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Abstract. This paper introduces how to fuse the data acquired from
different sensors available in commodity smartphones to build accurate
location-based services, pursuing a good balance between accuracy and
performance. Using scale invariant features from the images captured
using the smartphone camera, we perform a matching process against
previously obtained images to determine the current location of the de-
vice. Several refinements are introduced to improve the performance and
the scalability of our proposal. Location fingerprinting, based on IEEE
802.11, will be used to determine a cluster of physical points, or zone,
where the device seems to be according to the received signal strength.
In this way, we will reduce the number of images to analyze to those
contained in the tentative zone. Additionally, accelerometers will be also
considered in order to improve the system performance, by means of a
motion estimator. This set of techniques enables a wide range of new
location-based applications.
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1 Introduction

Location technologies provide a way of associating information to a user position.
For a diverse set of areas including tracking, geographic routing or entertainment,
location-sensing systems have been an active research field. We will focus on
indoor environments, where the Global Positioning System (GPS) suffers from
several obstacles blocking the radio signals.

In recent years, the wide adoption of smartphones equipped with several
sensors has simplified the process of obtaining the required context information
and provides an exceptional starting point to develop location-based services,
like augmented-reality applications [10]. Localization systems might benefit from
the images that users obtain from the camera in order to display the augmented
reality. Indeed, those images can be used to provide a better estimation of the
users’ position, offering a seamless integration of the sensor and the display.
There are several augmented-reality applications which do not require a real
time response, such as those designed to display location-aware reminders or
notes [19], or to obtain information about who is behind the door of a particular
room or laboratory. We find our approach a valuable contribution for this kind of
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location-based services, since we have obtained the required tradeoff between a
fine-grained accuracy and an acceptable response time using data from multiple
sensors.

In our proposal, we make use of the scale invariant feature transform (SIFT)
[14], an image processing technique suitable for object recognition, to deal with
the images captured by the smartphone camera. Our system looks for matching
features between the current image and a geo-tagged database of features that
were extracted using representative images of the application environment.

Despite we use the images obtained from the camera as the main piece of
data to infer the position of a particular device, we can benefit from other sen-
sors in order to limit the amount of information to be examined. Most of the
well-known proposals for indoor positioning are based on the received signal
strength intensity (RSSI) of transmitted 802.11 packets. In fact, several works
have demonstrated that significant accuracy can be obtained in indoor scenarios
by means of fingerprinting techniques [7]. As we will show, using fingerprinting
methods, we can obtain a cluster of physical points where there is a high prob-
ability of locating the device. This cluster is then used to reduce the amount
of images in the database to check against, since only those images contained
in the selected cluster are analyzed. Additionally, the use of a RSSI-based fin-
gerprinting technique is an added-value service for our purposes, since we will
be able to calculate a coarse-grained location estimation which can be useful in
those situations when the images obtained by the camera are useless.

Our system achieves acceptable performance distributing the required func-
tionality between the mobile devices and dedicated servers. Additionally, in-built
accelerometers will be used to infer coarse-grained user-motion, so reducing the
required amount of operations to perform in some circumstances. The system
can currently complete an entire cycle, from obtaining data from sensors to
providing a location estimation, in less than 3 seconds.

2 Related work

Indoor positioning is a research field that has been addressed by several authors
and disciplines. Several types of signals (radio, images, sound) and methods have
been used to infer location. Each method has specific requirements as to what
types of measurements are needed. Most of the pattern recognition methods, like
fingerprinting [7], estimate locations by recognizing position-related patterns.
The analysis of RSSI patterns is a technique that has been examined by several
authors [4, 8], obtaining an accuracy ranging from 0.5 to 3 meters.

Better results can be obtained by integrating the information captured by
multiple sensors. SurroundSense [3] is an interesting mobile phone-based location
system for indoor environments via ambience fingerprinting of optical, acoustic
and motion attributes. However, the optical recognition techniques proposed in
SurroundSense are too limited, since the authors are only considering pictures
of the floor in order to extract information about light and color. With SIFT,
our work avoids typical variations related to light, color or scale, and provides
robustness and better accuracy.
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In [1, 22], the authors performed a preliminary analysis of how techniques like
SIFT can be used to improve the accuracy in location based systems. However,
both works fail to show an exhaustive analysis of the enhanced possibilities of
such techniques when combined with the additional sensors commonly available
on smartphones.

Miyaki et al. [15] described an object tracking system for outdoor environ-
ments fusing information from CCTV cameras and WiFi signals using a particle
filter. While this proposal is based on object tracking (especially people), our
work is focused on object recognition in the scene captured by the smartphone
camera carried by the user.

