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Abstract—This paper introduces an LBS multisensor system
that acquires data from different sensors available in commod-
ity smartphones to provide accurate location estimations. Our
approach is based on the use of visual structure from motion
techniques to run off-line 3D reconstructions of the environ-
ment from the correspondences among the SIFT descriptors
of the training images. We present several solutions to reduce
the deployment cost, in terms of time, and to minimize the
interference degree within the environment, but also pursuing a
good balance between accuracy and performance. To determine
the position of the smartphones, we first obtain a coarse-
grained estimation based on WiFi signals, digital compasses, and
built-in accelerometers, making use of fingerprinting methods,
probabilistic techniques, and motion estimators. Then, using
images captured by the camera, we perform a matching process
to determine correspondences between 2D pixels and model 3D
points, but only analyzing a subset of the 3D model delimited by
the coarse-grained estimation. We implement a resection process
providing high localization accuracy when the camera has been
previously calibrated, that is, we know intrinsic parameters like
focal length, but it is also accurate if an auto-calibration process
is required. Furthermore, our experimental tests show promising
results, since we are able to provide high accuracy with an
average error down to 15 cm in less than 0.5 seconds of response
time, making this proposal suitable for applications combining
location-services and augmented reality.

Index Terms—Image processing, multisensor, training, SIFT,
structure from motion, smartphones

I. INTRODUCTION

For a diverse set of areas including tracking, geographic
routing or entertainment, location-sensing systems are cur-
rently a very active research field. The wide adoption of
smartphones enables new scenarios to offer context-tailored
information and services to an increasing number of users.
Smartphones are equipped with several sensors, which has
simplified the process of obtaining the required context infor-
mation. In this work we will focus on indoor environments,
but our approach is also valid for outdoors.

Nowadays, there are several widespread applications that
make use of the images that users obtain from the camera in
order to display augmented reality. Indeed, those images can
be used to provide a better estimation of the users’ position,
offering a seamless integration of the sensor and the display.
Though accuracy obtained using RSSI-based techniques is
good enough for some applications scenarios, our main contri-
bution in this work is the development of an LBS suitable for
precise augmented reality services, which require not only very
fine-grained position estimations (up to a few cm of maximum
error), but also an equally precise estimation of the absolute

orientation of the imaging device. Therefore, hereinafter we
will assume that the users are capturing images, typically with
a tablet or a smartphone, for which they want to obtain the
precise estimation of the full 6 degrees of freedom (dof ) –3
for (X,Y, Z) position and 3 additional for the (α, β, γ) Euler
angles for the rotation matrix– of the device with respect to
some conveniently chosen world reference coordinate system.

In order to achieve that goal, a keystone in our approach
is the use of the Scale Invariant Feature Transform (SIFT)
[20], a well known technique in computer vision research.
Our proposal is also based on the use of structure from motion
(SfM) techniques to run off-line 3D maps reconstructions of
the environment from the features extracted using the training
images captured along the area of interest. Finally, several
resection techniques have also been evaluated to estimate the
full 6 dof, depending on whether we know some intrinsic
camera parameters, like focal length.

Our multisensor approach makes use of additional sensors
data, like RSSIs and measurements from the digital compass
or built-in accelerometer, in order to limit the amount of
information to be examined, to simplify the training process
and to reduce the computational load of the smartphones.
For many indoor location-based services, the training phase
requires an important time effort, since they are based on
a laborious work of collecting RSSI and images at each
discrete point where the mobile devices might be located.
However, our solution follows a different approach based on
a continuous video recording and data acquisition process.
We have also distributed the required functionality between
the mobile devices and dedicated servers. The system can
currently complete an entire cycle, from obtaining data from
sensors to giving a precise estimation, in less than 400 ms.

Several augmented-reality applications do not require a
continuous real time response, such as those designed to dis-
play location-aware reminders or notes, to obtain information
about who is behind the door of a particular laboratory, or to
visualize additional objects of interest virtually added to the
scene. Our system obtains a good trade-off between a fine-
grained accuracy in location and an acceptable response time,
making it ideal for such kind of applications.

II. RELATED WORK

Indoor positioning is an active research field. Many types
of signals (radio, images, sound) and methods have been used
to infer location.
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Paying attention to radio signals, pattern recognition meth-
ods, among many others, estimate locations by recognizing
position-related patterns. Fingerprinting [5] is based on radio
maps containing patterns of RSSIs, which are obtained using
802.11, Zigbee, Bluetooth or any other widespread wireless
technology. The analysis of RSSI patterns is a technique that
has been examined by several authors [4], [13], obtaining an
accuracy ranging from 0.5 to 3 meters.

However, better results can be obtained by integrating
the information captured by multiple sensors. For example,
SurroundSense [3] is a mobile phone-based location system
for indoor environments via ambience fingerprinting. However,
the optical recognition techniques proposed in SurroundSense
are simply based on images of the floor to extract information
about light and color. With SIFT, our work avoids typical
variations related to light, color or scale, and provides much
more robustness and better accuracy, by exploiting the superior
discriminative power of the extracted visual features.

