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ABSTRACT
Classifying memory accesses into private or shared data has
become a fundamental approach to achieving efficiency and
scalability in multi- and many-core systems. Since most
memory accesses in both sequential and parallel applications
are either private (accessed only by one core) or read-only
(not written) data, devoting the full cost of coherence to ev-
ery memory access results in sub-optimal performance and
limits the scalability and efficiency of the multiprocessor.

This work proposes TokenTLB, a page classification ap-
proach based on exchange and count of tokens. The key
observation behind our proposal is that, opposed to coher-
ence management, data classification meets all the benefits
of a token-based approach without the burden of complex
arbitration mechanisms, which has discouraged the imple-
mentation of token-based coherence protocols in commodity
systems. Token counting on TLBs is a natural and efficient
way for classifying memory pages. It does not require the use
of complex and undesirable persistent requests or arbitra-
tion, since when two or more TLBs race for accessing a page,
tokens are appropriately distributed classifying the page as
shared. TokenTLB also favors shareability of translation
information among TLBs, which improves system perfor-
mance and constrains much of the TLB traffic compared to
other broadcast-based approaches. It is achieved by requir-
ing only TLBs holding extra tokens provide them along with
the page translation (about one response per TLB miss). To-
kenTLB effectively increases blocks classified as private up
to 61.1% while allowing read-only detection (24.4% shared-
read-only blocks). When TokenTLB is applied to optimize
the directory, it reduces the dynamic energy consumed by
the cache hierarchy by nearly 27.3% over the baseline.
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1. INTRODUCTION
Chip multiprocessors (CMPs) are composed of an ever

growing number of cores. They require multi-level cache
hierarchies for performance reasons and support a shared
memory model for ease of programmability. Shared memory
models require scalable cache coherence protocols to pro-
vide high performance. Directory-based protocols are the
best suited for the new scalability challenges [14, 19, 47, 53].
They require less network bandwidth compared to snooping-
based protocols. However, they do not distinguish whether
the accessed data is private or shared. Consequently, per-
formance and scalability opportunities are not completely
exploited.

A large number of recent proposals employ a classification
of data and/or accesses into private or shared in order to
overcome scalability limitations of current CMPs [8, 14, 15,
16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 36, 42, 43, 44, 45, 52].
The key idea in these works is that the nature of private and
shared data is different, and therefore, references to this data
can be optimized according to its nature. Data classification
has consequently become a key mechanism to design scalable
and efficient multiprocessors.

Ideally, the classification should be performed with low-
overhead in terms of traffic, performance, and area. How-
ever, data classification often entails high storage require-
ments to track the sharing status and/or does not account
for data sharing status transitions from shared to private [14,
20, 23], thus diminishing the classification accuracy and ul-
timately limiting the potential performance benefits. Fur-
thermore, some classification mechanisms store its sharing
status on the directory or the cache memory [8, 16, 21, 36,
52], which limits its applicability. In general, the sooner the
data classification is obtained for a memory access, the bet-
ter. Finally, write detection has also been explored, extend-



ing classic private-shared dichotomy by discerning written
condition for data, extending the scope of the classification
scheme and improving its effectiveness [15, 20]. Note that
accesses to read-only data represent an important fraction
of memory accesses.

In addition, address translation latency is added to the
critical path of memory accesses and a lot of effort has been
made to reduce its impact, such as multilevel TLB hierar-
chies, prediction in super pages [35], TLB prefetchers [11],
shared TLB structures [10], Synergistic TLBs [48], or TLB-
to-TLB transfers [18, 42]. Some of these proposals are based
in slight changes on the TLB organization in order to reduce
the number of TLB misses. In a different manner, Synergis-
tic TLBs and TLB-to-TLB transfers focus on reducing TLB
miss penalty through inter-core TLB cooperation.

Specifically, TLB-to-TLB transfers are suited for adaptive
data classification, aiming for coherence deactivation [14,
15], an effective approach recently proposed to increase di-
rectory scalability in CMPs. However, these transfers flood
the network with responses after every broadcast TLB miss,
many of them being multiple replicated messages with the
page translation, thus critically increasing network consump-
tion. Even though TLB misses are infrequent (only 2% of
TLB accesses are misses), this does not scale to large sys-
tems. In addition, data reclassification from shared to pri-
vate is not immediate, but it is postponed until the page is
evicted from main memory and accessed again, thus penal-
izing classification accuracy.

In this paper we propose TokenTLB, a novel classifica-
tion mechanism implemented directly in the TLB structure
and inspired by Token coherence [30, 32, 34] protocols. To-
kenTLB is based on the observation that, unlike Token co-
herence, applying tokens for classification does not require
issuing persistent requests nor complex arbitration mech-
anisms. Persistent requests are a special type of request
meant to solve races occasionally caused when several cores
want to write data at the same time. These requests are a
source of complexity for the coherence protocol, being one of
the main causes why Token coherence has not been imple-
mented in commodity systems. However, TokenTLB avoids
these races by only aiming at classifying data. When two
or more TLBs race for accessing a page, tokens are natu-
rally distributed among the TLBs, and the page is conse-
quently classified as shared. In other words, classification
does not require an owner token. The main contributions of
TokenTLB are:

1. TokenTLB is designed as a token-based TLB page-
level classification approach. It allows shareability among
TLBs, which accelerates page translations, favoring a
better system performance.

2. TokenTLB reduces network consumption compared to
previous similar TLB-based proposals. Only TLBs
holding extra tokens provide them along with the page
translation, which leads to about one response per
TLB miss.

3. TokenTLB extends classification characterization by
detecting write accesses to pages, while performing an
adaptive classification based on count and exchange of
tokens. Token-based classification makes it possible to
identify naturally and immediately a shared TLB page
entry transitioning to private, being the first adaptive

classification mechanism with write detection proposed
to the best of our knowledge.

4. TokenTLB introduces a predictor capable of resolving
TLB misses through unicast messages, thus increasing
scalability. The predictor relies on a small buffer called
Token Predictor Buffer (TPB), which is in charge of
short-time storage of potential token-holding TLBs.

Simulations of a cycle-accurate 16-core CMP running a
large variety of scientific and commercial workloads show
that TokenTLB increases the number of blocks classified
as private at miss time up to 61.1%, and shared-read-only
blocks up to 24.4%. Furthermore, when the classification
is applied to coherence deactivation it reduces the average
directory entries requirements to merely a 28.8%, and over-
all cache hierarchy consumption by 27.3% over the base-
line. Finally, TPB inclusion has proved to further reduce
TLB request traffic by nearly 20% over base TokenTLB ap-
proach. In particular, TokenTLB combined with TPB only
generates, on average, less than one response per TLB miss.
When the translation is resolved in the page table no TLBs
are expected to respond. Therefore, TPB provides, in con-
junction with TokenTLB, a more Sscalable classification ap-
proach.

