
1

Automatic Detection of Large Extended
Data-Race-Free Regions with Conflict Isolation

Alexandra Jimborean, Per Ekemark, Jonatan Waern, Stefanos Kaxiras, and Alberto Ros

Abstract—Data-race-free (DRF) parallel programming becomes a standard as newly adopted memory models of mainstream
programming languages such as C++ or Java impose data-race-freedom as a requirement.
We propose compiler techniques that automatically delineate extended data-race-free (xDRF) regions, namely regions of code that
provide the same guarantees as the synchronization-free regions (in the context of DRF codes). xDRF regions stretch across
synchronization boundaries, function calls and loop back-edges and preserve the data-race-free semantics, thus increasing the
optimization opportunities exposed to the compiler and to the underlying architecture. We further enlarge xDRF regions with a conflict
isolation (CI) technique, delineating what we call xDRF-CI regions while preserving the same properties as xDRF regions. Our
compiler (1) precisely analyzes the threads’ memory accessing behavior and data sharing in shared-memory, general-purpose parallel
applications, (2) isolates data-sharing and (3) marks the limits of xDRF-CI code regions. The contribution of this work consists in a
simple but effective method to alleviate the drawbacks of the compiler’s conservative nature in order to be competitive with (and even
surpass) an expert in delineating xDRF regions manually.
We evaluate the potential of our technique by employing xDRF and xDRF-CI region classification in a state-of-the-art, dual-mode
cache coherence protocol. We show that xDRF regions reduce the coherence bookkeeping and enable optimizations for performance
(6.4%) and energy efficiency (12.2%) compared to a standard directory-based coherence protocol. Enhancing the xDRF analysis with
the conflict isolation technique improves performance by 7.1% and energy efficiency by 15.9%.

Index Terms—Compile-time analysis, inter-procedural analysis, inter-thread analysis, data sharing, data races, cache coherence.

✦

1 INTRODUCTION

PARALLEL programming languages based on the shared-
memory model have well-defined memory consistency mod-

els to clarify when data modified by one thread must be visible to
other threads. To simplify reasoning about correctness of parallel
executions, mainstream languages such as C++ and Java have
already adopted data-race-free (DRF) as a standard and provide
none or weak guarantees in the presence of data races. For in-
stance, C and C++ programs that contain data races have undefined
semantics [1], [2], [3]. In contrast, data-race-free codes enable a
variety of optimizations based on the fundamental observation that
different threads cannot access the same memory location without
synchronization, if at least one thread modifies the target variable.

In other words, in DRF applications, synchronization-free
regions provide the strong guarantee that different threads can-
not target concurrently the same memory address. Leveraging
this property, recently proposed micro-architectural enhancements
relax unnecessarily restrictive constraints, as shown for example
in state-of-the-art coherence protocols [4], [5], [6], [7], [8], [9],
[10]. These proposals demonstrate that synchronization-free re-
gions in DRF applications permit the core to delay the action of
publishing the writes, shown in Figure 1.b, leading to significant
improvements in performance and energy compared to traditional
protocols (Figure 1.a). Similarly, C/C++ compilers and alike
typically optimize synchronization-free regions as if the code was
sequential, without speculation or costly inter-thread analysis.

In this paper we denote synchronization-free regions that are

• A. Jimborean, P. Ekemark, J. Waern, and S. Kaxiras are with the De-
partment of Information Technology, Uppsala University, 751 05 Uppsala,
Sweden. E-mail: alexandra.jimborean@it.uu.se, stefanos.kaxiras@it.uu.se

• A. Ros is with the Computer Engineering Department, University of
Murcia, 30100 Murcia, Spain. E-mail: aros@ditec.um.es

loop 1..N
{

write

write

lock
...
unlock

write

}

loop 1..N
{

write

write

lock
...
unlock

write

}

C
S

loop 1..N
{

write

write

lock
...
unlock

write

}

(a) Traditional c.c.

(b) (c)

visible

visible

visible

visible

 join / barrier
visible

 join / barrier visible

(b) Optimized c.c. (c) xDRF c.c.

 join / barrier

xD
RF DRF1

D
R
F2

C
S

N+1 coherence actions 1 coherence action

Fig. 1. (a) A standard cache coherence (c.c.) protocol makes the
write operations visible immediately after they have executed, thus
performing 3×N actions. (b) Coherence protocols designed for DRF
applications delay the action of making write operations visible until
the first encountered synchronization point, hence N + 1 actions. (c)
The xDRF region consists of both DRF1 and DRF2 regions (bypassing
CS). An xDRF-aware cache coherence protocol can safely defer the
action of publishing writes until the boundary of the xDRF region, thus
significantly reducing the number of actions to only one action.

not guarded by lock-unlock operations as DRF. Extended data-
race-free (xDRF) regions are sets of DRF regions which span
across synchronization points (e.g. acquire-release pairs), bypass
the synchronized code (i.e. the critical section), while maintaining
the DRF semantics [11] across the entire region [12], [13]. For
example, in Figure 1.c, the xDRF region consists of the data-race-
free regions DRF1 and DRF2, excluding the synchronized code
which we denote as enclave non-DRF region (CS).

In short, xDRF regions enable optimizations across synchro-

2

nization points. At the compiler level, xDRF regions enable
thread-local (sequential) reasoning and static optimizations across
the entire xDRF region, without the need for whole-code-analysis.
Unlike standard optimizations, xDRF-aware optimizations can by-
pass synchronization points (pairs of acquire-release) and function
calls. At the micro-architectural level, xDRF region classification
translates to a private (thread-local) vs. shared classification of
accesses, which is essential for efficient data placement, designing
optimized coherence protocols or reordering memory operations.
In this proposal we emphasize the benefits of xDRF regions with
an xDRF-aware cache coherence protocol and leave compile-
time optimizations and other micro-architectural optimizations for
future work.

We have previously demonstrated that an xDRF-aware cache
coherence protocol shows significant performance and energy
improvements, but the scope of the xDRF analysis was previ-
ously restricted to automatically parallelized and OpenMP applica-
tions [12], [13]. This line of research demonstrated that structured
parallel programming (OpenMP, TBB, Cilk, etc) provides strong
guarantees, which can be exploited to delimit xDRF regions with
high accuracy. To address a considerably larger class of applica-
tions, we describe compiler techniques to statically identify xDRF
regions in “unmanaged” shared-memory parallel applications that
follow the fork-join with synchronization model (e.g. based on
pthreads) [14]. They represent the most challenging class of codes
for static analysis due to the use of pointers, indirections, complex
control-flow, recursions, etc. In contrast to previous work that
relies on the programming paradigm (OpenMP) [12], [13], we
target applications where the programmer, not the compiler, has
control over the way parallelism is expressed.

Departing from DRF applications, we proposed a compile-
time technique for identifying xDRF regions [14]. To verify the
xDRF properties, the compiler checks whether memory accesses
initiated from different data-race-free regions target the same
location and must also analyze whether these accesses alias the
memory locations accessed from critical sections. Next, the inter-
thread, inter-procedural analysis identifies synchronization points
that lock the same synchronization variables and cross-checks
whether the memory accesses before the critical section of one
thread share data (i.e. conflict) with the accesses after the matching
critical section of another thread. If such a conflict is detected, the
conservative xDRF analysis would mark the synchronization point
as an xDRF boundary.

Due to pointer aliasing, more conflicts are detected at compile-
time than actually occur in practice (false positive). Consequently,
aliasing leads to a larger amount of xDRF limits than nec-
essary [14]. Smaller xDRF regions reduce the opportunity for
optimization, and therefore, lead to lower performance and energy
efficiency than the actual potential of the applications.

This work performs an extensive analysis of xDRF regions
and proposes a novel mechanism that isolates conflicts (aliases
detected at compile time) in order to achieve larger xDRF regions,
that is, less xDRF region boundaries. Large xDRF regions with
conflict isolation xDRF-CI improves our previous xDRF analy-
sis [14] through the following contributions:

1) We propose a technique to reduce the side-effects of
the compiler’s conservative nature and to identify xDRF
regions with the same accuracy as (or even surpassing)
an expert (section 3, subsubsection 4.5.2, subsubsec-
tion 5.2.2).

2) Insights regarding the advantages and disadvantages of
large xDRF regions (section 3, section 6).

We evaluate the potential of the xDRF classification with a
state-of-the-art, dual-mode cache coherence protocol [13] which
deactivates coherence during the execution of xDRF regions and
maintains coherence in hardware for the rest of the accesses.
We report improvements in execution time (6.4%) and energy
efficiency (12.2%) compared to a standard directory-based pro-
tocol. Furthermore, when we add the conflict isolation technique
improvements go up to 7.1% in performance and 15.9% in energy
efficiency. In Barnes, for example, execution time and energy
consumption is reduced by 7.8% and 34.4%, respectively when
compared to xDRF without conflict isolation, matching or even
outperforming the manually annotated version.

2 RELATED WORK

We have previously proposed methods to identify and exploit
xDRF regions in OpenMP applications [12], but those tech-
niques are not suitable for “unmanaged” (e.g. pthreads) parallel
applications based on the fork-join with synchronization model,
addressed in this work.

Joisha et al [15] build a Procedural Concurrency Graph to
determine interferences between threads and identify accesses
with read- and write-siloed properties on certain intraprocedural
paths. The analysis unblocks classical compiler optimizations
for accesses free of interferences. Similarly, Effinger-Dean et
al. [16], [17] perform a data-centric classification of regions,
called interference free regions (IFR). IFRs are associated to
variables (data), extend forward until the first release and
backwards until the first acquire operation, and ensure that no
other thread accesses the certain data during the IFR execution.
Our compiler analysis ensures that all memory accesses within
the xDRF region are free of interferences and can expand both
backwards and forward across multiple acquire-release operations,
across function boundaries and loop back-edges.