Other works also use WiFi signals and image recognition
to estimate positions, such as [15] and [22]. However, they
are based on two-dimensional landmarks that must be placed
in the scenario of interest, which involves the inclusion of
obtrusive elements.

In [1], [28], the authors performed a preliminary analysis of
how techniques like SIFT can be used to improve the accuracy
in location based systems. As we will show, using our 3D
model we are able to provide a higher accuracy and to reduce
the required time for the training process.

III. SYSTEM OVERVIEW

This section depicts the design of our proposal, covering
the training phase and the on-line phase. Figure 1 provides a
general overview of the different operations.

Fig. 1. System overview

During an initial training phase, images, 802.11 signals
and orientations are captured along the entire scenario. Fur-
thermore, we have considerably reduced the training time
since images are captured as part of a video recording. Then,
using SIFT features extracted from those images, and visual
structure from motion techniques, we generate 3D maps of
the scene ready to be used for full localization (this process is
detailed in Section VIII-B). 802.11 signals are also analyzed to
obtain probability distributions of the RSSIs read at different
reference positions.

During the on-line phase, multiple sensors will be used to
determine an initial coarse estimation that indicates a cluster
of physical points where the device seems to be. To take
advantage of this first estimation, we previously divided the
3D model during the training phase according to both the
geographical areas where signals showed a similar behavior
and to the different meaningful orientations.

Next, making use of the image captured by the smartphone,
we perform a filtering process based on a gradient model to
discard blurry and uniform images. Then, if the image is valid,
we extract its SIFT features and perform a matching process
against the features contained in our partitioned 3D model to
determine correspondences between 2D pixels and 3D points.
In Section VI we will describe the different approaches we
have analyzed to perform this matching process.

Finally, and relying upon computer vision techniques, we
perform a complete camera resection process to estimate the
current 3D position of the device. A better accuracy is achieved
when cameras have been previously calibrated, that is, we
know intrinsic parameters (like focal length), but our technique
also works accurately when it is necessary to carry out a
camera auto-calibration process. Section VII describes this
camera resection process and includes a detailed analysis of
the different parameters that we have considered.

IV. A MULTISENSOR APPROACH

In recent years, the wide adoption of smartphones equipped
with several sensors has simplified the process of obtaining
context information. Despite we use the images from the
camera as the main piece of data to infer accurate positions,
we can benefit from other sensors in order to limit the amount
of information to be examined, to simplify the training process
or to reduce the computational load of the smartphones. We
believe this multisensor approach is crucial to accomplish a
feasible image-based location based service.

On the one hand, in relation to the generation of search
structures and context models, the main drawback of most
of the indoor positioning systems is the scalability issues
that arise when modeling large scenarios. However, several
solutions can be envisioned following a multisensor approach
in order to reduce the necessary time effort and the required
processing during the on-line phase. For example, many pre-
vious works have demonstrated that significant accuracy can
be obtained in indoor scenarios by means of fingerprinting
techniques [5]. Using some of those techniques, during the
training phase we will be able to divide the scenario into
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different zones according to the characterization of the 802.11
signals. We can obtain clusters of physical points [19] where
signals show a similar behavior, and they are used to partition
the 3D model into different submodels. We have confirmed
in previous works [24] that a cluster hit percentage of 90%
can be obtained using probabilistic techniques, and in 5% of
the remaining cases we obtain positions located in an adjacent
cluster. Additionally, while we are recording the training video,
we also save information related to the current orientation
of the training device using the data provided by the built-
in digital compass, since the different video frames will be
tagged with their corresponding orientation.

During the on-line phase, we will determine a coarse-
grained geographical zone where the device is located using
the obtained RSSI. That zone is related to different 3D
submodels, and one of them will be selected according to
the orientation of the device in order to find correspondences
between the features of the current image and those contained
in the submodel. In this way we reduce the amount of
information (image features) to check against during the on-
line phase, which improves performance.

On the other hand, the information from the different
sensors will also be used to reduce the computational cost
on the smartphone, to minimize the amount of information
transmitted and, therefore, to preserve the smartphone battery
life. For example, we have developed a motion estimator
based on accelerometer readings to determine whether the user
location has to be recalculated because the user is moving.
Access points are also analyzed locally in order to determine
whether we are in a location supported by our system. Images
are also preprocessed locally to check how blurry they are.

V. USING SIFT-BASED 3D MODELS

As we mentioned above, a keystone in our approach is the
use SIFT, a well known and widely adopted technique in com-
puter vision research. It provides a method for extracting a col-
lection of visual features from images, which are invariant to
image translation, scaling and in-plane rotation, and partially
invariant to illumination changes and affine distortion suffered
in different imaging conditions and/or varying camera view-
points. These features are fairly repetitively detected, while
being also well localized in both the spatial and scale domains
of the input images. Moreover, a large number of them can be
obtained for every image (typically a few hundreds, depending
on several factors such as the image size, blurring and, of
course, the scene itself). The strictly local nature of the
computation for each feature, together with the possibility
of globally computing consistencies among the whole list
of obtained features, make this technique rather robust to
problems like occlusion, clutter, or moderate image noise.

