
Enhanced System-Level Coherence for

Heterogeneous Unified Memory Architectures

Anoop Mysore Nataraja

University of Washington
mysanoop@uw.edu

Ricardo Fernández-Pascual

University of Murcia
rfernandez@ditec.um.es

Alberto Ros

University of Murcia
aros@ditec.um.es

Abstract—Heterogeneous Unified Memory Architectures

(HUMA) provide a unified memory space for on-die CPUs,

GPUs, and other hardware accelerators. Such architectures

improve performance and energy efficiency by obviating

explicit data transfers between processors. An important

feature of such architectures is Heterogeneous System Co-

herence (HSC) which simplifies the programming model by

reducing the explicit synchronizations otherwise expected of

the programmers of such systems. However, due to differences

in the memory models and bandwidth requirements of

CPUs and GPUs, hardware implementation of coherence for

such systems is often complex and comes at high power,

performance, and area trade-offs.

This paper optimizes the existing heterogeneous coherence

mechanism in early AMD Accelerated Processing Units,

approximately modeled in the gem5 simulator. It introduces

precise sharing information in the system-level directory,

which monitors both CPU and GPU cache lines, and imple-

ments a new write-back shared last-level cache (LLC). The

original implementation consisted of a stateless system-level

directory and a write-through LLC. Our evaluation results

with a set of collaborative heterogeneous benchmarks reveal,

on average, a 14.4% performance improvement and 80.8% and

50.4% reduced probing traffic and main-memory interactions,

respectively. Through optimizations and adaptation of the

evaluated benchmarks, this work aims to reduce the barriers

to entry into HSC research.

Index Terms—Heterogeneous system coherence, collabora-

tive heterogeneous applications, architectural simulator

I. Introduction

Recent leaps in accelerating parallel workloads, and sus-

tainable computing trends have motivated the development

of faster and, importantly, more energy-efficient computing

hardware. This is especially true with the rising demands

from recent advancements in Large Language Model train-

ing and inference demands. Accordingly, GPUs (GPGPUs),

manycores, and specialized accelerators have seen tremendous

advancements and have returned profitably to mainstream

GPU vendors like Nvidia and AMD [20], [22], and other

hardware manufacturers. However, such systems often falter

with irregular workloads with fine-grained synchronizations

and in scenarios that prioritize energy efficiency.

This has motivated the development of single-die hetero-

geneous systems on chip (SoCs) composed of CPUs, GPUs,

and specialized accelerators to reduce communication latency

and energy expenses arising from explicit data transfers and

synchronizations across the processors. An example of such

systems is the AMD Ryzen 3 2200G Accelerated Processing

Unit (APU) [5] composed of Zen CPUs and VEGA GPU

with a unified memory system implemented according to the

Heterogeneous System Architecture (HSA). HSA [25] is a

comprehensive framework and set of standards designed to

improve the efficiency and performance of systems integrating

different processors such as CPUs, GPUs, and/or hardware

accelerators, often on a single die. A key characteristic of

such architectures is HSA Unified Memory Architectures

(HUMA), which provides a unified memory space for con-

stituent processors. Having a unified memory space obviates

explicit data transfers and complex synchronizations that is

traditionally handled by the programmers of such systems.

An important feature of HUMA is Heterogeneous System

Coherence (HSC) [23] which is a mechanism to provide cache

coherence across different processor caches respecting each

of their memory model expectations.

Despite sustained industrial advances in heterogeneous

systems, academic research opportunities have remained

restricted due to a lack of access to and insights into state-

of-the-art models. The available simulators widely used in

academia with complete memory system implementations

and scope for heterogeneous configurations have room for

improvement. It is our strong belief that this frontier gap

between academia and industry needs to close to enable

symbiotic research that can greatly reduce reinventing the

wheel, which, ultimately, more ubiquitously values human

development time.

However, despite the frontier gap between academia and

industry, the translation of some academic ideas can some-

times fulfill short-term industrial utility and less frequently be

a definitive arc in the development of new ideas. With that in

mind, we propose enhancements to heterogeneous coherence

in gem5 [7], [19], which is one of the most accessible,

academically relevant, and composable heterogeneous system

simulators currently available. The proposed enhancements

target the original implementation of the AMD VEGA GPU

model and the VIPER GPU coherence protocol [14].

We then evaluate the enhancements in the context of

collaborative heterogeneous workloads in terms of both

execution time, which equates to performance ceteris paribus,

and network traffic, both between the directory and the

main memory and between the directory and serviced L2s,

which directly affects energy consumption. As such, our

background study of suitable benchmarks returned a few

established benchmark suites [8], [12], [28], [29]. We focus

mainly on CHAI [12] benchmarks that have high levels

of collaboration between the CPU and the GPU threads

with both data parallelism and fine- and coarse-grain task

parallelism exhibited in the applications therein. In addition,

CHAI benchmarks implement different types of atomics-based

synchronization primitives [27] which provides a holistic

evaluation target for the enhancements proposed.

This paper makes the following contributions:

• Provide detailed description of the CPU-GPU heteroge-

neous coherence protocol in gem5 (section II).

• Propose enhancements to the protocol by implementing

a write-back LLC with a state-tracking system-level

directory tailored to the intricacies of AMD’s MOESI

and VIPER coherence protocols (sections III and IV).

• Characterization and performance evaluation of the

enhancements to the protocol through adaptation of

CHAI benchmark suite (sections V and VI).

Our modifications to the CHAI benchmark suites and the

necessary modifications to gem5 to support precise state

tracking are open-sourced
1
.

Through our detailed description, enhancement, and evalu-

ation enablements through benchmark adaptations, the paper

aims to reduce the barriers to entry into Heterogeneous

Systems research.

II. Background

Gem5 [7], [19] is a modular architectural simulator provid-

ing models of various CPU and GPU architectures, network-

on-chip implementations, and memory systems with elaborate

timing information. Gem5 is a well-accepted platform for

evaluating new hardware designs and improvements. This

paper specifically focuses on AMD’s VEGA GPU model

combined with an X86O3CPU CPU model, which is a detailed

out-of-order CPU model. The memory system is provided

by Ruby and is a combination of AMD’s implementation

of MOESI on the CPU memory side and VIPER coherence

protocol [14] on the GPU memory side. The need for different

coherence protocols on the CPU and GPU caches arises

due to the differences in the complexity of access patterns

and expectations on the cache system. CPU accesses exhibit

a high degree of temporal locality and complex sharing

characteristics that can benefit from latency-optimizing proto-

cols, whereas the GPU’s throughput-oriented parallel access

patterns would see complex protocols like MOESI as excessive

and inefficient.