Techniques for private-shared data classification [18], [19],
[20] consider memory blocks as shared if accessed by different
threads at different execution points (i.e. in different regions).
xDRF takes temporality into consideration and classifies such
accesses as private throughout the xDRF region. Singh et al. [18]
propose a static thread-escape analysis which identifies as “safe”
(i.e. private) only data that is guaranteed to be thread-local or
read-only, while dynamically allocated variables, global or static
variables are marked as unsafe. Moreover, an instruction which
can access both safe and unsafe data (e.g. a pointer dereference),
would demote all safe data it may touch to unsafe. In consequence,
safe data is restricted only to locations that are thread-local and can
only be accessed by safe instructions.

A wide spectrum of static and dynamic techniques have been
proposed [17], [21], [22], [23], [24], [25] to combat races. Static
techniques [21], [22], [23] must be conservative and therefore
report false-positives, while dynamic techniques [17], [24], [25],
[26] miss races which do not occur in the observed execution
and introduce high overheads. Acculock [27] is a hybrid lockset
happens-before data race detector, balancing precision and cov-
erage by exploring thread interleavings which do not occur in
the observed execution. Valor [28] is a software-only, dynamic
data race detector which operates at region level using epochs
to identify ongoing regions and logs to keep track of read/write
operations. Conflict Exceptions [26] relies on hardware support

3

Th0, Th1:

a[i] = i
lock
 counter++
unlock
print (b[i])

(a)

Th0, Th1:

x[i] = 1
...
barrier;
...
print (x[i])

(b)

Th0:

x = 1
signal
...

(c)

Th1:

...
wait
print (x)

Th0:

x = 1
lock
flag = 1
unlock
...

(d)

Th1:

...
lock
 local = flag
unlock
if (local)
print (x)

Th0:

...
lock
flag = 1
unlock
...

(e)

Th1:

...
lock
 local = flag
unlock
if (local)
print ("Hello")

Th0:

x=1
signal A
...

(f)

Th1:

...
wait A
signal B
...

Th2:

...
wait B
print (x)

Th0:

...
lock A
...
unlock A
...

(g)

Th1:

...
lock B
 ...
unlock B
...

L

Fig. 2. In (a) and (b) multiple threads execute the same code and cross a synchronization point, while (c) - (f) show examples when the threads
execute different code regions that synchronize on the same resource. In (g) threads do not lock the same resource, hence the regions do
not synchronize one with the other and do not contribute to the xDRF delimitation of the other thread. Conflicts are marked in a red square
indicating that the synchronization point splits the code executed by each thread in two different xDRF regions. Shaded blocks indicate xDRF
regions (one per thread). xDRF regions bypass and enclave synchronization points, but do not include them. (xDRF regions that cannot expand
across synchronization points are not shaded –(b), (c), (d), (f).)

for race-detection. In contrast, our xDRF analysis is entirely
static, therefore region classification is available prior to execution
suitable for both compiler and micro-architectural optimizations.

Our work goes along the lines of data race detectors, but is
not a data race detector. xDRF builds upon the premises that the
code is DRF and identifies large regions of code which preserve
the DRF semantics.

3 WHAT ARE XDRF AND XDRF-CI REGIONS?
xDRF and xDRF-CI regions share the property that they preserve
the DRF semantics across multiple synchronization points, but
differ in the manner in which they mark synchronization points
as enclave or as xDRF boundaries. This section first describes the
xDRF regions, followed by the xDRF-CI regions.

We start with a few intuitive examples (Figure 2) illustrating
cases when the xDRF bypasses and extends beyond the syn-
chronization point –(a) and (e)– and other cases when conflicts
between the regions preceding and following the synchronization
point forces the split of the xDRF region executed by each thread
–(b), (c), (d), (f). Synchronization operations shown in these
examples use the same synchronization variable, unless indicated
otherwise. We consider that the entire critical section represents
a synchronization point (denoted non-DRF, on in short nDRF).
Conflicts can occur only between accesses that escape the thread
scope. The example in (a) shows an xDRF region that contains the
memory accesses to a[i] and b[i] (assuming that within the same
array, threads access different elements). Since a[i] and b[i] are
different, threads Th0 and Th1 are free to reorder the memory
accesses across the synchronization point because these accesses
share no data. In (b) on the other hand, it may be that while Th0

initializes x[i], Th1 prints its value, hence the barrier represents
a limit between two different xDRF regions in which different
threads may access the same element of an array. The first xDRF
region contains the initialization x[i] = 1 and the second xDRF
region prints x[i]. In (c) the threads share x, hence the signal-wait
becomes a limit between consecutive xDRF regions. xDRF1 of
Th0 contains x = 1 and xDRF2 of Th0 contains the region
after synchronization illustrated as {...} (similarly for Th1). In
(d) the signal-wait mechanism is implemented by means of flags,
but the conflict to x, again, forces the split of the region in distinct
xDRF regions. In contrast, in (e), there are no conflicts between the
synchronization-free regions before and after the critical sections,
therefore there is no need to split the region. Each thread considers
the critical section as enclave (not breaking the xDRF region) in
its xDRF region and can freely reorder memory accesses within
the xDRF region across the synchronization point, as long as

intra-thread dependences are respected (i.e. the accesses to the
local variable local). The more complex example in (f) shows
three threads that synchronize by transitivity. Since Th0 and Th1

synchronize using signal A - wait A and, similarly, Th1 and
Th2 synchronize using signal B - wait B there is an implicit
synchronization between Th0 and Th2, thus the accesses per-
formed by all three threads have to be cross-checked for conflicts.
Since Th0 and Th2 both access variable x and Th0 performs a
write, the synchronization points that separate the accesses to x –
namely signal A - wait A and signal B - wait B– are marked
as non-enclave (breaking the xDRF regions), which means that
accesses cannot be reordered across these synchronization points
because they are shared between the threads. In consequence,
(f) illustrates six xDRF regions, i.e. one before and one after
each synchronization point. Finally, (g) shows that it is necessary
to check for conflicts only between threads that synchronize on
the same variable. Threads executing the regions in (g) do not
synchronize one with another since they lock different resources.

The driving force of the xDRF analysis is that, in a DRF
application, conflicts cannot occur between memory accesses exe-
cuted outside critical sections. If two memory accesses that belong
to data-race-free regions (DRF) executed by different threads
target the same data (e.g. Figure 2 (c)), the synchronization point
adjacent to the DRF regions imposes a happens-before relation and
represents an xDRF boundary. Thus, the xDRF analysis merely
verifies whether any memory access performed before the syn-
chronization (i.e. before the lock) conflicts with a memory access
performed by any other thread after a synchronization operation
that uses the same resource (i.e. after the unlock). Furthermore, for
completeness, the analysis must ensure that the critical sections do
not target the same data as a DRF region. For example, in Figure 2
(d), the programmer may conservatively (or in error) place the
instruction if(local)print(x) performed by T1, inside the critical
section. Although no conflict occurs on the paths preceding and
following the matching synchronizing operations, the region is
not xDRF since the two threads share variable x and one access is
outside a synchronizing operation.

Compilers are nevertheless limited in their ability to disam-
biguate memory operations and, in the presence of, for example,
dynamic memory allocation, many false-positive conflicts are
reported. To diminish the negative impact of the conservative
compile-time decisions, we consider that only synchronization of
the type barriers, joins and signal-waits represent xDRF bound-
aries, since these synchronization mechanisms impose an ordering
of threads and imply sharing of data between threads, before and
after the synchronization point. All other synchronization points
are marked as enclave, allowing the xDRF region to extend beyond

4

x') x')

L

L L

L L

L

L

L

Fig. 3. Comparison of the xDRF (left) and xDRF-CI (right) analysis and
delineation of regions. In the xDRF analysis, a conflict (accesses to x,
shown in red) turns the synchronization point into an xDRF boundary.
In the xDRF-CI analysis, the conflict is isolated (exposed to the opti-
mizations), enabling the xDRF-CI region to safely extend across the
synchronization point. The reasoning behind this delineation decision
is emphasized in the case when the two pointers x and x� may alias.
The xDRF analysis breaks the xDRF region unnecessarily upon a false-
positive conflict (MayAlias pointers rarely translate to true conflicts in
practice [29]), while the xDRF-CI delineation simply isolates the conflict,
without breaking the xDRF-CI region.

them. Next, to ensure correctness, potential conflicts (i.e. memory
accesses targeting the same location) are isolated (i.e. marked as
enclave nDRF regions) to be exposed to subsequent optimizations,
as shown in Figure 3.

A natural extension would be to mark all synchronization
points as enclave and to isolate all conflicts. However, this would
extend the xDRF region to the entire program, increasing the
probability that many pairs of memory accesses alias. As a result,
most of the memory accesses would actually be isolated, leaving
the xDRF region with few (or no) memory accesses to optimize.
In contrast, the pairs of accesses within a smaller region do not
alias, enabling optimizations within that region.

We aim to strike a balance between the size of the xDRF
region and the potential for optimizations. On one hand, an xDRF
region that spans a small code region would not contain sufficient
memory accesses for the optimizations to have a significant impact
on performance. On the other hand, increasing the size of the
xDRF region to span a too large fraction of the program, would
entail more aliasing memory operations and would force their
exclusion from the xDRF region. Thus, the xDRF region, despite
spanning a large part of the code, would contain very few memory
accesses, reducing the potential for optimizations. Our solution
breaks xDRF regions on barriers, joins, and signal-waits, which by
their semantics entail that threads share data, but allows the xDRF
region to extend across critical sections. This solution provides
a good balance between the time data remains private to the
thread (size of the xDRF region) and the optimization opportunity
(number of memory operations contained by the xDRF region, i.e.
that are not isolated).