2. MOTIVATION AND RELATED WORK

2.1 Data Classification
Data classification mechanisms are gaining interest as they

allow many optimizations regarding block management based
on their sharing status. There are many recent examples in
the literature showing the huge variety of applications for
a classification scheme. Specifically, Kim et al. [23] avoid
requesting coherent data through broadcast messages on
snooping protocols when accessing private blocks, thus lead-
ing to network traffic reductions. Alternatively, Y. Li et
al. [27] introduce a small buffer structure close to the TLB,
namely partial sharing buffer (PSB). When a page becomes
shared it will feasibly be present on the PSB upon a TLB
miss, obtaining the page translation with both lower la-
tency and lesser storage resources. Moreover, Hardavellas
et al. [20] and Kim et al. [26, 28] keep private blocks on the
local NUCA bank in order to reduce access latency to NUCA
caches. Ros and Kaxiras [46] propose an efficient and simple
cache coherence protocol by implementing a write-back pol-
icy for private blocks and a write-through policy for shared
blocks. Finally, Cuesta et al. [14, 15] propose to avoid di-
rectory storage of private blocks, therefore deactivating co-
herence maintenance for those blocks and leading to smaller
and faster directories, namely Coherence deactivation.

Most proposals described above use classification approaches
that take advantage of currently existing OS structures (i.e.,
TLBs and page table) in order to perform the page classifica-
tion and store the page status, and therefore they do not re-
quire additional hardware structures. Differently, compiler-
assisted approaches [26, 28] deal with the difficulty of know-
ing at compile time (a) whether a variable is going to be
accessed or not, and (b) in which cores the data will be
scheduled and rescheduled. Furthermore, directory-based
approaches [8, 16, 21, 36, 52] only reveal the sharing sta-
tus of data after accessing the cache or directory structure,
therefore limiting its applicability to optimizations where



A-priori Read-Only Adaptive Accurate
Directory 7 3 3 3
TLB 3 7 3 3
OS 3 3 7 3
Compiler 3 3 3 7
TokenTLB 3 3 3 3

Table 1: Properties of classification schemes

the a-priori knowledge of the status of the accessed data is
not required. Finally, approaches based on the properties
of programming languages [44, 45], despite of being very
accurate, are not applicable to most existing codes. How-
ever, OS-based approach performs a run-time classification
for any code, thus avoiding these difficulties.

The main problem of the OS-based classification is that it
performs a non-adaptive classification. When a page transi-
tions from private to shared it remains in that state for the
rest of the execution time (unless evicted from main mem-
ory). In applications running for a long time, many pages
may be considered shared at some point along the execution,
thus neglecting the advantages of the classification.

In order to perform an adaptive classification that ac-
counts for temporarily private pages and thread migration,
TLB-based classification [18, 42] was introduced, relying on
TLB-to-TLB transfers to inquire other cores’ TLBs in the
system to naturally discover whether blocks belonging to a
page may be currently stored on a remote cache and there-
fore the page is shared, or, on the contrary, the page is
currently private. TLB-to-TLB transfers are based upon
the observation that core-to-core communication in CMPs
is much faster compared to traditional processors. Other
works benefit from this observation with different aims [38,
48]. In addition, a TLB decay mechanism [22] was intro-
duced in order to accurately predict when a page is not
going to be accessed in the near future, and thus improve
the private detection by avoiding accounting those entries
as potential sharers.

However, TLB-to-TLB transfers generate replicated re-
sponses, possibly including the translation, from every core
in the system after every TLB miss. With lower TLB de-
cay timeouts (which increment the TLB miss rate) network
consumption increases dramatically [18]. Furthermore, fre-
quent broadcast requests and responses are not supposedly
scalable to large-scale systems, as the number of message-
passing steps increases proportionally with the system size.
Also, page reclassification to private requires the translation
to be completely removed from all TLBs in the system to
occur, thus limiting the accuracy of the classification mech-
anism. Finally, write detection is not explored, limiting the
classification scheme to the private-shared dichotomy for an
adaptive approach.

Table 1 summarizes the main properties of the state-of-
the-art classification approaches compared to TokenTLB. In
the first place, knowing the classification prior to accessing
the cache is critical to the applicability of the classification
mechanism. Some approaches store the sharing status in the
directory, and thus they cannot be employed for techniques
such as coherence deactivation [14] or reactive NUCA [20]
among others. Also, adaptive classification entails a huge
improvement in the precision of the mechanism, naturally
detecting thread migration and data accesses within differ-
ent private phases. Read-only classification (i.e. detecting
non-written regions of data) is also a far-reaching property,
as shared-read-only blocks can account up to 48.7% of all ac-
cessed blocks [15]. However, no previous TLB-based classifi-

cation approach explores write detection. Finally, compilers
need to be conservative, because they do not have informa-
tion about data sharing status at run-time, therefore they
are not compelled to perform an accurate classification, as
privacy cannot be always guaranteed.

2.2 Coherence Deactivation
On current large CMPs, the directory cache suffers from

scalability issues. Directory area and latency overhead in-
crease in order to avoid evictions, as the eviction of a direc-
tory entry usually entails the invalidation of blocks on the
lower memory hierarchy levels. Due to the limited size or
associativity of directory caches or the lack of a backup direc-
tory, a system with large number of cores may produce fre-
quent invalidations, which dramatically increases the num-
ber of Coverage misses [41] (cache misses caused by invali-
dation on the directory cache due to the limited capacity),
and therefore results in performance degradation.

In this regard, Coherence Deactivation [14] was proposed,
relying on an OS-based page classification scheme in order
to identify private (non-coherent) blocks and avoid the stor-
age of those blocks on the directory cache as they do not
require coherence maintenance. Thus, directories exploit
more efficiently their limited storage capacity as far as the
classification mechanism becomes more accurate. Detection
of non-coherent blocks was further explored under an OS-
based page classification scheme [15] avoiding the tracking
of shared blocks that are never modified (read-only), which
can account up to 48.7% of total memory accesses.

Furthermore, coherence deactivation was also explored us-
ing a temporal-aware classification approach [18, 42], report-
ing better classification accuracy and, consequently, better
directory usage and overall performance.

2.3 Address Translation and TLB Consistency
Address translation is the process regulating the access

to physical memory given a virtual address. Modern mem-
ory management units (MMUs) divide address space into
pages, and therefore divide memory into a set of multi-level
hierarchical structures called page tables. Retrieving the
page translation (page table walk) require multiple memory
accesses, as page tables are composed by four hierarchical
levels for common 64-bit systems. Moreover, the number
of levels required for address translation dramatically grows
with systems supporting virtualization (e.g., up to twenty-
four memory accesses on x86-64 virtual address space [9], or
fifteen memory accesses for the recent 32-bit ARMv7 virtual
address space [2]), which is added to the critical path.