We approximately model the memory configuration of

AMD APUs such as the Ryzen 3 2200, in particular, a hetero-

geneous system composed of a CPU cluster, a GPU cluster,

and dedicated memory systems for each, with a shared system-

level directory and the last-level cache, along with various

other components such as TLBs, DMA engines, etc. The

block diagram in Figure 1 represents a simplified system with

1
Modified Gem5: https://github.com/CAPS-UMU/gem5_GPU.git.

LLC

Directory

CorePair

TCC

TCP TCP TCP TCP SQC

L2

L1D0L1D1 L1I

Main memory

To (2) CPU cores To (4) GPU CUs

Fig. 1. Block diagram of a simple CPU-GPU heterogeneous memory system

with a CorePair instance and a 4-CUs GPU instance. Constant cache is

omitted for brevity

one CPU cluster and a GPU cluster, with other components

omitted for brevity. Ryzen 3 2200G is a commercial desktop-

grade APU composed of 4 Zen microarchitecture-based out-

of-order CPUs and 8 AMD VEGA 8 compute units (CUs).

Table III lists the other parameters as configured.

The CUs each consist of 4 16-lane SIMD units. Each CU is

serviced by a Texture Cache per Pipe (TCPs) equivalent to

their L1 cache, with all of them together sharing the Texture

Cache per Channel (TCC) or equivalently, their L2, as well as

a Sequencer Cache (SQC), or equivalently their instruction

cache. In addition to these, there’s a scalar constant cache for

constant data that does not participate in coherence, and is

not represented in the block diagram, and local scratch-pads,

Local Data Share (LDS) within the CUs for CU-local data

sharing.

The CPU cluster is composed of 4 CorePair subsystem

instances consisting of a cache system and two X86O3CPU

cores each, described in subsection II-B.

The shared directory is situated at the system level and

services requests from the L2 caches within the CorePairs,

the TCC(s), and the DMA engine. The TCC can also bypass

requests from TCPs, which means the TCC can be non-

inclusive of the TCPs. Besides the configuration as described

above, there are parameters to modify functional blocks in

the system; relevant parameters are: WB_L1 and WB_L2
to configure the TCP and TCC respectively as write-back

caches from a default write-through configuration, which

enables scoped synchronizations and memory interactions,

and useL3OnWT to enable system-level atomics and write-

throughs from the TCC to also write to the shared last-level

cache (LLC) which, by default, bypasses it and writes directly

to the main memory.

A. Coherence Protocol Description

This section explains the GPU VIPER coherence protocol.

We use the following abbreviations for brevity during the

https://github.com/CAPS-UMU/gem5_GPU.git

following discussions. L2 refers to L2 caches in the CorePairs

shared by two CPU cores. LLC refers to the last-level cache.

The Directory at the system level is backed by the LLC, and

can service requests from the DMA engines, L2s, and TCC(s),

and can receive the following requests from the L2s:

• RdBlk, a read permission request that can be granted

either a shared or an exclusive status,

• RdBlkS, a read permission request that is specifically for

a shared status often sent as a result of I cache misses,

• RdBlkM, a write permission request,

• VicDirty, a dirty victim write-back, or,

• VicClean, a clean victim write-back.

It can also receive the following requests from the TCC:

• RdBlk, a read permission request; if exclusive status is

granted, it is ignored by the TCC,

• Flush request from TCP (orchestrated by the TCC) for

supporting Store Release,

• Atomic request, for performing atomic updates on cache

lines, executed at system-level visibility
2
,

• A write-through (WT) request for writes to be performed

at system-level visibility, which also doubles as a write-

back request for writing back modified cache lines when

TCC is configured as a write-back cache.

The directory also handles DMA reads (DMARd) and writes

(DMAWr) from the DMA engine.

B. CorePair

CorePair refers to the subsystem composed of 2 CPU cores

serviced by a shared, context-sensitive L1 instruction cache

(L1I) and dedicated L1 data caches (L1D0 and L1D1) both

of which are backed by a shared, inclusive L2 cache. The

simulation-time parameters can configure the number of

CorePair instances in the system and the cache properties of

the individual caches. The CorePair caters to requests from

the CPU cores through the L1Ds and the shared L1I cache,

all backed by the L2. The CorePair can request the directory

when there is a miss in its L2, or when it needs to victimize

a line from its L2. The lines held in the L1 and L2 caches

can be granted any of Modified, Owned, Exclusive, Shared,

or Invalid statuses, thus implementing a MOESI coherence

protocol. Any read request from the instruction cache that

misses at the L2 sends a RdBlkS request, and any misses

from data caches send either a RdBlk request which can be

granted a Shared or an Exclusive status, or a RdBlkM which is

granted a Modified status. Note that exclusive cache lines in

the CorePair can silently turn modified; there is no intimation

to the directory of its happening.

C. GPU Caches

The GPU cache hierarchy consists of Sequencer cache

(SQC), Texture Cache per Pipe (TCP), and Texture Cache per

Channel (TCC). SQC is a read-only instruction cache, and

2
Atomic requests that are to be executed at global-level visibility (within

the GPU caches) are handled entirely within the TCC and any consequential

requests to the directory are treated as regular TCC requests

implements a simple VI-like protocol. TCP and TCC are read-

write data caches and also implement simple VI-like protocols

(Valid/Invalid states) with support for Global-Level Coherent

(device-scope) atomics with GPU visibility. System-Level

Coherent (SLC) Atomics are implemented at the directory

for full-system visibility. Incoming requests with the SLC

characteristics are bypassed through the TCC, and this leads

to non-inclusive behavior of the TCC. TCP and TCC also have

transient states for handling atomic requests. Both of them

also offer write-back and write-through configurations. In the

write-back configuration, TCCs offer scoped synchronizations.

In both cases, TCC does not forward modified data when

probed by the directory controller; however, consequently,

TCC does invalidate itself.

