
A Cost-Effective Entangling Prefetcher for
Instructions

1st Alberto Ros
Computer Engineering Department

University of Murcia
Murcia, Spain

aros@ditec.um.es

2nd Alexandra Jimborean
Computer Engineering Department

University of Murcia
Murcia, Spain

alexandra.jimborean@um.es

Abstract—Prefetching instructions in the instruction cache is a
fundamental technique for designing high-performance comput-
ers. There are three key properties to consider when designing
an efficient and effective prefetcher: timeliness, coverage, and
accuracy. Timeliness is essential, as bringing instructions too
early increases the risk of the instructions being evicted from
the cache before their use and requesting them too late can lead
to the instructions arriving after they are demanded. Coverage is
important to reduce the number of instruction cache misses and
accuracy to ensure that the prefetcher does not pollute the cache
or interacts negatively with the other hardware mechanisms.

This paper presents the Entangling Prefetcher for Instructions
that entangles instructions to maximize timeliness. The prefetcher
works by finding which instruction should trigger the prefetch
for a subsequent instruction, accounting for the latency of each
cache miss. The prefetcher is carefully adjusted to account for
both coverage and accuracy. Our evaluation shows that with
40KB of storage, Entangling can increase performance up to
23%, outperforming state-of-the-art prefetchers.

Index Terms—Instruction prefetching, caches, entangling, cor-
relation, latency

I. INTRODUCTION

As software-as-a-service and Cloud computing become
increasingly popular, server and Cloud applications exhibit
notoriously large instruction sets that do not fit in the first
level instruction cache (L1I), leading to high L1I miss rates
and therefore stalls. This causes significant performance degra-
dation, in addition to wasteful energy expenditure and under-
utilization of resources.

Until now, processors have been traditionally designed for
scientific and desktop applications, with very different char-
acteristics, making them inefficient for the large and ever-
increasing instruction footprint of server applications. Accord-
ing to a study conducted by Google [25] over three years on
one of their Warehouse Scale Computing (WSC) live centers
with tens of thousands of server machines running workloads
and services used by billions of users, processors do useful
work for only 10-20% of the time, stalling for more than 80%
of the time. This analysis demonstrates that one of the main
reasons of stalling is that instructions are not available for

This work was supported by the European Research Council under the
European Union’s Horizon 2020 research and innovation programme (grant
agreement No 819134) and by the Ramón y Cajal Research Contract
(RYC2018-025200-I).

execution when running server applications, making the cache
and memory systems of server processors a prime optimization
target. In particular, this study identifies a significant and
growing problem with L1I bottlenecks, due to the instruction
footprint of server applications growing at a much higher
rate per year than the size of the L1I, conclusions reinforced
by several recent studies [7], [27]. They demonstrate that
instruction fetching represents a considerable fraction of the
memory stalls, together with data accesses, and underline the
importance of prefetching for data centers.

Indeed, as memory latency has been recognized as a critical
factor for performance, a plethora of prefetching techniques
have been proposed over the last decades [10], [13], [15],
[19], [22]–[24], [36], [39], [46], [48]–[50], [52]. However, the
research community focused predominantly on data prefetch-
ing and there is relatively little research done on instruction
prefetching, despite its increasing importance with more and
more applications being served through the Cloud.

Basic prefetch mechanisms include simple next line instruc-
tion prefetchers [11] and next line prefetchers of arbitrary
sizes [37], [43], but more advanced ones have been proposed,
from prefetchers guided by branch prediction [10], [26], [30],
[31], [36], [38], [39], [46], [48] and execution history [51] to
prefetchers that use idle hardware resources to fetch instruc-
tions (e.g. run-ahead helper threads [4], [49], [52]).

One common technique for prefetching employs correla-
tion [13], [15], [19], [23], [29], [35], namely, building corre-
lations between a memory reference and a previous event, such
as memory reference streams, instruction addresses, or branch
history, by exploiting temporal or spatial patterns. Temporal
prefetchers are a class of correlation-based prefetchers that
record sequences of cache misses and predict future misses by
replaying the history, reaching higher coverage and accuracy
than their predecessors [13], [15], but incurring impractical
storage costs.

Other types of prefetchers interact with hardware struc-
tures [6], [26], [30], [31], [38], such as the branch predictor
(e.g. BTB directed), to gain insights into the program’s exe-
cution ahead of time, however they require intrusive changes
in the processor design.

Typically, prior work in prefetching has adopted look-ahead
mechanisms [5], [6], [13], [15], [26], [29]–[31], [35], [44] to



address both coverage and accuracy. Look-ahead prefetchers
follow the execution path n steps in advance and prefetch
the corresponding block (instruction, cache line, etc.). The
steps may refer to instructions, branches, function calls, etc,
while n is typically referred to as the look-ahead distance.
Nevertheless, by employing a fixed look-ahead distance, such
prefetchers are rigid and cannot timely serve all instruction
misses: a long look-ahead distance would bring in the instruc-
tion too early, unnecessarily polluting the cache if the instruc-
tion is evicted before its use; a short look-ahead distance may
prefetch the instruction too late, after it has been demanded
by the processor. Yet, look-ahead is a popular technique, if a
”good-enough” distance is identified through careful tuning.

Inspired by previous proposals [33], [40], this work builds
on the observation that different instructions have different
fetch-latency and thus require different look-ahead distances
for a timely and useful prefetch. Figure 1 illustrates the
fraction of timely prefetches given a fixed look-ahead distance,
over a selection of server workloads (see Section IV). The
look-ahead distance represents the number of taken branches
(discontinuities), akin to previous proposals [29]. To generate
this figure, we used a baseline without any prefetching and
tracked the L1I misses and their latency using dedicated
structures (see Section III for details). For each L1I miss,
we computed how many discontinuities in advance a prefetch
should be issued not to be late. This can be seen as an oracle to
identify the optimal look-ahead distance for each miss and the
percentage of total misses each distance would cover. Figure 1
shows the fraction of timely prefetches for distances between 1
and 10, indicating that the remaining fraction of L1I misses are
covered with prefetching distances larger than 10. While for
this study the look-ahead distance was fixed statically, it is akin
to determining a suitable look-ahead distance dynamically, e.g.
based on observations performed during a warm-up phase.

The first remark is that a look-ahead distance fixed for all
misses is sub-optimal, as different misses require different
distances, or even the same miss can require different distances
depending on the execution path. In our proposal, we support
several distances simultaneously (even for the same address).

Second, there is no fixed look-ahead distance to work
well across all benchmarks. A look-ahead distance of 1 may
prefetch 70% of the L1I misses in a timely manner for one
application, but only 20% of the misses for another. At the
other end, large look-ahead distances (10+) serve a consider-
able number of misses (up to 15%) and cannot be neglected
in the design of an an effective prefetcher. Complementing
Figure 1, Figure 2 emphasizes prefetching pollution caused by
wrong or early prefetchers (lack of accuracy) if a fixed look-
ahead distance is used. While some applications can tolerate an
increase in the look-ahead distance without loosing accuracy,
other (see top lines) can reduce accuracy by 10% when moving
from a distance of 1 to 10.

The departure point of this proposal is timeliness, as a key
metric for instruction prefetching. Figures 1 and 2 demonstrate
that a fixed look-ahead distance leads to both low coverage
(only few of the misses are served in a timely manner) and

1 2 3 4 5 6 7 8 9 10

Look-ahead distance (number of discontinuities)

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

T
im

el
y 

ra
tio

Fig. 1. Fraction of timely prefetches with respect to the look-ahead distance.