We define consecutive regions to be regions of code reachable
by control-flow without passing through other regions of the same
type. For example, in Figure 1, DRF1 and DRF2 are consec-
utive DRF regions, since there is a path from DRF1 to DRF2
that does not cross any other DRF region, although it crosses a
non-DRF (CS) region. Intuitively, an xDRF region consists of
consecutive data-race-free regions executed by one thread, with
the property that the accesses performed during the xDRF region
do not target a memory location accessed by any other concurrent
thread. We denote two non-DRF regions as matching nDRF
regions if they synchronize using the same variable, (Figure 2
(a), (d), (e) lockL-unlockL from Th0 matches the nDRF from
Th1 aince they synchronize on the same variable L). And, by

extension, xDRF regions corresponding to different threads are
called matching xDRF regions, if they enclave matching nDRF
regions (Figure 2 (e)). We guarantee that:

• Threads executing matching xDRF regions do not access
the same memory location, if at least one access is a write.

• Enclave non-DRF regions do not access the same location
as the matching xDRF region (at least one write).

4 COMPILE-TIME DELINEATION OF XDRF AND
XDRF-CI REGIONS

We implemented the automatic compile-time delineation of xDRF
regions in LLVM [30] and integrated a state-of-the-art pointer
analysis [31] to increase the accuracy. The algorithm of the xDRF
and xDRF-CI analyses is illustrated below. Both analyses differ
only in step 5.3 which deals with the conflict handling1.

1) Identify synchronization points, i.e, nDRF regions (lock-
unlock, atomics, join operations), and build the control-
flow graph between them (Sync-CFG) (subsection 4.1).

2) Mark on the Sync-CFG the first reachable nDRF region
(in depth-first-search order) in each thread function, as an
entry nDRF region.

3) Identify nDRF regions that use the same synchronization
variable (matching nDRF regions) (subsection 4.2).

4) Mark all join, barriers and signal-wait operations as non-
enclave and the remaining nDRF regions as not-yet-
processed (subsection 4.3).

5) Parse the Sync-CFG in a depth-first-search manner start-
ing from each entry nDRF region. When unwinding,
process each nDRF region as follows:

5.1) Build the preceding-xDRF-paths and following-
xDRF-paths for each nDRF region. Preceding-
and following-xDRF-paths represent control-
flow-paths that depart from the current nDRF re-
gion, extend across nDRF regions already marked
as enclave and stop on the first encountered non-
enclave or not-yet-processed nDRF region (sub-
section 4.4).

5.2) Identify conflicts (subsection 4.5):

5.2.1) Between the preceding-xDRF-paths and
following-xDRF-paths of matching nDRF
regions.

5.2.2) Between the instructions within the match-
ing nDRF regions and the preceding- and
following-xDRF-paths.

5.2.3) Between the instructions within any enclave
nDRF crossed when building the xDRF
paths of the matching nDRF regions (Step
5.2.1) and the preceding- and following-
xDRF-paths of the current nDRF region.

5.3a) (xDRF) If there are no conflicts, the nDRF
region is enclave, otherwise non-enclave (subsub-
section 4.5.1).

5.3b) (xDRF-CI) If a conflict is detected (subsubsec-
tion 4.5.2):

1. Upon a conflict, the xDRF analysis marks the currently analyzed nDRF
region as non-enclave. In contrast, the xDRF-CI analysis marks the currently
analyzed nDRF region as enclave and isolates the conflicts.

5

Unlock

Lock

Lock Lock

Unlock

1

62

3

4

5

1

2

3

4

7

6

5

begin_nDRF

begin_nDRF begin_nDRF

end_nDRF end_nDRF

(a) (b)

Fig. 4. Single-entry and multiple-entry nDRF regions: In (a) the depth-
first-search reaches the lock operation in block 1 and starts a new nDRF
region, collects blocks 2, 3 and 4, reaches block 5 and marks the end
of the nDRF region and then backtracks and adds block 6. In (b) the
control flow splits in block 1, before the start of the nDRF. Starting with
the left branch, block 2 is recorded as the start of a new nDRF, the
search adds blocks 3 and 4, then block 5 marking the end of the nDRF.
When the search backtracks to block 1 and continues to block 6, block 6
will be recorded as the start of a second nDRF also including block 7.
When discovering the visited block 4 of a different nDRF, the first and
the second nDRFs are merged before backtracking.

5.3b.1) The currently analyzed nDRF region is
marked as enclave.

5.3b.2) The conflicting memory accesses are each
automatically guarded by one nDRF region.

5.3b.3) The newly inserted nDRF regions are marked
as enclave. Their role is merely to isolate
potentially shared data and to expose it to
subsequent optimizations.

6) Parse the Sync-CFG in a depth-first-search manner start-
ing from each entry nDRF region:

6.1) If the current nDRF region is enclave, extend the
current xDRF region, otherwise break the current
xDRF region at this point and start a new one.

6.2) If the current nDRF region is already enclave in
another xDRF region, merge that xDRF region
with the current xDRF region.

In what follows we detail each step of the xDRF and xDRF-CI
delineation algorithm.

4.1 nDRF Region Delimitation
The analysis proceeds by identifying synchronization points, i.e.
join operations, atomic instructions and regions of code guarded
by acquire-release pairs2. We denote such regions non-DRF (in
short, nDRF). To delineate nDRF regions, a depth-first-search is
performed parsing the control-flow-graph (CFG), starting at the
entry point of each thread (i.e. the function called by a newly

2. In DRF applications, any synchronization point is either an atomic
instruction or is guarded by an acquire-release pair. In the POSIX threads
parallel programming paradigm, barriers, semaphores, signal-wait constructs,
etc. are also implemented with or guarded by mutexes, i.e. lock-unlock
operations (or atomics). Identifying synchronization points is the only part
that is pthreads tailored, however the analysis can be easily extended to detect
any other synchronization mechanisms.

spawned thread). The compiler delineates join operations, atomic
instructions, or in the case of lock-unlock it marks the region in
between as nDRF (CS in Figure 1). When a lock operation is
encountered, it is recorded as the start of a new nDRF region.
Instructions encountered on the depth-first-search path that follow
the lock are added to the region up until the end of the nDRF
region, i.e. the corresponding unlock operation, as shown in
Figure 4. To handle nested or overlapping locks, a counter is
held to make sure that all locks acquired within the nDRF region
are released before the end. Lock-unlock pairs are matched by
synchronization-variable in addition to the counter.

If an nDRF region has multiple starting points (Figure 4.b),
i.e. a lock is acquired on two branches that later merge before
the release of the lock, the depth-first-search algorithm will come
across one lock operation before the other. An nDRF region will
be created including the instructions between the encountered
lock and unlock, however, instructions between the unvisited lock
and the merge point of the two branches will not be detected at
this time. Instead, when the depth-first-search algorithm naturally
reaches the other lock operation, a new nDRF region will initially
be recorded. When the algorithm eventually reaches the merge
point of the branches, it detects that the next instruction has
already been visited, like a regular depth-first-search algorithm
would do, and also that it is part of a different nDRF region
than the one being recorded. At this point the compiler can infer
that the encountered nDRF region and the one being recorded is
actually part of the same nDRF region, which causes the merging
of the two records. Multi-exit regions are handled in the same way,
merging regions that overlap: regions that depart from the same
nDRF (single-entry) or regions that cross a block that has already
been processed (multi-entry, multi-exit regions) are merged into
one nDRF region.

In addition to the control-flow of each thread-function, we
parse the call-graph and examine the callee functions to identify
all synchronization points. The compiler keeps track whether the
nDRF context extends inter-procedurally (the lock is acquired
in the caller function and released in the callee). The analysis
is full-path context-sensitive, with re-use of information from
already analysed contexts. We handle recursions by collapsing the
recursive call site to one point. We analyze whether a function is
called from different contexts –(i) called from two nDRF regions
using different locks or (ii) from one nDRF and one xDRF region,
or if the function can only be called from the same context– (i)
called from different nDRF regions but which synchronize on the
same variable or (ii) it is only called from xDRF regions. We
also handle functions called via indirection (function pointers),
by conservatively analyzing all functions whose addresses are
taken within the program. While parsing the control-flow and call-
graphs, the analyses builds the Sync-CFG, a graph that records the
control- and call-flow between all synchronization points (Step 1).
For each thread function, starting from the entry block we analyze
the control-flow path and the first encountered nDRF region is
marked as an entry-nDRF (Step 2). Since Sync-CFG is a graph
without a single root node, the entry nDRF regions will serve as
starting points for subsequent analyzes on Sync-CFG.

4.2 Synchronization Variables of Matching nDRFs

To correlate nDRF regions that synchronize one with another,
i.e. matching nDRF regions, we first identify the synchronization
variables used by each nDRF region, namely expressions that can

6

be used for synchronization. To this end, all instructions of an
nDRF region are analyzed and the synchronization instructions
(pthread mutex, pthread condition, etc) are singled-out. The vari-
ables accessed by these instructions represent the synchronization
values. For instance, in call @pthread_mutex_lock(L),
L is the synchronization value.

Starting from a synchronization value we build the set of
variables this value aliases with and we denote this set a synchro-
nization variable. Conservatively, synchronization values are in
the same class if they MayAlias. Thus, synchronization variables
are exhaustive, non-overlapping sets of synchronization values that
(may) refer to the same shared variable. Matching nDRF regions
are nDRF regions that share at least one synchronization variable
(Step 3).

4.3 Pre-Analysis Marking of nDRFs

Before proceeding to analyze data sharing between threads in
order to determine the nDRF regions’ nature, we mark all join,
barrier and signal-wait operations as non-enclave. The reasoning
is that these synchronization points, by their semantics, impose the
happens-before relation between threads due to data sharing.

In practice, in the xDRF delimitation, such operations would
be marked as non-enclave, as shown by the manual markings.
Based on this observation, pre-marking these nDRFs as non-
enclave not only simplifies the analysis, but also alleviates
the problem of identifying statically which threads synchronize
through partial or indirect joins.

In xDRF-CI delineation, the most important aspect is the
consequence on the analysis effectiveness: assuming that joins,
barriers and signal-wait synchronization points do not represent
xDRF boundaries, the entire application would become one large
xDRF region. As the probability of aliasing increases over larger
regions, the xDRF-CI would mark the majority of memory ac-
cesses as conflicting 3. xDRF and xDRF-CI exploit the temporarily
private nature of data within the xDRF regions.

