mean to average the speedups obtained by
the different single-thread traces.

4.4.2 Energy Model

For reporting the dynamic energy consumption of the memory hierarchy. We
obtain the energy consumption of reads and writes to tag and data arrays
at each cache level and DRAM with CACTI-P [94] and Micron DRAM power
calculator [100]. Then, we compute the total energy expenditure by accounting
for the number of accesses of each type across the memory hierarchy. We use
22 nm process technology for our energy calculations.
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Table 4.2: Simulation parameters of the baseline system.

Core Out-of-order, hashed perceptron branch predic-
tor [84], 4 GHz with 6-issue width, 4-retire width,
352-entry ROB

TLBs L1 iTLB/dTLB: 64 entries, 4-way, 1 cycle
STLB: 2048 entries, 16-way, 8 cycles

MMU Caches 2-entry PSCL5, 4-entry PSCL4, 8-entry PSCL3, 32-
entry PSCL2, searched in parallel, one cycle

L1I 32 KB, 8-way, 4 cycles
L1D 48 KB, 12-way, 5 cycles, with a 24-entry, fully asso-

ciative IP-stride prefetcher [24]
L2 512 KB 8-way associative, 10 cycles, SRRIP [83],

non-inclusive
LLC 2 MB/core, 16-way, 20 cycles, DRRIP [83], non-

inclusive
MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC
DRAM controller One channel/4-cores, 6400 MTPS [28], FR-FCFS,

64-entry RQ and WQ, reads prioritized over writes,
write watermark: 7/8th

DRAM chip 4 KB row-buffer per bank, open page, burst length
16, tRP: 12.5 ns, tRCD: 12.5 ns, tCAS: 12.5 ns

4.4.3 Workloads

We use traces from SPEC CPU2017 [147] and single-threaded GAP bench-
marks [10]. We limit our study to memory-intensive traces (MemInt), i.e.,
those that showed at least one miss per kilo-instruction (MPKI) at the LLC
in our modeled baseline system. All GAP traces (20) and 44 SPEC CPU2017
traces are memory-intensive.

SPEC CPU2017 traces were generated with the reference inputs. Both real
(Twitter, Web, Road) and synthetic (Kron, Urand) graphs were used as input
for the GAP benchmarks.

We also report performance for the CloudSuite benchmarks [25] traces are
publicly available [144, 50, 25]. For multi-core experiments, we simulate 200
random heterogeneous mixes from SPEC CPU2017 and GAP.

4.4.4 Berti and Variable Cache Fill Latency

Modern memory hierarchies can have variable cache fill latency that comes
from sources like MSHR contentions at the private and shared caches, read
queue (RQ) and write queue (WQ) contentions at various levels of caches and
DRAM controller. At the DRAM level, memory access time gets affected
because of row buffer conflicts, bank conflicts, etc. Our simulator reflects all
this variability. Even non uniform cache access (NUCA) LLCs with multiple
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Table 4.3: Configurations of evaluated prefetchers.

SPP-PPF [13] 256-entry ST, 512-entry 4-way PT, 8-entry GHR, Per-
ceptron weights with the following entries: 4096×4,
2048×2, 1024×2, and 128×1 entries, 1024-entry prefetch
table, 1024-entry reject table

Bingo [137] 2 KB region, 64/128/4K-entry FT/AT/PHT
MLOP [9] 128-entry AMT, 500-update, 16-degree
IPCP [114] 128-entry IP table, 8-entry RST table, and 128-entry

CSPT table

banks can cause variable fill latency. For example, suppose in a NUCA LLC
with two banks an IP sees local deltas of +1 and +2 that get mapped to bank-1
and bank-0, respectively, and the latency to bank-0 is different from bank-1.
In our experiments, the fill latency ranges from 22 to 2098 cycles with an
average of 278 cycles averaged across SPEC CPU2017, GAP, and CloudSuite
benchmarks and multicore mixes.

4.4.5 Evaluated Prefetching Techniques

We compare the effectiveness of Berti with high performing L1D and L1D+L2
prefetchers. As Berti is an L1D prefetcher, we first compare its performance
with prefetchers designed for L1D (no prefetching at the L2), and then with
multi-level prefetching combinations. The L1D prefetchers are i) MLOP [137]
(DPC-3, 3rd place), an extension of the BOP (DPC-2 winner), and ii) IPCP
(DPC-3 winner published at ISCA 2020 [114]). For multi-level prefetching, we
evaluate two state-of-the-art L2 prefetchers along with MLOP and Berti at the
L1D: SPP-PPF [88, 13] and Bingo [9]. We also compare with a multi-level
IPCP that uses IPCP both at the L1D and L2. The evaluated prefetchers
have been briefly described in Section . For all prefetchers, we use a highly
tuned implementation as provided by the authors and tune it again for the
parameters mentioned in Table . Fine tuning was an easy exercise as all the
competing prefetchers use Champsim for their evaluation. Table shows the
configurations used for all the evaluated prefetchers.

4.5 Berti Evaluation

4.5.1 Speedup vs. Storage Requirements

Figure summarizes the speedup of the evaluated prefetchers with respect to
IP-stride for SPEC CPU2017 and GAP, along with their storage requirements.
L1D prefetchers are shown with a circle, L2 prefetchers with a square, and
multi-level (L1D+L2) prefetchers with a diamond.

Among the L1D prefetchers, Berti achieves the highest speedup with a size
similar to IPCP, the prefetcher with the lowest storage budget. With only
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Figure 4.12: Speedup vs. storage requirements. Speedup is normalized to L1D
IP-stride and averaged across memory-intensive SPEC CPU2017 and GAP
traces. X+Y denotes prefetcher X at L1D and prefetcher Y at L2.

2.55 KB of storage overhead, Berti improves performance by 8.5% over IP-
stride and 3.5% over IPCP, the state-of-the-art L1D prefetcher.

The Berti+SPP-PPF multi-level prefetcher obtains the highest speedup
(10.2%, additional 1.5% on top of Berti at L1D) among all multi-level combi-
nations with 41.8 KB combined storage for L1D and L2 prefetchers. However,
the highlight of Figure is that Berti at L1D without any prefetching at L2
outperforms all the multi-level prefetching combinations that do not include
Berti.

4.5.2 Performance of Berti as an L1D Prefetcher

Figure shows the speedup achieved by the L1D prefetchers for SPEC CPU2017
and GAP. Berti is the best prefetcher across both suites. On average, Berti
at the L1D improves performance by 11.6% and 1.9% for SPEC CPU2017
and GAP, respectively. All three prefetchers achieve good speedups for SPEC
CPU2017, and Berti outperforms IPCP and MLOP by 2.8% and 3.0%, re-
spectively. The speedup differences are more significant with the GAP traces,
where Berti is the only L1D prefetcher that improves IP-Stride, by up to 1.9%,
while IPCP and MLOP are 2.9% and 7.8% below, respectively. Overall, across
SPEC CPU2017 and GAP traces, Berti outperforms IP-stride and IPCP by
8.5% and 3.5%, respectively. This is significant performance improvement on
top of the high-performing state-of-the-art IPCP prefetcher.

Figure shows the individual speedup for the memory-intensive SPEC CPU2017
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Figure 4.13: Speedup of L1D prefetchers compared to a system with L1D IP-
stride for memory-intensive SPEC CPU2017 and GAP traces.
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Figure 4.14: Speedup with Berti as an L1D prefetcher for (a) 44 SPEC
CPU2017 and (b) 20 GAP memory-intensive traces normalized to L1D IP-
stride. Geomean-all corresponds to the geometric mean of all the 95 SPEC
CPU2017 traces.

and GAP traces. For CPU2017, Berti achieves similar or significantly better
results than the other prefetchers on all traces except for CactuBSSN.

In this benchmark, we observe that the memory access instructions fol-
low stride patterns. However, there are hundreds of these instructions execut-
ing interleaved. Therefore, to track the local behavior of instructions in this
benchmark, Berti would need very large history and delta tables. In contrast,
prefetchers that detect patterns in the global addresses stream do not have this
problem, as is the case with MLOP or the IPCP GS class. Barring the excep-
tion of CactuBSSN where global deltas perform better than local deltas, Berti
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shows that local deltas are prevalent across a large number of benchmarks and
it accurately selects them.

A key observation is that the state-of-the-art prefetchers do not consistently
improve performance over IP-stride across all workloads, but Berti only shows
a small degradation of 2.6% with respect to IP-stride for mcf_s-1536.

For SPEC CPU2017, Berti achieves its best result for mcf_s-1554 where
it provides speedups of 1.89×, 1.65×, and 1.49× with respect to IP-stride,
IPCP, and MLOP, respectively. MLOP and IPCP achieve performance at least
1% below IP-stride on five and eight traces out of 44, the worst case being
in mcf_s-782 with drops of 16.0% and 21.9%, respectively. In mcf_s-782,
only three IPs (0x4049de, 0x4049e5, and 0x4049cc) represent the 75% of all
L1D accesses. MLOP uses a global delta to prefetch that is affected by the
interleaving of accesses from these three IPs. IPCP uses the CS and CPLX
class prefetchers but with an accuracy below 25%.