1 2 3 4 5 6 7 8 9 10

Look-ahead distance (number of discontinuities)

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28

W
ro

ng
 &

 e
ar

ly
 r

at
io

Fig. 2. Fraction of useless (wrong or early) prefetches with respect to the
look-ahead distance.

low accuracy (only few of the issued prefetchers are useful).
To approach the performance of an ideal instruction cache

(no L1I misses), we propose the Entangling Prefetcher for
Instructions, or Entangling I-Prefetcher,12 which, in contrast
to its predecessors, is designed around the notion of timeli-
ness. Entangling computes the latency of cache misses and
entangles them with the cache accesses that should trigger
the prefetch to ensure the timely arrival of the requested
instructions. In this way, Entangling is robust and effective,
agnostic to the application characteristics and achieves a
97.6% L1I hit rate, approaching the perfect L1I.

This paper makes the following contributions:
• Makes the observation that a significant fraction of L1I

misses cannot be timely prefetched by employing a fixed
look-ahead distance.

• Proposes an instruction prefetcher whose core design
point is timeliness and demonstrate its effectiveness over
a wide selection of benchmarks.

• Proposes Entangling as a mechanism to identify the
right prefetch time for each cache line – rather than a
fixed look-ahead distance. Instead of learning the look-
ahead distance, which is central to many state-of-the-art
methods, our prefetcher builds time aware correlations
between past L1I events (handles) and L1I misses and
learns which event the prefetch should be associated with
so that it is timely.

1A performance-oriented version of the Entangling Instruction
Prefetcher [41], [42] won the 1st Instruction Prefetch Championship
(IPC1).

2The code of the Entangling prefetcher proposed in this paper is available
at https://github.com/alberto-ros/EntanglingInstructionPrefetcher



• The results demonstrate that Entangling triggers timely
prefetches delivering high coverage (88.2%) and accuracy
(71.5%), and close to ideal L1I performance (97.6% L1I
hit rate), offering the best area vs performance trade-off.

• We designed a compression scheme and a clever encoding
and table organization, that yields Entangling compact,
with low storage demands, such that it makes best use of
the allotted hardware budget.

II. THE ENTANGLING I-PREFETCHER

The key conceptual contribution of the Entangling I-
prefetcher is the entanglement (or pairing) of instructions,
namely, the instruction upon whose execution should be trig-
gered a timely prefetch for the instruction. In a more concise
representation, we define as src-entangled the cache line (also
referred to as source) that should trigger the prefetch of the
dst-entangled cache line (destination) such that the requested
line arrives timely.

To ensure timeliness, we compute the latency of each cache
miss by subtracting the time the requested cache line enters
the cache to a recorded timestamp of the cache miss. Once
we know the latency of a miss, we can pair the missing cache
line to a previous accessed cache line that took place at least
latency cycles before the missing access, as shown in Figure 3.
To this end, the Entangling I-prefetcher records a history of
the last L1I accessed cache lines. We track back the recorded
history looking for the src-entangled cache line fitting our
criteria and entangle it with the dst-entangled cache line that
missed in cache. Next time the src-entangled line accesses the
cache, it will trigger a timely prefetch for the dst-entangled
line, transforming the previous miss into a hit.

As tracking all pairs of entangled cache lines in a program
would require considerable storage requirements, the Entan-
gling I-prefetcher only entangles heads of basic blocks, defined
as follows. A basic block represents the set of consecutive
cache lines, where consecutive refers to the program order
of instructions, grouped in cache lines [11]. The head of a
basic block is therefore the first non-consecutive cache line that
accesses the cache and the size of the basic block is the number
of following consecutive lines.3 Recording only the basic block
head and its size suffices for efficient prefetching of contiguous
cache lines. In order to further reduce the number of entangled
lines, the Entangling I-prefetcher merges “almost” consecutive
basic blocks, entangling only the head of the first basic block.

The prefetching engine is then triggered upon every cache
access to a head of a basic block, and prefetches the entire
basic block of the current cache line and of each of its dst-
entangled cache lines.

The entangling mechanism is versatile and by design can
easily adapt to different (or multiple) execution paths or
variations in latency. First, a src-entangled cache line can
have multiple dst-entangled cache lines, such that they are
all served timely. In turn, a dst-entangled cache line can

3Note that this is a dynamic view of a basic block and it can change
depending on the execution path.

access a (1)

access b (3)

access c (6)
access d (7)

access e (9)

access l (12)
miss

latency
(7)

access a (1)

access b (3)

access c (6)
access d (7)

access e (9)

access l (12)

la
te

nc
y

(7
)

miss

latency
(7)

entangled

source

destination

miss

la
te

nc
y

(7
)

a

b c d

e

l

Cache line

{
Basic
block

Heads of basic block

Fig. 3. A running example: The first basic block, BB1, consists in accesses
a, b, c, d, e and the second block, BB2 in access l. Basic block heads are
marked with bold. The first column illustrates the history of accesses together
with the cycle when each access executed (shown in brackets) and the
occurrence of access l that misses in L1I and its latency. The second column
illustrates that in order to prefetch BB2, we travel back in history latency
cycles from access l and find the instruction that executed latency cycles
ahead (access b, part of BB1). We then entangle BB2’s head (access l) with
the head of BB1 (access a). The third column shows the organization of the
cache lines in basic blocks.

be linked to multiple src-entangled cache lines, thus it can
timely prefetched regardless of the execution path. Second,
to deal with fluctuations in latency, the Entangling prefetcher
constantly creates new entangled pairs on misses and discards
pairs that are no longer useful. Note that small latency fluc-
tuations are often accommodated by default, given that the
source of the entanglement is a basic block head and not the
instruction that precisely matches the latency of fetching the
target instruction.

III. A COST-EFFECTIVE IMPLEMENTATION

This section describes a cost-effective implementation of
the Entangling I-prefetcher. We start by presenting a basic
implementation and continue with advanced techniques to
improve accuracy and reduce storage overhead. Finally, we
offer further implementation details and considerations.

A. Basic implementation

As mentioned, the Entangling prefetcher triggers prefetches
on each access to a source-entangled address, prefetching both
the next lines within the current basic block and the whole
basic block of each of its destination-entangled addresses. In
what follows, we detail the hardware mechanisms that identify
basic blocks and, for each L1I miss, the position of a timely
prefetch (i.e. the source-entangled line). The required hardware
and the interaction between the new structures is depicted in
Figure 4.

1) Computing basic block sizes: To compute the size of
each dynamic basic block fetched by the processor front-end,
we constantly track both the head (first) cache line of the
current basic block being fetched and its size (see right-top
part, Basic block, in Figure 4). A simple comparison of the



L1I access

L1I cache

way 0

...

way 1

... ...

way 7

...

Basic block

head
size

bb?
Entangled

Table
s d1 d2

Prefetches

PQ

...
MSHR

...

M
iss Fi

ll

Next cache level (L2)

Latency

History buffer

...

new

Update history

+1

Update basic block size (s)

Update entangled destination (dx)

Fig. 4. Overview of the Entangling I-prefetcher with hardware extensions
shown in gray. The Basic block registers head and size keep track of the
current basic block. History is a small circular queue and each entry records
basic block information: head, size and timestamp of the first L1I access.
Entangled is a cache-like structure and each entry consists in a src-entangled
cache line, its basic block size, and a compressed array of dst-entangled
cache lines (for the advanced optimization techniques, a confidence counter
is associated to each destination). The L1I, PQ and MSHR are extended with
information on timing (the timestamp when the request was issued) and on
the src-entangled (position of the source in the Entangled table and an access
bit indicating if the access stems from a demand access or a prefetch).

current access with the head address plus the current size (bb?)
indicates whether the new access is for the next line (same
basic block) or a non-consecutive cache line. In the first case
(+1), the size of the basic block is increased by one. In the
second case (new), the basic block ends and we start tracking
a new block.

