Cytogenetic and phylogenetic analysis of three species of *Pseudotetracha* Fleutiaux, 1894

López-López, A., Galián, J.
Área de Biología Animal, Departamento de Zoología y Antropología Física, Universidad de Murcia. Campus de Espinardo, 30100, Murcia.

Background. Three species of the poorly studied Australian genus *Pseudotetracha* Fleutiaux, 1894 (Figure 1), belonging to the tribe Megacephalini, have been analyzed through cytogenetic and phylogenetic methods. It is intended to first to confirm and extend the cytogenetic data available for this genus, and second to contrast the contradictory assumptions made by Sumlin (2) and Zerm et al. (3) about the taxonomic validity of the *blackburni/murchisona* species complex and explore the putative existence of undescribed cryptic species.

Material and methods. Specimens of *P. blackburni*, *P. australis* and *P. whelani* were collected in South Australia (2004). The gonads were submitted to the method of "squash" and photographed. One fragment of the citochrome oxidase III gene was amplified and sequenced. The sequences obtained, together with those from the work of Zerm et al. (3), were aligned and analyzed by Neighbor-Joining, Maximum Parsimony and Bayesian Inference.

Results. The cytogenetic data available (1) for *P. whelani* is confirmed, with a karyotypic formula n = 12 + XY. For *P. australis* a karyotype n = 11 + XY has been found, while in *P. blackburni* 10 pairs of autosomes plus a trivalent (n = 10 + III) are observed (Figure 2). The trivalent is hypothesized to be the result of either a translocation or a fusion in which heterosomas are involved (Figure 3). The phylogenetic analysis (Figure 4) confirmed the taxonomic identity of *P. australis* and *P. whelani* and the validity of the *blackburni/murchisona* complex as proposed by Sumlin (2). The phylogenetic position of some specimens (43, 49 and 163; Figure 4) morphologically assigned to *P. blackburni* likely suggests the existence of two undescribed taxa.

References.

Acknowledgements.
Thanks are due to Peter Hudson and Eduardo Diaz for collecting the samples.

Figure 1: From left to right: *P. australis*, *P. blackburni* and *P. whelani.*

Figure 2: Microphotographies of meiosis plates for each species. M1: metaphase I; M2: metaphase II, arrow: trivalent.

Figure 3: Two hypothesis explaining the origin of the trivalent observed in *P. blackburni.*

Figure 4: Maximum Parsimony tree showing karyotypic data and assigned species.