As for GAP, Berti is the best prefetcher for all the benchmarks but three
(bfs-8, bfs-10 and bfs-14). It consistently achieves similar or better results
than IP-stride for all traces, while MLOP and IPCP perform worse than IP-
stride in 12 and 16 benchmarks, respectively. In some cases, the MLOP slow-
down is very significant, for example, 17.7% in sssp-3. We have also analyzed
the behavior of the prefetchers in one of the GAP applications, namely bc-5.
All bc-5 IPs show a rather chaotic memory access pattern except for one that
is very regular. IP-stride and Berti, by separately tracing the IPs, detect the
regular IP pattern and prefetch correctly for it. They do not prefetch for the
other IPs. MLOP fails due to the use of a global delta. The accesses issued by
IPs with irregular pattern prevent discovering a global delta and therefore the
prefetcher issues very few requests, and is not able to prefetch correctly for the
regular IP. IPCP detects the delta pattern for the regular IP through its CPLX
component, and prefetches correctly for it. However, the GS component gen-
erates many useless prefetches that drastically decreases the accuracy of IPCP
and results in the loss of performance shown in Figure .

Accuracy

Figure shows the accuracy of the L1D prefetchers. Berti is a very accu-
rate prefetcher. On average, about 87.2% of its prefetched lines are use-
ful compared to 62.4% for MLOP and 50.6% for IPCP. The effectiveness of
IPCP is driven by the performance of several tiny prefetchers: a global stream
prefetcher (GS class), a constant stride prefetcher (CS class), and a complex
stride prefetcher (CPLX class) that work in tandem. For regular access pat-
terns, the CS prefetcher provides high accuracy. However, for complex access
patterns, the effectiveness of the CPLX prefetcher is low, with an accuracy of
52.7% and 9.8% for SPEC CPU2017 [147] and GAP [10] workloads, respec-
tively.

MLOP, like Berti, is based on the detection of the best timely deltas. How-
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Figure 4.16: Prefetch coverage in terms of average L1D, L2, and LLC demand
MPKIs for all L1D prefetchers.

ever, it achieves much lower accuracy. The improvement of Berti over MLOP
is mainly due to two factors: i) MLOP uses global deltas for the whole appli-
cation while Berti detects different deltas for each IP. As we have shown in
Section , benchmarks such as mcf generate different delta patterns for each
IP. ii) Berti uses a stringent policy to decide which deltas to use for issuing
prefetch requests into L1D, as we have described in Sections and , while MLOP
generates prefetch requests for the best delta with each lookahead regardless
of its confidence.
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Timeliness

The darker part of each bar in Figure represents the prefetch requests whose
retrieved data arrive late to L1D. Almost all prefetch requests generated by
Berti are timely, while MLOP and IPCP produce a significant number of late
requests. IPCP does not use any mechanism to adapt the prefetch requests
timing to the miss latency, while MLOP and Berti do. However, Berti achieves
better timeliness than MLOP due to specific and timely deltas for each IP.

Coverage

Figure shows demand misses per kilo instructions (MPKI) at the L1D, L2,
and LLC with and without L1D prefetchers. Berti and IPCP achieve a similar
reduction of misses in L1D (8.7% in GAP, 33.4% in SPEC CPU2017) and
slightly higher than MLOP. However, Berti manages to eliminate more misses
than IPCP and MLOP at L2 and LLC due to its line preloading policy directed
by the L1D prefetcher. The biggest differences are observed in GAP, where
Berti reduces LLC demand misses by 17.7% and 12.4% compared to MLOP
and IPCP, respectively. Similarly, Berti reduces L2 demand misses by 6.7%
and 5.6% compared to MLOP and IPCP, respectively.

4.5.3 Multi-level Prefetching Performance

Figure shows the speedup achieved with the multi-level prefetching combi-
nations compared to a system with IP-stride. We select the best five multi-
level prefetching combinations out of all possible combinations of L1D and L2
prefetchers. Multi-level prefetching combinations do not offer a significant per-
formance boost. The best multi-level prefetching combinations without Berti
are MLOP+Bingo for SPEC CPU2017 and MLOP+SPP-PPF for GAP. In
both cases, these combinations achieve a similar speedup to Berti alone, with
a storage requirement 22 and 18 times higher, respectively. IPCP at L1D and
L2 (IPCP+IPCP), with a meager hardware budget as Berti, achieves a signif-
icantly lower speedup than Berti alone at the L1D, especially in GAP, with a
difference of 4.6%.

Adding a prefetcher at the L2 cache along with Berti at the L1D achieves a
moderate performance gain. The most significant gain is 2.0% and is obtained
with the Berti+Bingo configuration in the memory-intensive subset of SPEC
CPU2017 traces. Given the high hardware cost of the L2 prefetchers, the
configuration with Berti alone at the L1D seems to be a better design in terms
of performance and storage trade-off.

Coverage

Figure shows demand MPKIs at the L1D, L2, and LLC for the multi-level
prefetching combinations. We also show MPKIs without prefetching at L2 for
ease of analysis. MLOP+Bingo and MLOP+SPP-PPF decrease MPKI relative
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with multi-level prefetching.

to MLOP alone in both L2 and LLC consistently across all suites (maximum
reduction in MPKI from 13.8 to 11.7 at L2 for SPEC CPU2017). Adding a
prefetcher at L2 is less effective for IPCP and Berti. In both cases, MPKIs
at L2 and LLC decrease for SPEC CPU2017 but remain the same or even
increase slightly when working with the irregular access patterns of GAP. As a
result, the MPKIs at the L2 and LLC achieved by Berti at the L1D are always
better than those obtained by multi-level prefetchers with no Berti, except for
MLOP+Bingo in SPEC CPU2017.

4.5.4 Memory Hierarchy Traffic and Energy
Figure shows the traffic between the different levels of the memory hierarchy
(demand and prefetch requests) for different prefetching combinations normal-
ized to no prefetching. All prefetchers increase traffic as a result of the useless
blocks they request. For the systems with prefetcher only at the L1D, we can
observe how the traffic increase is inversely proportional to the prefetcher accu-
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Figure 4.19: L2, LLC and DRAM demand and prefetch traffic normalized to
no-prefetching

racy for SPEC CPU2017 (refer Figure ). Consequently, Berti is the prefetcher
with the lowest traffic increase at all levels. For GAP, MLOP increases traffic
marginally, despite its low accuracy, because it detects few patterns and gener-
ates scarce prefetch requests. Berti increases traffic with L2, LLC and DRAM
by 1.0%, 9.2% and 13.9% respectively, whereas IPCP increases traffic at these
three levels around 90%.

The L2 prefetchers Bingo and SPP-PPF added to MLOP and Berti on L1
significantly increase traffic with LLC and DRAM, especially at GAP due to
the irregular access patterns. MLOP+Bingo induces 69.0% additional off-chip
traffic compared to MLOP alone, while Berti+Bingo adds 67.2% additional
off-chip traffic compared to Berti alone.

Energy efficiency

Figure shows the average dynamic energy consumption in the memory hierar-
chy (L1D, L2, LLC, and DRAM) normalized to no prefetching. As expected,
there is a direct correlation between traffic and energy consumption overheads
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Figure 4.20: Dynamic energy consumption in the memory hierarchy normalized
to no-prefetching.

in the memory hierarchy. If we focus on the state-of-the-art L1D prefetch-
ers, Berti consumes the least extra energy for SPEC CPU2017 (9.0% vs. 29.1
and 30.1% for MLOP and IPCP), despite achieving the highest speedup (see
Figure ). As for GAP, the energy overheads of Berti and MLOP are similar
(14.3% vs. 14.2%), and significantly lower than for IPCP (86.9%). Berti is
the only prefetcher that manages to translate its dynamic energy increase into
speedup. The L2 Bingo and SPP-PPF prefetchers on top of MLOP and Berti
significantly increase energy consumption, especially in the case of Bingo for
GAP, with increases of over 60% with respect to MLOP and Berti alone.

4.5.5 Effect of Constrained DRAM Bandwidth
So far, we have considered the latest DDR5-6400 channel per four cores that
provides 6400 million transfers per second (MTPS) with a per-core DRAM
bandwidth of approx. 12.8 GBps. This Section evaluates prefetchers with
DRAM bandwidth configurations such as DDR4-3200 (MTPS of 3200) and
DDR3-1600 (MTPS of 1600) [28]. Figures and show the effect of DRAM
bandwidth on speedup for L1D and multi-level prefetching, respectively. When
moving from 6400 to 1600 MTPS, the performance loss is negligible for all
the prefetchers with GAP traces and moderate for SPEC CPU2017 traces
(maximum reduction of 4.1% with Berti and Berti+SPP-PPF).

4.5.6 CloudSuite Performance
Figure shows speedup with the CloudSuite benchmarks for L1D and multi-
level prefetching combinations. Classification is one benchmark where all
the prefetchers fail except Berti, thanks to its high prefetch accuracy. Note
that for some of the benchmarks like cloud9 and nutch, even an ideal L1D
prefetcher (L1D with a hit rate of 100%) fails to provide significant performance,
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Figure 4.22: Performance of multi-level prefetching in constrained DRAM band-
width, in MTPS.

which shows that there is limited scope for data prefetching. The primary
reason for this trend is that the L1D MPKI of CloudSuite without prefetch is
low: 6.9 on average, with a maximum of 14.5, while the average L1D MPKI
of SPEC and GAP is 42.2 and 83.6, respectively. On the other hand, the L1I
MPKI of CloudSuite traces are higher than SPEC and GAP traces.

4.5.7 Interaction With a Temporal Prefetcher
We simulate managed irregular stream buffer (MISB) prefetcher [158], a storage
efficient version of ISB [81] at L2 with MLOP, IPCP, and Berti at L1D, as
shown in Figure . ISB is an addresses correlation-based data prefetcher that
correlates cache accesses at a new indirection level named structural addresses
space. Berti with MISB improves the effectiveness of multi-level prefetching
for CloudSuite traces, in particular for Cassandra and Classification. For
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SPEC CPU2017 and GAP, MISB performs worse than SPP-PPF with MLOP
and Berti at the L1D. Note that the performance improvement with CloudSuite
comes with a storage overhead of 98 KB with MISB, out of which 32 KB is
used for the metadata cache and 17 KB for the Bloom filter.