When detecting a new basic block, we first store the size
of the basic block that just completed in the Entangled table,
the core structure of our proposal that records the necessary
information to issue prefetches (see left part of Figure 4). If
the basic block is already recorded in the Entangled table,
we update its size to the maximum of the already stored size
and the new size. This decision increases the coverage of the
prefetcher at the cost of having extra false positives. Finally,
we start tracking the new basic block, by updating the head
register with the current cache line and resetting the size to 0.

This mechanism populates the Entangled table with basic
blocks that will act as sources of entangled pairs.

2) Building entangled pairs for timely prefetching: Find-
ing a suitable source-entangled cache line for each L1I miss
requires two steps. First, we need to compute the latency of
each L1I miss (or L1I prefetch) and second, to identify the
cache line executed (at least) latency cycles before the miss.
The head of its parent basic block will be the source and the
address causing the L1I miss will be the destination of the
entangled pair.

To find potential src-entangled cache lines, we store the
recent history of basic block heads together with the timestamp
of their first access to L1I in a small circular queue called the
History buffer (right-bottom part of Figure 4).

To compute the latency of a demand L1I miss, we require
the start and end timestamps. For the start timestamp, we
record the time of the demand miss along with the entry allo-
cated by default in the miss status holding register (MSHR).
Additionally, two other fields are added to each MSHR entry:
an access bit (set to one for demand misses) and a pointer to
the position of that access in the History buffer (if the access
is a basic block head). Similarly, we keep track of the latency
of the prefetches in order to compute the actual latency on
late prefetches (a miss for an already prefetched cache line
takes place). We extend the prefetch queue (PQ) such that,
when a prefetch is issued, it stores the current time along
with the currently allocated prefetch entry. An access bit is
also added to the PQ, initialized to 0. If the prefetch misses
in cache, it is automatically handled as a regular cache miss.
Additionally, we ensure that the information held in the PQ is
transferred to the MSHR entry allocated by the corresponding
cache miss. Otherwise, the information of the PQ entry is
discarded. Subsequent demand misses that find the MSHR
entry allocated by a prefetch, i.e. with the access bit unset,
simply enable the access bit. This indicates that the prefetch
was late, as the access resulted in an L1I miss, despite the
preceding prefetch.

The end timestamp corresponds to the time of the cache
fill. Upon each cache fill, we check if the access bit in the
MSHR is set, indicating that there was either a demand miss
or a late prefetch. If in addition the entry has a valid pointer
to the History buffer, we know that the miss corresponds to
a basic block head. Under these conditions, the Entangling I-
prefetcher attempts to find a src-entangled cache line for the
newly cached line. The latency of the current memory access
is computed by subtracting from the time of the cache fill (end)
the timestamp recorded with the MSHR entry (start of the L1I
miss). The source is then selected among the accesses that took
place at least latency cycles before the miss and is identified
by parsing backwards the History buffer, starting from the
position of the current access in History. For misses without
pointers to the History buffer, no src-entangled is searched for,
as such misses will be covered by prefetching the full basic
block starting from the head.

Once a src-entangled cache line is found, the Entangled
table is updated and the corresponding src-entangled entry is
paired with the newly cached line, which acts as dst-entangled.
A src-entangled entry can have several entangled destinations.
In the same way, a dst-entangled address can be paired with
multiple src-entangled entries. This way, prefetching a cache
line reached from different execution paths is automatically
supported. The first and fourth column in Figure 5 illustrates
when an entangled pair is added to the Entangled table.

3) Triggering the prefetches: The Entangled table is
checked on cache accesses. In case of a hit (1) the entire basic
block starting with the accessed cache line is prefetched (i.e.,
size lines starting from the second line in the basic block);
(2) for each dst-entangled, the entire basic block starting from
dst-entangled is prefetched (for finding its size, the Entangled
table is parsed again using the dst-entangled address).



prefetch miss
(add MSHR)

demand miss
(set access)

Late pref
conf--

cache fill
(get latency)

Add entangled
conf = MAX

prefetch miss
(add MSHR)

cache fill
(not accessed)

access
(set access)
Timely pref
conf++

prefetch miss
(add MSHR)

cache fill
(not accessed)

cache evict
Wrong pref
conf--

demand miss
(add MSHR)
(set access)

cache fill
(get latency)

Add entangled
conf = MAX

Fig. 5. Actions taken on prefetch misses and cache accesses, misses, fills, and
evictions. Entanglements are added for misses and late prefetches by searching
for a source in the History buffer. The confidence counter is increased on
prefetch hits and decreased on late and wrong prefetches.

B. Advanced techniques and optimizations

1) Adding confidence to deal with latency variation: The
latency of a cache miss may vary depending on whether the
cache line is fetched from L2, LLC, or main memory, or even
due to contention when accessing the structures or routing
the packets through the interconnection network. Therefore,
an entangled pair that is timely once may not be timely on the
next occurrence. To adapt to such variations and trigger timely
prefetches we add a confidence counter (a two-bit saturated
counter) to each entangled pair.

New entangled pairs are added to the Entangled table
with the confidence set to the maximum value, as they are
expected to be timely. The counter is decreased by one upon
late or wrong prefetches and increased by one upon timely
prefetches. When confidence reaches 0, the entangled pair is
considered invalid. When adding a new entangled pair, if the
array of destinations is full, the dst-entangled with the lowest
confidence is replaced.

In order to update the confidence, we need to know (1) if
the prefetch is late, timely, or wrong, and (2) which is the
entangled pair that triggered the prefetch. The first piece of
information is provided by the access bit which is copied from
the PQ to the MSHR when a prefetch misses in the L1I, and
from the MSHR to the L1I on a cache fill. Late prefetches are
detected when a cache miss finds the access bit unset in the
MSHR (or the PQ). Timely prefetches are detected on a cache
hit that finds the access bit unset. Wrong and early prefetches
are detected upon a cache line eviction with the access bit
unset (the line was unnecessarily brought, i.e., not accessed
before being evicted). Figure 5 depicts these scenarios. The
second piece of information just requires actually to know the
src-entangled address, since the dst-entangled address is the
prefetched one. Hence, the src-entangled address is also stored
in the PQ, and moved accordingly to the MSHR and L1I.

We implemented a version of the Entangling prefetcher
adding context information in order to increase accuracy. The
source was replicated for each different context, resulting in
an overloaded Entangled table, that suffers from frequent evic-
tions and consequently achieves lower performance. Moreover,

TABLE I
COMPRESSION MODES OF dst-entangled BLOCKS

Mode Destinations signifB bits Size (bits)

1 1 [29, 58] (58 + 2)× 1 = 60
2 2 [19, 28] (28 + 2)× 2 = 60
3 3 [14, 18] (18 + 2)× 3 = 60
4 4 [11, 13] (13 + 2)× 4 = 60
5 5 [9, 10] (10 + 2)× 5 = 60
6 6 [1, 8] (8 + 2)× 6 = 60

context-based predictions may not always be correct, missing
opportunities. Other studies also report little benefit when
adding context information (e.g., Markov Predcitors [23], end
of Section.2.1).