The number and size of TLBs is growing to effectively ad-
dress the increasing application memory footprints and con-
strain the potential performance loss. Additionally, on page
modifications initiated by the operating system it becomes
necessary a coherency transaction, namely TLB shootdown,
to recover state among TLBs.

Several solutions have been proposed to improve TLB per-
formance, and many of them have similarities with clas-
sic cache coherence solutions, revealing how either TLB-
based classification or historical TLB consistency could be
addressed as TLB coherency [38]. Note how TLB consis-
tency is an infrequent but costly operation, while data clas-
sification is a frequent low-cost operation, thus the latter
also needs to be efficiently addressed. Furthermore, cache
coherence solutions for TLBs also share part their issues.



Snooping-based solutions: are based on broadcasting
messages, which dramatically augment bandwidth require-
ments with core count. There is lot of effort put in order to
reduce it [6, 13, 23]. TLB-to-TLB transfers [42] is an exam-
ple of snooping solution for classification in TLBs, avoiding
the penalty of “walking” the page table.

Directory-based solutions: rely on a directory located
in the home node to track cached memory blocks. Directo-
ries also act as an ordering point for cache requests, naturally
avoiding races with unordered networks. Unfortunately, di-
rectory size grows exponentially with the system size. It also
adds an indirection to the critical path, both in the case of
cache and TLB transactions. DiDi [50] is an example of
directory-like solution for TLB coherence, which introduces
a small shared TLB directory designed to reduce the impact
of TLB shootdowns in large-scale CMP systems by enabling
lightweight TLB invalidation.

2.4 Token Coherence
TokenB [32] was introduced by Martin et al., capturing

the best aspects of snooping and directory protocols: low
latency cache-to-cache misses and not reliance on totally or-
dered interconnects. Token tenure [37] was also proposed by
Raghavan et al., relying on an underlying directory cache to
track tokens.

Token protocols guarantee coherence safety through token
counting: a processor can only write if it holds all tokens in
the system and can only read if it holds at least one token
for that block. However, as requests are sent to all proces-
sors through broadcast requests, they may produce protocol
races when contending for a memory block, and thus fail
at resolving cache misses. In order to avoid starvation and
guarantee cache misses completion, Token protocol invokes
persistent requests after ten average miss times unsatisfied.

Persistent requests cause major problems, as they require
arbitrage, adding some inflexible latency overhead and re-
quiring extra non-scalable structures in the die, being the
main reason for its limited roll-out in commodity proces-
sors. However, TLBs do not modify translations directly in
the TLB cache. Consequently, using tokens for classification
and distributing them in the TLBs can avoid these major
protocol races. When disputing a page translation they will
be simply classified as shared.

3. TOKENTLB
Our goal is to reach all desirable properties for a clas-

sification mechanism: performing the classification prior to
accessing the cache hierarchy; implementing a fully-adaptive
classification able to carry out an accurate reclassification;
improving classification characterization by discerning write
accesses and recognizing read-only pages; and performing an
accurate run-time classification valid for any code.

To this end, this paper proposes TokenTLB, an adaptive
classification technique based on token counting. TokenTLB
accelerates TLB misses through efficient TLB-to-TLB trans-
lation resolution, while coping with the traffic overhead that
entails its usage.

3.1 Token-Counting Classification: Concept
TokenTLB associates a fixed number of tokens with each

translation entry. In a system with N cores, there must
be N tokens per entry. New tokens cannot be generated,
and tokens cannot be destroyed. Tokens are exchanged

through TLB-to-TLB messages alongside with the page ad-
dress translation. A TLB page entry is classified according
to its token count: private if it holds all tokens (N), shared
while holding a subset of all page’s tokens (from 1 to N−1),
and invalid when holding no tokens. Finally, only valid TLB
entries (i.e. holding at least one token) may reply to a trans-
lation request.

Additionally, in order to track whether the page has been
written or not, there is a written flag (W) associated with
each translation entry, which is sent alongside with the to-
kens on TLB transactions. The written flag increases the
classification scope by adding extra classification categories:

• Private Read-only (PR) page: Only one processor is
currently accessing the page blocks. All accesses has
been loads during the page lifetime.

• Private read-Write (PW) page: Only one processor
is currently accessing the page blocks. It has been
written at least once during current page lifetime.

• Shared Read-only (SR) page: At least two processors
are currently accessing the page blocks. All accesses
has been loads during the page lifetime.

• Shared read-Write (SW) page: At least two processors
are currently accessing the page blocks. It has been
written at least once during current page lifetime.

In sum, TokenTLB (i) accelerates TLB misses through
TLB-to-TLB communication, while (ii) optimizes TLB band-
width requirements, as only TLBs with tokens are in charge
of supplying the translation in response to TLB miss re-
quests. Moreover, as page classification relies on the token
count, TokenTLB (iii) immediately and naturally reclassi-
fies pages multiple times both from private-to-shared and
shared-to-private during each local page generation time (i.e.
the time spent since the page is first accessed on a core’s
TLB to the moment it is finally evicted from that TLB)
[18], which provides the classification mechanism with full-
adaptivity. Finally, TokenTLB squishes classification to its
maximum by (iv) extending classic private-shared classifica-
tion with write detection and applying it for the first time
with a fully-adaptive page classification mechanism.

3.2 Token Request upon TLB Miss
TokenTLB initiates the page table walk process after a

TLB miss in parallel with a broadcast request snooping
other cores’ TLBs. Initially, the page table holds all N to-
kens for each page translation. Consequently, after the first
TLB miss for a memory page, the page table delivers all the
tokens to the requestor TLB. From now on, tokens are held
by TLBs and sent through messages on response to TLB
miss requests, spreading across the core’ TLBs. When a
TLB receives a TLB translation request, it checks if it owns
the translation entry (i.e. holds the page translation with
two or more tokens in it) and if so, it answers the request
with a short response message, keeping one token and send-
ing the rest. When the first translation response with tokens
is received by the requesting TLB, the page table walk is can-
celed, tokens are annotated privately in the corresponding
page TLB entry, and the memory access proceeds. By doing
this, response traffic is constrained as only one TLB (usually
the most recent in acquiring the translation) is allowed to



Figure 1: TLB and page table entry format. Shaded fields
represent additional fields required.

answer in the common case. Furthermore, page access is un-
locked sooner compared to previous similar approaches [18,
42], thus improving execution time (as seen in Section 6.1).