4.5.8 Multi-core Performance

Figure shows speedup on a 4-core simulated system averaged across 200
randomly generated heterogeneous mixes based on memory-intensive SPEC
CPU2017 and GAP traces. Among the L1D prefetchers, Berti performs the
best with a performance improvement of 16.2%, outperforming both MLOP
and IPCP on average. There are only nine mixes in which MLOP and/or
IPCP gain more than 10% over Berti, and CactuBSSN is part of seven of these
mixes. Berti outperforms competing prefetchers for majority of the mixes that
do not have CactuBSSN. Overall, Berti performs better because in the case of
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Figure 4.25: Summary of multi-core speedups relative to a system with L1D
IP-stride prefetcher.

multicore systems, per core available DRAM bandwidth goes down because of
cross-core contention. Thanks to Berti’s timely and accurate deltas, it is still
able to deliver high coverage even in the presence of shared DRAM bandwidth
contention.

Berti at L1D also outperforms other multi-level prefetching combinations
making a strong case for Berti as an L1D-only prefetcher. Note that Berti
outperforms MLOP+Bingo, the combination of the second place and first place
prefetchers in the 4-core evaluations at the DPC-3.

4.5.9 Sensitivity to Design Choices

Effect of L1 and L2 watermarks

Figure shows the effect of L1 and L2 confidence watermarks on overall speedup
averaged across single-core SPEC CPU2017 and GAP benchmarks, normalized
to the baseline system. Our chosen watermarks, more than 65% for L1 and in
between 35% to 65% for L2 provide the sweet-spot in terms of prefetch accuracy
and prefetch coverage. Usage of extremely small or extremely large watermarks
affect both coverage and accuracy, and negatively affects speedup. Interestingly,
a large number of watermark configurations provide similar benefit in terms
of speedup. Our chosen high watermarks provide maximum speedup with the
maximum prefetch accuracy.

Effect of the size of Berti tables

Figure shows the effect of the size of the Berti tables (history table, table of
deltas, and the number of deltas) on speedup. Decreasing the size of the ta-
ble of deltas by a quarter degrades performance by 12.1%, whereas decreasing
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the number of deltas by a quarter reduces performance by 1.2%. Also, dou-
bling/quadrupling the size of the tables provides a marginal performance gain.
CactuBSSN is one outlier where increasing the table sizes to 1024 entries with
1024 sets improve performance by 22%.
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Effect of the latency counter

In our evaluations, we use a 12-bit latency counter per line at the L1D. When
we increase its size to 32 bits, performance is not improved. However, using a
small 4-bit timestamp, we see a performance drop from 1.16 to 1.07, and from
1.02 to 0.98, for SPEC CPU2017 and GAP, respectively.

Effect of cross-page prefetching

As Berti is an L1D prefetcher and operates on virtual addresses, it does cross-
page prefetching as long as prefetch requests get a hit in the STLB. To un-
derstand the utility of cross-page prefetching, we evaluate Berti, where we do
not issue prefetch requests (but keep training) that cross an OS page. We see
an average performance drop from 1.02 to 1.01 and 1.16 to 1.10 for GAP and
SPEC CPU2017 traces, respectively. The performance drop shows that most
of the deltas selected by Berti are within the OS page boundary of 4 KB.

4.6 Related Work

In section we presented a quantitative comparison of Berti with recent hard-
ware prefetching techniques [13, 88, 9, 137, 114]. In this Section we compare
other relevant prefetching techniques qualitatively.

4.6.1 Temporal Prefetchers

Temporal prefetchers track the temporal order of cache-line accesses (and not
the deltas) [85, 70, 81, 141, 151]. Temporal prefetchers usually demand hun-
dreds of KBs of storage, which demands the storage of prefetch metadata in
the off-chip memory. Some of the recent works on temporal prefetching are in
the pursuit of improving the storage overhead without affecting the prefetch
coverage [158, 157]. Berti, on the other hand, incurs a storage overhead of just
2.55 KB per core.

4.6.2 Spatial Prefetchers

Compared to temporal prefetchers, spatial prefetchers are lightweight in terms
of storage overhead and usually learn memory access patterns within a small
spatial region of a few KBs. Conventional prefetchers like stride [37] and
stream [71, 142] are already deployed on commercial processors. Timely Stride
prefetching improves the timeliness of conventional stride prefetchers [167].
However, it does not provide better prefetch coverage when compared with
state-of-the-art L1D and L2 prefetching techniques. Spatial prefetchers like
Spatial Memory Streaming (SMS) [142] (similar to Bingo) usually learn single
repeating deltas or bit patterns within a spatial region, where a set bit denotes
a cache line that should be prefetched. All these techniques do not consider
prefetch timeliness.
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Kill the program counter (KPC) proposes a holistic cache replacement and
prefetching framework [89]. However, the prefetching technique is similar to
SPP, with similar performance improvements as SPP. Multi-level adaptive
prefetching based on performance gradient tracking [129] (3rd place in DPC-
1 [2]) is one of the first proposals that propose a correlation between an IP and
delta sequences. DSPatch [12] tunes a hardware prefetcher based on available
DRAM bandwidth and selects memory access patterns based on prefetch accu-
racy (if the available DRAM bandwidth is low) and prefetch coverage (if the
available DRAM bandwidth is high). Overall, SPP-PPF performs marginally
better than SPP+DSPatch.

4.6.3 Machine Learning for Hardware Prefetching
Machine learning (ML) has been used for microarchitecture research, and ML
techniques for data prefetching have been proposed in recent years [11, 140]. In
ISCA 2021, a prefetching competition with ML techniques shows that non-ML
techniques still outperform with limited storage. However, ML techniques have
the potential to learn highly complex memory access patterns, and Pythia [11]
shows that with a high performing L2 prefetcher. Berti is an L1D prefetcher in
contrast to Pythia, and with Berti at the L1D, we find negligible performance
improvement with Pythia (less than 1%).

4.6.4 Prefetch Filters and Throttling Mechanisms
Similar to PPF [13] and DSPatch [12], there are proposals that control the
aggressiveness of prefetchers by controlling its prefetch degree and distance, or
decides whether to prefetch into the L2 or to the LLC [41, 6, 115, 117, 116, 62].
These techniques incur additional storage and perform well for conventional
prefetchers with low prefetch accuracy. However, with Berti, the accuracy is
significantly higher than prior prefetching techniques, and the implicit confi-
dence mechanism acts like a prefetch throttler.

4.7 Concluding Remarks

In this chapter we present Berti and made a case for an L1D prefetcher based
on local, timely deltas. Berti learns the best delta to prefetch, keeping time-
liness (in the form of time to prefetch an addresses) and prefetch accuracy in
mind. We showed that Berti could learn varieties of memory access patterns.
We quantified the effectiveness of Berti across SPEC CPU2017 and GAP work-
loads, and showed high prefetch accuracy and timely prefetching into the cache
hierarchy. On average, Berti outperforms state-of-the-art L1D and L2 prefetch-
ers. Berti is equally effective even in the constrained DRAM bandwidth sce-
narios and also for multi-core mixes. Berti consumes the least dynamic energy
at the memory hierarchy among all state-of-the-art prefetchers. In summary,
Berti provides high prefetch accuracy, timely prefetching, and good coverage
with a limited storage overhead of 2.55 KB per core.
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Chapter 5

Synchronization Strategies on Many-Core
Systems

Multicore processor design, ubiquitous in all market segments from cell phones
to supercomputers, has driven a paradigm shift in how applications are devel-
oped. If developers want to achieve the highest possible performance in an appli-
cation, it must be multithreaded to take advantage of the full compute capacity
of the system. Conventional inter-thread synchronization strategies using locks
have proven to be efficient in systems with a small number of cores/threads,
but they require considerable programming effort. In addition, at times of high
concurrency in shared resource access, they cause an invalidation storm that
consumes shared resources intensively, including access to several levels of the
hierarchy and the on-chip interconnection network. To facilitate this synchro-
nization, a new mechanism, transactional memory, appeared 30 years ago. This
mechanism promised to be an efficient and easy-to-use alternative to established
technologies. However, the increase in the number of cores per processor raises
questions about the scalability of all these strategies, mainly due to the satura-
tion of the shared resources. This chapter presents an extensive scalability study
of the most widely-used synchronization mechanisms in a many-core CMP sys-
tem, evaluating performance and latency. The experiments show that hardware
transactional memory (HTM) matches fine-grained locking performance and
scales better as the number of threads increases. We also analyze the impact
of simultaneous multithreading (SMT) technologies on HTM performance. We
propose a new cache replacement policy for L1D cache that takes into account
the states of each cache line and aims to mitigate SMT-induced transactional
overflow aborts.

5.1 Introduction

Improvements in manufacturing technology and the integration of a greater
number of cores have made multicore systems the norm for virtually all kinds
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of commodity computing devices, ranging from mobile to large-scale server ma-
chines. Currently the CPUs can reach hundreds of native threads, e.g. AMD
Rome with 128 threads [56] or IBM Power 10 with 120 threads [58]. In addi-
tion, it is common to have multiple sockets on a shared memory server, IBM
Power 10 allows up to 16 sockets sharing memory [58], which further increases
the number of threads available in the system. This paves the way for a higher
degree of parallelism and, thus, for better performance across concurrent ap-
plications. However, efficient concurrency comes at a price, oftentimes paid
in increased complexity for the synchronization mechanism. Classical synchro-
nization systems, such as fine-grained locks or lock-free mechanism, require an
in-depth understanding of the concurrent program’s structure and its internal
interactions to achieve good performance. This complexity leads to unsound
implementations, faulty executions, deadlocks. . .