Each obtained SIFT feature is characterized by a 4-D
position vector (x, y, σ, θ), where (x, y) is the position in the
image, σ is the feature scale (i.e. size), and θ is a dominant
orientation. Additionally, each feature is also attached a highly
distinctive 128 dimensional description vector, which depends

on the overall photometric structure of the local image envi-
ronment of the feature. This descriptor allows a single feature
to be correctly matched with a high probability against a large
database of features, providing a powerful basis not only for
visual recognition of objects or places [8], but also –and what
is more relevant for this work– in the context of simultaneous
localization and three-dimensional scene reconstruction [26].

We have already used this technique in [24], performing a
matching process between the features of the image obtained
by the device to be localized and a geo-tagged database of
features that were previously extracted using representative
images taken in a discretized grid of our application environ-
ment. These images were captured in all possible directions
of movement to estimate the device location in an orientation-
independent way. The system was able to approximate fairly
well the current location if a good amount of matchings with
some image in the database was found.

Nevertheless, while this technique provided acceptable re-
sults in a moderate response time (3 seconds), it suffered from
three main drawbacks: first, the obtained accuracy depended
also on the granularity defined when the environment was
modeled as a grid of discrete points; second, this matching
only approach provided approximate 3D position of the sensor,
but no attempt to precisely estimate the orientation was made
in that work (beyond the orientation provided by the original
training images); and third, but not less, the training phase
made it necessary to capture several images at each one of
the points in a discretized grid of our environment, a rather
cumbersome process which could become unfeasible in terms
of time effort and needed human resources when modeling
large scenarios such as a university campus or an airport.

To overcome these issues, in this work we combine the
use of SIFT features with state-of-the-art techniques in three
dimensional computer vision, which are able to reconstruct
a real world scene given just a set of images of it. Taking
advantage of the remarkable advances in the field of applied
projective geometry in the last decade, nowadays it is possible
to obtain an accurate 3D model of an arbitrary scene using
only a sufficiently large number of images taken from different
viewpoints of it. This can be done even in conditions such as
the completely uncalibrated case, in which neither the real
position nor the internal parameters of the cameras are known
in advance. The myriad of techniques involved in this complex
process, generically known in the computer vision literature as
Structure from Motion (SfM), go from feature extraction and
matching to estimation of the geometric relationships between
the multiple views of the scene, passing through multiple
intermediate matrix algebra procedures and both linear and
non-linear optimization techniques. Each of these computing
stages have themselves generated an enormous amount of
research in the last decade, so their thorough descriptions are
out of the scope of this paper, but the remarkable book [14]
–the de-facto bible in the field– is a good reference for those
interested in the underlying details of this research field.

In any case, and just to get an idea of the functioning and
power of such techniques, we briefly summarize the overall
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Fig. 2. Illustration of the SfM 3D reconstruction technique. All figures obtained using Wu’s VisualSfM software on our test environment (see also sec. VIII).

process followed by a typical SfM system in Figure 2. We use
here, as the illustrating example, the 3D modeling process that
we performed in our own test environment (though more de-
tails on the whole procedure will be given in Section VIII-B).
During the training phase, a video is recorded capturing all
the details of our environment. The video is then processed
in order to extract images at a particular frame rate, which
will be used as input for the SfM process (step 0 in figure
2). The use of video recording not only saves a lot of time
and effort during training, but it also guarantees better 3D
reconstructions, since overlapping images and a sequential
order facilitates the posterior matching and reconstruction
stages. Taking as input only that set of images, and by
extracting (step 1) and matching (step 2) the SIFT features
among them, the aforementioned SfM techniques are able to
finely estimate the 3D position of visually relevant points in
the scene, as well as the position and orientation of the cameras
from where the pictures were taken. In order to do that, the
procedure starts from individual stereo pairs (step 3), which
are augmented later with new cameras by an incremental
resectioning/triangulation procedure (step 5). This incremental
process is guided by the global set of pairwise matchings
matrix found among all the images (step 4). The final step
in every SfM process, known as bundle adjustment [27], is
a global nonlinear optimization stage which minimizes the
reprojection error of all the reconstructed 3D points to the 2D

image position of the original SIFT features in the images, thus
producing an accurate 3D reconstruction which includes both
the 3D points and the full 6 dof position of the cameras (step
6). Though not shown in the figure, each 3D point is attached
the set of 128-dimensional descriptors as extracted from the
corresponding images where that point appeared in the field of
view, something that will be key for our posterior localization
process. Moreover, though not strictly needed in our system,
the set of points can be augmented with texture patches to get
a more realistic 3D reconstruction (step 7). As we can see,
the obtained reconstructions provide a fairly accurate metric
reconstruction of the environment, up to an arbitrary global
euclidean transform, which is conveniently defined choosing
an adequate world reference coordinate system (red-green-blue
axis in the figure).

VI. MATCHING

Once we have obtained the 3D representation of our sce-
nario, we need a mechanism to look for coincidences between
the features extracted from the 2D images captured during
the on-line phase and those features that made up the 3D
model. In order to perform that matching process efficiently,
we considered different search structures that might be suitable
to represent the 3D model, that is, the set of typically several
thousands of 3D points with corresponding hundreds of thou-
sands of features extracted from the training images. Since
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each feature is defined as a 128-dimensional vector, there is no
algorithm able to identify the exact nearest neighbors in such
a high dimensional space that is more efficient than exhaustive
search. An alternative is to consider greedy algorithms which,
though can be much faster in very large datasets (by using
precomputed algorithmic structures, typically search trees), do
obtain only acceptable approximations to the set of k nearest
neighbors for each input feature.