Tokens are stored in an additional TLB field, namely To-
kens, as seen in Figure 1. This field adds log2(N) bits to each
entry (e.g. only 4 extra bits for a 16-core CMP) in the TLB.
When all tokens are given away we rely on the valid/invalid
bit (V) of the TLB entry to track it. In the case of the page
table, it does not require dedicated hardware, but just one
extra bit per entry (whether it has or has not all tokens),
namely T, that can be one of the reserved bits in the page
table entry. Compared to an OS-based approach with write
detection [15], which requires 3 + log2(N) bits, our solution
represents far lesser and more scalable overhead.

TLB misses allocate an entry in the Miss Status Holding
Register (MSHR), which is deallocated only after acquiring
both the page translation entry and at least one token for
that page. Therefore, if the page walk process ends without
delivering tokens with the page table translation (tokens are
held by other TLBs), we have to wait for the first token
response. Page access cannot be unlocked without sharing
information (i.e. tokens). Note how, in some cases, more
than one TLB may respond to the TLB miss request (e.g.
when using TLB decay, see Section 3.4.1). Consequently,
a page access can be classified as shared although it may
be effectively private, as some tokens may be still in-flight.
However, once the token reception finishes, if the TLB has
all N tokens, the page naturally becomes private.

Additionally, when a page is written for the first time, i.e.,
the W bit is not set, this bit needs to be set in all copies of the
translation stored in other TLBs. This bit remains set until
the global page generation time (elapsed time from a page
is first cached on a TLB to the moment it is evicted from
the last TLB in the system) [18] for that page ends. When
the write happens in a private page, no actions are required.
Otherwise, a message is broadcast to update the W bit in
all TLBs holding tokens for that page, which produces a
transition to shared-written (SW). Written information is
sent alongside tokens as part of the page sharing information
on TLB miss responses.

3.3 Token Release for Correctness
Tokens are neither created nor destroyed, but transferred.

This means that the system must always guarantee the exis-
tence of N tokens for any given page translation. The page
table either holds all N tokens or none. Otherwise, access-
ing the page table looking for tokens could become a costly
frequent operation, which should be avoided.

When a TLB evicts a page entry that is holding a subset of
tokens, a message is sent looking for a new holder for those
tokens. On the contrary, if a TLB entry is holding all N

Figure 2: Path that token messages follow after TLB evic-
tions for a 16-cores (4x4) mesh interconnect.

tokens, they are sent back to the page table. Consequently,
TLB evictions are required to be non-silent, adding some
extra traffic consumption. However, non-silent evictions do
not hurt system performance, as they are out of the critical
path for memory accesses. Contrary to that, non-silent evic-
tions grant a more dynamic classification and are the key for
a natural reclassification to private.

As previously noted, a subset of tokens on an evicting
TLB entry must be transferred to a new holder. To do so,
a message (token evict) that only carries tokens, but not
the translation, is sent to another TLB. Ideally, a TLB re-
ceiving a token evict request should only accept tokens if
it is already holding a valid TLB entry for that page or if
it has a MSHR entry allocated as a consequence of a TLB
miss (Section 3.2). Otherwise, the message is sent to the
next designated TLB. When the token evict request finds a
new holder, tokens are annotated in the new TLB, which
responds with an acknowledgment to the original sender.

In order to avoid possible potential livelocks and to min-
imize traffic, the search of the new holder requires a neat
exploration of the network. To this end, we add the con-
cept of a logical network ring, which is a path that cov-
ers all nodes in the system minimizing the number of links
traversed. The path followed is dependent on the network
topology. Figure 2 illustrates an example path for a 4x4
mesh interconnect. This path represents one of the mini-
mum circular routes traversing all nodes in the interconnect.

However, livelocks can still occur when all the TLBs hold-
ing a page (and all of its tokens) try to simultaneously evict
the associated entry. To solve this problem, tokens being
carried on a token evict message can be stored in the cor-
responding MSHR of a core whose TLB is involved in an
eviction process, provided that its ID is greater than the
requestor core ID. Token reception is acknowledged after-
wards.

Note that the key condition for starvation avoidance in
a scenario where multiple evicting TLBs for the same page
endlessly pass on their tokens is the core ID comparison.
If all TLBs simultaneously evict the same page, all N to-
kens will eventually end up in the TLB of the core with the
greater ID, which will send all tokens back to the page table.

In short, now a TLB evicting tokens can simultaneously
store tokens. Thus, when that TLB receives an acknowledg-
ment indicating that the evicting tokens were acquired by
another TLB, it has to check its own MSHR again. If it is
holding a subset of tokens for that page, it sends a new re-
quest message looking for another holder. In case the MSHR



is not holding any tokens, the eviction process simply ends.
Finally, observe how a TLB-to-TLB request may fail to

acquire tokens after a miss if all TLBs owning the transla-
tion entry have evicted their tokens short before receiving
the request, and thus tokens are currently in-flight (entries
with a single token are not allowed to answer). This is pre-
vented by setting a timeout after a TLB miss, which resends
the broadcast request if the page has failed to acquire any
token at the expiring time. This is not a frequent event and
it does not cause a notable increase in network traffic, as
shown in Section 6.1. Also, as token evict messages only
take tokens and not the translation, the TLB miss is not
resolved when receiving a token evict. The missing TLB an-
notates the tokens in the corresponding MSHR entry and
acknowledges its reception, but must remain waiting for a
TLB response with the translation or the page table walk
process to finish.

3.4 Implementation Optimizations
The following section discusses different optional optimiza-

tions for TokenTLB and their hardware implementation de-
tails.

3.4.1 TLB usage prediction
As sharing condition of a page is settled by the concur-

rence of accesses to it, a prediction mechanism is required
to decide whether or not a page is currently in use by a core
(e.g. a TLB entry is valid). To this end, Forced sharing TLB
decay technique [18] was introduced, similar to the one pro-
posed by Kaxiras et al. [22], in order to make predictions in-
dependent from the TLB size. Note how, using larger TLBs
or including more private TLB levels to the TLB hierarchy
makes TLB Decay usage key to perform an accurate clas-
sification. This technique can be straightforwardly adapted
to TokenTLB. Accordingly, a 2-bit saturated counter is kept
by each TLB entry (Figure 1). This counter is periodically
increased according to an internal timeout and is reset after
every memory access. When the counter saturates, it is con-
sidered as decayed, implying that it will not be accessed in
the near future. When a decayed TLB entry is accessed from
the network due to a nearby TLB miss, the local TLB gives
all of its tokens to the requestor (regardless of whether it
owns the translation or not) and loses permission to access
that TLB entry (it is invalidated).

Due to the variability in the page access intervals among
applications or even page live times, decay could, in some
cases, aggressively invalidate an entry that will presumably
be accessed again in the near future. To mitigate this fac-
tor, Forced sharing TLB decay technique performs a decay
override when a premature invalidation is detected (i.e. the
accessed TLB entry is still present but it has lost all of its
tokens). Take into account that our TLBs are implementing
a slightly modified LRU policy for replacements, prioritizing
TLB entries without tokens when selecting a victim. Thus
accessing an invalidated entry is a good indicative for pre-
mature invalidation. In this case, a special request is sent,
which, rather than delivering all the tokens for decayed en-
tries, is allowed to keep the entry and answer normally to
the request, reseting the 2-bit decayed field.