The remaining nDRF regions are marked as not-yet-processed
and their nature will be detected based on the data-sharing between
threads, as described in what follows.

4.4 DRF and xDRF Paths

To determine the nature of each nDRF region, the compiler exam-
ines the instructions on the control flow paths preceding the nDRF
region (DRF1 in Figure 1) and the instructions following the
nDRF region (DRF2). The analysis builds the sets of instructions
reachable before and after an nDRF region in two steps:

1) Collecting instructions on the DRF paths;
2) Collecting instructions on the xDRF paths;

Collecting instructions on the DRF-paths: We use the term
DRF-path to denote a program path from one nDRF region to
another, without passing through any nDRF region. The paths
leading to a particular nDRF region are called the preceding-
DRF-paths of the nDRF region, while the paths departing from
a particular nDRF region are called the following-DRF-paths of
that region. Figure 5(a), (b), and (c) shows examples of DRF paths
for linear, divergent, and cyclic control-flow-graphs. The union of

3. As demonstrated in our previous work [12], [13], where we showed
that techniques that classify data sharing over the entire execution (Operating-
systems based classifications) classify almost all data as being shared.

the preceding-DRF-paths builds the data-race-free region before
the nDRF region of interest, while the union of the following-
DRF-paths builds the data-race-free region after the nDRF region
of interest. Note that the DRF-paths may have as limits different
nDRF regions (Figure 5(b)) or that preceding- and following-DRF-
paths may not be disjoint due to cycles in the control-flow-graph
(Figure 5(c)).

Preceding- and following-DRF-paths are identified by parsing
the CFG and the reverse-CFG, respectively, starting from the
nDRF region of interest. The compiler collects instructions until
an nDRF region is encountered, in which case the algorithm
backtracks in search of not-yet-explored paths.

Collecting instructions on the xDRF-paths: Similarly, we
use the term xDRF-path to denote a program path that starts from
the current nDRF region, bypasses enclave nDRF regions (i.e.
the xDRF path extends over enclave nDRF regions, but does not
include the instructions from the critical section), until reaching
a non-enclave or not-yet-explored nDRF region. Consequently,
xDRF paths cannot bypass non-enclave nDRF regions. Akin to
the notion of DRF paths, we use the terms preceding-xDRF-paths
and following-xDRF-paths to refer to the union of xDRF paths
leading to or starting from a given nDRF region. For example,
in Figure 5(e), one preceding-xDRF-path contains blocks {1,2},
the other preceding-xDRF-path contains blocks {1,3} and there
is no other path leading to the current nDRF block. Thus, the
union of the preceding-xDRF-paths contains the blocks {1,2,3},
denoted as xDRF-before in the figure. When building each xDRF-
path, instructions on the xDRF paths are analyzed. Call instruc-
tions trigger the analyis of the callee functions, if their code is
available. If library calls cannot be analyzed, the call instruction
is conservatively marked as a non-enclave nDRF region. Library
calls can also be white-listed (e.g. math operations, etc).

Function summaries are not preserved, instead functions are
re-analyzed for each call. This ensures correct handling of func-
tions called from different contexts: (i) called from two nDRF
regions using different locks or (ii) from one nDRF and one
xDRF region. One solution is to generate a new version per
context (function cloning) or to use the most conservative of
the classifications. To avoid code-size increase we took the latter
approach and marked a synchronization-point as non-enclave if at
least one context required it.

In what follows, we explain how the xDRF-paths are built.
Before the nDRF regions are marked as enclave/non-enclave
(i.e. not-yet-processed), the preceding- and following-xDRF-paths
correspond the preceding- and following-DRF-paths of the current
nDRF region, respectively. The approach is then to iteratively
extend DRF-paths into xDRF-paths by confirming that the nDRF
regions that synchronize the DRF paths can be enclave (subsec-
tion 4.5).

Figure 5(d) and (e) shows xDRF-paths that depart from the
nDRF region of interest, bypass nDRF regions already identified
as enclave, and continue the search on each path until a non-
enclave nDRF region is encountered.

Furthermore, matching nDRF regions guide the analysis to
other functions that synchronize on the same variable to model
additional parts of the data-flow (Figure 2 (b-f)). Thus, the analysis
“connects” the xDRF-paths of an enclave nDRF region to all
xDRF-paths (both preceding- or following-xDRF paths) adjacent
to a matching nDRF region. For instance, in Figure 5(e), the
preceding-xDRF-path of the nDRF region of interest collects
block 1, then crosses an enclave nDRF region and branches to the

7

1

2

(a) DRF-before={1,2}
DRF-after={3}

1

2

(b) DRF-before={1,2,3}
DRF-after={4,5}

1

2

(c) DRF-before={1,2,3}
DRF-after={3,1}

2

1

4

3

(d) xDRF-before={1,2,3}
xDRF-after={4}

3

2

1

4
5

(e) xDRF-before={1,2,3,4}
xDRF-after={5}

Fig. 5. Examples of DRF and xDRF paths. The nDRF region of interest is shown as a double-bordered light-gray block. Dark-gray blocks represent
nDRF regions already identified as non-enclave. Enclave nDRF regions are shown in light gray. White boxes represent basic blocks in a DRF region.

matching nDRF region (marked as connected by a dashed line).
The search continues on the xDRF paths of each matching nDRF
region until all paths have been explored. Searching on each xDRF
path stops when a non-enclave block is reached. This algorithm
adds blocks 2, 3 and 4 to the union of preceding-xDRF-paths.

4.5 Data Conflict Detection
Conflicts are detected from the perspective of each nDRF re-
gion, between three categories of accesses: (1) accesses on the
preceding-xDRF-paths, (2) accesses on the following-xDRF-paths
and (3) nDRF accesses (nDRF accesses refer to accesses from
the current nDRF region and from its matching nDRF regions). A
conflict occurs when accesses from different categories target the
same memory location, at least one being a write. We denote such
a conflict an xDRF data conflict. Note that conflicts do not occur
between accesses of the same category. For instance, if accesses
that belong to a preceding-xDRF-path incurred a conflict, this
would be a regular data-race and the program would not be DRF.
Regarding nDRF accesses, they are by definition synchronized and
cannot lead to conflicts between them.

To determine if two accesses point to the same location, we
complement traditional LLVM alias analysis [32] with a state-of-
the-art pointer analysis [31] and report no conflict if at least one
of the pointer analyses guarantees the accesses do not interfere.

Our analysis distinguishes between thread-local and variables
that escape the thread scope and only checks for conflicts between
variables visible to multiple threads (i.e. either global or escaped
thread variables). This is implemented by tracing the def-use chain
of the address in reverse order, searching for either a global
variable, a function return, a function argument or a value that
has been stored in or aliases non-local memory. We call such a
value found on the def-use chain of the address a shared value.
Given a pair of accesses, if at least one target address does not
stem from a shared value, then there is no conflict between the
two accesses. If each address stems from a shared value, but the
shared values can be determined to be disjoint, then there is no
conflict.

If the base addresses of two pointers stem from an escaped
value (e.g. global + off 1 and global + off 2) we compare
whether off 1 and off 2 can be equal, by tracking the de-
references (memory indirections) and offsets used in the pointer
arithmetic. Furthermore, we discard aliases in which the offset
is initialized with the thread ID. This simple extension can, in

most cases, guarantee that accesses to different elements of data
structures do not alias. Otherwise, a conflict is reported.

Matching nDRF regions can lead to transitive synchronization
(recall Figure 2(f)). An xDRF path can “branch” to other paths
on enclave nDRF regions in order to account that thread-ordering
caused by synchronization is transitive, i.e. Th0 and Th1 may
synchronize to establish a happens-before order and Th1 and
Th2 synchronize as well, which implicitly synchronizes Th0 and
Th2. Although the pairs of threads that synchronize explicitly
might not share data (i.e. Th0 and Th1 or Th1 and Th2), the
implicitly synchronized threads (Th0 and Th2) may share data
outside critical sections as the DRF properties can be guaranteed
by the happens-before order established by the synchronization
points.

Conflicts between transitively synchronized threads are de-
tected in multiple steps. In the example from Figure 2(f), in
the first step, the compiler checks for conflicts between memory
accesses on the preceding-xDRF-path of signal A and on the
following-xDRF-path of wait A (and vice-versa) and no conflict
is detected. In both xDRF and xDRF-CI delineations, this signal-
wait pair will be now marked as “enclave” (see subsubsection 4.5.1
and subsubsection 4.5.2 below). In the second step, the compiler
checks the synchronization point signal B. When collecting
the memory accesses on the preceding-xDRF-path of signal B,
the compiler encounters another synchronization point wait A
marked as “enclave”. Therefore, it recursively collects all memory
accesses on the xDRF-paths of wait A and on the xDRF-paths
of any matching nDRF region (i.e. the xDRF-paths of signal A),
reaching the access x = 1 in Th0, in conflict with the read of x
(print x) in Th2.

Cyclic xDRF paths (the preceding- and following-xDRF-paths
overlap, as in Figure 5(c)) are handled as follows:

• Non-overlapping blocks of one xDRF-path are checked
for conflicts against the other xDRF-path: block 2 from
the preceding-xDRF-path and blocks 1 and 3 from the
following-xDRF-path, in Figure 5(c);

• Blocks belonging to the loop are analyzed for loop carried
dependences: blocks 1 and 3.

To expose region boundaries to the hardware, the compiler
marks begin/end xDRF, begin/end nDRF regions through special
instructions, akin [29,30]. Conflict handling represents the main
difference between the xDRF and the xDRF-CI delineations, as
shown below.