D. Directory and Last-Level Cache

The system-level directory is modeled as a stateless di-

rectory, which means that it does not track the states of

the cache lines in the L2s, TCC, or the LLC. The protocol

implementation in gem5 models the LLC as a write-through,

non-exclusive, victim cache.

The victim nature arises due to LLC writes only happening

on write-backs from L2s, and optionally TCC, if configured

to support it. In other words, missing requests receiving

data from the main memory do not write to the cache,

and neither do any probe-acknowledgments containing data.

Consequently, LLC is not an inclusive cache.

The write-through nature arises due to writes to the

LLC also necessarily writing to the memory, the utility

essentially being faster reads when there is good locality

in LLC accesses and guaranteed coherence between main

memory and the LLC. The write-through nature is discussed

further in subsection III-C

The LLC is not an exclusive cache with respect to the L2s

because victim write-backs, irrespective of whether clean or

dirty, do not ensure exclusivity before writing to the LLC, so

there may be addresses cached simultaneously in both the LLC

and one or more L2s. Note that multiple copies of an L2 line

may be dirty in Shared state with another L2 line designated

the Owned status, responsible for ensuring reconciliation with

the LLC and main memory, upon eviction. Understandably,

the possibility of clean victims implies evictions from L2s are

noisy.

The LLC, as modeled, does not record or maintain the

states of the cache lines, except, implicitly, the Valid bit.

Figure 2 represents the system-level directory’s state ma-

chine for handling permission requests. Some implicit actions

are omitted for brevity. The default state is the unblocked U

state for every line. B is the blocked state waiting for either an

unblock from the core or an alternative implicit action when

TCC is involved
3
. The figure represents all possible transitions

brought about by incoming requests. States with _PM suffix

indicate the state is blocked on both probe acknowledgments

(P) and memory responses (M); _Pm indicates states blocked

3
This is done via an internal trigger-queue data structure.

U

BM PM

BM Pm BM M

B

BS PM

BS Pm BS M

B PM

B Pm B M

RdBlkM
WriteThrough
Atomic

RdBlkS RdBlk

MemData
L3Hit

MemData
L3Hit

MemData
L3Hit

PrbCompl MemData
L3Hit

MemData
L3Hit

MemData
L3Hit

PrbCompl PrbCompl

PrbComplPrbComplPrbCompl

PrbResp PrbResp PrbResp

PrbResp PrbRespPrbResp

(a) Permission request handling

U

BL

VicClean
VicDirty

CPUData
StaleWB

U

F

Flush

WBAck

(b) GPU flush handling (top) and

CPU eviction handling (bottom)

Fig. 2. State-machine for handling incoming requests at the system-level directory

U

BDR PM

BDR Pm BDR M

BDW PM

BDW Pm BDW M

DMARd DMAWr

MemData
L3Hit

MemData
L3Hit

PrbCompl MemData
L3Hit

MemData
L3Hit

PrbCompl

PrbComplPrbCompl

PrbResp PrbResp

PrbRespPrbResp

Fig. 3. DMA request handling at the Directory

only on probes; and _M indicates states blocked only on

memory responses which can be resolved with data from

either the LLC or main-memory. Transitions from U to any

of BM_PM, BS_PM, B_PM, BDR_PM, or BDW_PM initiate

probe requests broadcast to the L2s and TCCs
4

E. DMA

The directory also processes read and write requests from

the DMA engines. Figure 3 represents the state machine

for handling DMA requests. Note that in the baseline,

requests from DMA also broadcast probes. DMA writes also

additionally probe the GPU caches.

III. Enhancements to the heterogeneous coherence

protocol

In this section, we discuss three optimizations to the

coherence protocol, followed by the implementation of precise

sharing information in the system-level directory. We imple-

ment them on the Ruby memory system implementation on

4
Read-permission requests initiate downgrade probes which may not

include the TCC as a probe destination. Write-permission requests such as

RdBlkM, WT, Atomic, and DMAWr broadcast invalidating probes and include

the TCC.

the gem5 simulator. All the enhancements target the directory

state machine.

A. Early response on dirty probe acknowledgment

Baseline behavior : In the baseline behavior of the system-

level directory, upon receipt of a permission request from

the cores or DMA engines, the directory sends out probe

requests to the L2 caches as well as a read request to the

LLC which may in turn request the memory upon a miss

in the LLC. The probes can be either invalidating probes or

downgrading probes. Invalidating probes are sent out when

the incoming requests are of types: DMAWr, RdBlkM, WT

or Atomic requests. Downgrading probes are sent out when

incoming requests are of types: DMARd, RdBlk, or RdBlkS.

And only upon the return of both the LLC/memory read

response and all the probes acknowledgments, is the original

requester responded to. A receipt of a subsequent unblock

signal from the requester signals the end of the coherence

transaction, and the line is unblocked (state U) for further

accesses.

Enhancement: For the downgrade probes, it is unnecessary

to wait for all the probes to return. Upon receipt of the first

probe acknowledgment with dirty data, if so is the case, the

directory could safely respond to the original requesting cache

with the dirty data. This enhancement is useful in cases where

a second or later L2 or TCC requests for a line that has already

been cached and modified by an L2 (not TCC) and has not

yet been victimized. This is a commonly occurring case in

heterogeneous collaborating applications with multiple CPU

threads, for example, operating on a common data structure.

The improvement is even more pronounced when the latency

of memory or LLC access is significantly higher than the

probe request round-trip, or when there are multiple sharers

of the line with varying levels of business.

B. No write-back of clean victims to memory

In the baseline implementation, when an L2 sends a victim

to be written, the directory controller writes it both to the

memory and to the LLC. However, writing to the memory

is unnecessary in case of clean data; and when so, it can

save a memory access. The victims will necessarily be written

to the LLC. If the LLC has no free cache lines available in

the corresponding set, an appropriate LLC victim line will

be replaced. Note that dirty victims are not affected by this

optimization and do write to memory.

1) No write-back of clean victims to LLC: We additionally

evaluate the performance implications if the clean L2 victims

are not cached in the LLC, despite being a victim cache,

and instead only caching dirty victims from CPU L2s. Clean

victims would essentially be lost in the air since the LLC

does not cache lines on the request/refill path from the main

memory, and the next time a read/write miss is incurred for

the then flushed clean victim, the LLC will need to re-fetch

from memory.