3.4.2 Token Predictor Buffer
In the search for a more scalable classification approach,

TokenTLB reduces response TLB traffic and translation repli-

cation. However, a broadcast request is still sent after every
translation miss. TLBs do not have previous information
of possible token owners (TLBs holding two or more tokens
for a page translation) at the time of the miss, therefore
TLB misses still need to be resolved by flooding the network.
However, some TLB misses occur shortly after an invalida-
tion, and thus a potential token holder could be anticipated.
Consequently, TLB traffic would be further reduced, con-
tributing to a more scalable classification approach. To this
end, we introduce a predictor in charge of revealing other
TLBs as potential token owners. Hitting on the predictor
after the TLB miss issues an unicast request, thereby reduc-
ing TLB request traffic. This prediction based on previous
recent history is similar to the one proposed by Martin et
al. [31]. Other works also benefit from this observation with
different aims [4, 39, 40].

The predictor consists of a small data buffer situated in
parallel with the L2 TLB called Token Predictor Buffer
(TPB), storing the process ID, virtual address, and core ID.
After giving tokens away in non-silent evictions, the receiver
becomes a known potential owner of tokens and is therefore
stored into the TPB. If an L1 TLB miss occurs, both the L2
TLB and the TPB are checked in parallel. If the L2 TLB
misses and the TPB keeps information of a potential token
holder for that page, an unicast request is sent and the TPB
entry is deallocated. If the TLB receiving the request is still
holding tokens, it positively responds with the translation
and classification information. TLB entries discovered as
decayed after being inquired give all of their tokens away.
Otherwise, if the consulted TLB is not a token holder any-
more, it negatively answers the TLB request and the con-
ventional token broadcast TLB miss resolution mechanism
is invoked in parallel with the page walk. The results in
Section 6.1 demonstrate how TPB effectively reduces TLB
request traffic and cache structure dynamic consumption.

3.5 Classification with Multi-level TLBs
TLB structures in contemporary architectures include at

least two private first level TLBs for data and instructions
respectively, and a unified private second level TLB. Among
the most common architectures we find AMD’s K7, K8, and
K10, Intel’s i7, and Xeon, ARMv7, and ARMv8 [1, 3, 2]
which have already adopted private two-level TLB struc-
tures.

Therefore, we extended TokenTLB classification mecha-
nism to work with a private L2 TLB. In this scheme, TLB-
to-TLB requests are issued only after missing in the L2 TLB.

Inclusion Policy: In order to favor the classification
mechanism (avoiding replicated translation entries), we use
an exclusive policy between L1 and L2 TLBs. This means
we have to lookup both TLB levels when answering a TLB-
to-TLB request. However, the small L2 TLB sizes usually
considered make this assumption not too time consuming.
Also, although a broadcast TLB request is stalling the core
in the critical path while waiting for answers, it is unlocked
after receiving the first positive answer, greatly diminishing
its impact.

TLB entries: L2 TLB entries store the same information
as the L1 TLB, including the full context or process ID (PID)
bits, and the extra bits required for classification.

Consistency: The TLB hierarchy is shootdown-aware.
As both TLB levels implement an exclusive policy, they can
be checked in series. Furthermore, this property avoids in-



curring in wrong (outdated) page classification, by flushing
both the TLB and the cache. As a consequence, tokens are
transferred back to the page table.

4. COHERENCE DEACTIVATION WITH
TOKENTLB

In order to test the benefits of the classification scheme
provided by TokenTLB, we apply it to the Coherence De-
activation mechanism, which is proved to improve directory
usage under a non-adaptive OS-based classification scheme
[15]. According to this classification approach, only blocks
belonging to shared written (SW) pages may require coher-
ence maintenance, dramatically increasing data accesses in
which coherence maintenance is not necessary.

As previously noted, page classification provided under
TokenTLB can naturally transition from shared-to-private
or private-to-shared multiple times during every TLB lo-
cal page generation time. Unlike previous classification pro-
posals, TokenTLB is able to immediately detect shared-to-
private transitions (as soon as the TLB obtains all N to-
kens), which allows us to efficiently detect private intervals
of global page lives, averagely representing around 200,000
cycles per interval [18].

However, when applying coherence deactivation, we must
take special care in the implications and penalty of page
reclassification. Note that even under a coherent state (SW),
classification could transition again to non-coherent during
the same local page generation time, provided that a TLB
recovers all tokens, becoming private anew (PW).

Specifically, when a reclassification from private or shared-
read-only to shared-written occurs in a core’s TLB, all the
blocks (non-coherent copies) of that page must be evicted
from all core’s private cache (flushing-based recovery). To
this end, a message is broadcast, and a page flush is per-
formed through all system private caches for TLBs holding
a valid page entry whenever a transition to shared-written
occurs. Therefore, once the recovery mechanism is finished,
the directory cache must have a coherent state according to
the new page classification. This process must be atomic to
avoid inconsistencies (accesses to that page are stalled until
the recovery process is finished in all TLBs).

Page flushing occurs also whenever a TLB entry is ei-
ther evicted or invalidated (i.e. it gives all of its tokens
away) from the last private level TLB. The presence or ab-
sence of a TLB entry must signify the presence or absence
of cache blocks for that page in the upper level cache struc-
ture in order to accurately classify data based in the pres-
ence of a translation entry in the TLB structure. Also, note
that TLBs maintain information affecting coherence man-
agement, thus block presence must be prevented if their
sharing information is lost. This will hardly affect perfor-
mance since for a TLB to be evicted, it must not have been
accessed for a while, and it is likely that blocks are neither
present in the cache structure nor will be accessed in the
near future.

Finally, when a reclassification to non-coherent occurs (i.e.
from SW to PW) no actions are required. However, we may
potentially have accessed blocks of that page as coherent,
and allocated the corresponding block entry in the directory
cache. When evicting the directory entry due to a conflict, if
it produces an invalidation in a currently private cache entry,
an unnecessary cache miss may occur afterwards. Notice

Memory Parameters
Processor frequency 2.8GHz
TLB hierarchy Exclusive
Split instr & data L1 TLBs 8 sets, 4-way (32 entries)
L1 TLB hit time 1 cycle
Unified L2 TLB 128 sets, 4-way (512 entries)
L2 TLB hit time 2 cycle
Token acquisition timeout 1200 cycles
TPB 32 sets, 4-way
TPB hit time 1 cycle
Page size 4KB (64 blocks)
Cache hierarchy Non-inclusive
Cache block size 64 bytes
Split instr & data L1 caches 64KB, 4-way (256 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 1MB/tile, 8-way (2048 sets)
L2 cache hit time 2 (tag) and 6 (tag+data) cycles
Directory cache 256 sets, 4 ways (same as L1)
Directory cache hit time 1 cycle
Memory access time 160 cycles

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data and control message size 5 flits and 1 flit
Routing, switch, and link time 2, 2, and 2 cycles

Table 2: System parameters for the baseline system.

how the status for a non-coherent block would be naturally
restored by the recovery mechanism when transitioning to
coherent again (after being accessed from another TLB). To
prevent this to happen, if a block is found as non-coherent
when evicting a directory entry (which sends an invalidation
request to the cache pointed by it), an acknowledgment is
sent to the directory but the block is allowed to remain in
the cache as non-coherent.