8

4.5.1 xDRF Region Annotation
In the xDRF delineation, in case a conflict is detected, the
nDRF region separating the conflicting accesses (i.e. the currently
analyzed nDRF region) is marked as non-enclave. Furthermore,
if a conflict is detected between xDRF paths that cross nDRF
regions already marked as enclave, not only the currently analyzed
nDRF region is marked as non-enclave, but also the status of the
nDRF region adjacent to the conflicting access is changed from
enclave to non-enclave. This aspect is illustrated, in Figure 5(e),
if a conflict is detected between block 5 and block 3, both the
currently analyzed nDRF region and the one following block 3 are
marked as non-enclave.

Similarly, in case of the transitive synchronization shown in
Figure 2(f), once the conflict between Th0 and Th2 is detected
(during the analysis of the signal-wait operations on B), the signal-
wait operations on A are changed from enclave to non-enclave,
and the signal-wait operations on B are marked as non-enclave.
Thus, the signal-wait operations on A mark the boundaries of the
xDRF regions in Th0 and Th1, while signal-wait on B mark the
boundaries of the following xDRF regions in Th1 and Th2.

Once a synchronization was marked as an xDRF boundary
(non-enclave), it cannot be promoted back to being ”enclave”.

4.5.2 xDRF-CI Conflict Isolation
To avoid fragmenting the xDRF regions due to false conflicts
(i.e. memory accesses that may alias), we developed a technique
which detects and isolates conflicts, without breaking the xDRF
region (denoted as xDRF-CI). Once the conflicts are isolated, the
synchronization points adjacent to the DRF regions that include
the conflicting accesses are marked as enclave.

These nDRF regions are intended to isolate conflicts and
include a single memory instruction. For full compatibility with
the nDRF regions marked in our previous xDRF proposal, we
decided to guard the conflicts with begin/end nDRF instructions.
Alternatively, a new class of memory operations forced to operate
as nDRF instructions could be added, to reduce the number of
instructions in applications with many isolated conflicts.

5 FORMAL DEFINITIONS AND PROOFS

5.1 Formal Definitions

We start by providing definitions for the notions that represent
the building blocks of an xDRF region (data race, data-race-free
accesses, data-race-free region) and finally we formally define the
xDRF region and its properties.

Given the set of conditions on a pair of accesses:

1 In a multi-threaded process, two accesses executed by
different threads target the same memory location and at
least one of the accesses is for writing;

2 The accesses take place concurrently;
3 At least one access is not a synchronization operation.

Definition 1: A data race occurs when all conditions hold:
1 ∧ 2 ∧ 3 .

We denote two accesses a, b that incur a data race as a⊗ b.
Definition 2: Two accesses are called data-race-free, if at least

one of the conditions do not hold: 1 ∨ 2 ∨ 3 .
We denote two data-race-free accesses a, b as a�b.
Corollary 1: In a multi-threaded process, if two data-race-free

accesses can run concurrently, are not synchronization operations

and at least one is a write operation, the accesses do not target the
same memory location. Formally, a�b ∧ 2 ∧ 3 =⇒ 1 .

Definition 3: A program P in which any pair of accesses is
data-race-free is called data-race-free. Formally, P is DRF ⇐⇒
∀a, b ∈ P, a�b.

We denote that there is a path from an access a to an access b
by a � b.

Definition 4: We denote a synchronization-race-free region
(SFR) the set of instructions on the control-flow paths between
two consecutive synchronizing operations, i.e., not including
other synchronization operations on any path between them.
Formally, SFR region = {instr|(instr �= sync) ∧ (∀a, b ∈
SFR, �x, x = sync ∧ a � x � b)}, where sync is a
synchronization instruction.

We further divide SFR regions in two classes: (1) flexible,
amenable to optimizations, such as regions between two unlock-
lock operations and excluding the synchronization operations (i.e.
outside critical sections), denoted as DRF regions; and (2) con-
strained, imposing restrictions, such as regions within two lock-
unlock operations and including the synchronization operations
(i.e. inside a critical section), denoted as nDRF . The step 1 in
our algorithm identifies the nDRF regions.

Definition 5: We define two nDRF regions nDRF and
nDRF � as matching nDRF regions, and denote them by
nDRF �� nDRF �, if they synchronize on the same resource, i.e.,
use the same synchronization variable. Matching nDRF regions
are identified in the step 3 of our algorithm.

We denote that the control flows from a region A to a region
B as A � B.

Definition 6: We define two DRF regions, DRFA and
DRFB , as consecutive if for any path from DRFA to
DRFB there is only one nDRF region. Formally, DRFA �
nDRF � DRFB .

Definition 7: We define as preceding-DRF-paths of an nDRF
region nDRF all accesses in a DRF region DRF such that
DRF � nDRF . Similarly, we define as following-DRF-
paths of nDRF all accesses in a DRF region DRF such that
nDRF � DRF .

Definition 8: An xDRF path is recursively defined as a single
DRF path, or as the union of two xDRF paths given the
following conditions.

xDRFpath =

�
DRFpath

xDRFpath

�
xDRFpath

Let there be nDRF region nDRF , with its preceding-xDRF-
paths DRFA and its following-xDRF-paths DRFB : DRFA �
nDRF � DRFB .

And let there be any nDRF region nDRF
�

matching
nDRF region nDRF , with its preceding-xDRF-paths DRFA�

and following-xDRF-paths DRFB�
: DRFA� � nDRF

� �
DRFB�

, where nDRF �� nDRF
�
.

1) For any pair of accesses a, b , where a is on a preceding-
xDRF-path (of either nDRF or nDRF

�
) and b is on a

following-xDRF-path (of either nDRF region), the pair of
accesses is data-race-free, a�b (step 5.2.1).

2) For any pair of accesses a, b , where a is on an xDRF-
path (∀a ∈ {xDRFA,
xDRFA�

, xDRFB , xDRFB�}) and b is in an nDRF
region (∀b ∈ {nDRF, nDRF

�}), the pair of accesses is
data-race-free, a�b (step 5.2.2).

9

The union of the preceding- (xDRFA) and following-xDRF-
paths (xDRFB) of nDRF build an xDRF-path (xDRFAB)
extending across nDRF . Similarly, preceding- and following-
DRF-paths of nDRF

�
build an xDRF-path xDRFA�B�

extend-
ing across nDRF

�
.

Definition 9: The set of xDRF paths between consecutive
non-enclave nDRF regions builds an xDRF region. Hence, an
xDRF region is recursively defined as a single DRF region, or as
the union of two xDRF regions:

xDRF =

�
DRF

xDRF
�
xDRF

Definition 10: We define an nDRF region nDRF as enclave in
an xDRF region xDRFAB , and denote as nDRF � xDRFAB ,
if xDRFA � nDRF � xDRFB and xDRFA and xDRFB

belong to xDRFAB .
Definition 11: Two xDRF regions are said to be matching

if they enclave matching nDRF regions. Formally, xDRF ��
xDRF � ⇐⇒ nDRF�xDRF∧nDRF ��xDRF �∧nDRF ��
nDRF �.

The property of matching xDRF regions is transitive. If
xDRF matches xDRF � and xDRF � matches xDRF �� –
possibly synchronizing on a different resource than the pair
(xDRF, xDRF �)– then no conflict can occur between the re-
gions xDRF and xDRF �� or between an xDRF region and the
nDRF regions enclave in the “transitively matching” xDRF region
(step 5.2.3). This property ensures that transitive synchronization
and sharing of data between threads (see Figure 2(f)) is detected.

5.2 Proof of Correctness

5.2.1 xDRF analysis

The xDRF analysis (subsubsection 4.5.1) identifies non-enclave
nDRF regions based on the observation that accesses in xDRF
regions are data-race-free with accesses in other concurrent xDRF
regions.

Corollary 2: In a multi-threaded DRF program, if two memory
accesses target the same memory location, at least one is a write
operation (1) and they are not synchronization operations (3),
the accesses cannot run concurrently (2). Formally, in a DRF
application: 1 ∧ 3 =⇒ 2

Hence, Corollary 2 states that two accesses to the same
memory location that are not synchronization must be separated
by synchronization points that establish a happens-before order
between the two accesses. On the premises that the input program
is a data-race-free program, these synchronization points exist and
represent boundaries of xDRF regions (3). By detecting conflicts
between matching xDRF regions, the xDRF analysis tests the
nature of the synchronization point:

• If no conflict occurs, threads can access memory through-
out the xDRF region in any relative order, without the
need to communicate data (synchronize), except during
the execution of enclave nDRF regions (1 ∧ 3 =⇒ 2);

• If a conflict occurs, the synchronization is marked as non-
enclave, thus, it is a boundary between the adjacent xDRF
regions. Memory accesses performed in adjacent xDRF
regions cannot be reordered across non-enclave nDRF
regions, as they may access data shared between threads
(1 ∧ 3 =⇒ 2).

5.2.2 xDRF with Conflict Isolation
xDRF-CI regions preserve the DRF semantics across the entire
region as defined by Definition 9. By construction, xDRF-CI
regions isolate conflicts by enclosing them in nDRF regions (step
5.3b.2). Since no conflicting accesses belong to the xDRF-CI,
the nDRF regions separating the conflicts are marked as enclave
(step 5.3b.1). Furthermore, following the same reasoning, the new
nDRF regions are also enclave (step 5.3b.3).

As a consequence, nDRF regions that are marked as non-
enclave in the xDRF delimitation (see Figure 3), are now marked
as enclave in the xDRF-CI delimitation. While the xDRF delim-
itation prohibits instructions from adjacent xDRF regions to be
reordered across these nDRF regions, the xDRF-CI delimitation
refines this restriction and prohibits reordering only for accesses
that indeed should not cross the nDRF boundaries (accesses to
x in Figure 3). The conflicting accesses, enclosed in new nDRF
regions, cannot migrate, since all nDRF regions preserve the
original program order to ensure correctness. The remaining xDRF
instructions (marked in green or blue blocks in Figure 3), can
freely migrate across the boundaries of the nDRF regions, as long
as dependences between instructions are respected.