In this work we have analyzed two different algorithms
to match features, both based on the k-nearest neighbor
technique. In all cases we have also partitioned our space
according to the zones determined by the analysis of the RSSIs
signals and meaningful orientations, as we described in section
IV. The first option is based on the proposal made by Arya and
Mount [2], which uses kd-trees and bd-trees supporting both
exact and approximate nearest neighbor searching in spaces
of various dimensions. The kd-tree version implemented by
the approximate nearest neighbor (ANN) library [21] was
exhaustively tested in [24], where we provided an analysis of
the different parameters that impact on the speed and reliability
of the obtained results. Those parameters are the distance
ratio R (between the closest and the next closest neighbor)
to discard false matchings, and the error bound ε that controls
the maximum ratio between the distance to the reported point
and the true nearest neighbor for approximate searches.

Although these implementations have been successfully
tested in many applications where the database of features
was huge (up to millions of them), the moderately large size
of a typical individual zone in our case led us to test a brute
force alternative: since our complete 3D model is made up of
∼ 250K descriptors in a real 128-dimensional space, the tree
structures (one per each defined zone) used by ANN did not
perform as fast in terms of response time as an exhaustive ex-
act nearest neighbor (ENN) implementation of the brute force
search algorithm running on a graphics processing unit (GPU).
To take advantage of the enormous power of these relatively
inexpensive computing platforms, we slightly modified the
algorithm proposed in [9] in order to adapt its functionality to
our zone-based space search. In addition to a better accuracy,
the use of this algorithm resulted in an increased matching
performance of up to 70% in terms of response time with
respect to the original ANN implementation. Section VIII-C
will show additional quantitative and qualitative information
about our matching process.

VII. CAMERA RESECTION

Camera resection (sometimes generically referred to as
camera calibration) is the process by which we can determine
the P3×4 projection matrix from a given set of matching 3D
scene points and the corresponding 2D pixels in an image.
This matrix defines the algebraic relationship PXi = xi for
every Xi ↔ xi correspondence when both the pixels xi and
the 3D points Xi are given in homogeneous coordinates [14].
P can be factorized as P = K3×3R3×3[I|−C]3×4, in a way that
the internally encoded relationship with the rotation R and 3D
position C = (cx, cy, cz)

> of the camera in the reference 3D

Input: 2D ↔ 3D correspondences
1: P, inliers← DLT (correspondences) . RANSAC
2: if camera intrinsic known then . Precalibrated case
3: K, R, C ← ExteriorOrientation(Kfixed, inliers)
4: else . Autocalibration
5: K, R, C ← QRDecomposition(P )
6: end if
7: Ropt, Copt ← NonLinearOptimization(K, R, C)

Output: Ropt and Copt (camera pose in world coordinates)

Fig. 3. Resection algorithm

coordinate system is made explicit. This factorization depends
as well on the camera intrinsic calibration matrix K, which
contains internal camera parameters such as the focal length
and the aspect ratio (for example, a very simple calibration
matrix which is commonly used is K = diag(f, f, 1), with f
the focal length in pixel units). In this section we detail the
entire resectioning process that we follow in this work, and
which is summarized in Figure 3.

The overall process starts by running a robust implemen-
tation of the so called Direct Linear Transformation (DLT)
algorithm [14], which allows us to obtain the camera matrix
P that minimizes the reprojection error for the maximum
number of inlier correspondences. In this context, inliers are
matching pairs of 3D↔2D points which can be fitted to
the model up to a given error tolerance. Then, and if the
camera had been precalibrated (that is, we knew in advance
the calibration matrix K), we would discard P, using only
the obtained inlier set to get the desired camera pose (R, C)
using an exterior orientation algorithm. Otherwise, we still
can perform a camera autocalibration, using the previously
estimated P to solve the factorization problem by carrying
out the simple and well known matrix algebra operation of
QR decomposition [10]. These two alternatives give us the
possibility to treat both the cases of knowing the camera
internal parameters in advance (feasible for most common
devices), as well as the completely uncalibrated case, which
is solved at the price of a slightly lesser precision. The final
pose is obtained by refining the former solution using some
standard non-linear optimization procedure [23].