5. SIMULATION ENVIRONMENT
We evaluate our proposal with full-system simulation us-

ing Virtutech Simics [29] along with the Wisconsin GEMS
toolset [33], which enables detailed simulation of multipro-
cessor systems. The interconnection network has been mod-
eled using the GARNET simulator [5]. We simulate a 16-
tile CMP architecture implementing directory-based cache
coherence and with the parameters shown in Table 2, which
are considered as the base architecture for evaluation. L2
TLB miss latency considers four memory references to walk
the page table, as in the 48-bit x86-64 virtual address space.
The cache and TLB latencies and energy consumption have
been calculated using the CACTI tool [49] assuming a 32nm
process technology. Through experimentation we have ob-
served that a token acquisition timeout of 1200 cycles (after
which the TLB miss broadcast is resent) offers a good bal-
ance between performance and network traffic.

We evaluate our proposal with a wide variety of parallel
workloads from several benchmarks suites, covering different
sharing patterns and sharing degrees. Barnes (8192 bodies,
4 time steps), Cholesky (tk15.O), FFT (64K complex dou-
bles), Ocean (258 × 258 ocean), Radiosity (room, -ae 5000.0
-en 0.050 -bf 0.10), Raytrace-opt (teapot), Volrend (head),
and Water-NSQ (512 molecules, 4 time steps) are from the
SPLASH-2 benchmark suite [51]. Tomcatv (256 points, 5
time steps) and Unstructured (Mesh.2K, 5 time steps) are
two scientific benchmarks. FaceRec (script), and SpeechRec
(script) belong to the ALPBenchs suite [25]. Blackscholes
(simmedium), Swaptions (simmedium), and x264 (simsmall)
come from PARSEC [12]. Finally, Apache (1000 HTTP
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Figure 3: Private, Shared, and Written page proportion.

transactions), and SPEC-JBB (1600 transactions) are two
commercial workloads [7]. Raytrace-opt optimizes the orig-
inal Raytrace application by removing a lock acquisition for
a ray ID which is not currently used anymore. All the re-
ported experimental results correspond to the parallel phase
of benchmarks.

6. EVALUATION RESULTS
Results show firstly how TokenTLB classification behaves

compared to previous classification approaches, including
the sensitivity analysis of the Token Predictor Buffer for dif-
ferent sizes. Secondly, we introduce coherence deactivation
in the analysis in order to compare the benefits obtained
when applying the diverse classification mechanisms stud-
ied. Finally, a comparative study is made showing how the
different classification mechanisms scale with the core count.

6.1 Fully-Adaptive Page Classification
This section demonstrates the classification accuracy and

efficiency of TokenTLB compared to previous proposals, with
and without applying TLB decay mechanism.

Private and Read-Only data. The percentage of pri-
vate and shared (read-only/written) pages is a good general
metric for measuring the goodness of a classification ap-
proach. Figure 3 shows how pages are classified as Private,
Shared-ReadOnly or Shared-Written by different classifica-
tion mechanisms. OS-RO is a non-adaptive OS-based clas-
sification mechanism with Read-only detection [15]. Snoop-
ingTLB is an adaptive broadcast TLB-based classification
approach [18], and TokenTLB is our fully-adaptive token-
based TLB classification approach. As SnoopingTLB is not
able to distinguish shared-read-only or shared-written pages,
all shared pages fall under the same classification category.
However, for the sake of clarity, in the graph it appears as
Shared-Written in all SnoopingTLB configurations. We ob-
serve as, averagely, the sum of private and shared-read-only
pages for OS-RO does not suffice to outmatch private pages
for SnoopingTLB, which represents a 63.4% of all accessed
pages, proving the relevance of an adaptive approach. How-
ever, in some cases, as Raytrace-opt or SpeechRec, a lot of
potential classification precision is lost when write detection
is not performed, as OS-RO overpasses SnoopingTLB.

However, this metric is unfair for adaptive classification
mechanisms, where shared pages are frequently reclassified
as private, since reclassification is not reflected in the figure.
Specifically, this situation is favored by the fact that To-
kenTLB unlocks page access after the first TLB response,
which accelerates TLB miss resolution, but with ongoing
evictions it might end up in a shared access while tokens are
still in-flight. Therefore, in the figure it appears as shared
while it is naturally reclassified as private short after its first
access. However, computing both private and shared-read-
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Figure 4: Data L1 Misses proportion classified as Private,
Shared-Read-Only and Shared-Written.
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Figure 5: Proportion of TLB Responses issued after an L2
TLB miss.

only pages for TokenTLB, it improves page classification to
74.9%.

The aim of all classification mechanisms is to precisely
classify memory accesses. While an adaptive mechanism
may be able to freely reclassify pages, blocks are never in-
dividually reclassified during a local block generation time.
Therefore, the more the page classification is kept as private
or read-only, the more L1 cache misses will end up being
treated as such. Figure 4 shows L1 data cache misses clas-
sification, which will determine how accesses to data blocks
will be treated. Even though classification of private pages in
Figure 3 was close between SnoopingTLB and TokenTLB,
L1 data misses considered as private is greatly increased
using TokenTLB, since, unlike SnoopingTLB, page reclassi-
fication occurs in a natural way during a page generation
time. Specifically, TokenTLB is able to classify 61.1% of
L1 data cache misses as Private on average, 40.8% more
than SnoopingTLB. Also, note as, contrary to SnoopingTLB,
TokenTLB and OS-RO are capable of recognize read-only
pages, representing the 24.4% of L1 cache misses for To-
kenTLB, thus greatly enhancing the classification accuracy.