Other works also use WiFi signals and image recognition to estimate posi-
tions, such as [9] and [17]. However, they are based on two-dimensional landmarks
that must be placed in the scenario of interest, which involves the inclusion of
obtrusive elements. As we will show, we can obtain good accuracy without im-
posing such requirements.

3 Experimental Environment

The testbed where our experiments were conducted is located on the third floor
of our Faculty where several students, researchers and professors move around
constantly. The dimension of the testbed is 35 meters by 30 meters, and includes
26 rooms. We have defined a discrete space model of 94 cells where we can link
location-based information.

To deploy the fingerprinting system based on RSSI, we distributed six 802.11
access points throughout our dependencies (red dots in Figure 1). Access points
already deployed in the scenario might also be used since there are no specific
requirements imposed. During the corresponding training phase we collected 250
RSSI observations at each cell. For our database of images, we have obtained a
set of seed images, where the number of images captured at each cell depends
on the cell type (zoom on Figure 1). Thus, a cell in a corridor is associated to as
many images as possible directions of movement, whereas inside the rooms we
build panoramic images covering the whole dependency. For larger scenarios we
plan to develop some technique like the one presented by Park et al. in [18] in

Fig. 1. Experimental environment
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order to populate larger databases of images and RSSIs using the data provided
by the users as they make use of the available location services.

Our experiments were carried out using several hardware devices. The train-
ing observations were captured with an Asus Eee 1201 laptop with a Realtek
TRL8191SE Wireless LAN 802.11n card. In addition, during the online phase we
have also used HTC Desire and HTC Legend smartphones with Android. We de-
veloped the appropriate software client for each device in order to collect RSSIs
and images and to send them to a repository. Applications were programmed
in C++ and Java, depending on the requirements imposed by each device. We
have used Linksys WRT54G access points with 802.11abg support. Their lo-
cations were chosen so as to provide consistent coverage throughout the entire
scenario, guaranteeing that every cell is covered by, at least, 3 access points.

For image processing we use the SIFTGPU library, a GPU Implementation
of Scale Invariant Feature Transform (SIFT), implemented by Changchang Wu.
SiftGPU requires a high-end GPU, that makes it impossible to be managed
by smartphones, so we use a nVidia GeForce 9800GT supporting both GLSL
(OpenGL Shading Language) and CUDA (Compute Unified Device Architec-
ture). This GPU has been installed in a Intel(R) Pentium(R) Dual-Core CPU
E2160 server. This computer is responsible for estimating the location of the
different devices. The resolution of the training images is 640x480 pixels for cor-
ridors and 2900x360 pixels for panoramic images of offices and laboratories, and
they were captured using a HTC Desire smartphone.

The system has been tested by five different users. They held the phone out in
front of them, facing ahead in order to obtain location-aware information related
to their current cell or to a zone containing the cell. We are aware that the use of
these augmented-reality applications based on images would be sporadic, since
we do not envision realistic scenarios where users are comfortable holding their
phones facing ahead all the time. Therefore, when the smartphone is inside the
pocket, facing the floor, or obtaining useless images (unfocused, uniform), the
location estimation will be based mainly on the RSSI measurements.

4 Clustering based on RSSI

As mentioned, several research works have demonstrated that a significant ac-
curacy can be obtained by means of location fingerprinting based on RSSI. We
have performed several tests using different techniques in order to compare their
results [4, 8]. In Figure 2 we compare the accuracy provided by the different
techniques that we analyzed. These experiments have been carried out using the
training observations as inputs for our estimator and, therefore, we are aware
that these results can only be obtained under ideal conditions. We decided to
represent the position as a probability distribution using Bayesian inference. As
we can see, a histogram-based representation of the sensor model performs better
in our scenario.

Accuracy is considerably enhanced by introducing a Hidden Markov Model
(HMM) [11]. We have designed the HMM chain as a matrix of NxN size, where
N is the number of cells within our scenario. Our matrix has been initialized
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Fig. 2. Estimation error using RSSI

using the adjacency relationship between cells and considering that users do not
usually move faster than 2 meters per second.