2) Merging spatio-temporal basic blocks: Reducing the
number of entangled basic blocks in the Entangled table is
key for keeping storage overhead manageable. To this end,
we perform a merge of quasi-consecutive (in time) basic
blocks whose addresses overlap or are consecutive (in space).
Merging is critical when our prefetcher employs a low-budget
Entangled table.

Merging is also aimed to address scenarios such as the
sequence of accessed cache lines: ABCXCD, in which a
basic block head C always hits in the cache because it was
prefetched as part of another basic block (ABC) and was
not evicted. However, D may lead to a substantial number
of misses that would not be covered by the Entangling I-
prefetcher since it is not a basic block head.

To address this issue, the size of each basic block is added
to the History buffer. The History buffer is inspected on each
computed basic block, and if the basic block can be merged
with one of the previous basic blocks in the history (i.e., they
are consecutive or have overlapping addresses), the size of the
previous basic block is updated (the size of the basic block
starting with A would become 4, i.e., ABCD) and the merged
basic block (starting with C) is not recorded in the History).

Since we dedicate 6 bits to store the size of a basic block,
merging is not performed if the resulting basic block size is
larger than 64 cache lines.

3) Compressing destinations: The Entangled table uses
different modes for encoding the array of dst-entangled line
address and confidence on 63 bits, as follows: 3 bits for the
mode + 60 bits of the dst-entangled line address and the
confidence. The destination bits encode the least significant
bits (signifB) of the dst-entangled line, starting from the
most significant bit that differs from the src-entangled. The
most significant bits can be inferred from the source. Since the
distance between src-entangled and dst-entangled is typically
small, destinations can be highly compressed.

The mode is a value between 1 and 6 which indicates how
many destinations can be kept in the 60 bits of the array
of dst-entangled cache lines and the associated confidence.
Depending on how many significant bits are required, the
number of destinations can vary. If one destination is encoded,
the full virtual address of the cache line is stored. For the



confidence we always use a 2-bit saturated counter. Table I
details the available modes.

All entries of the same dst-entangled array must be rep-
resented in the same mode. Hence, every time a new dst-
entangled entry is inserted, we compute the maximum between
its mode and the mode of the previously recorded destinations.
To improve compression, upon the eviction of a dst-entangled
we re-compute the mode, to ensure that it is not unnecessarily
set to a restricting value due to a destination that no longer
exists.

Finally, to maximize the utilization of the Entangled table if
the selected src-entangled line has not free destination entries,
the prefetcher looks for a second src-entangled line, namely
a cache line with the timestamp earlier than the one searched
for. If the second line has not a free destination entry, the first
line is inserted by evicting an old entry.

C. Further implementation details

1) Dealing with wrong-path execution: There are two
problems arising from wrong-path execution: (i) polluting the
cache with prefetches triggered on the wrong path and (ii)
training the prefetcher with entangled pairs computed on the
wrong path.

The solution to avoid issuing wrong-path prefetches is to
trigger the prefetches when instructions retire, such that they
are only issued on the correct path. In Entangled, the latency
can be computed by accounting for the time the instruction
takes to commit, in addition to the cache miss latency. How-
ever, even if the prefetch-on-retire solution is disregarded,
the performance degradation may not be significant as the
L1I is usually plenty of dead cache lines, that could be
evicted without increasing miss rate [16]. Since the Entangling
prefetcher commonly entangles the destination with the most
recent timely source, it tolerates L1I evictions better than fixed
look-ahead alternatives.

To avoid polluting the tables with wrong-path information,
Entangled keeps the speculatively computed pairs in a separate
structure until the destination instruction commits and then
updates the Entangled table.

2) Timing constraints: When triggering the prefetches, on
a hit in the Entangled table, a maximum of 6 extra searches
(average of 2.5, as presented in Section IV-D) are performed
in the Entangled table to find the basic block sizes of the
entangled destinations. The Entangled table is indexed with
a simple XOR operation of the different bits of the address,
and the 16 ways are searched in parallel. The time needed
to retrieve the prefetching information is accounted for in the
latency of the prefetches so that they are timely, regardless the
latency of accessing the Entangled table. All other updates are
done out of the critical path of issuing prefetches.

3) Memory Overhead: The History buffer is a 16-entry
circular queue, with a 58-bit tag field, a 20-bit timestamp field,
and a 6-bit basic block size field. A 4-bit register points to the
head of the queue. The maximum basic block size is therefore
63 cache lines. The total memory required by this structures
is 167 bytes.

The timing and src-entangled information is stored along
with PQ (32 entries), MSHR (10 entries) and L1I cache
(512 entries). The timing information consists of the time the
request was issued (12 bits) and the position of the access
in the History buffer (4 bits). The src-entangled information
includes the position of the source in the Entangled table
(4 bits for the way since we model 16-way entangled tables
and 7, 8, or 9 bits for the set, depending of the size of the
Entangled table: 2K, 4K or 8K entries, respectively) and an
access bit. Once the miss is resolved, the timing information is
no longer necessary, thus the L1I cache only records the src-
entangled information. The total memory required to store the
timing and src-entangled information is about 1KB (915 bytes,
984.25 bytes, and 1053.5 bytes for the 2K, 4K, and 8K entries
configurations, respectively).

The Entangled table is a large set-associative cache that
stores sources along with their maximum basic block size and
destinations. It employs an enhanced FIFO replacement policy,
in which the information in the entry selected for eviction can
be reallocated to another entry that does not hold any entangled
pair. It has 128, 256, or 512 sets (2K, 4K, and 8K entries
configurations, respectively) and 16 ways per set. The tags are
encoded using 10 bits, the basic block is encoded with 6 bits,
and the format, destinations, and confidence bits are encoded
on a total of 63 bits. This is the largest structure employed by
our prefetcher and requires 19.81KB (2K entries), 39.63KB
(4K entries), or 76.25KB (8K entries). Storing basic block
sizes and entangled pairs in different structures is an alternative
to a unified Entangled table, likely beneficial for low-storage
configurations. We leave this study for future work.

4) Physical addresses: Recent ARM-based architectures
employ large virtual L1 caches and as consequence can
efficiently train the L1 prefetcher with virtual addresses [18].
However, for x86 cores employing smaller virtually-indexed
physically-tagged caches [20], placing the prefetcher in the
physical address space is a likely alternative. Otherwise L1
accesses performed by the prefetches would add critical pres-
sure to the translation look-ahead buffer (TLB). Although we
have described our design for virtual addresses, it can perfectly
work on physical address space, even reducing the storage
requirements, e.g., for a 48-bit physical address space.

If the prefetcher is trained with physical addresses, the
compression mechanism can be adapted using 46 bits for (dst-
entangled line addresses and confidence) as follows: 2 bits for
the mode + 44 bits of the dst-entangled line address and the
confidence. The mode takes a value between 1 and 4 which
indicates how many destinations can be kept in the 44 bits
of the array of dst-entangled cache lines and the associated
confidence, as detailed in Table II. Additionally, the History
buffer holds cache line addresses represented on 42 bits instead
of 58 bits for virtual. This way, our L1I Entangling prefetcher
requires 16.59KB, 32.21KB, and 63.40KB for the versions
with 2K, 4K, and 8K entries, respectively.