To prove the correctness of the xDRF-CI delineation, consider
two matching xDRF regions, xDRF �� xDRF � (according to
Definition 11) and two memory accesses ∀a ∈ {xDRF}, ∀b ∈
{xDRF �}, at least one write, that are not synchronization opera-
tions 3 . Since a and b belong to matching xDRF regions, they can
execute concurrently 2 . Assume that the xDRF-CI regions do not
preserve the DRF semantics (reductio ad absurdum) and the two
memory accesses conflict a⊗b. By Definition 1, 2 ∧ 3 =⇒ 1 ,
which translates to accesses a and b target the same location and
at least one is a write (1). However, by construction of xDRF-CI,
conflicting accesses are isolated as enclave nDRF regions (step
5.3b.3), which means that a /∈ {xDRF}, and/or b /∈ {xDRF �},
which contradicts our hypothesis. This proves the first property of
xDRF regions, according to Definition 8 and Definition 9.

The same reasoning applies for any pair of accesses a, b,
where a is on an xDRF-path (∀a ∈ {xDRF}) and b is in
an nDRF region (∀b ∈ {nDRF}) enclave in the xDRF re-
gion, nDRF � xDRF (or in any matching nDRF � region,
nDRF �� nDRF �). Assume again that the xDRF-CI regions
do not preserve the DRF semantics (reductio ad absurdum) and
the two memory accesses conflict a⊗ b. By the same reasoning as
above, this implies that accesses a and b target the same location
and at least one is a write (1), which, by construction of xDRF-
CI, would mark a as an nDRF region. This again contradicts our
hypothesis that a ∈ {xDRF}. This proves the second property
of xDRF regions, according to Definition 8 and Definition 9.

Thus, the xDRF-CI preserves the DRF semantics.

6 EVALUATION

We divide the evaluation in two main parts. The first part focuses
on the number of detected xDRF-CI regions, both from a static and
from a dynamic perspective. The second part shows the impact of
the xDRF-CI regions in SPEL++ [13], a cache coherence protocol
optimized for DRF accesses.

Our evaluation is performed on applications from the
Splash-3 [33] (a modernized, data-race-free version of the Splash-
2 suite [34]) and Parsec-2.1 [35] benchmark suites. The ap-
plications are executed with the standard inputs for Splash-2/3
and simsmall inputs for Parsec-2.1. The run-time numbers are

10

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

N
on

-e
nc

la
ve

 n
D

R
F

re
gi

on
s

DRF xDRF-Compiler xDRF-Manual xDRF-CI-Compiler

Fig. 6. Number of non-enclave nDRF regions in the code.

gathered after warming-up the caches in the parallel phase of
the applications, as marked in the benchmark suites as regions
of interest.

6.1 Large xDRF Regions with Conflict Isolation
We compare the proposed automatic compile-time delineation
of large xDRF (labeled as xDRF-CI-Compiler) to our previous
delineation of xDRF regions [14] (labeled as xDRF-Compiler4)
and a manually delineation based on code inspection [36] (labeled
as xDRF-Manual). Our baseline (labeled as DRF) is a DRF
program where every nDRF region is considered as non-enclave,
thus breaking the xDRF region. That is, the number of DRF
regions in the baseline is equal to the number of xDRF regions.

We tested empirically that no data races occur in prac-
tice, by employing a consistency checker tool similar to
Fast&Furious [37], extended to support xDRF regions. We run
a hundred times each application for each delineation of xDRF
regions and confirmed that no consistency violations appeared.

We perform first a static analysis for the entire application, and
then we study the number of executed xDRF regions.

6.1.1 Static Large xDRF Regions
Figure 6 shows in the first bar (DRF) the number of nDRF regions
in the code, all or them considered non-enclave. On average there
are 23.2 nDRF regions per application. The automatic delineation
of xDRF regions found that, on average, 5.5 of these regions can
become safely enclave, thus merging the corresponding preceding
and following xDRF regions into a single one.

There are still, however, 17.7 non-enclave regions, on average,
in the xDRF-Compiler approach. Some of them (2.9 on average)
are conservatively marked by the compiler as non-enclave, while
the manual annotations performed with a careful code analysis
showed that those regions can be safely enclave.

On average, the xDRF-Compiler approach misses optimization
opportunities for more than 10% of the nDRF regions found in
the code. It performs particularly well and matches the manual
delineation on Dedup, FFT, Fluidanimate, LU, LU-nc, Radix,
and Streamcluster. In contrast, other applications, such as Barnes,
Cholesky, FMM, Ocean, Ocean-nc, Radiosity, Raytrace, Volrend,
Water-Nsq, and Water-Sp, miss optimization opportunities due to
the conservative approach of the compiler.

For instance, in Barnes, the compiler cannot identify that the
conditional that guards a region of code ensures that only one
thread can execute that region. An expert can reason about the
semantics of the code in addition to detecting potential conflicts
and manually mark the region as xDRF. Radiosity, Raytrace, and

4. We have fixed minor implementation issues in the previous version [14]
which led to a few more non-enclave nDRF regions to be marked as enclave
in Dedup, Ocean, Ocean-nc, Radiosity, and Water-Sp benchmarks.

FMM operate on tasks that are obtained from a task-queue. Tasks
are accessed via non-statically analyzable function pointers and
the compiler cannot determine statically that each thread obtains a
unique task. Assuming that each task can be executed by multiple
threads, the compiler reports conflicts, whereas the expert can
identify that the potentially conflicting accesses are actually per-
formed by a single thread (i.e. each task is dequeued and executed
by one thread only). Both Water benchmarks show the limits of the
pointer analysis, as many of the may-alias conflicts reported by the
compiler do not occur in practice. The conservatively non-enclave
regions in Cholesky and Raytrace stem from a custom memory
allocator which is called before the parallel region and within the
region from the main thread. Similarly to Barnes, the compiler
does not detect that only one thread actually can execute this code
region and conservatively reports a potential conflict. Cholesky and
FMM additionally report false-positives due to a recursive function
forcing the same region to be checked for conflicts against itself
(instructions may alias with themselves, even though each thread
executes a different recursion levels of the function, similar to
different iterations of a loop).

Thanks to conflict isolation, the xDRF-CI-Compiler can safely
convert into enclave regions:

• The non-enclave regions marked conservatively by xDRF-
Compiler (Incorrectly Non-Enclave nDRF regions), thus
regaining missed optimization opportunities;

• The non-enclave nDRF regions marked correctly by
xDRF-Compiler, but which can be handled as enclave if
conflicting accesses are isolated (e.g. FMM, Radiosity).

Since we choose to apply conflict isolation only for nDRF
regions which do not contain signal, broadcast or wait constructs,
the last bar in Figure 6 shows the number of regions containing
such constructs. On average, we reduce the number of non-enclave
nDRF regions by 3.2 compared to our previous solution (xDRF-
Compiler), with a peak of 27 less non-enclave nDRF regions in
Radiosity.

The compilation time when automatically inserting xDRF
and xDRF-CI annotations is shown in Table 1. The overhead
of xDRF-CI over xDRF is negligible for all applications except
FMM, Cholesky and Raytrace. Most applications have accept-
able overhead when applying xDRF over the baseline. Cholesky
and Radiosity, however, entail high overhead. Assuming that
compilation-time becomes a concern, one can introduce a time-
budget and stop the xDRF compile-time analysis once the given
time-budget is exhausted. The experiments presented in the next
section show that applications with a high-overhead compile-time
analysis do not necessarily benefit from the xDRF analysis. Hence,
the time-budget would be a viable solution, while still improving
the performance of most applications.

6.1.2 Large xDRF Regions at Runtime
To understand the impact of xDRF regions, we conducted a study
to count, at runtime, which regions are executed more frequently.
Figure 7 complements Figure 6 by offering a runtime perspective.
We plot the number of dynamic instances of non-enclave nDRF
regions normalized to the number of executed nDRF regions. If
the normalized bar equals 1 (i.e., all executed nDRF regions are
non-enclave, which is equivalent to #xDRF = #DRF), this
indicates that no DRF regions could be merged into the same
xDRF region. In this figure lower is better, meaning that less but
larger xDRF regions have been found.

11

TABLE 1
Compilation time in seconds.

Application Base xDRF xDRF-CI
Barnes 1.928 8.383 8.352
Cholesky 10.228 2201.562 2046.017
Dedup 1.380 2.015 2.033
FFT 1.121 1.544 1.537
Fluidanimate 1.901 2.438 2.438
FMM 3.651 168.154 194.927
Lu 1.394 1.719 1.722
Lu-nc 1.663 2.081 2.081
Ocean 10.596 14.668 14.673
Ocean-nc 7.376 9.333 9.333
Radiosity 4.254 4636.695 4651.386
Radix 0.800 1.030 1.032
Raytrace 5.531 24.495 94.227
Volrend 3.514 29.561 24.409
Streamcluster 1.553 1.900 1.903
Water-Nsq 2.293 7.777 7.781
Water-Sp 2.549 5.697 5.882

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
on

-e
nc

la
ve

 n
D

R
F

re
gi

on
s xDRF-Compiler xDRF-Manual xDRF-CI-Compiler

Fig. 7. Runtime number of non-enclave nDRF regions normalized to
DRF.

The first bar in Figure 7 (xDRF-Compiler) shows the non-
enclave nDRF instances of the automatic delineation. The second
bar (xDRF-Manual) emphasizes the maximum potential without
the conflict isolation technique. The third bar (xDRF-CI-Compiler)
shows the results of using conflict isolation, which is the approach
with less xDRF boundaries.

Some applications by their construction do not permit the
merging of DRF regions into xDRF regions, since all or most
of the nDRF regions are non-enclave. The reason is that they
synchronize mainly based on barriers and signal-broadcast-wait
constructs, which we treat as xDRF boundaries, even with the
conflict isolation technique. Examples of these applications are
FFT, FMM, LU, LU-nc, Ocean, and Ocean-nc, Radix, and Stream-
cluster, where most synchronization is based on barriers and
signal-broadcast-wait constructs. Recall that dynamic instances
are gathered on the regions of interest of the benchmarks, while
static numbers are gathered over the entire application.