One of the most interesting conclusions that can be obtained from the finger-
printing methods is their suitability to define geographical areas where signals
show a similar behavior. Lemelson et al. [12] proposed the Fingerprint Clustering
algorithm, which makes use of the training RSSIs to find clusters. It is based on
the idea that the signals collected in nearby cells tends to cover only a limited
range of the possible values. In order to show how this proposal can be applied in
our interests, we have calculated the clusters, shown in Figure 3 (cells pertaining
to the same cluster are displayed using the same color), and then we performed
several tests where most of the already-analyzed techniques obtain a high cluster
hit percentage, up to 93%. According to these experiments, we have defined four
overlapping zones joining adjacent clusters in order to reduce the search space
when other sensors are also analyzed.

As we will see, the main drawback of using images is the elevated computa-
tional cost, especially in huge scenarios, where the number of images to analyze
is excessive, involving serious scalability problems. The use of the mentioned
clustering technique and the defined zones reduces the number of processed im-
ages to those contained in a specific zone of the entire scenario, so performing a
fine-grained localization and improving the system scalability.

5 SIFT Analysis

The Scale Invariant Feature Transform [13, 14] is a widely adopted technique
in computer vision research. It provides a method for extracting a collection
of features from images, and these features are invariant to image translation,
scaling and rotation, and partially invariant to illumination changes and affine
distortion or change in 3D camera viewpoint. These features are well localized in
both the spatial and frequency domains, reducing the probability of disruption
by occlusion, clutter, or noise. One of the most important characteristics of SIFT
is that each feature vector is highly distinctive, which allows a single feature to
be correctly matched with a high probability against a large database of features,
providing a basis for object and scene recognition.

There are several efficient algorithms to extract distinctiveness feature vectors
from images, proposed by Lowe [14] or by Vedaldi [21]. Turcot and Lowe have
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Fig. 3. Clusters distribution.

taken an additional step in [20], improving performance by selecting only a small
subset of the training features.

Since the SIFT extractor algorithm is based on a Gaussian pyramid of the
input image, there are several parameters that influence its performance. We
have empirically analyzed the SIFT extractor algorithm in order to find the
input parameters that best fit our images and scenario characteristics. We tested
different values for the number of octaves, for the index of the first octave, and
finally for the number of levels per octave of the pyramid. Selected values are:
5 octaves, first octave equal to 0 and 5 levels per octave. Thus, we obtain 250
stable keypoints per image on average.

Since each keypoint descriptor is defined as a 128-dimensional feature vector,
there is no algorithm able to identify the exact nearest neighbors in such high
dimensional spaces that is any more efficient than exhaustive search. There are
some algorithms, such as the Best-Bin-First proposed by Beis and Lowe [5], that
return the closest neighbor with high probability. Another useful algorithm is
proposed by Arya and Mount [2], based on the use of kd-trees and bd-trees,
that support both exact and approximate nearest neighbor searching in spaces
of various dimensions. We have used the kd-tree version implemented within the
ANN (Approximate Nearest Neighbor) library by Mount and Arya [16] to carry
out our experiments.

Our image database contains a set of 45374 data points in real 128-dimensional
space. However, with a tree structure, the nearest neighbor can be found effi-
ciently. ANN allows us to select the number of returned k-nearest neighbors,
where k ≥ 1. For k = 2, we compute the distance between these two nearest
neighbors in order to check whether it is a real match. As Figure 4 shows, we
evaluated three different values for the distance ratio R (between the closest and
the next closest neighbor), and we reject those matchings with a ratio greater
than the specified value. In our scenario, the best results for performance and
accuracy are obtained with R = 0.75 (close to the R = 0.8 suggested by Lowe
in [13]).

Another important parameter of our matching algorithm is the number of
individual matches required to consider that there is strong evidence of a global
image matching. Since the number of features for each image may be high, we
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(a) (b) (c) (d)

Fig. 4. Matching parameter analysis. a) Global tree performance; b)Clustering-based
trees performance; c) Global tree accuracy; d) Clustering-based trees accuracy

can specify a matching threshold T (a percentage of matches against the number
of features per image) to define a match as valid. We have experimented with
different T values (x axis of Figure 4), finding that 0.1 is a good value to maximize
performance and accuracy. That is, given a query image, we consider that there
is match when at least 10% of its features are found in a particular image of the
database. It proves that SIFT features are very descriptive.

Once we have chosen the right parameters for an optimal image search, we
can show the appropriateness of using a multisensor system to improve the ac-
curacy and the performance of the location estimation process. As we mentioned
above, using the clustering technique based on the RSSIs analysis, we divided
our scenario into four zones. Figure 4 (a,c), shows the performance and accu-
racy results, respectively, obtained from a experiment using a tree of images
that contains all the images of the database. However, Figure 4 (b,d) shows the
performance and accuracy results, but with five different trees. Four of them
contain the images of each zone, and the fifth one is a global tree containing all
the images in the scenario. Analyzing these results, we can conclude that when
using smaller trees we get better performance results, around 25% reduction in
the search time, even improving accuracy. We are aware that our scenario is not
so large, meaning that in larger scenarios this difference of using a global tree
against clustering-based trees will suppose a higher performance improvement
and, therefore, a better scalability.