TABLE II
COMPRESSION MODES USING PHYSICAL ADDRESSES

Mode Destinations signifB bits Size (bits)

1 1 [21, 42] (42 + 2)× 1 = 44
2 2 [13, 20] (20 + 2)× 2 = 44
3 3 [10, 12] (12 + 2)× 3 = 42
4 4 [1, 9] (9 + 2)× 4 = 44

IV. EVALUATION

A. Methodology

We evaluate the Entangled I-prefetcher using a modi-
fied version of the ChampSim simulator [1] employed for
the 1st Instruction Prefetching Championship (IPC-1). The
ChampSim version used for IPC-1 modeled a simple front-
end [21]. Our modified version extends the current model of
the develop branch in ChampSim [2], which implements a
more realistic decoupled front-end modeling Fetch-Directed
Prefetching [38], a Branch Target Buffer (BTB), a Target
Cache to predict the target of indirect branches [9], and a return
address stack (RAS). Prefetches issued by the Fetch-Directed
Prefetching engine are considered demand accesses, hence our
baseline does not report any prefetch request. We extended
it to model an out-of-order processor with a seven-stage
pipeline as described by González et al. [17] and different
branch misprediction penalty (number of stages to be flushed)
depending on the stage the misprediction is detected. The
processor and memory hierarchy parameters aim to resemble
the latest Intel’s Sunny Cove machine. The main configuration
parameters of our baseline system are shown in Table III.
The energy consumption of the cache hierarchy, taking into
consideration the energy expenditure of tag accesses, reads,
and writes to caches, has been modeled with CACTI-P [32]
for a 22nm process technology.

The version of ChampSim employed for the IPC-1 trained
the L1I prefetchers with virtual addresses. However, as L1I
prefetchers can also work with physical addresses, we also
provide results training the L1I prefetchers with physical
addresses. In that scenario, there is no guarantee that two
consecutive virtual memory pages are consecutive in the
physical space, slightly reducing the prefetcher’s coverage.

ChampSim does not simulate wrong-path execution, and
therefore no wrong-path prefetches are issued. Consequently,
in a more realistic implementation, the accuracy of the
prefetchers may be reduced. As we explain in Section III-C1,
the Entangling prefetcher can avoid wrong-path pollution. All
prefetchers evaluated in this work benefit from not modeling
the wrong path. We leave for future work examining in detail
the implications of wrong-path execution.

We test our prefetcher on the large secret traces provided
in the 1st and 2nd Championship Value Prediction (CVP) [3]
and created by Qualcomm Datacenter Technologies.4 The
traces, which include a set of integer (compute int), floating
point (compute fp), cryptography (crypto), and server (srv)

4IPC-1 used a subset of these traces for evaluating the prefetchers.

TABLE III
BASELINE SYSTEM CONFIGURATION

Processor decoupled front-end

Width 6 instructions
Fetch queue 64 entries
Decode queue 32 entries
Dispatch queue 32 entries
Branch target buffer 8K entries
Target cache 4K entries
Return address stack 64 entries
Branch penalty 2 cycles (decode stage)
Branch predictor Hashed perceptron

Processor back-end

Execute width 4 instructions
Retire width 5 instructions
Branch penalty 7 cycles (execute stage)
Re-order buffer 352 entries
Load, store queue 128, 72 entries

Memory hierarchy

L1I cache 32KB, 8-way, 4 hit cycles, no prefetcher
L1-D cache 48KB, 12-way, 5 hit cycles, next-line
L2 cache 512KB, 8-way, 10 hit cycles, spp-dev [28]
L3 cache 2MB, 16-way, 20 hit cycles, no prefetcher
DRAM 4 GB, one 8-byte channel, 1600MT/s

workloads, have been ported to the ChampSim format. We
selected the 959 workloads that showed at least 1 MPKI (miss
per kilo-instruction) at the L1I in our baseline configuration.
The complete analysis has been performed with this set of
benchmarks. Additionally, to evaluate our prefetcher on a
larger variety of benchmarks with different behaviours, we
include performance results on applications from the Cloud-
Suite [12] that exhibit at least 1 MPKI in the L1I. Workloads
run until the end after a short 20M-instruction warm-up.

B. Evaluated prefetchers

We evaluate in detail several state-of-the-art prefetching
strategies:

• Next-line [8]: A pure next-line prefetcher that always
prefetches the next cache line given the current access. It
adds no area overhead.

• SN4L [6] is a memory-efficient proposal that implements
a 16K-bit vector, where the next four cache lines of the
current access are prefetched if the corresponding bit is
set, that is, if prefetching that cache line is expected to
be useful. It requires only 2.06KB of storage.

• MANA [5] is a refinement of SN4L-Dir-BTB [6] that uses
an 8-bit vector for consecutive prefetchers (previously
proposed by PIF [14]). It offers a good performance-area
trade-off and it is representative of state-of-the-art BTB-
directed instruction prefetchers. We evaluate the two low-
cost configurations described by Ansari et al. [5]: A 2K-
entry MANA table (9KB) and a 4K-entry MANA table
(17.25KB). We also show geometric IPC for an 8K-entry
MANA table that requires 74.18KB.

• RDIP [29], [34] is a RAS-directed instruction prefetcher.
It records the return address stack and its context as signa-
tures which are then consulted upon each call and return



operations to trigger prefetching. We evaluate a 4K-entry
miss table with 3 trigger prefetchers for discontinuities
and an 8-bit vector for consecutive cache lines. The total
storage is 63KB.

We also evaluate the three first ranked proposals in IPC-1:
• D-JOLT [35] is a refinement of RDIP. First, it imple-

ments more accurate context-based signatures. Second, it
uses a dual look-ahead distance mechanism to generate
prefetches. We evaluate an 8KB entry miss table, which
gives a total storage of 125KB.

• FNL-MMA [44] combines a Footprint Next Line (FNL)
prefetcher and a Multiple Miss Ahead (MMA) prefetcher.
FNL is an enhanced next line prefetcher that estimates if
a cache line is worth to prefetch, while MMA selects the
look-ahead distance. We evaluate an 8K entry miss table
which gives a total storage of 97KB.

• EPI [41] a performance-oriented and hardly imple-
mentable –as the previous two version– of the Entangled
prefetcher. It models highly associative structures (e.g., a
+1000-entry history buffer, and a 34-way Entangled table
which gives +8K entries). Its total storage requirements
are 127.9KB.

In addition, we also evaluate three different configurations
of our cost-effective Entangling prefetcher:

• Entangling is our proposed Entangling prefetcher. We
model three different sizes for the Entangled table: 2K,
4K, and 8K entries. We perform a more aggressive
merging of basic blocks in the low-budget configurations,
considering merging distances of basic blocks recorded
in the history buffer of 15, 6 and 5 for the 2K, 4K, and
8K configurations, respectively. The area requirements as
computed in Section III-C3 are 20.87KB, 40.74KB, and
77.44KB, respectively.

Finally, we also show the effect on increasing the cache size,
instead of using the budget for the prefetching mechanism:

• L1I-64KB and L1I-96KB increase the associativity of the
L1I from 8 ways to 16 ways and 24 ways, respectively,
while keeping the L1I access latency to 4 cycles.

• An Ideal instruction prefetcher where the L1I cache
always returns a hit [34]. It issues all necessary prefetches
to the next level cache, thus modeling the pollution
entailed by the L1I cache.