Token TLB-to-TLB exchange. One key benefit of To-
kenTLB classification over previous proposals is how it han-
dles TLB-to-TLB transfers, obtaining their benefits (page
classification, usage prediction allowance, and translation
acceleration), while limiting the required responses. As a
result, TLB traffic is reduced, whereas system blockage wait-
ing for collecting answers is avoided. Figure 5 represents how
many average responses are sent after a TLB miss using To-
kenTLB. Take into account that broadcast TLB transfers for
SnoopingTLB mechanisms require invariably N − 1 (being
N the number of cores in the CMP) responses after every
TLB miss. On the contrary, TokenTLB requires just 0.93
responses per L2 TLB miss on average. The average falls
below one due to the fact that, using TokenTLB, no TLB
responses are sent nor expected when the tokens are held
in the page table. In some cases, as Apache or SpeechRec,
it goes beyond one response per L2 TLB miss. Note that
TokenTLB allows more than one translation owner in the
TLB structure, as evictions may be accepted by the first
valid TLB in the eviction ring, therefore in those cases two
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Figure 6: Success rate for TPB predictions.
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Figure 7: Relative TLB network traffic issued.

or more responses may be issued after the next TLB request.
Token prediction effectiveness. Hereby we briefly an-

alyze the Token Predictor Buffer (TPB), which is conceived
to avoid recurring to broadcast on TLB misses when there
may be a known potential token owner. Therefore, it has
an impact in the traffic and network consumption, but not
in the execution time. TPB itself is just a small 4-way as-
sociative short-term buffer memory, and up to four different
sizes have been evaluated in the study (32, 64, 128, and 256
entries).

Figure 6 shows the proportion of successful and failed pre-
dictions (i.e. number of remote TLBs currently holding to-
kens or not after being requested through an unicast predic-
tion) with respect to total L2 TLB misses. It demonstrates
that increasing TPB size affects positively to the accuracy
of its predictions. Specifically, a 256-entry TPB avoids the
broadcasts by 24.7% out of a total of nearly 33% of TLB
miss prediction tryouts on average. In some cases, as Barnes
or Unstructured, around 45% of broadcast TLB misses are
prevented by using the TPB.

Figure 7 details the TLB traffic compared to base Snoop-
ingTLB. It can be observed as TokenTLB slightly increases
TLB request traffic compared to SnoopingTLB due to the
non-silent evictions performed. However it is greatly offset
with the reduction in TLB response and translation traf-
fic, as can be deduced from Figure 5, reducing overall TLB
traffic by 44%. Additionally, TPB usage further decreases
TLB traffic. Specifically, the greater TPB considered (256
entries) reduces TLB request traffic to a greater extent, as
it entails making more predictions, reducing solely the TLB
request traffic by nearly 20% regarding TokenTLB, and total
TLB traffic up to 56.3%.

As a conclusion, TokenTLB detects written condition at
page granularity, while achieving a private detection similar
to previous adaptive mechanisms. But seemingly loses accu-
racy, specially when using TLB decay mechanism. However,
the strength of TokenTLB is the benefit obtained from im-
mediate shared-to-private reclassification (full adaptivity),
dramatically increasing the number of blocks classified as
Private or Read-Only when missing over any previous clas-
sification approach. Finally, TLB response and translation
messages are greatly bounded using our approach. TPB in-
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Figure 8: Average Directory usage per cycle
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Figure 9: Data L1 Misses classified by its cause.

clusion reduces the total TLB traffic by more than half using
TPB, thus increasing the scalability of the system.

6.2 Coherence Deactivation
Coherence deactivation mechanism greatly benefits from

the accuracy of a classification approach. It can easily bene-
fit from both a private/shared classification dichotomy and a
private/read-only/shared-written classification scheme. This
section shows the benefits and overheads of applying To-
kenTLB to coherence deactivation compared to previous
classification approaches.

Coherence maintenance is deactivated when a block ac-
cess is considered non-coherent by the classification mecha-
nism. For SnoopingTLB, which only characterizes memory
accesses into private/shared scheme, all shared pages are
coherent. Differently, both OS-RO and TokenTLB also dis-
tinguish written pages, so only shared-written pages are con-
sidered coherent. Moreover, SnoopingTLB and TokenTLB
are adaptive mechanisms, transitioning back and forth from
private to shared. Figure 8 shows the average number of di-
rectory entries required per cycle for the different approaches
studied, normalized to Base, which is a system with the same
configuration but without coherence deactivation. Constrain-
ing the directory usage is the ultimate goal for coherence
deactivation and is strongly dependent on the accuracy of
the classification mechanism. We observe as OS-RO im-
proves directory usage by 52.8%, reducing it over Snoop-
ingTLB due to its read-only detection capability. Finally,
TokenTLB greatly improves directory usage, requiring only
34.1% of the directory entries per cycle compared to Base.

Classifying more pages as non-coherent and improving di-
rectory usage also reduces L1 cache misses to a greater ex-
tent, especially Coverage misses. Figure 9 classifies data
misses based on its cause, and thus, shows how all proposals
lessen Coverage misses on the L1 due to apply coherence de-
activation. However, TokenTLB is actually capable of elim-
inating nearly all Coverage misses without applying a TLB
decay mechanism. On the contrary, on average, Coverage
misses with OS-RO still represents 13.4% of the L1 cache
misses. Finally, SnoopingTLB is somewhere in between, as
it still suffers 8.7% of Coverage misses.

Reducing L1 data cache misses leads to a network usage
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Figure 10: Network flits injected, classified into cache- or
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Figure 11: Execution Time.

reduction. Figure 10 shows the total flits injected into the
network, classified into cache or TLB traffic. It can be ob-
served as TokenTLB prevents nearly half the total network
usage on average due to both the fully-adaptive classification
and the write detection performed. However, SnoopingTLB
only reduces it by 31%. Comparatively, as OS-RO does not
require additional TLB traffic and has write detection ca-
pability, it reduces overall traffic over SnoopingTLB even
though it performs a non-adaptive classification.

Reducing cache misses and accelerating page translation
through TLB-to-TLB transfers has a direct positive impact
on execution time, which is improved by 20% using To-
kenTLB compared to Base, as shown in Figure 11. Also,
execution time is reduced by 3% compared to SnoopingTLB,
as TokenTLB unblocks page access earlier after TLB misses,
and the L1 cache misses are reduced to a greater extent.
As OS-RO does not benefit from fast TLB miss resolution
through TLB-to-TLB transfers, its gaining is provided solely
by coherence deactivation, reducing execution time by 8.8%.

Our proposal also entails a reduction in the cache hier-
archy dynamic energy consumption, as shown in Figure 12.
TokenTLB reduces overall consumption by 21.9% compared
to the baseline, particularly L1 cache energy consumption,
since cache pressure is reduced through coherence deactiva-
tion. Network consumption is also significantly decreased,
although proportionally to the total consumption its impact
is diluted. Comparatively, TokenTLB reduces the dynamic
consumption by 5.7% with respect to SnoopingTLB, and 9%
with respect to OS-RO.