A. Direct Linear Transformation

The P matrix that we must first estimate is an homogeneous
entity with 12 elements, so that it has in general 11 dof.
Each 3D↔2D correspondence (x, y, z) ↔ (p, q) sets up the
homogeneous restriction P(x, y, z, 1)> = λ(p, q, 1)>, which
is equivalent to (p, q, 1)× P(x, y, z, 1) = (0, 0, 0). Namely,

[
0> −X>

i qiX
>
i

X>
i 0> −piX>

i

] P 1

P 2

P 3

 = 0 (1)

where Xi = (xi, yi, zi, 1)
> and xi = (pi, qi, 1)

> ∀i are
the homogeneous coordinates of the corresponding pair of
points, and P k = (p4k−3, p4k−2, p4k−1, p4k)

> for k = 1, 2, 3,
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are the three rows of P. Taking into account that we must
solve for 11 unknowns (dof of P), and since each 2D ↔ 3D
correspondence gives rise to two independent equations over
the elements of P , it is necessary to make use of a minimum of
6 of these correspondences to solve for the complete system.
From the solution for the 12 unknowns p1 · · · p12 we can easily
reconstruct a canonical version of the homogeneous matrix P:

P =


p1

p12

p2

p12

p3

p12

p4

p12

p5

p12

p6

p12

p7

p12

p8

p12

p9

p12

p10

p12

p11

p12
1

 (2)

The former procedure can be easily adapted to the overde-
termined case (more than 6 correspondences). Since points
are measured inexactly due to noise, some of these corre-
spondences may not be fully compatible with any projective
transformation, and therefore the best possible P has to be
determined, which is found by minimizing the reprojection
error in the minimum square sense.

The SIFT matching process frequently “contaminates” the
set of real correspondences with some subset of outliers
(wrong correspondences), which would seriously distort the
obtained solution if not adequately filtered. To solve this
problem, a robust estimation procedure is needed, and in this
work we use the well known RANSAC algorithm [7]. This
algorithm works by finding the best transformation matrix that
minimizes the reprojection error taking into account only inlier
(i.e. correct) correspondences. To filter the outlier (incorrect)
correspondences, RANSAC iteratively selects a random subset
of six elements from the original set of correspondences, from
which it computes a tentative P. Since the number of available
correspondences is notably higher than this required minimum
of six, at each RANSAC iteration we perform an incremental
process that iteratively adds the correspondences identified as
inliers and recalculates P until no more inliers are detected.
One correspondence is identified as an inlier if its reprojection
error does not exceed a specified threshold. This iterative
procedure, which will try several tentative P matrices before
success, finishes when either it obtains a sufficient percentage
of inliers over the total number of input correspondences, or
the number of iterations exceeds a given threshold. In Section
VIII-C we will show the influence of all these parameters in
both the accuracy and performance of the results.

The K, R and C values can be easily obtained from the
QR decomposition of the first three columns of P. Therefore,
at least theoretically, this generic procedure could be applied
without a previous knowledge of the calibration matrix of
the camera. However, the main problem with this approach
is that the solution values that we obtain (mainly K and C)
can be severely coupled, that is, are not mutually independent
from each other. Particularly, in some ill-conditioned cases
such as scenes with a dominant plane (a not so uncommon
case in typical indoor scenarios, where large walls can cover
most of the image), the autocalibration process can fail to
give an accurate solution. As Section VIII-C shows, the QR

decomposition can still be a good alternative when the camera
intrinsic parameters are completely unknown, except under the
aforementioned ill-posed conditions. In the following section
we show how this a priori knowledge of calibration largely
improves the quality of the results.

B. Exterior Orientation

In many cases, the on-board camera specifications (mainly
focal length and aspect ratio) of typical smartphones and
tablets are known, so the calibration matrix Kfixed can be
determined. Fiore [6] developed an alternative linear method
to obtain only the exterior orientation of the camera, which,
using this knowledge of the intrinsic parameters, results in
a much more precise estimation of R and C. Moreover, it
performs remarkably well even in the planar case which poorly
conditioned the problem for the DLT algorithm, as commented
in the previous subsection. Fiore’s algorithm works in two
stages, first estimating the unknown depths ζi for each homo-
geneous 2D point xi, i.e., first we get an intermediate set of
(inhomogenous) 3D points ζiKfixed−1xi, and then what is left
is an absolute 3D orientation problem, whose solution yields
the desired values of R and C.

More specifically, given a number of input 2D↔3D point
correspondences, xi ↔ Xi, and the intrinsic camera matrix
K = Kfixed, we are required to find a rotation R, a vector C
(attitude and position of the camera) and a subsidiary depths
vector ζ = (ζ1, · · · , ζi, · · · , ζn)> (where n is the number of
correspondences) such that:

ζixi = KR[I| − C]Xi ⇔ K−1ζixi = R[I| − C]Xi ∀i (3)

In order to solve for the unknown values of ζi, we first
compose the matrix M, whose columns are formed with the
homogeneous coordinates of the 3D points,

M4×n = [X1 · · ·Xn] (4)

and another matrix N, arranging in this case the homoge-
neous coordinates xi = (pi, qi, 1)

> of the 2D points in the
following way:

N3n×n =


x1 0 . . . 0

0 x2 . . .
...

...
. . . 0

0 0 . . . xn

 (5)

Then, taking the singular value decomposition (SVD) [10]
of M, we obtain the factorization M = U4×4D4×nV

T
n×n, where

U and V are orthogonal and D is diagonal. Being r the rank of
M, we denote by V2 the submatrix of size n× (n− r) which
results from taking only the last n − r columns of V. This
submatrix spans the null space of M, so that MV2 = 0.