In recent decades, a new synchronization paradigm has captured the in-
terest of the community: the transactional memory. TM proposes a simpler
way of reasoning about application concurrency. The concept of transactional
memory was introduced almost 30 years ago by Herlihy and Moss [66]. How-
ever, since no hardware infrastructure was readily available to provide TM,
software transactional memory (STM) was the first heavily studied category.
Its usefulness in real-life scenarios was fiercely disputed [21, 21]. In 2009 Sun
Microsystem [33] announced a multicore processor with support for HTM, since
then it has been progressively adopted by all major hardware vendors, quickly
becoming a hot topic.

Numerous studies have been performed on the performance of different syn-
chronization mechanisms: e.g., comparisons between TM systems [35], between
locking techniques [143] or even HTM versus classical locks and atomic prim-
itives [120]. However, there are no studies that analyze the scalability of all
synchronization mechanisms in many-core systems and quantify the impact of
SMT. This chapter aims to bridge this gap, with an extensive study on the
scalability of various synchronization mechanisms paying special attention to
the impact of SMT. Furthermore, while SMT is recognized as a limiting factor
for HTM performance [154], its impact is not clearly quantified and no solution
has been proposed to mitigate it.

The rest of the chapter is organized as follows: the next Section presents
the context of this work. Section evaluates the scalability of synchronization
mechanisms on data structures. Section presents a real-world use case of hard-
ware transitional memory, comparing its performance with fine-grain locks in
real workloads. Section studies the negative impact of SMT on hardware trans-
actional memory and presents a L1D cache replacement algorithm to mitigate
it. The chapter ends with related work, Section , and conclusions, Section .
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Table 5.1: Synchronization mechanisms with their benefits and drawbacks.
Non-portable stands for implementations that are dependent on the architec-
ture.

Mechanims Benefits Drawbacks
Locks Well-known, good performance Error prone, complex

Atomic Instructions Good performance Complex, non-portable
STM Ease-of-use Poor performance
HTM Good Performance, ease-of-use Limited, non-portable

5.2 Background on Synchronization Strategies

We evaluate the behavior and performance of four different synchronization
mechanisms: locks, atomic instructions, STM, and HTM. Table summarizes
the benefits and the drawbacks of these synchronization strategies.

5.2.1 Classical Strategies
Most parallel applications are implemented using locks or atomic instructions.
A lock controls the access to data regions shared by multiple threads. Pro-
grammers usually use multiple locks (fine-grain) to increase the parallelism
and performance of the applications. However, fine-grain locks require in-depth
knowledge of the application and errors such as deadlocks or race conditions
are not uncommon. Lock-free algorithms rely on atomic instructions, such
as compare-and-swap (CAS), to manage concurrency among threads. They
do not suffer from lack of scalability, but require extensive knowledge on the
underlying processor architecture and the program’s structure.

5.2.2 Transactional Memory
According to the literature [119], transactional memory seems to be a promising
mechanism for synchronizing processes. TM enables the programmer to mark
a section of code, specifying that it has to be executed as a transaction. The
TM system guarantees that transactions are executed atomically. TM presents
two main benefits over classical synchronization strategies: (1) ease-of-use,
while also avoiding well-known concurrency issues, such as race conditions;
(2) optimistic execution, allowing for a higher degree of parallelism.

Transactional memory comes in three flavors: software (STM), hardware
(HTM), and hybrid (a combination of both software and hardware). In gen-
eral, STM libraries [39, 38, 45, 45, 106, 34] instrument applications’ code
to detect and solve memory conflicts. The high flexibility given by its soft-
ware implementation is tarnished by its instrumentation performance overhead.
HTM [127, 128, 102, 164], on the other hand, aims to address this performance
concern, but its hardware constraints limit the flexibility of the solution. In
2009, Sun Microsystems was the first company to announce a multicore pro-
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cessor with HTM support, codenamed Rock [33]. Later, HTM support was im-
plemented in commercial processors by other hardware vendors, such as Intel
(starting with the Haswell family) and IBM (POWER [93], Blue Gene/Q [152],
the zSeries [79]).

Intel’s HTM implementation goes by the name of Transactional Synchro-
nization Extensions (TSX). It has two different interfaces: Intel Hardware Lock
Elision (HLE) and Intel Restricted Transactional Memory (RTM). Intel TSX
uses the cache hierarchy to track write and read-sets [61], and the coherence
protocol to detect conflicts at a cache-line granularity. It is a best-effort TM
system. Intel provides assembler-level instructions [76], e.g. XBEGIN, and intrin-
sics [77] for using RTM. These instructions and intrinsics provide information
to the user about the execution of the transaction: if it successes, if it fails,
reason for abort. . . . IBM provides a different HTM implementation in its
IBM POWER line of products. Instead of using the cache hierarchy directly
for tracking transactional read and write accesses, IBM implements a per-core
transactional buffer [47]. This buffer contains content-addressable memory and
it is linked to the L2 cache. With this transactional buffer in place, also called
TM-CAM, IBM machines allow for a 64-cache line transactional capacity. In
addition to this, another read tracking structure is made available for transac-
tions with large read sets. Finally, IBM introduces rollback-only transactions
(ROTs), which allow only for the write set to be tracked, reads being performed
non-transactionally. While this strategy significantly increases the capacity per
transaction, it also fails to provide strong consistency guarantees. More pre-
cisely, read-write conflicts are not guaranteed to be detected, potentially leading
to incorrect outcomes unless used as recommended [72]. Intel TSX and IBM’s
implementation is a best-effort TM system.

Best-effort TM system does not guarantee that a hardware transaction will
ever commit. Since hardware transaction can fail for multiple reasons: a line
written in a transaction is written or read by another thread (conflict), hard-
ware frameworks do not have enough capacity to track read/write sets (capac-
ity), purposely cancelled by the developer (explicit), . . . The developers need
for a software fallback to provide progress using another synchronization mech-
anism. Most often, a global lock is used inside the fallback path, but more com-
plex fine-grained locking schemes can be exploited for added efficiency [20, 125].
There are several considerations when providing a transactional fallback-path.
On the one hand, the abort reason needs to be taken into account when de-
ciding whether the transaction should be restarted, depending on the chances
of commit on a retry. On the other hand, the number of retries needs to be
well-balanced: if there are too few retries, the transaction may be serialized
prematurely; if there are too many, the eventual commit may not amortize the
cost of the rollbacks. Finally, a back-off time may be inserted between retries,
in order to reduce conflicts.
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Table 5.2: Main characteristics of the workstation used in the evaluation.

Processor 2×Intel Xeon Gold 6238T
Threads 2× 44 (88)
Family Cascade Lake
Speed 1.9GHz
Cores 2× 22 (44)

TurboBoost No
L1D 32KiB 8-way
L2 1MiB 16-way

LLC 22×1.375MiB 11-way
Mem 192GiB 6 channels
OS Ubuntu 20.04

Kernel 5.4.0
NUMA policy Default

Governor Performance
Compiler GCC 9.3.0

5.3 Scalability Analysis of Synchronization Mechanisms

This sections presents the scalability study of the syncronization strategies on
a many-core system in terms of application throughput and operation latency.
We focus on two widely-used concurrent data structures, a hash-table and a
binary search tree, representing typical building blocks in the development of
large-scale systems. We implement them with four different synchronization
mechanisms: atomic primitives [60, 68], fine-grain locks [63], STM (TinySTM
engine), and HTM (Intel RTM). All implementations are optimized, avoiding
typical parallel applications issues such as false-sharing, and are lock-free for
lookup operations1.

5.3.1 Experimental Setup and Methodology
System description. Experimentation has been performed on a server with
two Intel Xeon Gold 6238T (Cascade Lake). Each CPU has 22 cores that can
execute up to 44 threads. In total our system can run up to 88 threads, with
a 192 GiB main memory distributed in 6 channels and shared among all the
threads in a non-uniform memory access configuration (NUMA). The server
runs Ubuntu 22.04 with kernel 5.4.0. We use the default NUMA policy and
the power governor is set to performance. Table summarizes our experimental
setup.

Software implementation details. We implement the HTM version
we use C/C++ intrinsics, a global spin-lock without back-off as fallback, and

1The code is available at: https://github.com/agusnt/
Synchronization-Strategies-on-Many-Core-SMT-Systems
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a maximum of 10 retries before jumping to the fallback path. This is the
simplest and most common fallback path implementation. This strategy gives
us a lower-bound on HTM performance. In addition to this, we follow the
recommendations laid out by Intel [75] and Bonnichsen et al. [17] to increase
the chances of commit: small transactions, no system calls inside a transaction,
and small memory footprint.

The lock-based version uses standard pthread mutex locks to synchronize
its critical sections. According to the extensive study on lock algorithms done
by Guiroux et al. [54], Pthread locks are amongst the best performing locking
structures for a variety of applications. We thus decide to rely on this im-
plementation, rather than incurring extra overhead from a lock interposition
library such as LiTL [53] or introducing unneeded complexity from a home-
brewed locking algorithm. The lock-free version relies on compare and swap
instruction.

Workloads. We evaluate the concurrent data structures with three differ-
ent workloads: (1) 100% lookup operations; (2) 80% lookups and 20% updates
(10% insertions and 10% deletions); and (3) 50% lookups and 50% updates
(25% insertions and 25% deletions). For brevity, we call these workloads Al-
lLookup, Update20, and Update50, respectively. The workloads consist of 226

predefined operations. To minimize execution variability, the sequence of oper-
ations is the same in all experiments, regardless of synchronization mechanism.
The data structures are populated before each experiment with previously-
generated random elements: 218 for the hash-table and 217 for the binary
search tree.