Conclusively, applying TokenTLB to coherence deactiva-
tion improves the system scalability. It greatly reduces direc-
tory entries due to both its full-adaptive classification and
the write detection capability, including accesses to Read-
Only pages among non-coherent data. As a consequence,
TokenTLB allows smaller and more efficient directory struc-
tures, while it effectively reduces L1 cache misses, network
traffic, dynamic consumption, and improves system execu-
tion time over any previous classification mechanism.

6.3 Comparative Analysis
This section offers a general comparative analysis of how

the different classification approaches perform when applied
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Figure 12: Dynamic energy consumption normalized to the
base system.
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Figure 13: General overview of different classification mech-
anisms applied to coherence deactivation

to the coherence deactivation mechanism, including TLB
Decay with two different timeout values: 250,000 and 50,000
cycles. Note that TLB Decay is a key mechanism to uncou-
ple classification from TLB size and that it cannot be applied
on OS-RO.

Figure 13 represents a summary of how the classification
approaches studied in the paper affect to the global system
performance applied to coherence deactivation. All results
are normalized to the baseline system without coherence de-
activation but with the same system configuration. TPB
optimization is included in the study for TokenTLB.

First, Figure 13a shows the average directory entries re-
quired per cycle for the different classification approaches
studied. As previously observed, OS-RO prevents more di-
rectory entries per cycle compared to SnoopingTLB due to
its write detection capability. However, it still performs a
non-adaptive classification, and with TLB decay appliance,
SnoopingTLB reduces directory entries per cycle by up to
55% on average. Finally, TokenTLB reduces directory usage
by up to 71% using the lowest decay timeout considered.

Next, Figure 13b evidences how both SnoopingTLB and
TokenTLB improve the execution time over the baseline and
OS-RO to a greater extent, specially prior to TLB decay ap-
pliance, where TokenTLB reduces the execution time nearly
by 20% on average over the baseline. However, applying
TLB decay entails a small shrinkage in the system perfor-
mance as it slightly increases the misses in the L1 cache
structure due to decay forced flushing. Nonetheless, even
using the lowest TLB decay timeout considered, it still re-
duces execution time nearly by 16% for both SnoopingTLB
and TokenTLB over the baseline. TPB usage slightly lessens
the performance loss of TLB decay usage. In this case, pages
are invalidated to a lesser extent as TLBs are inquired less
often using unicast messages after TLB misses.
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Figure 14: Execution time and network usage for a 0.25x
directory

Figure 13c illustrates how TokenTLB reduces traffic with
respect to SnoopingTLB and OS-RO. Moreover, in this case,
TLB decay slightly increases traffic as it entails more misses
in the L1 cache. Again, TPB prevents and reduces traffic
both when used with and without TLB decay.

Lastly, Figure 13d shows how the TPB reduces the total
cache hierarchy dynamic energy consumption as it avoids
many accesses to the TLB hierarchy and the issue of TLB-
to-TLB broadcasts. Specifically, TPB reduces consumption
by 5.4% compared to base TokenTLB and 9.4% compared
to SnoopingTLB. TLB Decay usage entails a small increase
in the energy consumption.

The main goal of coherence deactivation is to reduce di-
rectory usage and, thus, favor the possibility of smaller and
more scalable directory designs. Furthermore, Figure 9 ev-
idenced how the studied classification approaches reduce
Coverage misses to a great extent for the considered direc-
tory size. Nevertheless, when reducing the directory size,
more accurate classification approaches should provide bet-
ter performance results when applied to a coherence deacti-
vation approach. Figure 14 shows average numbers for exe-
cution time and network usage for a 256-entry directory and
a 64-entry directory normalized to the baseline, i.e. a system
without coherence deactivation and the same directory size
and global configuration as the considered approach. Ob-
serve that, as different bars are normalized to different base-
lines, they cannot be directly compared between them. The
figure reveals how TokenTLB-TPB prevents the execution
time penalization when the directory size is reduced (Fig-
ure 14a). Specifically, it reduces execution time by 34.2%
for a 64-entry directory, nearly 11% more reduction com-
pared to SnoopingTLB.

Similarly, reducing the directory increases the traffic as it
entails more Coverage misses in the L1. Again, TokenTLB-
TPB restricts the traffic to a greater extent (Figure 14b)
compared to other classification approaches. Particularly,
network traffic is reduced on average by up to 59.9% over
the baseline. Moreover, OS-RO reduces it by 48.6%, and
SnoopingTLB by just 37.56% due to the TLB traffic over-
head.

6.4 System Scalability
This section shows how the different classification approaches

scale when applied to deactivate coherence. Due to the slow-
ness of the simulation tools, this study is only performed
using SPLASH 2 benchmarks and scientific applications.

Figure 15a shows how TokenTLB-TPB scales better com-
pared to SnoopingTLB and OS-RO. Specifically, TokenTLB-
TPB reduces the execution time by 30.5% on a 32-cores
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Figure 15: Scalability analysis of classification approaches
when increasing core count.

CMP, while SnoopingTLB reduces it by 25.15% over the
baseline. This difference evidences how performing a more
accurate classification entails better directory usage and ul-
timately better system performance.

Note how among the aims of TokenTLB is to achieve a
more scalable system in terms of network usage compared to
previous classification approaches. In this sense, Figure 15b
shows how TokenTLB-TPB reduces traffic over the baseline
to a greater extent, restraining even the traffic that entails
the TLB decay usage. Expressly, TokenTLB-TPB main-
tains the traffic reduction up to 38.6% for a 32-cores system,
while OS-RO in only able to reduce the traffic by 32.5%.
However, when applying TLB decay with a 50,000 timeout
value the impact of the classification mechanism increases.
TokenTLB-TPB still reduces network usage by 29.9% over
the baseline, while, on the contrary, SnoopingTLB increases
the traffic up to nearly 8%.

7. CONCLUSIONS
This paper proposes TokenTLB, a novel TLB classifica-

tion mechanism based on counting and exchanging tokens
through TLB-to-TLB requests, where only TLBs owning the
translation are allowed to answer. When tokens are used for
classification instead of using them for coherency, the need
for persistent requests is avoided since an owner token is not
required. Moreover, token counting is highly efficient for
performing an adaptive classification into a private-shared
scheme, naturally detecting private phases of pages during
its page generation time. Finally, classification dichotomy
is extended by allowing write detection for the first time for
an adaptive classification mechanism. By predicting token
holders and sending unicast messages, the scalability of the
system is improved. The proposed TokenTLB presents all
the desirable characteristics of a classification scheme: the
classification is known before the cache access (a-priori),
detects read-only accesses, is adaptive, and is accurate.

When applied to coherence deactivation, TokenTLB re-
duces the average directory entries stored to merely a 28.8%,
reducing L1 cache misses, network traffic and, consequently,
overall system consumption by 27.3% over baseline.
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