We hypothesize that this optimization can be advantageous

in situations where multiple non-colocated L2 threads are

requesting read-only accesses to a common data structure in

memory. In such cases, clean victims resulting from capacity-

induced evictions from L2s could be prevented from polluting

the LLC with data with low to no locality of usage. Even when

not, compiler optimizations that are aware of this optimization

in the hardware cache system could restructure applications

to have distinct data structures for in-place modified common

data structures across threads. This kind of memory access

patterns are common with inference and encoding in large

ML models where weights or encoding vectors are read but

never modified immediately.

In cases where multiple L2s or TCCs are requesting read-

only accesses to the same lines one after the capacity-induced

eviction of the other, this may be detrimental to performance,

since it could be especially advantageous to have clean victims

cached in the LLC in such cases. This situation may be possible

during streaming applications, movement of computation from

CPU to GPU, or when there are multiple threads processing on

common data structures with wide temporal separation. When

we evaluated this idea, we found inconsistent improvement

and degradation across different benchmarks which we believe

were due to the two cases mentioned above.

In the best case, this optimization could save an LLC

write and a potential writing of LLC victim to memory with

significant energy savings, lead to lesser pollution of the cache

with temporally unusable content, and increased effective

cache capacity for the LLC. In the worst case, if later threads

request for the cleanly victimized line, they would then need

the directory to re-fetch from the memory.

C. LLC as a write-back victim cache

As previously detailed, LLC is modeled as a write-through

cache. Since the LLC is monolithic, there are no obvious

coherence advantages from the write-through policy. Added

to the fact that the DMA accesses do not update the L3,

it is logical to instead have the LLC as a write-back cache.

The main advantage of a write-back LLC is the resulting

significantly fewer accesses to the main memory, which has

both a potentially high energy efficiency improvement and a

minor performance implication. The performance implication

is minor because in either case, the writes or write-backs to

the memory are non-blocking since the only interface from

the LLC to the memory (through the directory) is ordered,

however, it may expend a few clock cycles delegating the

request to the memory and potentially stalling when this

interface is blocked.

We modify the directory from the optimization proposed in

subsection III-B to not only not write clean victims to memory,

but also to not write dirty victims to memory, and to instead

only write to the LLC with a corresponding dirty bit set to

signal that the written victim was dirty. The dirty bit is set at

the first dirty L2 victim write, which if set, will function as

an indication for the LLC line to be written back to memory

if and when victimized itself. Note that the block sizes for L2

and LLC are the same. It follows that when victimizing a clean

line, it will not be necessary to write back the data, since it

will be guaranteed to be coherent with the memory. Obviously,

this depends on no other caches or DMA agents being able

to update the memory transparently to the directory. The

only case that would violate this assumption is GPU write-

throughs and atomic operations which need to be manually

re-configured to write to the LLC using simulator parameters.

Understandably, evictions from the LLC would be on the

critical path. So, there is an additional minor latency penalty

incurred during processing L2 victims when the conflicting

LLC line is dirty. It is a minor penalty due to write-back of

the LLC being non-blocking and write-backs from the LLC

happening transparently to L2s.

IV. Precise state-tracking system-level directory

In the traditional GPU programming model, tracking

statuses of cache lines in the system-level directory often

comes at a high cost of space efficiency. This is because,

typically, there is little shared data that can prove beneficial

when tracked, and GPUs typically access vast amounts of

data, most of which is not shared and need not be tracked by

the directory. Tracking GPU lines in such cases can lead to

severe thrashing of CPU lines. However, with collaborative

applications where GPUs are not consuming large amounts

of data, tracking cache lines can be a valid consideration.

However, in heterogeneous unified memory systems, such

as the one configured, effective collaborations between threads

on different heterogeneous compute elements depend critically

on optimal cache performance. Optimized heterogeneous

system coherency can offer new opportunities for increasing

system performance and energy efficiency for programmers to

effectively write programs [3]. State information, when used

effectively in the directory controller, can alleviate network

activity and reduce main memory interactions. In addition,

information on the sharers of a line can avoid broadcasting

invalidating probes to instead multi-cast them to only sharers

of a line, which can considerably reduce network activity and

potentially improve performance. Understandably, this comes

at the cost of more area for tracking sharers, and a marginally

more complex state machine in the directory controller. We

evaluate these two strategies in the following subsections.

A. Tracking ownership
We propose a system-level directory that can track the

ownership status of the cached lines in the processor caches,

that is, caches other than the LLC. The proposed mechanism

for coherence is similar in principle to an MSI protocol with

a few special cases explicitly handled to support MOESI on

the L2s and VIPER on TCCs.

Our coherence algorithm tracks cache lines in three stable

states:

• I: line not cached in the processor caches,

• S: cache line in processor caches in shared (S) state,
• O: line modified (M) with potential dirty sharers (O), or
exclusive (E) in one of the processor caches.

There is an additional transient busy state (B) for when the

corresponding line in the directory is being evicted, and the

directory controller shall not accept intermediate incoming

requests until the completion of outstanding eviction. The

transient states represented in 2a and Figure 3 are implicit.

When the directory line is in the S state, it is guaranteed

that the data contained in the corresponding L2 caches

is not modified with respect to the LLC. Therefore, read-

only requests from any cache clients can be safely serviced

from the LLC which is guaranteed to be coherent with the

processor caches. Thus, probes to sharer caches can be safely

elided in such cases. This can be beneficial when there are

many CorePairs configured in the system since the wait

times on returning probes and network traffic would increase

substantially. Note that if the incoming request is a RdBlk, to

a line that is in S state, it should be assigned directly a shared

status without assessing if exclusive status can be granted

since the response is forced to be from the LLC. Normally,

only responses serviced from other shared/owned caches

would grant shared status. Note that in the implementation

described here, the point of allocating a directory entry for

RdBlkS is to determine if it would be necessary to broadcast

invalidating probes for future write-permission requests to

the line under consideration.