Finally, it is worth noting that SIFT features provide a good distinctiveness
even in environments with many similarities between different physical emplace-
ments. Figure 5 shows different images, and their related features, extracted from
the experimental environment. Each feature is represented by a circle indicating
the corresponding scale and by a vector showing the orientation. Red circles are
light blobs on dark background, green ones are dark blobs on light background,
and a specific feature is drawn as a blue histogram, for illustration purposes.
As Figure 5 shows, despite corridors A and B are similar, there is a significant
difference regarding the number of features matching the captured image.

6 Motion Analysis

In several situations there is no need to perform continuous estimations about
the user location. Once the right position has been determined with a high confi-
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(a) Features (b) Matching with corridor A (c) Matching with corridor B

Fig. 5. SIFT features and matching of images

dence, the information obtained by the built-in inertial sensors of a smartphone
might be used to determine whether the user moves or remains still. In this
latter case, there is no need to acquire additional data from other sensors, or
to calculate a new location estimation. The integration of this type of sensors
improves the performance of our system, supporting a higher number of users.
Additionally, regarding to power consumption, we will be able to save energy
and avoid unnecessary operations and transmissions.

We infer the physical state of the mobile phone from a built-in 3-axis ac-
celerometer, so we are able to characterize user movements. Since it is too dif-
ficult to get a better motion recognition with mobile phone accelerometers, we
decided to identify just two states: still and motion.

To identify these states we use a simple perceptron [6], because we are dealing
with two linearly separable sets, and that technique performs reasonably well.
In order to train the perceptron, we first got 150 readings from a phone held by
a user in a static position. Then we recorded another 150 samples from a user
walking with the phone. Once this phase was finished, we trained our perceptron
with these 300 samples. We performed this entire process several times using
different patterns of movement to obtain different perceptrons. Once we finished
this learning stage, we tested the perceptrons in the real scenario and we selected
the one providing better results, which was trained with slow movements.

7 Sensor Fusion

The sensor fusion of our location system is designed to reduce the computational
cost, to minimize the amount of information transmitted and, therefore, to pre-
serve the smartphone battery life. The smartphone uses two different threads
running in parallel in order to capture images and to obtain information about
RSSI. Access points are analyzed in order to determine whether we are in a
location supported by our system. Additionally, we have to check whether the
image is useful, that is, it is focused enough to allow the extraction of SIFT
features (a gradient model is used to discard blurry and uniform images). In
that case we send to a database the image along with the RSSI information and
a motion estimation performed locally, otherwise the image is not sent. Finally,
once motion is detected or a timer expires, the process is repeated.
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Once the information has been stored, the location service is able to estimate
the position. RSSIs are processed to get a probability distribution vector indi-
cating the likelihood of being located at each cell of the scenario. SIFT features
are computed, and using the ANN kd-tree matching algorithm, a probability
distribution is obtained according to the number of matches found.

The matching process proceeds as follows. We select the subtree linked to
the cluster containing the cell with higher probability after the RSSI analysis.
We compare our input image features with those stored in the selected subtree.
If the result does not exceed the matching threshold T (mentioned in Section
5), we select another subtree containing that cell, if available, and the process
is repeated. Finally, if we do not exceed T we select the global tree to perform
a new search. According to the results shown in Figure 4, the performance of
using subtrees in our testbed is up to 25% better than a global tree search.

The fusion process uses Bayes’ Rule to obtain a probability distribution in-
dicating the likelihood of being located at each cell of the scenario. Being π a
probability distribution vector over each cell, C = {c1, .., cm} the set of cells that
make up the finite space state, n the amount of RSSI measurements in the cur-
rent observation Oj , and Pr(λβ |aβ , ci) the probability of taking a measurement
from the access point aβ at reference cell ci with a signal strength λβ , there is
a first estimation based only on RSSI:

π′
i =

πiPr(Oj |ci)∑m
α=1(παPr(Oj |cα))

where Pr(Oj |ci) =
n∏

β=1

Pr(λβ |aβ , ci) (1)

Considering π′
h as the highest value in π′, we can constrain the analysis of

the image in Oj to the cluster of cells where ch is included. Pr(f |cc) is the
probability of seeing an image f at cell cc contained in the selected cluster, and
it is defined as follows:

Pr(f |cc) =
matchesf,cc∑l

k=1(matchesf,ck)
(2)

All the images related to that cluster are analyzed to determine the image
with a higher number of matching features. If Pr(f |cc) > T (T was defined in
Section 5), we consider that there is strong evidence of being at cell cc. Those
cells not related with the selected cluster are assigned a negligible probability
value (to avoid zero probability distribution). Finally we recalculate the proba-
bility distribution π′ by fusing the already estimated π′

i with the corresponding
Pr(f |ci) probability.