Each workload is executed several times by varying the number of threads.
The threads are distributed so that they occupy as many cores as possible. In
experiments on up to 44 threads, we pin each thread to the first logical core
on each NUMA node in turn. Above this thread count, we move to the second
logical core and continue pinning the threads in the same order as before on
each NUMA node.

Metrics. For the analysis we rely on three metrics: (i) throughput mea-
sured in operations per second (performance), (ii) latency defined as the time
it takes for an operation to be executed, and (iii) HTM events as the percent-
age of transactions committed and aborted, the abort rate being further split
according to the abort reason.

For the evaluation of throughput and HTM events, we execute each exper-
iment <synchronization method, workload, thread count> 11 times and take
the median of all executions. The latency analysis is based on all latency data
points per workload execution, on 88 threads. For simplicity and readability,
we present the data from a single run per implementation, but note that the
results are consistent over multiple runs.
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5.3.2 Concurrent Hash-Table

We implement a fixed-size hash-table with 217 buckets. In order to solve po-
tential key conflicts, each bucket contains a sorted linked-list of keys.

Throughput. We first compare the four different hash-table implementa-
tions in terms of throughput. Figure shows the throughput in Million Oper-
ations Per Second (MOPS) on the Y axis and the number of threads on the
X axis. The vertical lines mark the following transitions of interest: (1) from
22 to 23 threads, i.e., from using one processor to two processors; (2) from
44 to 45 threads, i.e., from no SMT to using SMT on the first processor; and
(3) from 66 to 67 threads, i.e., from no SMT on the second processor to using
SMT on both processors. The relative standard deviation is 5.4% on average
across all workloads, contention levels and implementations, with a maximum
of 18%. Only 6 datasets out of 108 present outliers (one dataset being com-
posed of all 11 results of an experiment). More precisely, in all cases there is
at most one outlier, which we believe is due to an anomaly on the machine
where experiments were running. The outliers were computed with the zscore
function.

From a performance perspective, there is no clear winner across all imple-
mentations, workloads and number of threads. For the AllLookup workload,
all versions behave similarly, since they are all equally lock-free. The slight
quantitative dissimilarity between the lines in the graph is explained by the
inherent differences in the implementation of the concurrent algorithms.

The Update20 workload shows comparable throughput for the lock-free,
fine-grained locking, and HTM implementations. All three synchronization
mechanisms scale with the number of threads. Starting with 45 threads, HTM
performs better than the classical methods. On 88 threads, HTM achieves 18%
and 27% higher throughput than the fine-grained locking version and the lock-
free implementation, respectively. STM is the only synchronization mechanism
not able to scale further than 22 threads. On 88 threads, the use of STM leads
to a performance degradation of more than 5x on average compared to the other
versions, mainly because of the overhead of instrumenting all memory accesses.
We observe a performance drop (9% on average) across all implementations
when we start using the second processor (in both transition points, 22 – 23
threads and 66 – 67 threads, respectively). The communication between the
two processors and its impact on the cache can explain this behavior. Using
the second set of logical cores (i.e., 45 threads and more), on the other hand,
has a visible impact only on the lock-free and locking implementations.

In contrast, the more contended workload, Update50, has a bigger impact
on performance. Up to the point where the second logical core starts being
used, all synchronization mechanisms except STM follow the same trend with
similar throughput. While HTM continues to scale on more than 45 threads,
the lock-free and fine-grained locking versions stop scaling at 44 threads and
their throughput starts decreasing when running on more than 66 threads.
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Figure 5.1: Throughput of the different synchronization mechanisms on a con-
current hash-table.

When the second logical core on the second NUMA node is used (transition
point (3)), the performance of the HTM-based implementation has a drop of
∼ 11% and the throughput starts decreasing. As with the Update20 workload,
the STM version does not scale after 22 threads. In addition, this experiment
reveals the same performance drops at the transition points of interest, with
the HTM version having also a negative spike at transition point (2). We
attribute this to the increased contention between transactions that have to
share the same core.

In conclusion, the implementation using HTM as synchronization benefits
of more parallelism, in contended scenarios in particular. While the scaling
slows down after 66 threads in our configuration, it still shows 30% to 60%
higher throughput than the fine-grained locking and, respectively, the lock-free
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versions.
Latency. We measure the latency of each operation with the rdtsc instruc-

tion and remove outliers with the zscore function. We represent the latency
of update operations on 88 threads with a CDF in Figure . The Y axis shows
the fraction of operations that execute in less than xµs (X axis, logarithmic
scale). The vertical lines indicate the maximum measured value for a given
implementation.
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Figure 5.2: Update operation latency (88 threads) for the synchronization
mechanisms on a concurrent hash-table.

Lock-free, fine-grained locking, and HTM implementations present a long
tail, more prominent for the update-intensive workload (Update50 ). HTM al-
ways has lower tail-latency than the classical synchronization mechanisms. The
lock-free implementation consistently shows a considerably larger tail-latency
than HTM and lock-based versions. Many threads spinning on the same atomic
primitive (e.g., CAS) in order to perform update operations can explain this re-
sult. Thus, on the Update20 workload, the tail-latency of the HTM version is 2x
lower than that of fine-grained locking, and 10x lower than that of the lock-free
implementation. The tail-latency for these three synchronization mechanisms
becomes comparable on an update-intensive workload, such as Update50.

In contrast, the STM implementation has a short tail, but 99% of opera-
tions take one order of magnitude longer than the other three synchronization
mechanisms for the same interval. We believe this is due to our STM config-
uration: transactions abort immediately on conflict, and the write-set imple-
mentation facilitates low-overhead aborts and high-overhead commits. Thus,
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in both workloads, less than 30% of the STM operations are executed in under
3 ţs, as opposed to 97% for the other synchronization methods.

HTM events. Figure shows the fraction of committed and aborted trans-
actions on the Y axis and the number of threads on the X axis. The abort rate
is further split into multiple abort causes: capacity aborts (physical limitation
to the size of the transaction), conflict aborts (concurrent accesses to the same
memory address), and other (explicit aborts when encountering an already-
acquired lock or system-level interrupts, debug instructions, I/O operations).
We only show these fractions for the mixed workloads (Update20 and Update50 )
because the lookup operations alone do not perform any transactions.
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Figure 5.3: HTM events of the different synchronization mechanisms on a
concurrent hash-table.

Almost all transactional aborts are due to memory conflicts. Most of them
are generated by the interaction with the global lock employed in the fallback
path. More precisely, all transactions monitor the state of the global lock; if
one transaction repeatedly aborts for any reason and takes the fallback path,
it acquires the lock, changing its state; this state change conflicts with the
monitored value in all other running transactions, causing them to abort. The
ratio of conflict aborts increases with the number of threads in both workloads
(e.g., from 12% on 23 threads to 35% on 88 threads for Update20 ). However, we
observe a lower abort rate for the update-intensive workload than for Update20.
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Figure 5.4: Global fallback lock vs. per-bucket fallback lock.

We believe this is due to the fact that part of the delete operations will not
hit an existing element in the hash-table, while the insert operations will keep
adding elements. Iterating over a larger data structure favors more and longer
transaction-free lookups and, thus, fewer opportunities for conflict.

There are two main factors that lead to infrequent aborts in the other
categories for this application: first, we avoid overflows by carefully planning
the contents of the transactional regions and taking into account HTM size
limitations; second, our hash-table implementation follows closely the afore-
mentioned Intel guidelines, thus avoiding aborts due to unfriendly instructions.
We further discuss an optimization for the fallback algorithm.

HTM fallback discussion. To avoid restarting all running transactions
every time a thread takes the fallback path, a more fine-grained approach can
be implemented. This may represent a convenient trade-off between simplicity
and performance, depending on the application. In the case of a concurrent
hash-table, this optimization is easily achievable by replacing the global lock
in the fallback path with a per-bucket lock. This reduces the set of conflicting
transactions to only the potential few that are accessing the same bucket. An
even finer-grained approach (e.g., per-object lock) would significantly increase
the complexity of the code with negligible performance improvement.

We briefly evaluate the fallback path optimization. Figure compares the
throughput of the two approaches, using a global and a per-bucket lock, on
the Update50 workload. We observe up to 2x throughput improvement (on 22
threads) and 62% higher throughput on 88 threads. Moreover, while the perfor-
mance of the two implementations follows the same trend, we note the lack of
negative spike at transition point (2) for the per-bucket approach. Statistics on
HTM events show a drastic reduction of conflict aborts, which are consistently
under 1%.
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5.3.3 Concurrent Binary Search Tree

We evaluated the BST following the same methodology applied to the hash-
table. The BST results confirm the findings from Section and are illustrated
in Figures , , and .

Throughput. Overall, the measurements performed on the BST show
more variability than those of the hash-table. The relative standard deviation
is 8.5% in average across all workloads, contention levels and implementations
of the tree data structure, with a maximum of 32%. We found and excluded a
total of 3 outliers over all datasets with the zscore function.
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Figure 5.5: Throughput of the different synchronization mechanisms on a con-
current BST.

As before, the STM implementation consistently shows the worst perfor-
mance, see Figure . For the Update20 workload, the fine-grained locking im-
plementation provides the highest throughput across the entire thread range.
At transition point (3), the locking implementation’s scaling starts to slow
down, while the HTM and lock-free versions continue to scale constantly. On
88 threads, all versions have comparable performance. By contrast, the update-
intensive workload shows similar throughput for these three implementations
throughout the experiment. The locking version stops scaling at transition
point (2), when the second logical core is enabled. Similarly, the lock-free
implementation does not scale over 65 threads. The HTM version scales con-
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stantly until 88 threads, where it provides 53% better throughput than the
lock-based version and 37% better than the lock-free one.