When the line is in O state, one of the caches in possession

of the line may have it modified with respect to the LLC,

and if there are sharers, each of the sharers is guaranteed

to possess the modified line under exactly one designated

owner which stewards the responsibility of writing back to

the LLC. In the implementation described, O state at the

directory conservatively includes cache lines that are held in

exclusive states since exclusive cache lines can turn modified

silently. In such cases, it would be incorrect to service a

request for a line from the LLC since the LLC can potentially

be stale. However, probing all the system caches for a read-

only access would be wasteful. Probing only the owner cache

suffices and reduces network occupancy/traffic by as many

packets as the number of CorePairs and TCCs. However, if

there is a write-permission request, it would be necessary to

broadcast invalidation probes to all the caches in the system

to ensure that there are no stale copies of the line in the

L2s if cached. The paper later discusses an optimization that

proposes tracking sharers of a line that will improve this

situation by restricting broadcast probes to a multicast over

only caches that have cached the modified line. Note that if

the incoming request is a RdBlk, the fact that the response

has arrived from a cache automatically denies exclusive status

in the response.

When the line is in I state, it is guaranteed that no caches

are in possession of the line in question. And so, it would

be unnecessary to probe any of the caches. It would be

sufficient to directly read the line from the LLC. The LLC can

potentially miss and request a refill from the main memory.

In the original design, all compulsory misses in the directory

lead to probes being broadcast to all caches. Eliding these

probes contribute the most to the performance improvements

observed in Section VI, with pronounced effects for long-

running applications, or running on a warmed-up cache will

provide more realistic values of improvement. Note that this

optimization obviates the optimization in subsection III-A.

1) Directory inclusion policy: An important choice in design-

ing an owner-tracking directory is the inclusion policy [30].

Inclusive directories enable filtering incoming requests to

avoid unnecessary probing routines or memory accesses.

However, in order to guarantee inclusivity, certain LLC

accesses would then necessitate propagation of backward

invalidations to the owning/sharing L2s — which adds

additional latency, and network traffic, and reduces effective

cache capacity in the L2s. Non-inclusive directories [9] do

not help with filtering incoming requests in case of directory

misses, since the data may reside in any of the L2s.

Recall that the LLC is a non-inclusive cache. As previously

reported [26], a perfect inclusive directory would require

the sum of both the entries and the associativity in L2 (and

TCC). This would result in a highly associative directory.

An alternative mechanism is to model the directory as a

cache [13], resorting to broadcasting probes in the event of

directory eviction.

In addition to the base set of transitions described in Figure

2a, the enhanced directory will need to support additional

transitions to deallocate a directory entry to accommodate a

new incoming request when the directory is full. Depending

on the status of the deallocated directory line, there may be

directory-induced invalidating probes to ensure that there are

no stale copies of the deallocated line in any of the L2s.

2) State-machine description: The working of the directory

owner-tracking can be inferred from Table I. The directory

starts with all cache lines in state I. Upon receiving a request,

the state of the line is checked. Once it has the state, and

the input request, the transitions and necessary actions are

as per the state-transition table in I.

If the directory line is not present and the directory is full,

the newly added transition will ensure that an appropriate

directory line has been victimized and deallocated. As a

consequence of the deallocation, the directory may induce

TABLE I

State Machine for sharer tracking implementation in ISO Coherence

State Request Sharer-list State-transition Probe

Memory RW,

Additional details

I

RdBlkS Add new sharer S

None R
RdBlk

Clear

O (owner established)

RdBlkM |

WT | Atomic
O (owner established)

DMARd | DMAWr No change

S

RdBlkS


Clear No change None R

RdBlk Add new sharer No change None

R,

No Exclusive grant

RdBlkM | DMAWr

WT | Atomic
Clear O (owner established) Multicast Invalidate R

DMARd No change No change None R

VicClean Remove sharer
b I if sharers list empty

S otherwise
None W

O

RdBlkS
c

If probe-resp clean:

Add owner, & new sharer
d

Else:

Add new sharer

If probe-resp clean:

S
d

Else:

No change

Unicast downgrade
e R + dirty probe override

RdBlk

R + dirty probe override

No exclusive grant

RdBlkM |

WT | Atomic
Clear

No change

Owner updated
Multicast Invalidate R + dirty probe override

DMARd

If probe-resp is clean:

Add owner as entry

Otherwise:

No change

If probe-resp is clean:

S

Otherwise:

No change
f

Unicast downgrade R + dirty probe override

DMAWr Clear I Multicast invalidate R + dirty probe override

VicClean Clear I
g

None W

VicDirty Remove sharer
b I if sharers list empty

S
h
otherwise

None W


Requester cannot be a sharer. This case would be internally handled at the CorePair by transferring requested line from L2 to L1D.

b
In case of limited-pointer directory, a sharer should not be removed when list is full to preserve broadcasts to untracked sharers.

c
If the requester is the same as the owner, it signals E to S transition in the L2 because of an I$ miss.

d
This is the case where O is conservative and L2 line is actually in E, contrary to expectation. The requester is the owner.

e
In the above case where requester=owner, there cannot have been other sharers, since the line in L2 was still E.

f
If the L2 line was E, it will be transition to S upon receipt of downgrade probe.

g
Any line in O state can send a VicClean if the line held in the L2 was E.

h
Other L2s can still have a dirty, shared line

invalidations to the L2s and TCC to maintain inclusivity with

respect to the private caches.

At this point, the directory should have a free line available

for accommodating the incoming request. Subsequently, the

directory controller follows the state-transition table to safely

service the request through probes and/or LLC accesses.

Note that DMA requests do not lead to any state alteration

since DMA engines do not cache the lines and therefore not

participate in coherence.

Issuing probes consumes energy and time. We propose to

alleviate the time spent probing and consequential network

traffic by tracking ownership of a line. The main benefit of

owner-tracking is in the case where a multiple caches have

copies of a line, and start updating the lines. In such cases, the

default action is to also read the LLC. Since the LLC would not

have had the line cached on the refill path previously, every

LLC read will miss, and require reading from main-memory.

With owner tracking, the LLC reads are elided in this case.

B. Tracking sharers for more efficient probing

A further enhancement over owner tracking is to also track

a list of sharers of a cache line. With the knowledge of the

sharers of a cache-line, the directory would need to only probe-

invalidate the sharers (a multicast instead of a broadcast) on a

write-permission request (RdBlkM, WT, Atomic, DMAWr) for

a line that is tracked in the directory, thereby rendering broad-

casts unnecessary. In addition, backward probe-invalidations

resulting from directory replacements can also be restricted to

only the caches registered in the sharers list and the owners, if

any. Table I tabulates the state machine decisions for all cache-

line states and incoming request types. Note that there are a

few special cases that need to be handled atypically due to the

differing implementations of the MOESI and VIPER protocols.