C. Performance results

We evaluate our Entangling prefetcher and compare it with
state-of-the-art prefetchers, presenting a number of differ-
ent metrics: coverage (percentage of L1I misses covered by
prefetching), accuracy (percentage of useful prefetches with
respect to the total number of prefetches issued), the L1I
miss ratio, and instructions per cycle (IPC) as an indication
of performance. Since we evaluate for a large number of
proposals and applications (10000+ simulations), we first
offer the geometric mean of the instructions per cycle of
all the evaluated schemes and then focus on the prefetching
techniques that require less that 64KB of storage.

0 20 40 60 80 100 120 140

Prefetcher size (KB)

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
pe

ed
U

p 
(G

eo
m

et
ric

 m
ea

n)

L1I-64KB L1I-96KB
NextLine

SN4L

MANA

MANA
MANA

RDIP

FNL+MMA
D-JOLT

EPI

Entangling

Entangling
Entangling

Ideal

Fig. 6. IPC vs memory requirements.

1) Performance vs storage: Figure 6 summarizes the per-
formance of all the prefetchers (geometric mean of the IPC
obtained for the 959 CVP workloads, normalized with respect
to our baseline) along with their storage requirements. The
medium- and low-budget configurations are shown in blue,
the high-budget configurations presented in IPC-1 in red, our
Entangling prefetcher in green, the large L1I configurations
in white, and the Ideal prefetcher as a black line. The Entan-
gling prefetcher achieves 10.1% speedup with respect to the
baseline configuration when using 77.44KB (Entangling-8K),
while an Ideal L1I cache would offer 11.8% speedup. More
interestingly, with 40.74KB overhead, Entangling-4K offers a
good area-performance balance achieving 9.60% performance
improvements, on par with other area demanding proposals:
FNL+MMA 9.12% with 97KB overhead, D-JOLT 10.3% with
125KB, and EPI 10.4% with 127.9KB). For a low-budget
configuration of 20.87KB, Entangling-2K offers good perfor-
mance improvements of 7.50%. Entangling also outperforms
all low-budget configurations of MANA and furthermore, the
low-budget Entangling version outperforms the high-budget
version of MANA.

2) IPC: Figure 7 shows the IPC normalized to a configu-
ration without any L1I prefetcher across the CVP workloads.
The normalized IPCs have been individually ordered from
lower to higher for each configuration. Both the low- and
medium-budget configurations of Entangling outperforms the
other state of the art prefetchers. The medium-budget config-
uration of the Entangled prefetcher (4K) is very close to the
ideal for many workloads, and only for a few of them, an ideal
prefetcher gets significant improvements with respect to our
proposal. More importantly, the Entangling prefetcher never
gets performance degradation with respect to not using any
prefetcher, as it clearly happens with a NextLine prefetcher,
and other techniques.

3) L1I miss rate: Figure 8 shows the L1I miss ratio for
the CVP workloads, again individually ordered from lower
to higher for each configuration. The line labeled as no is the
baseline configuration without a dedicated L1I prefetcher. The



0 100 200 300 400 500 600 700 800 900

Workloads

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

N
or

m
al

iz
ed

 IP
C

NextLine
SN4L
MANA-2K
MANA-4K
Entangling-2K
Entangling-4K
RDIP
ideal

Fig. 7. IPC normalized to our baseline configuration.

0 100 200 300 400 500 600 700 800 900

Workloads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
is

s 
ra

te

NextLine
SN4L
MANA-2K
MANA-4K
Entangling-2K
Entangling-4K
RDIP
no

Fig. 8. Miss rate of the instruction prefetchers.

Entangling prefetcher significantly outperforms its competitors
across all benchmarks, reducing drastically the miss rate. In
the worst case, the Entangling prefetcher reduces the miss rate
to just 10% when using 2K entries and to 5% miss rate when
using 4K entries. The other evaluated prefetchers report a
worst case of 20% miss rate or more. This way, the Entangling
prefetcher approaches an ideal L1I cache.

4) L1I prefetcher coverage: Figure 9 shows the coverage
(ratio of misses that became hits) of all prefetchers across all
workloads, individually ordered from lower to higher. Mim-
icking the miss rate figure, the Entangling prefetcher shows a
much higher coverage than the state-of-the-art prefetchers. For
most workloads, Entagling-4K shows a coverage around 90%.
Entangling-2K offers a coverage higher than 68% for most
workloads. In contrast, the other prefetchers offer a coverage
below 50% for most workloads.

5) L1I prefetcher accuracy: Figure 10 shows the accuracy
(ratio of useful prefetches) across all workloads, individually
ordered from lower to higher. Entangling achieves highest

0 100 200 300 400 500 600 700 800 900

Workloads

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

C
ov

er
ag

e

NextLine
SN4L

MANA-2K
MANA-4K

Entangling-2K
Entangling-4K

RDIP

Fig. 9. Coverage of the instruction prefetchers.

0 100 200 300 400 500 600 700 800 900

Workloads

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
cc

ur
ac

y

NextLine
SN4L

MANA-2K
MANA-4K

Entangling-2K
Entangling-4K

RDIP

Fig. 10. Accuracy of the instruction prefetchers.

accuracy, being above 50% for most workloads, and reaching
90% accuracy for almost 10% of the workloads. RDIP is
below 50% accuracy for more than 90% of the workloads, and
MANA is below 50% for more than 80% of the workloads.
The high accuracy of Entangling indicates that it is the most
energy efficient prefetcher in terms of prefetches issued to the
higher cache levels (L2, LLC, Memory), as it generates less
useless traffic.

6) Energy consumption: Accuracy is a representative indi-
cator of the energy expenditure, as a 100%-accurate prefetcher
generates no extra traffic to the higher memory levels with
respect to no prefetching. A non-accurate L1I prefetcher would
pollute not only the L1I with accesses and cache lines, but also
the L2 and LLC caches with unnecessary requests. Table IV
shows the energy expenditure for the caches employed in
our system configuration. The Entangling prefetcher has the
highest accuracy among the studied prefetchers, thus reducing
the energy consumption at the L2 and LLC considerably
(38.6% on average compared to NextLine). When accounting



2K entries 4K entries 8K entries
1.00
1.02
1.04
1.06
1.08
1.10
1.12

N
or

m
. e

xe
c.

 ti
m

e BB BBEnt BBEntBB Ent BBEntBBMerge

Fig. 11. Breakdown of the contributions to performance.

also for the extra L1I accesses generated by the prefetches,
the Entangled prefetcher still reduces the overall energy con-
sumption of the memory hierarchy by 2.97%, 3.35%, and
3.39% for the 2K, 4K, and 8K configurations, respectively.
In contrast, the most energy-efficient technique, RDIP, adds
very few prefetches, and therefore few new accesses, however,
many of these prefetches are late.

D. Analyzing the Entangling Prefetcher

We first detail the average performance obtained by isolating
the proposed techniques for the three analyzed configurations
of the Entangling prefetcher (Figure 11). BB prefetches the
whole basic block on the first access to its head (source).
BBEnt extends BB and prefetches each dst-entangled cache
line, while BBEntBB extends BB by prefetching each dst-
entangled basic block. Ent does not track basic blocks and en-
tangles all cache lines missing in the cache. Finally, BBEntBB-
Merge is our proposal, which extends BBEntBB with the
mechanism for merging basic blocks. The key improvements
come from entangling pairs of cache lines in a timely manner.
Prefetching the dst-entangled basic block (BBEntBB) con-
tributes to some extent to the improvements as less entangled
pairs are required to be tracked with respect to Ent. Merging
is more relevant for the smaller sizes of the prefetcher, since
compression is essential for fitting in the reduced storage
budget.