The state at transition points generally follows the same pattern as in the
hash-table experiment. It is less prominent for the HTM-based implementation.
The classical synchronization versions do not have a visible performance drop
at transition point (3) for less contended scenarios.

Latency. Consistent with the results in the hash-table experiment, HTM
exhibits tail-latency comparable to fine-grained locking, regardless of workload.
The tail-latency for the lock-free implementation varies significantly with con-
tention: it is 8x larger than that of the HTM version on the update-intensive
workload, and 2x lower on the less contended one. We believe this variation
comes from the nature of the lock-free algorithm. Since an updating thread is
not blocking the portion of the tree it is working on, it may need to repeatedly
return and restart its subtree traversal if other threads manage to change the
values and the placement of the nodes before it applies its update. The update-
intensive workload increases the chances that multiple back and forth iterations
will take place for any update operation, thus resulting in the observed long
tail, see Figure .
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Figure 5.6: Operation latency (88 threads) of the different synchronization
mechanisms on a concurrent BST.

Another interesting behavior is presented by STM. Generally, when im-
plementing concurrent data structures with STM, each operation is entirely
encapsulated in a software transaction. Thus, operations have higher latency
for a more complex tree structure, e.g., if a tree traversal is needed, than for a
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hash-table. As such, in this scenario, STM presents between 4x and 10x higher
tail-latency than HTM, depending on the workload. Moreover, 90% of STM
operations still take at least 3 times longer than those of other versions for the
same interval.

HTM events. Figure shows the ratios of transactional commits and
aborts for different degrees of contention. The breakdown on abort types re-
veals a majority of conflict aborts. We explain this in the same way as for the
hash-table. Similarly, we observe a lower abort rate for the update-intensive
workload than for the Update20 workload. This is consistent with our observa-
tions on the concurrent hash-table.
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Figure 5.7: HTM events of the different synchronization mechanisms on a
concurrent BST.

5.4 Case Study: HTM Ease-of-Use

In this section, we compare the performance of fine-grain locks and HTM on
realistic workloads. PARSEC 3.0 [14] is one of the most widely-used benchmark
suites for evaluating multicore systems. It consists of 13 scientific real-world
parallel applications.

The benchmarks being originally synchronized with a locking mechanism,
the strategy we adopt for HTM synchronization is lock-elision, to allow for
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Figure 5.8: HTM and fine-grained locking evaluation on PARSEC 3.0 bench-
marks.

backward compatibility and minimal code modifications. Since we want to
compare lock performance against HTM, we use glibc GNU/Linux glibc li-
brary. The glibc library of GNU/Linux has a readily integrated version of
HTM lock-elision, which can be enabled by setting the GLIBC_TUNABLES en-
vironment variable to glibc.elision.enable=1. The glibc implementation
uses Intel RTM for performance and flexibility reasons [69]. This mechanism
allows us to evaluate HTM in the context of a highly-optimized benchmark
suite without minimal code modifications. We also modify the glibc library to
retrieve the abort reason of failed transactions.

We select seven benchmarks from the PARSEC 3.0 suite to drive our exper-
iments: bodytrack, dedup, facesim, ferret, fluidanimate, streamcluster,
and vips. We choose this subset because the benchmarks use numerous lock-
based synchronization points (> 100) [15]. These locks are then being elided
in the HTM version, providing us with sufficient information to analyze the
HTM behavior. We exclude the x264 benchmark due to runtime errors on our
setup. All benchmarks are compiled with the recommended flags. We execute
each benchmark three times using the native input files and take the median
value.

Figure shows the speed-ups achieved by our subset of benchmarks for
different numbers of threads. We set the maximum value on the Y axis at 60
for all plots in order to facilitate a direct comparison between the graphs in the
figure. All benchmarks are executed on up to 88 threads, except for facesim
and fluidanimate which only allow powers of two as input for the number
of threads. Overall, HTM performance is on par with highly-optimized fine-
grained locking. Only three of the PARSEC 3.0 benchmarks in our subset show
a non-negligible difference between the standard version (fine-grain locks) and
the HTM version (lock-elision). More precisely, in fluidanimate fine-grain
locks perform slightly better (around 2% better on 64 threads) than the HTM
version. In contrast, the vips benchmark exhibits better speed-up (1% on
66 threads) when using HTM. Streamcluster shows a more acute difference
in HTM’s favor (7% better speed-up on 44 threads, going up to 71% on 88

121



threads).

5.5 SMT Impact on HTM Capacity Aborts

Most HTM implementations use the cache hierarchy to track their read and
write sets. With SMT enabled, threads running on the same core share the
private cache resources. When transactions are involved, this translates to a
significant reduction in the working-set size limit of the transactions [154]. This
is typically reflected by an increase in capacity aborts. Moreover, the impact
is more prominent with the increasing number of hardware threads per core.

In this work, we aim to quantify the SMT impact on real-world applications.
To this end, we measure the capacity aborts of PARSEC 3.0 benchmarks using
lock-elision. As opposed to the applications in Section , manually optimized
with respect to the contents of the transactions, this analysis addresses trans-
actional behavior in realistic scenarios, where transactional contents cannot be
controlled or planned. While the number of capacity and random aborts was
negligible in the concurrent data structures execution, we expect an increase
in the rate of these categories when running real applications. We start with
the subset presented in Section . We use two SMT threads per core in our
experiments. The applications are executed without and with SMT (we pin
one and two threads per core, respectively). We analyze the distribution of
aborts with the no-SMT and SMT versions.

5.5.1 Evaluation
Figure shows the number of HTM aborts in the PARSEC 3.0 benchmarks.
The abort reasons are split in three categories: capacity, conflict, and other.
The latter contains explicit aborts and random aborts due to unfriendly instruc-
tions or OS interference. Most benchmarks are dominated by conflict aborts.
Two applications show a significant amount of capacity aborts: dedup, with up
to 21% and vips, with up to 11%, of all transactional aborts. These bench-
marks have one particular property in common: they access large memory areas
in the critical sections, i.e., inside transactions. More precisely, they process
chunks of data for (de)compression and image transformation. In contrast, the
other benchmarks in the suite employ HTM mainly for synchronizing access to
shared flags and variables. As such, we will further focus on the subset of two
applications that need large cache capacity to store their transactional working
set.

Figure shows the number of capacity aborts per giga-instruction for dif-
ferent numbers of threads, with and without SMT. We illustrate the ratio
between the two versions (SMT and no-SMT) with numbers above the bars.
When using SMT, both benchmarks show a considerable increase in capacity
aborts regardless of thread count. For dedup the maximum impact is recorded
on 16 threads, with 16x more capacity aborts when using SMT. Vips shows
a dramatic 69x increase in capacity aborts on two threads for the SMT ver-
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Figure 5.9: Number of aborts per category in the Parsec 3.0 suite with SMT.

sion. This ratio decreases with the increasing number of threads down to 3x.
We believe this is due to increased thread contention that favors transactional
conflict aborts before the tracking structures overflow.

In conclusion, we have observed that SMT can cause a significant increase
in the number of aborted transactions due to lack of resources. This holds true
even for carefully designed applications such as those of the PARSEC 3.0 suite.
This issue can be much more critical in other areas. Wang et al. [154] have
shown that for in-memory databases capacity aborts are a limiting factor.
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5.5.2 Transaction-Aware Replacement Algorithm
We present Transaction-Aware (TA) replacement algorithm, a novel mechanism
that mitigates the negative effects of SMT on capacity abort rate. We build our
solution on top of the Least Recently Used (LRU) replacement algorithm and
call it TA-LRU. As shown in Section , SMT increases the number of capacity
aborts. The main idea of TA-LRU is to protect the cache lines involved in
transactions, and thus mitigate the SMT effect.

The classical LRU algorithm evicts the least recently used cache line when
no more space is available in the cache. It does not take into account whether
the selected cache line is used in a transaction. By contrast, our TA-LRU algo-
rithm avoids evicting cache lines involved in a transaction unless it is strictly
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necessary. TA-LRU works as follows: let us assume that the cache contains
lines L1 to Ln, with L1 being the most recently used and Ln, the least recently
used. Ln is also used in a transaction. When a new line has to be brought into
the cache, classical LRU would evict Ln, therefore causing a capacity abort
for the running transaction. TA-LRU, on the other hand, will evict the least
recently used line that is not used in a transaction, keeping Ln stored in the
cache.

Our solution does not need any extra hardware. Typically, in HTM imple-
mentations, the cache lines are annotated with two bits to track read/write
accesses. TA-LRU simply ORs the two bits. If the result of this operation is 0,
i.e., none of the bits is set, it means that the current cache line is not involved
in a transaction and can be evicted without any side effects on performance. If
any of the bits is set, the algorithm moves to the next candidate in LRU order.
Our solution can be integrated with any cache replacement algorithm.

While the TA-LRU selection process for an eviction candidate does not
have any overhead compared to standard LRU, the algorithm may not be as
effective at choosing the best victim. Some of the least-recently used entries
will potentially be marked as transactional and avoided, leading to the eviction
of more recent entries. In other words, some of the cache entries that may have
been reused in the future with standard LRU, may be evicted with TA-LRU. In
the worst case scenario, all lines can be involved in transactions, leading to the
eviction of the least recently used transactional line and the subsequent abort of
the corresponding transaction. We perform a preliminary overhead assessment
in Section and leave the complete evaluation on real-world applications as
future work.