These are elaborated in-place in the form of footnotes. Missing

transitions, such as VicDirty when cache line is in state S, are

illegal and therefore omitted. Understandably, exhaustively

tracking sharers is area-expensive and may overshoot the

point of diminishing performance return. In such cases,

our observation is that tracking only the owners would be

advantageous. For the area and energy expense, whether the

resulting lower network traffic is considerably profitable is a

decision left to domain-specific use cases. We however present

the performance improvements and the implications on the

network activity through the reduction in probes sent out of

the directory in Section VI.

Table I describes the detailed state machine decision

diagram for sharers-tracking. An important consideration is

the size of the sharers list which can be easily limited to a fixed

TABLE II

Cache configurations as configured

Cache

Directory

Cache
LLC

L2

L1D

L1I

TCC

TCP

SQC

Cache size 256 KB 16 MB

2 MB

64 KB

32 KB

256 KB

16 KB

32 KB

Associativity 32 16

8

2

2

16

16

8

Block size 1 B 64 B

Repl. policy Tree PLRU Tree PLRU

Access latency 20 cy 20 cy

1 cy

1 cy

1 cy

8 cy

4 cy

1 cy

maximum number of sharers (limited pointer directory [2]

or coarse vector [13]). In our implementation, we tested a

sharers list with as many entries as there are L2s, i.e., a full-

map sharing code. The advantage of such linear scaling is in

the possible use of bitmaps to track sharers, as opposed to

multi-bit identifiers for each sharer in the implementation for

a limited pointer directory.

V. Methodology

We implemented the proposed changes in gem5 [19]

develop branch with commit 0bb7a355 and adjusted the

parameters to match the configuration declared in Table

III. In our testing, the CHAI benchmarks [12] have shown,

on average, greater collaboration through finer-grain data

sharing and synchronization than the other benchmarks

we considered. We also evaluated the benchmarks part of

HeteroSync [28], and Lulesh [15], available as open-source

benchmarks [10]. However, the effects of the enhancements

are not prominent due to their limited collaborative properties.

We emphasize the reasoning of heavily and frequently collab-

orating applications having more opportunities to reap benefit

from faster coherence communications. CHAI benchmarks are

open source and available in both OpenCL [17] and CUDA [21]

implementations. For our use case, we converted them to

HIP [4], with minor modifications to CPU and GPU thread

counts, and randomization seeds for deterministic execution

and fair evaluation of optimizations. Moreover, the simulator

accepts HCC-compiled kernels through the supported ROCm

runtime framework. This framework comes installed within

the supplied Docker image. In our exploration of the different

platforms to evaluate our results, we decided on the VEGA

Syscall Emulation (SE) mode as opposed to a Full System (FS)

mode of the gem5 simulator for efficiency reasons. SE mode

is simpler and perfectly adequate for our purposes because

syscalls do not play a significant role in the region of interest

of our benchmarks.

We focus our evaluation on 10 CHAI benchmarks: Bezier

Surface (bs), Canny Edge-Detection (cedd), Padding (pad),

Stream-Compaction (sc), Task Queue System (tq), Histogram

with both input and output partitioning (hsti, hsto), and In-

Place Transposition (trns), and Random Consensus (rscd, rsct).

TABLE III

System configurations simulated

Parameter Assignment

#CUs / #SIMDs per CU 8 / 16

#TCPs per CU 1

#TCCs 1

#CorePairs / #CPUs 4 / 8

CPU freq. 3.5 GHz

GPU freq. 1.1 GHz

These benchmarks allow configuration of varying GPU and

CPU threads to carry out the computation with a mix of

different kinds of parallelisms (data, fine-grained task, coarse-

grained task). These benchmarks also implement different

kinds of synchronization via std threads such as unpaired

work-queues, non-ordering flags, etc.

However, despite our efforts to have all the CHAI bench-

marks evaluated, we were unable to get 4 of 14 benchmarks

running in the baseline model. Debugging the reasons for

failure leads to spurious failures in waking CPU threads in

the O3 CPU implementation within gem5 which we were

unable to resolve without invasive changes to the simulator.

Additionally, 2 of 14 benchmarks (data and task parallel

Random Sample Consensus — rscd, rsct) failed verification

even without our changes. Nevertheless, we believe the

remaining benchmarks exhibit a balance of both data and

task parallelism and can still reflect fairly on the potential of

the proposed optimizations.

VI. Results

We now discuss the quantitative performance, energy,

and network activity improvements following the proposed

enhancements to the coherence protocol implemented in

gem5. Table III tabulates the system configuration along

with important parameters that describe the behavior of the

runtime system. Most noticeable improvements can be had

with optimizations in Sections III-B and III-C. Early probe

responses do not produce significant improvements.

Figure 4 is a bar graph of speedup achieved through

reduction in runtime (number of cycles simulated) by each

proposed optimization. The reductions are in relation to the

baseline, which is the default unmodified HSC implementation

in gem5. We see varying improvements across all benchmarks.

Improvements over benchmarks with highly data-parallel

implementations, such as bs, pad, hsti, hsto, rscd, are limited

because of their low coherence activities. On average, we see

a performance improvement of 1.68% without precise state

tracking. Figure 5 is a bar graph of the number of memory re-

quests made by the directory controller through optimizations

in Sections III-B and III-C. The number of memory accesses

are directly proportional to energy decrements. An average

of 50.38% reduction in memory accesses is observed resulting

from obviating memory accesses on every LLC write across

all the benchmarks. Figure 5 also captures the performance

difference between enabling TCC write-throughs to be written

to the LLC instead of just the main memory through the

%
 P

er
fo

rm
an

ce
 im

pr
ov

em
en

t

0.00%

1.00%

2.00%

3.00%

4.00%

bs cedt pad sc tq trns hsto hsti rsct rscd

earlyData noWBcleanVic llcWB

Fig. 4. Performance increments of each of the 3 optimizations for the tested

benchmarks in %saved simulated cycles over baseline

#
m

em
or

y
ac

ce
ss

es
 in

 m
ill

io
ns

0

1

2

3

4

bs cedt pad sc tq trns hsto hsti rsct rscd

baseline noWBcleanVic llcWB llcWB+useL3OnWT

Fig. 5. Reduction in memory reads and writes from the directory in #reads

and #writes over baseline

%
 d

ec
re

m
en

t i
n

sim
ul

at
ed

 c
lo

ck
 c

yc
le

s

0.00%

5.00%

10.00%

15.00%

20.00%

bs cedt sc tq trns

ownerTracking sharersTracking

Fig. 6. Performance increments of owner and sharers tracking for the tested

benchmarks in %saved simulated cycles over baseline

%
 re

du
ct

io
n

in
 p

ro
be

s

0.00%

25.00%

50.00%

75.00%

100.00%

bs cedt sc tq trns

ownerTracking sharersTracking

Fig. 7. Reduction in network traffic in % reduction in probes sent out from

the directory.