Given the former definitions, it can be shown [6] that the
depth vector ζ can be recovered linearly (up to a scale factor),
just by solving the following null-space problem:

((V2
> ⊗ K−1)N)ζ = 0 (6)
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Where the ⊗ symbol stands for the Kronecker product [16]
of matrices. Once the depths have been obtained, our initial
problem (3) is now reduced to find the correct alignment of
two sets of 3D points, an instance of the well known absolute
3D orientation problem.

This last stage of the exterior orientation algorithm proceeds
as follows. Let Wi be the 3D depth recovered points, Wi =
(ζi ·(xi/f), ζi ·(yi/f), ζi)> (where we have used the Kfixed =
diag(f, f, 1) assumption), and Yi the likewise inhomogeneous
original 3D points, Yi = (xi, yi, zi)

>. Then, given these two
sets of 3-D points Wi and Yi, we are required to find the
rotation matrix R, the vector C and the scalar s, such that:

Wi = s(RYi + C) ∀i = 1...n (7)

Now, centering the point clouds on their respective means,
i.e., W i = Wi − 1

n

∑n
j=1 Wj and Y i = Yi − 1

n

∑n
j=1 Yj , the

scale s is very easy to obtain as s = ||W i||
||Y i||

, for every i. In
practice, s can be averaged for the set of points ∀i = 1 . . . n,
and then used to scale accordingly the values of Y i.

With the sets of points adequately scaled and centered,
we are left with the problem of estimating the unknown
rotation between W i and sY i. This is known as the orthogonal
Procrustes problem [12]. Being W3×n and Y3×n the matrices
formed by stacking the points W

i
and sY

i
respectively, the

solution is found using again the SVD decomposition. The
sought rotation is given by:

R = V′

1 0 0
0 1 0

0 0 Det(U′V′
>
)

 U′
> (8)

where U′3×3D
′
3×3V

′
3×3

> stands now for the SVD of the
matrix YW>, and the determinant of U′V′> is always 1 or −1.

Finally, once we have calculated the rotation matrix R, we
can obtain the translation vector C from (7) simply this way:

C =
1

s
(
1

n

n∑
i=1

W i)− R(
1

n

n∑
i=1

Y i) (9)

As we will demonstrate in Section VIII-C, this precalibrated
exterior orientation procedure ensures both robustness and
accuracy in the estimated camera pose, even in environments
where we have to deal with essentially planar scenes.

C. Nonlinear Optimization

The methods described in the previous subsections are
linear, so in fact they minimize an algebraic instead of a
geometric error [14]. Thus, though essentially correct, the
obtained solutions for the (K, R, C) decomposition of the cam-
era matrix are slightly suboptimal. Especially when we know
the camera intrinsic parameters (Kfixed) with a high degree
of accuracy, a final polishing of the solution by any standard
nonlinear procedure which aims to minimize the geometric
reprojection error is recommended (line 7 of algorithm in
figure 3). Several alternatives are also available for this task
[23], though in this work we simply use an straightforward

iterative procedure implemented in the GNU scientific library.
Our experiments show that this final optimization, to a greater
or lesser extent, always improves the linear estimation.

D. From 3D model to real world coordinates

Obviously, in the absence of any real world reference, the
SfM techniques can determine the 3D reconstruction only up
to an arbitrary global euclidean transform. Nevertheless, our
LBS must of course attach this 3D model to some convenient
coordinate system defined for our physical environment, so
that we obtain the localization results in real world coordinates.
We can also define the desired augmented reality structures
on this world coordinate system. Given a minimum of three
ground control points (though, for numerical stability, it is
convenient to use a few more), it is possible to estimate
the corresponding parameters s′, R′ and C ′ of the needed
3D reconstruction → world euclidean transformation solving
again an absolute 3D orientation problem analogous to the one
mentioned in subsection VII-B. Those parameters will be used
to globally transform the whole 3D model to the desired final
real world coordinates, where all the posterior resectioning
process will take place.

VIII. EXPERIMENTAL ANALYSIS

This section describes the experimental environment where
we have carried out a set of tests with the aim of validating the
proposal described in this paper. We also outline the software
and hardware elements as well as the methodology to perform
the training process. Finally, we discuss the details of one
specific validation (among the several tests we performed) and
their related results.

A. Experimental Environment

Fig. 4. Experimental environment. Colored dots indicate the RSSI clusters.
Colored rectangles identify the 3D sub-models defined including orientations.

The testbed where our experiments were conducted is
located on the ground floor of our Faculty. As it is shown
in Figure 4 it is a 220 m2 open space area. To build the
fingerprinting map based on RSSI we took advantage of the
access points deployed throughout the dependencies.

The training video and RSSI observations were captured
using a Samsung Galaxy Tab Plus 7.0 with Android OS 3.2
and experiments were carried out making use of a Samsung
Galaxy SII smartphone with Android OS 4.0.3. We made use
of our own application, LOCUM-Trainer, to perform a fast
training process that did not compromise the performance
and accuracy of the localization system. Instead of defining
a discrete space model where RSSIs, orientations, and images
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are acquired, we scanned the RSSIs of the different access
points while we were video recording the environment and
registering the orientation of the device. The operator just
had to label the current zone where he was moving around
(the map division into zones was done prior to the data
capture). In this way, we obtained a lightweight fingerprinting
map of RSSIs and a set of images (frames extracted from
the recording) geo-tagged with the correspondent zone and
orientation. Then, a clustering process was performed using
the techniques described in Section IV in order to group
these sample points into clusters according to the RSSIs
and to the different orientations. These clusters determined
the geographical areas dividing the space search for image
analysis, as it was mentioned in Section VI.