5.5.3 TA-LRU Prototype

We evaluate our proposal in gem5 [16] using the only HTM implementation cur-
rently available in the simulator, the Transactional Memory Extension (TME)
for the ARM architecture. The incipient state of the TME implementation in
gem5 significantly limits the performance of any executed transactional work-
load and hinders the evaluation. Presented with these limitations, we propose
an initial TA-LRU prototype, with the goal of assessing its potential.

We implement and test our prototype in a one-core out-of-order superscalar
ARM processor that can execute two threads simultaneously. We use the De-
rivO3CPU type. The threads share 32KiB L1 data and instruction caches
(8-way), a 1MiB L2 cache (16-way), and a 2MiB LLC (16-way). All cache
levels are inclusive.

We evaluate our proposal on a synthetic microbenchmarks designed to stress
stress transactional capacity and generate overflows aborts. The microbench-
mark executes two concurrent threads that access two arrays: one smaller and,
respectively, one larger in size than the L1 data cache. One thread starts a
transaction, iterates over the smaller array, reading and updating the elements,
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and commits the transaction. The other thread simply iterates over the larger
array, thus polluting the cache and affecting the working-set size limit of the
transactional workload.

With TA-LRU we observe a 16x reduction in capacity aborts compared to
classical LRU. More precisely, only 3% of the started transactions abort due
to capacity overflow when using TA-LRU, as opposed to 53% for LRU. We fur-
ther measure the performance in cycles per instruction (CPI). The thread that
executes the transactional workload shows 2% performance improvement with
TA-LRU. We also look at the potential overhead of our solution, by measuring
the slow-down of the non-transactional thread. We find that the performance
loss is under 1%. Finally, we analyze the number of cache misses in L1, as
indicator for the impact of TA-LRU on caching. We measure an overhead of
6.25% for TA-LRU.

5.6 Related Work

There is extensive literature on synchronization mechanisms scalability. Guiroux
et al. [54] compare the performance of 27 lock algorithms on 35 real-world large-
scale applications on many-core systems. On the same note, Rico et al. [131]
present an extensive scalability study on 4 STM libraries. Similarly, Brown
et al. [18] analyze HTM performance on a many-core NUMA system (up to
72 threads), formulating guidelines on efficient use of HTM in a many-socket
setup. All these works focus on a single synchronization strategy and make
a deep-dive into its scalability performance and issues. By contrast, our work
compares all major classes of synchronization mechanisms in order to provide a
broader picture on their performance in a many-core context (up to 88 threads).

Only a few studies perform a direct comparison between synchronization
methods. Park et al. [120] and Schindewolf et al. [135] experiment with HTM,
locks and atomic primitives on a 64-thread setup, both using a synthetic mi-
crobenchmark suite that emulates HPC applications. Our work also brings
STM into the equation and evaluates scalability on widely-used concurrent
data structures. Yoo et al. [165] address the same synchronization mechanisms
as us, but on a very low thread count. In addition, we analyze the evolution
of HTM events with the increasing number of threads and provide a detailed
breakdown on commits and various abort types.

Nakaike et al. [105] and Dice et al. [33] provide an in-depth characterization
of HTM for different HTM implementations. While their analyses go into great
architectural detail, they do not study the SMT impact on the working-set size
limit of transactions. Hasenplaugh et al. [61] and Wang et al. [154] briefly
look at capacity aborts in SMT systems, but do not go as far as proposing
a solution to mitigate SMT effects on HTM performance. The recent work
of Cai et al. [19] aims to shed some light on the way in which transactional
structures are tracked in hardware and on the impact of the replacement policy
on capacity aborts. They find that flushing or warming the cache maximizes
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the read-set capacity of a transaction. They do not investigate the impact of
SMT in this context.

5.7 Concluding Remarks

This chapter presents an extensive study on the scalability of various synchro-
nization mechanisms. It departs from the state-of-the-art by: including all
major forms of synchronization, from typical locking schemes to emerging tech-
nologies like HTM; evaluating them in the context of many-core systems; and
quantifying the impact of SMT on HTM performance.

For the scalability evaluation, we experiment with two concurrent data-
structures, a hash-table and a binary search tree, and workloads with various
degrees of contention. We find that, in terms of throughput and latency, STM
is lagging behind because of its considerable instrumentation overhead. In con-
trast, HTM matches lock-free and fine-grained locking performance and scales
better as the number of threads increases. Since our HTM-based implemen-
tation uses the simplest and most common version of a fallback path, relying
on a global lock, these results represent a lower bound for HTM scalability.
We note that careful planning of the fallback contents can substantially reduce
transactional conflicts and boost the performance.

Going further, we compare the performance of fine-grain locks and HTM on
a widely-used benchmark suite consisting of real-world scientific applications,
namely PARSEC 3.0. At the same time, we make the case of HTM adoption,
showing on the PARSEC benchmarks how easy it is to obtain comparable
performance to that of a highly-optimized locking scheme by simply flipping
the value of a flag in the glibc library.

Finally, we analyze the impact of SMT on HTM performance. We find that
enabling SMT for applications that access large blocks of memory inside their
critical sections, considerably affects HTM commit-rate. SMT reduces the avail-
able resources per transaction, resulting in repeated capacity overflow aborts.
We propose Transaction-Aware LRU (TA-LRU), a novel cache replacement al-
gorithm that aims to mitigate the negative effects of SMT on transactional
capacity abort rate. Our prototype reduces aborts in this category by a factor
of 16.
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Chapter 6

Conclusions and Future Work

This last chapter summarizes the main conclusions of this dissertation and
suggests future lines of research based on the contributions presented herein.

6.1 Conclusions

This dissertation explores new approaches to improve the efficiency in the use
of shared resources in the memory hierarchy of a multicore processor, from
different levels ranging from hardware to application.

First, we have evaluated the memory hierarchy performance for two SPEC
suites, CPU2006 and CPU2017, on an Intel Xeon Skylake-SP. We have drawn
the following conclusions from this work:

• A significant number of the benchmarks have very low miss ratios in the
second and third level caches, even when reducing their available space
in the LLC and disabling hardware prefetch. It is remarkable that the
resource demand of the CPU2017 memory hierarchy is lower than that
of the CPU2006.

• Space utilization in the SLLC is uneven among applications. Increasing
the available capacity translates into reductions in cache misses in very
different magnitudes depending on the application. Likewise, reductions
in miss rates translate into very different performance improvements.

• Hardware prefetching significantly reduces cache misses and increases per-
formance for most benchmarks, even when cache capacity is limited.

• Current methodologies for obtaining simulation points do not guarantee
representative workloads regarding the use of the memory hierarchy.

Next, we characterize the relationship between cache occupation, hardware
prefetch and memory bandwidth consumption to understand their interactions.
This characterization has allowed us to obtain several new interesting findings:
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• Some applications hardly change their performance when their allocated
space in LLC decreases, but significantly increase their memory band-
width consumption, negatively affecting system performance.

• When running multiprogrammed workloads, it is common for the traffic
generated by memory requests to congest the DRAM channels. This re-
sults in high memory latencies, which in turn affects application execution
time.

• Main memory traffic is a poor indicator for assessing memory access con-
tention, especially when reaching the congestion point. Memory access
latency is a better indicator.

From this characterization work, we have proposed Balancer, a mechanism
that imposes limits on the use of LLC space and memory traffic to specific
applications. These restrictions improve the performance and/or fairness of
multiprogrammed workloads compared to an uncontrolled system. Balancer
does not require hardware or operating system modifications. It takes advan-
tage of AMD QoSE, a feature of AMD Rome processors that allows the user
to distribute SLLC and main memory bandwidth among different threads.

As we have highlighted in the previous characterizations, data prefetching
is a technique that plays a crucial role in modern high-performance processors
by hiding long latency memory accesses and improving performance. However,
these prefetchers load a large number of useless blocks, ranging from 22.6%
to 35.1% for SPEC CPU2017, and reaching 80.2% for programs with more
irregular patterns such as those of the GAP suite. This results in an unneces-
sary increase in the consumption of shared and scarce resources such as cache
space and memory bandwidth. In this dissertation, we show that the detection
of timely local deltas along with a precise mechanism to compute the local
coverage of the detected deltas leads to a high accurate prefetcher that out-
performs the state-of the art prefetchers presented in the recent prefetching
championships, both for SPEC CPU2017 and GAP workloads. The proposal,
Berti, is an L1D prefetcher that orchestrates its requests across the whole cache
hierarchy. Due to its high accuracy (almost 90%), Berti neither pollutes the
caches nor wastes memory hierarchy bandwidth. Finally, Berti incurs a storage
overhead of only 2.55 KB.

Synchronization between threads of the same application is another context
in which there may also be a high demand for shared resources in the memory
hierarchy as the number of cores per processor increases. Classical solutions,
such as fine-grained locks or lock-free algorithms, provide good performance
in systems with a small number of cores, in exchange for high complexity.
Transactional memory was proposed to achieve similar or better performance
than classical synchronization solutions with ease of use. However, the increase
in the number of cores per processor demands an analysis of the scalability of all
these strategies. This dissertation presents an extensive study on the scalability
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of various synchronization mechanisms, from which the following conclusions
can be drawn:

• In terms of throughput and latency, software transactional memory is
lagging behind the other strategies because of its considerable instrumen-
tation overhead. In contrast, hardware transactional memory matches
lock-free and fine-grained locking performance and scales better as the
number of threads increases.

• Careful planning of the fallback contents can substantially reduce trans-
actional conflicts and boost the performance.

• HTM adoption is easy in scientific applications and it obtains compara-
ble performance to that of a highly-optimized locking scheme by simply
flipping the value of a flag in the glibc library.