last two bars for each benchmark. There are no noticeable

differences in memory accesses due to the shorter duration

of the benchmarks simulated.

Figure 6 captures the performance improvement through

state tracking and sharer tracking, with the average over the

five benchmarks tested being 14.4%. This improvement is a

result of avoiding unnecessary probes in many cases. Figure

7 is a representation of the number of probes sent out from

the directory as optimizations of state-tracking and sharers-

tracking are implemented. There is a marked reduction in

the number of probes sent, which reflects a reduction in

network activity. In 4 of the benchmarks, sharers-tracking is

not contributing much to lowering network traffic. On average,

there is 80.3% reduction in probes in the five benchmarks

tested.

If tracking sharers in the granularity of the individual

caches is expected to pass the point of diminishing perfor-

mance return on the area expenditure for a specific use case,

an option is to stick to tracking ownership only since tracking

sharers scales area linearly.

VII. Future work

The paper aims to provide a fertile development platform to

shorten practical evaluations of sophisticated ideas to advance

heterogeneous coherence research. As such, there is a scope

for improvement on the proposed new baseline with state-

tracking system directories, and we expect continued active

development. Additionally, the coherence protocols themselves

are very loosely coupled, which presents opportunities for

tighter integration of the different component coherence

protocols. In this section, we discuss three ideas that we

reserve as future work.

The choice of the replacement policy in the directory cache

is crucial so the directory controller does not unnecessarily

evict lines with many sharers or lines in modified statuses

since that would lead to prolonged increase in immediate

network activity following the eviction in re-caching lost

lines. A replacement policy that prioritizes unmodified lines

with least sharers, cascaded with a tree-PLRU in case of

multiple candidate filtrates, can be expected to perform better

than tree-PLRU, which is otherwise the default.

Another point of consideration is that, when receiving dirty

victims at the directory, it is guaranteed to be from owned or

modified lines in serviced L2s. In such cases, de-allocating the

corresponding entry from the directory need not invalidate

dirty sharers, if any. Dirty sharers will not forward data when

probed, and hence are guaranteed to be the last users of the

cache line for that transaction.

For better scalability, distributed directories have been

proposed. The state-tracking directory can be made compatible

with distributed directories.

VIII. Related Work

Alternative open-source simulators for GPUs architectures

include AccelSim [16], NaviSim [6], and an outdated gem5-

GPU simulator [1]. AccelSim and NaviSim are both GPU

models that lack direct CPU integration and heterogeneous

coherent cache system implementation. Gem5’s VEGA GPU

model along with its heterogeneous system coherence im-

plementation provides a good baseline for evaluating our

proposed enhancements.

Among heterogeneous benchmark suites, other than CHAI,

there are HeteroSync [28], Rodinia [8], and Hetero-Mark [29]

among a few other benchmarks. In our testing of Hetero-Mark

and HeteroSync, we did not find useful levels of collaboration

between the CPU and the GPU to evaluate the benefits

of the proposed enhancements. The collaborative nature

of the benchmarks could most easily be established with

CHAI benchmarks owing to their more interspersed CPU and

GPU workloads and the parameterizability of the applications

themselves towards launching more/fewer CPU/GPU threads

for insights on the applicability of the enhancements.

Among related works, Koukos et al. [18] improve the

performance of the CPU and GPU by optimizing the coherence

protocol with private/shared tracking at the TLB hierarchy.

HMG [24] implements a hierarchical state-tracking system-

level directory for tracking cache lines in multi-GPU systems

with a VI-like protocol. The Compound Memory Models

work [11] describes a compositional memory model that

allows component devices to retain their behavior in their

original memory models when combined. We did not find

any previous attempts to improve the implementation of

heterogeneous system coherence in gem5.

IX. Conclusion

In this work, we described the working of Heterogeneous

System Coherence in AMD APUs as currently modeled in

the gem5 architectural simulator. We adapted a selection

of CHAI benchmarks to the open-source gem5 simulator

and characterized their performance. We implemented en-

hancements to the heterogeneous coherence protocol, and

a state-tracking system-level directory implementation, to

make the coherence model more representative of advanced

architectures. Our enhancements optimize energy efficiency

and improve performance by 14.4% and lower the barriers to

entry into heterogeneous systems coherence research. Future

work involves a detailed analysis of the directory replacement

policies. We also reserve for future work, investigation of the

advantages of not tracking certain read-only memory pages

and accesses that are guaranteed to be read-only.

Acknowledgments

This project has received funding from the Eu-

ropean Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation pro-

gram (ECHO, grant agreement No 819134), from the

CIN/AEI/10.13039/501100011033/ and the “ERDF A way of

making Europe”, EU (grant PID2022-136315OB-I00), and from

the MCIN/AEI/10.13039/501100011033/ and the European

Union NextGenerationEU/PRTR (grant TED2021-130233B-

C33).

References

[1] Gem5-gpu simulator. [Online]. Available: https://github.com/gem5-gpu/

gem5-gpu

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation

of directory schemes for cache coherence,” in [1988] The 15th Annual In-
ternational Symposium on Computer Architecture. Conference Proceedings,
1988, pp. 280–289.

[3] J. Alsop, W. T. Na, M. D. Sinclair, S. Grayson, and S. V. Adve, “A case

for fine-grain coherence specialization in heterogeneous systems,” ACM
Trans. Archit. Code Optim., vol. 19, no. 3, pp. 41:1–41:26, 2022.