During the on-line phase we extracted SIFT features to
look for correspondences with the points of the 3D model.
For image processing purposes we used the SIFTGPU library,
a GPU Implementation of SIFT developed by Changchang
Wu [30]. SIFTGPU requires a high-end GPU which is not
available in smartphones, so we use a server with a nVidia
GeForce GTX580 with 512 cores, supporting both GLSL
(OpenGL Shading Language) and CUDA (Compute Unified
Device Architecture). This GPU was installed in a Intel(R)
Core(TM) i7-2600K CPU 3.40GHz. This server is responsible
for estimating the location of the different devices. Addition-
ally we have also used a modified version of the CUDA ENN
software developed by V. Garcia [9] to perform the matching
process, and our own implementation of the resection algo-
rithm described in VII, making use of the QVision library,
available in SourceForge.

A client-server architecture was designed to reduce the
computational cost, to minimize the amount of information
transmitted and, therefore, to preserve the smartphone battery
life. During the on-line phase the smartphone uses different
threads running in parallel in order to capture images and
to obtain information from RSSIs, accelerometer and digital
compass. We check whether the image is useful to avoid un-
necessary transmissions, that is, it is focused and rich enough
to allow the extraction of SIFT features. For this purpose,
smartphones use the Sobel operator [11], an efficient linear
filter operation which responds to sharp gray level changes
(edges) in images. Then, making use of specific APIs, the
smartphone is able to send the image to the server along with
the RSSI information and its orientation. The motion estimator
is locally used to detect whether a new image has to be sent
to the server.

B. Building 3D maps

As we mentioned above, our proposal is mainly focused
on the image analysis. Thus, we needed to obtain a set of
images to build our 3D model. To minimize the training time,
we recorded a 7’24” long video, capturing every detail of our
environment. Since there are not many objects in the center of
the hall, the video was recorded paying attention to the four
main walls, with the camera situated at shoulder level. During
our tests we learnt that a better reconstruction is obtained when

the scene is recorded with the camera oriented to the walls
and also including a second round using a 45 degrees angle
of view. Once the video was recorded, and after several tests
varying the frame extraction rate, we extracted one image per
24 frames, thus obtaining 524 different images. Those images
were good enough to build the 3D model which was used for
the following tests.

Our 3D model was built using the VisualSFM software [29],
a visual structure from motion application that makes use of
a set of input images to run 3D reconstructions. VisualSFM
relies on the SIFTGPU library to extract the SIFT features and
to perform the pairwise image matching process. The bundle
adjustment is implemented using a GPU version that exploits
the hardware parallelism.

In addition to the 3D model, VisualSFM also generates
an output file containing the technical information about the
model. This information includes the camera parameters, such
as focal length (in our case, the focal length was manually
established before the reconstruction took place), quaternion
rotation, camera center and radial distortion, estimated for each
one of the images (considered as individual cameras) included
in the reconstruction. Moreover, it also contains information
about each 3D point of the model, identified by its coordinates
(x, y, z) and a set of SIFT features defining the point.

Finally, using the information extracted from the 3D model
and according to the zones dividing our map, we built the
search structures that contain the descriptors of the 3D points
belonging to each submodel.

C. Validation results

In this section we present the experimental results of our
proposal. A set of 20 images (640×480 pixels) is our vali-
dation data, and they were obtained while walking along our
scenario using the rear camera of a Samsung Galaxy SII. Since
the camera was previously calibrated, we knew its intrinsic
parameters (focal length and aspect ratio). Results shown in
Table I were obtained performing the resection process making
use of the Exterior Orientation technique.

TABLE I
ESTIMATION ERROR (CM) AFTER THE RESECTION PROCESS USING

EXTERIOR ORIENTATION AND DIFFERENT CONFIGURATION PARAMETERS

No Correspondences 40 50 60
Minimum Inliers 10 30 10 30 10 30

Iterations Reprojection
Error (px)

4 19.5 9.0 25.2 9.6 39.9 9.4
100 5 14.4(*) 10.8 25.8 9.8 32.5 10.6

6 16.3 10.5 27.2 10.1 37.08 15.0
4 10.8 8.6(**) 20.0 10.1 29.1 9.2

200 5 14.6 10.7 15.9 9.7 18.1 10.9
6 14.0 10.0 15.9 10.2 32.5 12.4
4 12.4 9.1 15.3 10.2 19.3 10.0

300 5 14.1 10.6 11.6 9.5 23.4 11.0
6 12.3 9.9 14.7 10.0 19.8 12.5

We initially evaluated the different configuration parameters
related to camera resection process. As mentioned in Section
VII, those parameters are: the number of correspondences used
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Fig. 5. Accuracy results for each validation image using Early-Detection (ED) and Non-Early Detection (Non-ED) versions of RANSAC, together with
different sets of descriptors (using all of them or a filtered subset).

as input by the RANSAC process; the number of iterations
performed by the RANSAC process; the reprojection error
threshold used to classify a correspondence as inlier; and the
minimum number of inliers required to consider the estimated
camera resection matrix as valid. Table I shows part of the
different combinations we have experimented. It is worth
mentioning that RANSAC introduces a certain randomness to
the process, and these values may slightly vary among different
executions. Twenty independent executions per each parameter
combination are averaged to provide stable results.