• Enabling simultaneous multithreading (SMT) for applications that access
large blocks of memory inside their critical sections considerably affects
HTM commit-rate.

• Transaction-Aware LRU (TA-LRU), a novel cache replacement algorithm
that aims to mitigate the negative effects of SMT on transactional capac-
ity abort rate, can reduce aborts in this category by a factor of 16.

Our proposals improve the existing knowledge and enable more efficient use
of the memory hierarchy at different levels of a computer system: application,
runtime, and microarchitecture.

6.2 Future work

From this thesis new and promising lines of research are opening up:

• The IBM Power family of processors follows a different organization than
the ones analyzed in this work, since it uses a smaller number of cores
but with a much higher number of threads per core. This shift implies
increased pressure on shared resources that were previously considered
private, such as the first levels of cache. Characterizing the behavior
of the applications and memory hierarchy on these new processors may
allow us to identify potential bottlenecks.

• Balancer uses the mechanisms available in AMD EPYC as actuators:
limiting the available space in SLLC and limiting the bandwidth with
main memory. Intel processors allow to selectively switch off the data
prefetchers while IBM processors allow to modify different parameters of
the hardware prefetching, such as its aggressiveness. This opens up the
possibility of developing new system resource management mechanisms
using these tools.
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• Hardware prefetching, despite being a topic that has been extensively
studied by the community for years, still has potential to be exploited.
TLB prefetching or the use of several types of prefetchers simultaneously
from L1D can push the limits of hardware prefetching.
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6.3 Conclusiones y Trabajo Futuro

Este último capítulo resume las principales conclusiones de esta tesis y sugiere
futuras líneas de investigación basadas en las aportaciones aquí presentadas.

6.3.1 Conclusiones
Esta tesis explora nuevos enfoques para mejorar la eficiencia en el uso de re-
cursos compartidos en la jerarquía de memoria de un procesador multinúcleo,
en distintos niveles que van desde el hardware hasta la aplicación.

En primer lugar, hemos evaluado el rendimiento de la jerarquía de memoria
para dos suites de SPEC, CPU2006 y CPU2017, en un Intel Xeon Skylake-SP.
De este trabajo hemos extraído las siguientes conclusiones:

• Un número significativo de los benchmarks tienen tasas de fallo muy
bajas en las caches de segundo y tercer nivel, incluso cuando se reduce
su espacio disponible en la LLC y se desactiva la prebúsqueda hardware.
Cabe destacar que la demanda de recursos de la jerarquía de memoria de
CPU2017 es inferior a la de CPU2006.

• La utilización del espacio en la SLLC es desigual entre aplicaciones. El
aumento de la capacidad disponible se traduce en reducciones de los fallos
de cache en magnitudes muy diferentes según la aplicación. Del mismo
modo, las reducciones en las tasas de fallos se traducen en mejoras de
rendimiento muy dispares.

• La prebúsqueda hardware reduce significativamente los fallos en cache y
aumenta el rendimiento en la mayoría de los benchmarks, incluso cuando
el tamaño de la cache es limitado.

• Las metodologías actuales para obtener puntos de simulación no garanti-
zan cargas de trabajo representativas en cuanto al uso de la jerarquía de
memoria.

A continuación, caracterizamos la relación entre la ocupación de la cache,
la prebúsqueda hardware y el consumo de ancho de banda de memoria para
comprender sus interacciones. Esta caracterización nos ha permitido obtener
nuevos hallazgos interesantes:

• Algunas aplicaciones apenas modifican su rendimiento cuando disminuye
su espacio asignado en la SLLC, pero aumentan significativamente su
consumo de ancho de banda con memoria, afectando negativamente al
rendimiento del sistema.

• Cuando se ejecutan cargas de trabajo multiprogramadas, es habitual que
el tráfico generado por las peticiones de memoria congestionen los canales
de la DRAM. Esto se traduce en elevadas latencias de memoria, lo que a
su vez afecta al tiempo de ejecución de las aplicaciones.
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• El tráfico con memoria principal es un mal indicador para evaluar la
contención en el acceso a la memoria, especialmente cuando se alcanza
el punto de congestión. La latencia de acceso a la memoria es un mejor
indicador.

A partir de este trabajo de caracterización, hemos propuesto Balancer, un
mecanismo que impone límites en el uso del espacio de la LLC y el tráfico de
memoria a aplicaciones específicas. Estas restricciones mejoran el rendimiento
y/o la equidad de las cargas de trabajo multiprogramadas en comparación con
un sistema no controlado. Balancer no requiere modificaciones del hardware
ni del sistema operativo. Aprovecha AMD QoSE, una característica de los
procesadores AMD Rome que permite al usuario distribuir el ancho de banda
de la SLLC y de la memoria principal entre distintos hilos.

Como hemos destacado en las caracterizaciones anteriores, la prebúsqueda
hardware de datos es una técnica que desempeña un papel crucial en los proce-
sadores modernos de alto rendimiento al ocultar los accesos a memoria de
latencia alta y mejorar el rendimiento. Sin embargo, estos prebuscadores car-
gan un gran número de bloques inútiles, que oscilan entre el 22.6% y el 35.1%
para SPEC CPU2017, y alcanzan el 80.2% para programas con patrones más
irregulares como los de la suite GAP. Esto se traduce en un aumento innece-
sario del consumo de recursos compartidos y escasos como el espacio de cache
y el ancho de banda con memoria. En esta tesis, demostramos que la detec-
ción puntual de deltas locales junto con un mecanismo preciso para calcular
la cobertura local de los deltas detectados conduce a un prebuscador de alta
precisión que supera a los prebuscadores hardware de última generación pre-
sentados en los recientes campeonatos de prebúsqueda, tanto para cargas de
trabajo SPEC CPU2017 como GAP. La propuesta, Berti, es un prebuscador
hardware de L1D que orquesta sus peticiones a través de toda la jerarquía de
cache. Gracias a su gran precisión (casi el 90%), Berti no contamina las caches
ni desperdicia ancho de banda de la jerarquía de memoria. Por último, Berti
incurre en una sobrecarga de almacenamiento de sólo 2.55 KB.

La sincronización entre hilos de una misma aplicación es otro contexto en el
que también puede haber una gran demanda de recursos compartidos en la jer-
arquía de memoria a medida que aumenta el número de núcleos por procesador.
Las soluciones clásicas, como los fine-grain locks o los algoritmos lock-free, ofre-
cen un buen rendimiento en sistemas con un número reducido de núcleos, a
cambio de una elevada complejidad. La memoria transaccional se propuso para
lograr un rendimiento similar o superior al de las soluciones de sincronización
clásicas con facilidad de uso. Sin embargo, el aumento del número de núcleos
por procesador exige un análisis de la escalabilidad de todas estas estrategias.
Esta tesis presenta un amplio estudio sobre la escalabilidad de diversos mecan-
ismos de sincronización, del que se pueden extraer las siguientes conclusiones:

• En términos de rendimiento y latencia, la memoria transaccional por
software va por detrás de las demás estrategias debido a la considerable
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sobrecarga de su instrumentación. Por el contrario, la memoria transac-
cional hardware iguala el rendimiento de los fine-grain locks y lock-free,
y se adapta mejor a medida que aumenta el número de hilos.

• Una planificación cuidadosa del fallback puede reducir sustancialmente
los abortos por conflicto y aumentar el rendimiento.

• La adopción de HTM es fácil en aplicaciones científicas y obtiene un
rendimiento comparable al de un esquema de fine-grain locks altamente
optimizado simplemente cambiando el valor de una bandera en la bib-
lioteca glibc.

• Habilitar el multithreading simultáneo (SMT) para aplicaciones que acce-
den a grandes bloques de memoria dentro de sus secciones críticas afecta
considerablemente a la tasa de retiro de HTM.

• Transaction-Aware LRU (TA-LRU), un novedoso algoritmo de remplazo
de cache que pretende mitigar los efectos negativos de SMT en la tasa de
abortos por capacidad, puede reducir los abortos en esta categoría en un
factor 16.

Nuestras propuestas mejoran los conocimientos existentes y permiten un
uso más eficiente de la jerarquía de memoria en los distintos niveles de un
sistema informático: aplicación, runtime y microarquitectura.

6.4 Future Work

A partir de esta tesis se abren nuevas y prometedoras líneas de investigación:

• La familia de procesadores IBM Power sigue una organización diferente
a la de los analizados en este trabajo, ya que utiliza un número menor
de núcleos pero con un número mucho mayor de hilos por núcleo. Este
cambio implica una mayor presión sobre recursos compartidos que antes
se consideraban privados, como los primeros niveles de cache. Caracteri-
zar el comportamiento de las aplicaciones y la jerarquía de memoria en
estos nuevos procesadores puede permitirnos identificar posibles cuellos
de botella.

• Balancer utiliza como actuadores los mecanismos disponibles en AMD
EPYC: limitar el espacio disponible en SLLC y limitar el ancho de banda
con la memoria principal. Los procesadores Intel permiten desactivar se-
lectivamente los prebuscadores hardware de datos, mientras que los proce-
sadores IBM permiten modificar diferentes parámetros de la prebúsqueda
hardware, como su agresividad. Esto abre la posibilidad de desarrollar
nuevos mecanismos de gestión de recursos del sistema utilizando estas
herramientas.
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• La prebúsqueda hardware, a pesar de ser un tema ampliamente estudiado
por la comunidad desde hace años, aún tiene potencial por explotar. La
prebúsqueda de TLB o el uso simultáneo de varios tipos de prebuscadores
en L1D pueden llevar al límite a la prebúsqueda hardware.
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