8 Experimental Analysis

In order to validate the accuracy and performance of our multisensor system
we carried out several realtime tests where users were still and moving. Five
different users pertaining to our research group participated in these tests daily
during four weeks, making use of a augmented-reality prototype able to display
location-aware notes. Every cell in the scenario was linked to a virtual note.
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Users were able to provide feedback through the application in order to confirm
their estimated positions, or to provide the right cell when the estimation was
not correct, and this was our way to establish the ground truth.

```````````Fused Sensors
Cell hit

Still Motion

RSSI 68.75% (93.75%) 5.5% (38.9%)

RSSI + Acc 56.25% (90.65%) 5.5% (38.9%)

Images + RSSI + Acc 82.85% (97.14%) 55% (94.44%)

Table 1. Cell hit (including adjacent) using different sensors

During all these tests we obtained information from all the available sensors
(images, RSSI and accelerometer). We have divided the tests into two different
categories: still tests where users remain still at the same place, and motion tests
where users move along the dependencies. The still tests took place at several
cells, in corridors, offices and laboratories. During the motion tests, we covered
several paths mainly along the corridors. Location was estimated with three
different combinations of sensors: using RSSI only, using RSSI and accelerometer
and using all the sensors, in order to check the accuracy of each combination.
Table 1 shows that, for motion tests, we are able to estimate the right cell 55%
of cases using images (94.44% of the estimations are exact or directly adjacent to
the right cell). It is worth noting that the results improve the accuracy obtained
using only WiFi, both for still and motion cases.

Regarding to the system performance, Figure 6 shows the distribution of
time among the different tasks to be performed during the whole cycle needed to
estimate locations. The required mean time is around three seconds using a HTC
Desire smartphone and, as mentioned, our main intention was to find a good
tradeoff between accuracy and performance. We consider that the extra time
required to deal with images is acceptable for some of the envisioned applications
requiring better accuracy. Furthermore, most of the time required for some tasks
included in Figure 6 will be reduced significantly using future smartphones. For
example, RSSI acquisition requires 35% (one second) since we perform a passive
scanning. However, devices supporting active scanning might reduce this time
drastically. In relation to images, we have considered the required time for auto
focus, but this is not necessary once the focus is completed and we want to
obtain more pictures. Additionally, communications have an important overload
(25%), and most of this time is consumed by the transmission of images. It is
worth reminding that we employ accelerometers in order to save energy and
calculations in those situations where the handset remains still, and images are
discarded when the device is in the pocket or in similar cases. Transmission of
images is a requirement due to the limitations of current smartphones to perform
the extraction of SIFT features. However, some manufacturers are announcing
new smartphones with built-in GPUs, like NVIDIA TEGRA 2, that will be able
to perform that extraction locally. This is especially interesting in order to reduce
the required time to estimate the position by the location server, which is 13%
(around 400ms) but including the calculation of SIFT features.
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Fig. 6. Time latency of the localization process

9 Conclusions

The multisensor localization system presented in this paper provides an accurate
method for estimating the user location. We have concentrated our efforts on
integrating the context information obtained by using the available sensors in
current smartphones.

As mentioned during the paper, the main drawback of using images is the
elevated computational cost of the matching process in huge scenarios. Though
our experimental scenario is relatively small, we have demonstrated that by
using RSSI information we can reduce the search time up to 25%. In larger
scenarios this performance improvement will be meaningfully higher since the
complete tree of features will contain a higher amount of descriptors. Realtime
experiments provide good results for still and motion scenarios, respectively,
while the system can currently complete an entire cycle, from obtaining data
from sensors to providing a location estimation, in approximately three seconds.
Additional optimizations have been added by considering the information from
the accelerometer and discarding useless images.

There are several augmented-reality applications which do not require a real
time response. Therefore, we find our approach a valuable contribution for this
kind of location-based services, since we have obtained the required tradeoff
between a fine-grained accuracy and an acceptable response time using data
from multiple sensors.
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