[4] AMD. Hip documentation. [Online]. Available: https://rocm.docs.amd.

com/projects/HIP/en/latest/

[5] ——, Ryzen 3 2200G, https://www.amd.com/en/newsroom/press-

releases/2018-1-7-amd-redefines-high-performance-computing-with-

new-.html, 2018.

[6] Y. Bao, Y. Sun, Z. Feric, M. T. Shen, M. Weston, J. L. Abellán, T. Baruah,

J. Kim, A. Joshi, and D. Kaeli, “Navisim: A highly accurate gpu simulator

for amd rdna gpus,” in International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2023, p. 333–345.

[7] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G. Saidi,

A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”

SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.
[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”

in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[9] M. Davari, A. Ros, E. Hagersten, and S. Kaxiras, “An efficient, self-

contained, on-chip, directory: Dir1-sisd,” in 24th International Conference
on Parallel Architectures and Compilation Techniques (PACT), Oct. 2015,
pp. 317–330.

[10] gem5. gem5-resources. [Online]. Available: https://github.com/gem5/

gem5-resources

[11] A. Goens, S. Chakraborty, S. Sarkar, S. Agarwal, N. Oswald,

and V. Nagarajan, “Compound memory models,” Proc. ACM
Program. Lang., vol. 7, no. PLDI, jun 2023. [Online]. Available:

https://doi.org/10.1145/3591267

[12] J. Gómez-Luna, I. El Hajj, V. Chang, Li-Wen Garcia-Flores, S. Garcia de

Gonzalo, T. Jablin, A. J. Pena, and W.-m. Hwu, “Chai: Collaborative

heterogeneous applications for integrated-architectures,” in 2017 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2017.

[13] A. Gupta, W.-D. Weber, and T. Mowry, Reducing Memory and Traffic
Requirements for Scalable Directory-Based Cache Coherence Schemes.
Boston, MA: Springer US, 1992, pp. 167–192.

[14] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kala-

matianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair,

M. Wyse, J. Yin, X. Zhang, A. Jain, and T. G. Rogers, “Lost in abstraction:

Pitfalls of analyzing gpus at the intermediate language level,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb. 2018, pp. 608–619.

[15] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,

R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still,

“Exploring traditional and emerging parallel programming models using

a proxy application,” in 27th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2013), Boston, USA, May 2013.

https://github.com/gem5-gpu/gem5-gpu
https://github.com/gem5-gpu/gem5-gpu
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://github.com/gem5/gem5-resources
https://github.com/gem5/gem5-resources
https://doi.org/10.1145/3591267

[16] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:

An extensible simulation framework for validated gpu modeling,” in

2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473–486.

[17] Khronos. The opencl specification. [Online]. Available: https:

//registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html

[18] K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras, “Building heteroge-

neous unified virtual memories (uvms) without the overhead,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 13,
no. 1, pp. 1:1–1:22, Mar. 2016.

[19] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. An-

dreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black, G. Bloom,

B. R. Bruce, D. R. Carvalho, J. Castrill’on, L. Chen, N. Derumigny,

S. Diestelhorst, W. Elsasser, M. Fariborz, A. F. Farahani, P. Fotouhi,

R. Gambord, J. Gandhi, D. Gope, T. Grass, B. Hanindhito, A. Hansson,

S. Haria, A. Harris, T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri,

R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth,

H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli, C. Menard,

A. Mondelli, T. M"uck, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E.

Olson, M. S. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,

A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta, R. Thakur,

G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, Z. Wang, N. Wehn,

C. Weis, D. A. Wood, H. Yoon, and ’Eder F. Zulian, “The gem5 simulator:

Version 20.0+,” CoRR, vol. abs/2007.03152, 2020.
[20] Nvidia. 2022 q1 financial results. [On-

line]. Available: https://nvidianews.nvidia.com/news/

nvidia-announces-financial-results-for-first-quarter-fiscal-2024/

[21] ——. Cuda. [Online]. Available: https://docs.nvidia.com/cuda/

cuda-c-programming-guide/

[22] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[23] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill,

S. K. Reinhardt, and D. A. Wood, “Heterogeneous system coherence for

integrated cpu-gpu systems,” in 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2013, pp. 457–467.

[24] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans, “Hmg:

Extending cache coherence protocols across modern hierarchical multi-

gpu systems,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 582–595.

[25] P. Rogers, “Heterogeneous system architecture overview,” in 2013 IEEE
Hot Chips 25 Symposium (HCS), 2013, pp. 1–41.

[26] A. Ros, M. E. Acacio, and J. M. García, “A scalable organization for

distributed directories,” Journal of Systems Architecture (JSA), vol. 56,
no. 2-3, pp. 77–87, Mar. 2010.

[27] M. D. Sinclair, J. Alsop, and S. V. Adve, “Chasing away rats: Semantics

and evaluation for relaxed atomics on heterogeneous systems,” in

2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 161–174.

[28] ——, “Heterosync: A benchmark suite for fine-grained synchronization

on tightly coupled gpus,” in 2017 IEEE International Symposium on
Workload Characterization (IISWC), 2017, pp. 239–249.

[29] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mccardwell,

A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite for cpu-

gpu collaborative computing,” in 2016 IEEE International Symposium on
Workload Characterization (IISWC), 2016, pp. 1–10.

[30] L. Zhao, R. Iyer, S. Makineni, D. Newell, and L. Cheng, “Ncid: A non-

inclusive cache, inclusive directory architecture for flexible and efficient

cache hierarchies,” in 7th ACM International Conference on Computing
Frontiers, 2010, p. 121–130.

https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-first-quarter-fiscal-2024/
https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-first-quarter-fiscal-2024/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

	Introduction
	Background
	Coherence Protocol Description
	CorePair
	GPU Caches
	Directory and Last-Level Cache
	DMA

	Enhancements to the heterogeneous coherence protocol
	Early response on dirty probe acknowledgment
	No write-back of clean victims to memory
	No write-back of clean victims to LLC

	LLC as a write-back victim cache

	Precise state-tracking system-level directory
	Tracking ownership
	Directory inclusion policy
	State-machine description

	Tracking sharers for more efficient probing

	Methodology
	Results
	Future work
	Related Work
	Conclusion
	References