As we can see, there are several sets of parameters provid-
ing, on average, an estimation error under 15 cm. The choice of
the most appropriate configuration depends on the associated
processing time. For example, we consider that the set of
parameters that offers the best trade-off between accuracy and
performance is the one marked as (*) in Table I. Despite this
option supposes a slight loss of accuracy in relation to other
combinations, the involved time for the resection process is
reduced down to 37% in relation to more accurate options.
Moreover, this choice is less restrictive than the one providing
the best accuracy results, since requiring a fewer number of
inliers we were able to perform a valid camera resection in
all the tests instead of the 90% of success obtained when
using the most accurate option (**). It is worth noting that
despite the selected set of parameters worked properly for our
environment, it may differ from one scenario to another.

Furthermore, we have evaluated additional images captured
with the aim of validating our proposal under difficult condi-
tions. Some of them contain information about areas of the
scenario that were not completely modeled. Other were taken
with an inclination angle that exceeds the invariance angle of
the SIFT descriptors used to build the 3D model. Taking into
account these drawbacks, we were able to obtain an accuracy
ranging from 0.8 to 3.7 meters. The analysis of these images
demonstrates the robustness of this technique even when the
problem is ill-conditioned, but also some of its limitations.

Once we have selected the best configuration of parameters,
we have also evaluated how the number of descriptors in
the search space influences on the accuracy and performance
of the resection process. We have reduced the number of
descriptors by filtering those defining the same 3D point and
whose camera poses are closer than a specified threshold

(100 cm). This reduction is based on the idea that each 3D
point is formed by a set of SIFT descriptors, but some of
them were obtained from nearby cameras, thus introducing
some redundancy to the matching process because of their
visual similarity. In this way, we have reduced the number of
descriptors from 254631 to 86088. On the other hand, we have
also evaluated the use of an Early-Detection (ED) version of
the RANSAC process that may save up to 60% of processing
time. It is based on the idea that once the threshold of inliers
has been exceeded, it might not be necessary to execute the
rest of RANSAC iterations since the obtained camera matrix P
might be good enough to estimate the camera pose accurately.

Figure 5 shows the histogram that reflects the accuracy
obtained for each validation image when combining the above
mentioned proposals. Despite its better performance, ED
shows less accuracy than the complete version of RANSAC,
159 cm and 14.4 cm respectively on average. Moreover, we
can observe how accuracy is barely decreased when a filtered
set of descriptors is used. In those cases, the mean estimation
error is 16.36 cm, but the required matching time (Figure
6) is reduced down to 67% in relation to the whole set of
descriptors.

A zone-based search space (the multisensor approach) re-
duces (62%) the time required to carry out the matching pro-
cess, as Figure 6 shows. We also observe that the time needed
to complete the whole cycle from sensor data acquisition to
3D estimation is around 345 milliseconds. We have detailed
the transmission time of sensor data from the smartphone, the
required time at the server to perform the SIFT extraction, to
run the matching process, and to apply the resection technique.

It is worth mentioning that in those cases where the intrinsic
camera parameters are unknown, we can make use of the
DLT algorithm described in Section VII to carry out the
resection process. A mean estimation error around 78 cm is
obtained and the elapsed time is similar to the one obtained
with Exterior Orientation. Therefore, our proposal is able to
address reasonably well even those situations where there is
no previous knowledge of the camera configuration.

IX. CONCLUSIONS

As emphasized during the paper, the multisensor approach is
crucial to accomplish a robust and scalable image-based loca-
tion based service. By incorporating SfM techniques we have
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Fig. 6. Performance using different alternatives to build the search space.

remarkably augmented both the scalability and precision of
the training phase, not only eliminating the need to discretize
the environment at a given granularity, but also improving the
quality of the location estimations. All these advantages are
obtained using a medium number of training images from
a video recording, a key fact that makes the training phase
definitely easier and thus much more easy to deploy. The result
is an accurate 3D model of the environment ready to perform
the desired full 6 dof accurate localization process for any
new input image.

Locations are obtained with a mean error of 15 cm, and with
the additional bonus of estimating the rotation with a similar
precision. Moreover the mean time required to complete an
entire cycle is 345 milliseconds, making this proposal able to
support those applications requiring high accuracy and rapid
response, such as augmented reality applications. Additionally,
the multisensor approach provides mechanisms to work in
difficult scenarios such as those presenting similar areas from
a visual perspective (floors, rooms). In those cases, SIFT
features can fail to disambiguate, but other signals like RSSIs
can be crucial to perform an accurate resection process.

For all these reasons, we find our approach a valuable
contribution for this kind of location-based services, since we
have obtained a good trade off between a fine-grained accuracy
and an acceptable response time using data from multiple
sensors.
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