We also analyze the compression ratio of dst-entangled
cache lines by showing in Figure 12 in which format are
they represented. We present for each category of workloads
provided in CVP (crypto, int, fp, and srv) the arithmetic mean
and standard deviation of their workloads. We can observe that
almost all destinations can be highly compressed in crypto, fp
and int workloads. However, in srv workloads there is a non-
negligible fraction of destination that cannot be compressed.
Still the compression rate is quite high in srv workloads,
and the majority of the destinations are stored using just 18
bits. The fraction of destinations compressed using just 8 bits
ranges from ≈25% in crypto and int to ≈10% in srv. Overall,
the average number of destinations found on a hit in the
Entangled table ranges from 2.5 for crypto workloads to 2.2
for srv workloads (Figure 13).

Finally, we compute the number of prefetches issued on
each hit in the Entangled table. Figure 14 and Figure 15
show the average number of cache lines of the currently
accessed basic block (omitting the first cache line) and the

crypto fp int srv
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
or

m
at

s 
ra

tio

58-29
28-19
18-14

13-11
10-9
8-1

1. Entangling-2K
2. Entangling-4K
3. Entangling-8K

Fig. 12. Compressed format for each destination inserted in the Entangled
table.

crypto fp int srv
0.0
0.5
1.0
1.5
2.0
2.5
3.0

A
ve

ra
ge

 d
es

tin
at

io
ns

Entangling-2K Entangling-4K Entangling-8K

Fig. 13. Average number of entangled destinations.

crypto fp int srv
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

A
ve

ra
ge

 b
as

ic
 b

lo
ck

 s
iz

e Entangling-2K Entangling-4K Entangling-8K

Fig. 14. Average basic block size for accesses hitting in the Entangled table.

number of cache lines for the basic blocks of the entangled
destinations (omitting the first cache line), respectively. Then,
we can compute the average number of triggered prefetches
with the following formula: bbsize + destinations * (1 +
bbsize destination). This results in a number of prefetches
ranging form ≈9 in srv workloads to ≈17 in fp workloads.
Although this number is not dramatically high (our Entan-
gling prefetcher shows the best accuracy among the evaluated
prefetchers – Figure 10), our prefetcher would benefit from a
larger prefetch queue (32 entries employed in our evaluation),
as less prefetches would be discarded.

E. Working with physical addresses

We evaluated all the state-of-the-art prefetchers trained for
physical addresses. Our results on the CVP workloads show
that the Entangling prefetcher outperforms its competitors,
achieving an IPC improvement (geometric mean) over our no-
prefetch baseline of 5.62%, 8.10%, and 8.87% when using 2K,



TABLE IV
AVERAGE ENERGY CONSUMED AT EACH CACHE LEVEL (IN NJ) AND GEOMETRIC MEAN OF NORMALIZED ENERGY

no NextLine SN4L MANA-2K MANA-4K Entangling-2K Entangling-4K RDIP

Average L1I energy (nJ) 129222 144473 155196 162745 166312 185197 191868 144604
Average L1D energy (nJ) 329322 328837 327665 326637 325902 324513 323331 326236
Average L2C energy (nJ) 138535 125477 115300 107774 99581 78754 73942 76449
Average LLC energy (nJ) 78039 92826 78105 69385 65995 63543 60117 62095

Geomean (norm.) 1.0250 1.0043 0.9914 0.9786 0.9703 0.9665 0.9082

crypto fp int srv
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

A
ve

ra
ge

 b
as

ic
 b

lo
ck

 s
iz

e Entangling-2K Entangling-4K Entangling-8K

Fig. 15. Average basic block size of entangled destinations.

cassandra cloud9 nutch streaming
1.0

1.02
1.04
1.06
1.08
1.1

1.12

N
or

m
al

iz
ed

 IP
C

NextLine
SN4L
MANA-2K
MANA-4K

Entangling-2K
Entangling-4K
ideal

Fig. 16. Normalized IPC for CloudSuite applications.

4K and 8K entries in the Entangled table, respectively. The
trends are similar to the ones observed for virtual addresses.

F. Other applications: the CloudSuite

Finally, we evaluate the prefetchers on a new class of bench-
marks specifically designed to represent Cloud applications,
with behaviors that may differ from the ones observed in the
previous set of workloads. Figure 16 shows the performance
improvements of our Entangled prefetcher for the applications
of CloudSuite [12] that show more than 1 MPKI in L1I. Again,
we can observe that the Entangling prefetcher outperforms the
other state-of-the-art prefetchers we have evaluated.

V. RELATED WORK

Driven by their impact on performance, prefetchers have
evolved from simple next line prefetchers [8], [45], to more
complex techniques, as described below.

A common prefetching technique is the look-ahead, which
follows the execution path n steps in advance and prefetches
the corresponding block (instruction, cache line, etc.). One
of the most recent and competitive look-ahead I-prefetchers
is the FNL+MMA [44], which combines a Footprint Next
Line (FNL) prefetcher and a Multiple Miss Ahead (MMA)
prefetcher. FNL is an enhanced next line prefetcher that

estimates if a block is worth to prefetch, while MMA identifies
a “good-enough” look-ahead distance (n) and combines it with
a technique to predict the nth next L1I miss. Yet, as we have
shown, a fixed look-ahead distance impacts the prefetcher’s
accuracy and efficiency. Techniques to adjust the look-ahead
distance dynamically using heuristics have also been proposed
[28], [47], however, the look-ahead still remains the same
(fixed) for all cache misses during certain execution windows.

By entangling cache misses, the Entangling prefetcher goes
along the lines of correlation-based prefetchers [13], [15],
[19], [23], [29], [35]. Markov-based prefetchers [23] use
probabilities to predict and prefetch the next cache miss with a
fixed look-ahead distance and select to prefetch all or some of
the following predicted misses. TIFS [15] records the history
of L1I misses and predicts the next miss and the number of
cache lines to be cached, thus being more accurate and timely
than simple, next-line prefetchers. The Proactive Instruction
Fetch (PIF) prefetcher [13] improves performance by capturing
the cache lines accessed by the committed instructions and in-
structions from handlers for OS interrupts. PIF operates on the
correct-path, retire-order instruction stream, and records the
exact instruction fetch sequence which is then used to compute
spatial locality. This technique results in a 99.5% I-hit rate
on the evaluated benchmarks, but incurs substantial storage
overhead (beyond the limits considered in our evaluation). To
capture the context of a miss caused by a function call, Return-
address stack-directed instruction prefetching (RDIP) [29]
records the return address stack and its context as signatures
which are then consulted upon each call and return operations
to trigger prefetching. RDIP approaches the performance of
PIF (within 2%) with significantly lower storage demands,
while Entangling significantly outperforms RDIP (8%). A
refined solution, D-JOLT [35] builds more accurate context-
based signatures and further improves performance over its
predecessor (RDIP), but it entails a large memory overhead to
reach the performance reported by our prefetcher.

While Entangling and other correlating prefetchers (e.g.
Markov, look-ahead based prefetchers such TIFS, PIF, etc)
share similarities (events are correlated), the main difference
consists in the way these correlations are built: based on
distance (number of branches, accesses, misses, etc) vs. cor-
relations (entanglings) based on timeliness (latency expressed
in cycles). Previous correlation-based prefetchers use a fixed
look-ahead distance, which we show in our motivation figures
1 and 2 that it cannot timely serve all misses.