Applications with high potential (low number of static in-
stances of non-enclave nDRF regions compared to the total num-
ber of nDRF regions in Figure 6 – e.g. Cholesky, Radiosity and
Volrend), show, as expected, a low number of dynamic instances
of non-enclave nDRF regions (Figure 7), i.e. large xDRF regions.
This translates to a high potential when the xDRF analysis is
employed for optimizations. Moreover, Dedup, Fluidanimate and
Raytrace, contain a small number of static instances of enclave
regions (Figure 6), but they are executed in a loop, yielding a
large number of dynamic instances of enclave nDRF regions.

Barnes and Cholesky have some conservatively delineated
non-enclave nDRF regions (xDRF-Compiler) with high impact
at run time. Thanks to the conflict isolation technique these non-

enclave regions are transformed into enclave, thus achieving the
same number of xDRF regions as with the manual annotations.

Water-Nsq and Water-Sp, despite having also some conser-
vative non-enclave regions in xDRF-Compiler, do not actually
execute such nDRF regions in the region of interest of the
application, hence there is no noticeable difference between the
xDRF-Compiler and xDRF-Compiler-CI at run time.

6.2 Optimizing Coherence with large xDRF regions
Identifying xDRF regions offers great potential for optimizing
cache coherence protocols. This section analyzes the impact of
xDRF regions and large xDRF regions with conflict isolation in a
state-of-the-art, dual-mode cache coherence protocol: SPEL++.

6.2.1 SPEL++: A Dual-Mode Cache Coherence Protocol
SPEL++ [13] deactivates coherence for memory accesses per-
formed within xDRF regions and maintains traditional directory
coherence for accesses within nDRF regions. Data accessed during
xDRF regions are made visible (coherent with other threads) in the
boundaries of xDRF regions (i.e. non-enclave nDRF regions), by
flushing blocks cached privately. While nDRF memory references
are resolved as in a standard directory protocol, accesses within
xDRF regions perform in the following way:

• Read misses: Read misses obtain the data as in a directory
protocol. The data block is stored in the cache in “private”
mode without being tracked by the directory (the copy
is invisible to the coherence protocol), making a more
efficient use of its storage.

• Write misses: Store operations do not cause write misses
nor invalidation messages, since they do not require read
or write permission. Every store allocates space in cache
and writes the new value. The block is marked as “private”
and “dirty” bits are set to track every written byte.

• Cache evictions and flushing: A cache eviction of a “pri-
vate” block has the same effect as a flush, employed to
enforce coherence in the xDRF region boundaries. Clean
blocks can be silently evicted. Dirty blocks require a write-
back of the modified bytes. In case there are coherent
copies of a block cached by remote cores (by an nDRF
access), they should be first invalidated, and then updated
with the data being written back.

6.2.2 Simulation Methodology
We employ the GEMS simulator [38], a detailed simulator for
multiprocessor systems. GEMS is fed with information gathered
by a Pin tool [39], which offers detailed information about the
execution of the applications, such as executed instructions, mem-
ory references, and synchronization primitives. Synchronization
primitives are captured by Pin and do not provide to the sim-
ulator the instructions executed, but the functional behavior of
the primitive. This functional behavior is properly modeled in the
internals of the simulator by generating the necessary instructions
dynamically. The interconnection network has been modeled with
GARNET [40], included in the GEMS toolset. Reported energy
consumption has been obtained with McPAT [41], assuming a
32nm process technology.

We compare the different xDRF alternatives analyzed in the
previous section on top of the SPEL++ cache coherence protocol
and normalize them to a traditional directory protocol with MESI
states (Directory). These cache coherence protocols have been

12

TABLE 2
System parameters.

Parameter Value
Cache hierarchy Non-inclusive
Block / Page size 64 bytes / 4 KB
Split instr & data L1 caches 32 KB, 8-way (128 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 512 KB / tile, 16-way (512 sets)
L2 cache hit time 6 (tag) and 12 (tag+data) cycles
Directory cache 64 sets, 8 ways (×1 L1)
Directory cache hit time 2 cycle
Memory access time 160 cycles
Topology Mesh 2D
Flit size, link time 16 bytes, 1 cycle

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L1
 c

ac
he

 m
is

s
ra

te
 (%

)

Cold-cap-conf
Coherence

Coverage
Flush

1. Directory 2. DRF 3. xDRF-Compiler 4. xDRF-Manual 5. xDRF-CI-Compiler

Fig. 8. L1 cache miss rate (%) classified by the cause of the miss.

modeled in detail using the SLICC domain specific language pro-
vided by GEMS. Since SPEL++ targets large-scale systems where
the benefits of deactivating the coherence protocol are greater, we
model a system with 64 in-order cores, private L1 caches, and
shared L2 cache. Table 2 shows the remaining parameters of the
simulated system.

6.2.3 Performance Results
Our goal is to build large xDRF regions, since larger xDRF regions
imply a lower number of region boundaries, and consequently
less flush operations required to keep coherence of DRF accesses.
Since a flush operation invalidates and/or downgrades the private
content of the cache, reducing the number of flush operations
results in less invalidations and write-backs, and thus less cache
misses and coherence traffic. We first focus on the impact of cache
misses and then on the impact on network traffic. Finally, we show
their implications on execution time and energy consumption.

Figure 8 shows the L1 cache miss rate (in percentage) for
the five configurations evaluated. The miss rate has been split
in several categories, indicating the cause that generated the
miss. The first bar, which illustrates the miss rate in a directory
protocol, is split in the 5C classification of misses [42]: (i) cold
or compulsory, capacity, and conflict misses (Cold-cap-conf, or
3C); (ii) coherence misses (Coherence), as a consequence of
invalidations and downgrades generated by remote writes and
reads, respectively; and (iii) misses that stem from invalidations
generated by directory evictions (Coverage). The following bars
show SPEL++ (with different delineations of xDRF regions)
which adds an extra category of misses due to a partial cache
self-invalidation caused by flush operations (flush).

From Figure 8 we can observe that SPEL++ with a simple
DRF delineation causes an increase of misses compared to direc-
tory, on average, and in particular in Barnes, Dedup, Fluidanimate,
FMM, Radiosity, Volrend and Streamcluster. The automatic xDRF
delineation can avoid most of these misses, reducing the miss
rate compared to directory due to the removal of most coherence

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L1
 c

ac
he

 m
is

s
ra

te
 (%

)

Read_DRF
Read_nDRF

Write

1. Directory 2. DRF 3. xDRF-Compiler 4. xDRF-Manual 5. xDRF-CI-Compiler

Fig. 9. L1 cache miss rate (%) classified by the type of the miss.

and coverage misses. However, on average, in xDRF, 19.1% of
the cache misses are due to flush operations, while the manual
delineation reduces these misses to 17.6%. The additional misses
(compared to Manual) are due to extra flush operations that appear
because of the conservative automatic analysis. In particular,
Barnes is an example where the automatic delineation is far
from the manual one. When isolating the conflicts within enclave
nDRF regions, the number of flush operations is reduced and only
17.0% of the misses are due to crossing of xDRF boundaries .
Both Barnes and Radiosity, are clear examples where significant
improvements are obtained with respect to manual, thanks to the
isolation of conflicts.

Figure 9 shows the same miss rate as in Figure 8, but now
showing how each miss is resolved. Writes in DRF regions are
always considered as hits, and this is the reason they do not
appear in the figure. Read misses in directory are always treated
as nDRF, while SPEL++ saves coherence traffic by executing
misses within DRF regions in DRF-mode. If conflict isolation (CI)
would isolate also across barriers and signal/wait, the number of
read nDRF would increase in SPEL++, going back to directory
numbers. There are however two applications, namely FMM and
Streamcluster, where the miss rate increases when applying the CI
technique with SPEL++, compared to directory. In such cases it
would be interesting to analyze more aggressive conflict resolution
policies, i.e., across signal/wait or barriers. The downside of such
policy is a potential high number of nDRF misses. This trade-off
analysis is left as future work.

As mentioned, larger xDRF regions help to reduce coherence
traffic. Figure 10 shows the network traffic generated by the
applications, normalized to Directory. SPEL++ for DRF regions is
able to reduce the network traffic in most cases, except in Barnes,
Fluidanimate, FMM, and Radiosity. These are synchronization-
intensive applications, and therefore contain a large number of
small DRF regions. This leads to many cache flushes which
cancels the benefits of SPEL++ for DRF codes. On the other hand,
the automatic identification of xDRF regions reduces noticeably
the traffic in Fluidanimate, Dedup, Radiosity, and Volrend, as a
consequence of merging DRF regions into larger xDRF regions
(see Figure 7). On average, the network traffic is reduced by 20.7%
with xDRF-Compiler. Furthermore, when applying the conflict
isolation technique, the traffic can be reduced by 23.1%, mainly
due to the reductions in Barnes and Radiosity.

Figure 11 shows the execution time normalized to a directory
protocol. Again, we observe that, on average, SPEL++ with
mere DRF delineation is on-par or slightly out-performed by the
baseline. When applying automatic xDRF delineation, execution
time is reduced by 10.0% (compared to DRF), leading to 6.8% im-
provements with respect to Directory and almost on-par with the
ideal, manual delineation (8.1%). The only exception is Barnes,

13

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 n
et

w
or

k
tra

ffi
c

DRF xDRF-Compiler xDRF-Manual xDRF-CI-Compiler

3.9 2.3
2.3 2.3

2.3

Fig. 10. Network traffic normalized to Directory.

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

DRF xDRF-Compiler xDRF-Manual xDRF-CI-Compiler

1.9

Fig. 11. Execution time normalized to Directory.

Barnes
Cholesky

Dedup FFT

Fluidanimate FMM LU
LU-nc

Ocean
Ocean-nc

RadiosityRadix
Raytrace

Streamcluster
Volrend

Water-Nsq
Water-Sp

Aver
age

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

DRF xDRF-Compiler xDRF-Manual xDRF-CI-Compiler

4.4 2.6
2.6 2.6

2.6

Fig. 12. Energy consumption normalized to Directory.

where the automatic delineation does not reach the performance
of the manual one. Thanks to the conflict resolution technique,
xDRF-CI can achieve numbers on par with the manual delineation
(Barnes) and even outperform it (Radiosity).

Finally, Figure 12 plots the energy expenditure normalized to
Directory. Clear improvements are observed when using the xDRF
delimitation compared to both DRF and Directory. On average, the
automatic compile-time delineation with conflict resolution is able
to save 15.9% of the energy consumed by a directory protocol.

7 CONCLUSIONS

We describe an automated compile-time classification of “un-
managed” parallel programs which delineates DRF regions and
identifies extended data-race-free regions (xDRF) and large ex-
tended data-race-free regions with conflict isolation (xDRF-CI).
xDRF and xDRF-CI are regions of code that bypass and ex-
tend across synchronization points (acquire-release pairs), loop
backedges, function calls, etc, and guarantee data-race-freedom
semantics, similar to one large synchronization-free region. The
conflict isolation technique allows to extend even further the xDRF
regions alleviating the drawbacks that xDRF introduces for some
applications and matching the performance or even outperforming
the manually annotated version.

ACKNOWLEDGMENTS

This work was funded by the Swedish Research Council under the
VR Starting Grant 2016-05086. The work was also supported by

the Spanish MINECO, as well as European Commission FEDER
funds, under grant TIN2015-66972-C5-3-R and the Fundación
Séneca under the project “Jóvenes Lı́deres en Investigación”
18956/JLI/13.

REFERENCES

[1] S. V. Adve and H.-J. Boehm, “Memory models: A case for rethinking
parallel languages and hardware,” Communications of the ACM, vol. 53,
no. 8, pp. 90–101, Aug. 2010.

[2] ISO, ISO/IEC 9899:2011 Information technology — Programming lan-
guages — C. International Organization for Standardization, 2011.

[3] ——, ISO/IEC 14882:2015 Information technology — Programming
languages — C++. International Organization for Standardization,
2015.

[4] T. J. Ashby, P. Dı́az, and M. Cintra, “Software-based cache coherence
with hardware-assisted selective self-invalidations using bloom filters,”
IEEE Transactions on Computers (TC), vol. 60, no. 4, pp. 472–483, Apr.
2011.

[5] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” in 20th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011,
pp. 155–166.

[6] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
hardware support for disciplined non-determinism,” in 18th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Mar. 2013, pp. 13–26.

[7] H. Sung and S. V. Adve, “DeNovoSync: Efficient support for arbitrary
synchronization without writer-initiated invalidations,” in 15th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Mar. 2015, pp. 545–559.

[8] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 241–252.

[9] S. Kaxiras and A. Ros, “A new perspective for efficient virtual-cache
coherence,” in 40th Int’l Symp. on Computer Architecture (ISCA), Jun.
2013, pp. 535–547.

[10] M. Elver and V. Nagarajan, “RC3: Consistency directed cache coherence
for x86-64 with RC extensions,” in 24th Int’l Conf. on Parallel Architec-
tures and Compilation Techniques (PACT), Oct. 2015, pp. 292–304.

[11] S. V. Adve and M. D. Hill, “Weak ordering – a new definition,” in 17th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 2–14.

[12] A. Ros and A. Jimborean, “A dual-consistency cache coherence proto-
col,” in 29th Int’l Parallel and Distributed Processing Symp. (IPDPS),
May 2015, pp. 1119–1128.

[13] ——, “A hybrid static-dynamic classification for dual-consistency cache
coherence,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 27, no. 11, pp. 3101–3115, Nov. 2016.

[14] A. Jimborean, J. Waern, P. Ekemark, S. Kaxiras, and A. Ros, “Automatic
detection of extended data-race-free regions,” in 15th IEEE / ACM Int’l
Symp. on Code Generation and Optimization (CGO), Feb. 2017, pp. 14–
26.

[15] P. G. Joisha, R. S. Schreiber, P. Banerjee, H. J. Boehm, and D. R.
Chakrabarti, “A technique for the effective and automatic reuse of
classical compiler optimizations on multithreaded code,” in 38th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, Jan.
2011, pp. 623–636.

[16] L. Effinger-Dean, H.-J. Boehm, D. Chakrabarti, and P. Joisha, “Ex-
tended sequential reasoning for data-race-free programs,” in 2011 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness
(MSPC), Jun. 2011, pp. 22–29.

[17] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm,
“Ifrit: Interference-free regions for dynamic data-race detection,” in 2012
ACM Conf. on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Oct. 2012, pp. 467–484.

[18] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 524–535.

[19] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-assisted
data distribution for chip multiprocessors,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 501–
512.

[20] Y. Li, R. G. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classification,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 231–240.

14

[21] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race
conditions and deadlocks,” in 22th ACM Symp. on Operating Systems
Principles (SOSP), Oct. 2003, pp. 237–252.

[22] M. Abadi, C. Flanagan, and S. N. Freund, “Types for safe locking: Static
race detection for java,” ACM Transactions on Programming Languages
and Systems (TPLS), vol. 28, no. 2, pp. 207–255, Mar. 2006.

[23] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for
java,” in 2006 ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), Jun. 2006, pp. 308–319.

[24] J. Huang, P. O. Meredith, and G. Rosu, “Maximal sound predictive race
detection with control flow abstraction,” in 2014 ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI), Mar.
2014, pp. 337–348.

[25] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and precise dynamic
race detection,” in 2009 ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation (PLDI), Jun. 2009, pp. 121–133.

[26] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Conflict
exceptions: Simplifying concurrent language semantics with precise
hardware exceptions for data-races,” in 37th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2010, pp. 210–221.

[27] X. Xie and J. Xue, “Acculock: Accurate and efficient detection of
data races,” in 9th IEEE / ACM Int’l Symp. on Code Generation and
Optimization (CGO), Apr. 2011, pp. 201–212.

[28] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia, “Valor: Efficient,
software-only region conflict exceptions,” in 15th ACM Conf. on Object-
Oriented Programming, Systems, Languages and Applications (OOP-
SLA), Oct. 2015, pp. 241–259.

[29] B. Hackett and A. Aiken, “How is aliasing used in systems software?”
in Proceedings of the Symposium on the Foundations of Software Engi-
neering, 2006, pp. 69–80.

[30] C. Lattner and V. S. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in 2nd IEEE / ACM Int’l Symp. on
Code Generation and Optimization (CGO), Mar. 2004, pp. 75–88.

[31] Y. Sui, P. Di, and J. Xue, “Sparse flow-sensitive pointer analysis for
multithreaded programs,” in 14th IEEE / ACM Int’l Symp. on Code
Generation and Optimization (CGO), Mar. 2016, pp. 160–170.

[32] “LLVM Alias Analysis,” website, Mar. [Online]. Available: http:
//llvm.org/docs/AliasAnalysis.html

[33] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), Apr. 2016, pp. 101–111.

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,” in
22nd Int’l Symp. on Computer Architecture (ISCA), Jun. 1995, pp. 24–36.

[35] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in 17th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2008, pp. 72–81.

[36] A. Ros, C. Leonardsson, C. Sakalis, and S. Kaxiras, “Poster: Efficient
self-invalidation/self-downgrade for critical sections with relaxed seman-
tics,” in 25th Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), Sep. 2016, pp. 433–434.

[37] A. Ros and S. Kaxiras, “Fast&furious: A tool for detecting covert racing,”
in 6th Workshop on Parallel Programming and Run-Time Management
Techniques for Many-core Architectures (PARMA) and 4th Workshop
on Design Tools and Architectures for Multicore Embedded Computing
Platforms (DITAM), Jan. 2015, pp. 1–6.

[38] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[39] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in 2005 ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI),
Jun. 2005, pp. 190–200.

[40] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in IEEE Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.
2009, pp. 33–42.

[41] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in 42nd IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO), Dec. 2009, pp. 469–480.

[42] A. Ros, B. Cuesta, R. Fernández-Pascual, M. E. Gómez, M. E. Acacio,
A. Robles, J. M. Garcı́a, and J. Duato, “EMC2: Extending magny-

cours coherence for large-scale servers,” in 17th Int’l Conf. on High
Performance Computing (HiPC), Dec. 2010, pp. 1–10.

Alexandra Jimborean is Assistant Professor at
Uppsala University since 2015. She obtained her
PhD from the University of Strasbourg, France
in 2012, was awarded the Anita Borg Memorial
Scholarship offered by Google in recognition of
excellent research, along with other 25 distinc-
tions, awards and grants. Her research focuses
on compile-time and run-time code analysis and
optimization for performance and energy effi-
ciency and on software-hardware co-designs.

Per Ekemark is an undergraduate student of
Computer Science at Uppsala University since
2011. His bachelor’s thesis explored compile-
time performance and energy efficiency opti-
mizations and was featured in an award-winning
international publication. His research interest
are compile-time optimizations and concurrent
and parallel programming.

Jonatan Waern is a software developer at Intel
Windriver working on internal technologies. Pre-
viously he studied computer science at Uppsala
University, with a specialization in compilers and
parallel programming.

Stefanos Kaxiras is a full professor at Uppsala
University, Sweden. He holds a PhD degree in
Computer Science from the University of Wis-
consin. Previously he held positions at Bell Labs
(Lucent) and the University of Patras, Greece.
His research interests are in the areas of mem-
ory systems, and multiprocessor/multicore sys-
tems, with a focus on power efficiency. He is a
Distinguished ACM Scientist and IEEE member.

Alberto Ros is Associate Professor at the Uni-
versity of Murcia, Spain. He received the PhD
degree in computer science from the same
university, in 2009, after being granted with a
fellowship from the Spanish government. He
hold postdoctoral positions at the Universitat
Politècnica de València and at Uppsala Univer-
sity. His research interests include cache coher-
ence protocols, memory hierarchy designs, and
memory consistency for multicore architectures.