For increasing accuracy, prefetchers that interact with the
branch prediction mechanism have been proposed [10], [26],
[30], [31], [36], [39], [46], [48], [50]. For instance, Kumar
et al [30] leverage the branch target buffer (BTB) and
simultaneously prefill the BTB with the branch instructions
of each decoded block of instructions, in order to avoid BTB
misses. This is achieved by leveraging the information of
the I-prefetcher without adding any BTB storage overhead.
Generally, instructions prefetchers that depend on the BTB (i.e.
BTB-directed-prefetches) are considerably hindered by BTB
misses and require significant changes in the processor [31].
Even attempts to prefill the BTB [26], [30] suffer of high
BTB miss rates for applications with very large instruction
footprints (e.g. server workloads, the same that usually incur
L1I misses). Shotgun [30] dedicates a significant fraction of
the BTB to unconditional (U-)branches and a smaller fraction
to conditional (C-)branches, plus a third fraction for return
instructions. While the U-branches are handled well thanks to
the large dedicated storage, Shotgun remains ineffective for
workloads with high C-branches miss rates, due to its mecha-
nism to reactively pre-fill such branches. More recently, Ansari
et al [6] propose SN4L-Dis-BTB, a lightweight prefetcher that
reduces storage demands. SN4L-Dis-BTB classifies the misses
in three categories and provide tailored solutions for each:
(1) an enhanced N4L prefetcher to detect worthy-to-prefetch
blocks dedicated to cover sequential misses, (2) a discontinuity
prefetcher – based on the observation that discontinuities
are introduced by branches – designed with extra care for
storage and aimed to cover the remaining misses, and finally
(3) a Confluence [26]-like solution that pre-fills the BTB to
avoid BTB misses. While this proposal is competitive for
very low storage budgets, it cannot fully leverage a larger
storage to offer high-performance. MANA [5], a follow-up
version designed for higher budgets, brings some performance
improvements, but is still less competitive than our Entangling
prefetcher. Overall, the BTB-guided prefetchers are highly
sensitive to BTB misses and branch prediction accuracy. While
our Entangling prefetcher operates on basic block heads –
which can be seen as branch targets, Entangling is not hindered
by BTB misses, being based on cache events correlations,
rather than following the branches to issue the prefetch. By
learning and building correlations on all (or most frequent)
execution paths, Entangling is not sensitive to the accuracy
of the branch predictor and has its own mechanisms to deal
with changes in execution paths (multiple sources for the same
destination, confidence counters, etc). This approach based on
correlating cache misses instead of focusing on the prediction
of next branch target addresses yields Entangling more robust
and less sensitive to predictions, compared to other state-of-
the-art techniques.

Other designs used stream buffers [24] as additional hard-
ware structures to prefetch sequences of successive cache lines
starting at the miss target, akin to the basic block heads used
by our prefetcher.

Rather than primarily targeting coverage, then accuracy,
then latency, Entangling makes a bold step and targets time-

liness first, using a novel approach that proves to be highly
effective, thus achieving higher accuracy than its predecessors.

VI. CONCLUSIONS

The Entangling prefetcher for instructions offers an al-
ternative prefetching direction driven by timeliness. Entan-
gling estimates the latency of the cache missing operations
and entangles them with the instructions that should trigger
the prefetch to ensure the timely arrival of the requested
instructions. It pairs sequences of mostly sequential cache
lines: the source sequence gets associated with one or more
destination sequences. On a cache access to the first cache
line in the source sequence, Entangling generates prefetches
for all lines in the source sequence as well as for all lines in
the associated destination sequences (if confident). The pairing
between source and destinations is done by measuring the
cache miss latency of the first line in a sequence, then using
an auxiliary structure to locate an earlier sequence that started
more than latency cycles ahead of the current sequence, and
adding the current sequence to the destination sequence list.

By considering the sequences of cache lines granularity,
Entangling subsumes the next line prefetching. It also uses
a novel compression scheme, depending on the distance re-
lationship between the source and destinations, and a clever
encoding and table organization, which keeps storage at bay.
The design does not require access to the branch prediction
structures, does not add contention to the critical structures,
and does not entail large associative searches. Thus, the
implementation of the Entangling prefetcher is highly efficient
without being intrusive in the processor design. It is robust
and effective, agnostic to the application characteristics and
achieves a 97.6% L1I hit rate, approaching a perfect L1I,
clearly outperforming state-of-the-art proposals and offering
a good area-performance trade-off.

ACKNOWLEDGMENT

We would like to thank Ali Ansari, Gino Chacon, Nathan
Gober, Daniel Jiménez, Tomoki Nakamura, Seth Pugsley,
and André Seznec for their contributions to the ChampSim
ecosystem, help in evaluating related work, and discussions.

REFERENCES

[1] “ChampSim simulator,” http://github.com/ChampSim/ChampSim, May
2020.

[2] “ChampSim simulator, develop branch,”
https://github.com/ChampSim/ChampSim/tree/develop, Nov. 2020.

[3] “The Second Championship Value Prediction,”
https://www.microarch.org/cvp1/, Nov. 2020.

[4] T. M. Aamodt, P. Chow, P. Hammarlund, H. Wang, and J. P. Shen,
“Hardware support for prescient instruction prefetch,” in 11th Int’l Symp.
on High-Performance Computer Architecture (HPCA), Feb. 2004, pp.
84–95.

[5] A. Ansari, F. Golshan, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Mana:
Microarchitecting an instruction prefetcher,” in The 1st Instruction
Prefetching Championship (IPC1), May 2020.

[6] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer
frontend bottleneck,” in 47th Int’l Symp. on Computer Architecture
(ISCA), May 2020, pp. 65–78.



[7] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. J. Moseley, and P. Ran-
ganathan, “Asmdb: Understanding and mitigating front-end stalls in
warehouse-scale computers,” in 46th Int’l Symp. on Computer Archi-
tecture (ISCA), Jun. 2019, pp. 462–473.

[8] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors, 1st ed. Cambridge University Press, 2009.

[9] P.-Y. Chang, E. Hao, and Y. N. Patt, “Target prediction for indirect
jumps,” in 24th Int’l Symp. on Computer Architecture (ISCA), Jun. 1997,
pp. 274–283.

[10] I.-C. K. Chen, C.-C. Lee, and T. N. Mudge, “Instruction prefetching
using branch prediction information,” in 1997 Int’l Conf. on Computer
Design (ICCD), Oct. 1997, pp. 593–601.

[11] B. Falsafi and T. F. Wenisch, A Primer on Hardware Prefetching, ser.
Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2014.

[12] M. Ferdman, A. Adileh, Y. O. Koberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in 17th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Mar. 2012,
pp. 37–48.

[13] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,”
in 44th Int’l Symp. on Microarchitecture (MICRO), Dec. 2011, pp. 152–
162.

[14] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo
directory: A scalable directory for many-core systems,” in 17th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Feb. 2011,
pp. 169–180.

[15] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in 41th Int’l Symp. on Microar-
chitecture (MICRO), Nov. 2008, pp. 1–10.

[16] N. Gober, G. Chacon, D. A. Jiménez, and P. Gratz, “Temporal ancestry
prefetcher,” in The 1st Instruction Prefetching Championship (IPC1),
May 2020.

[17] A. González, F. Latorre, and G. Magklis, Processor Microarchitecture:
An Implementation Perspective, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2011.

[18] B. Grayson, J. Rupley, G. D. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya,
“Evolution of the samsung exynos cpu microarchitecture,” in 47th Int’l
Symp. on Computer Architecture (ISCA), Jun. 2020, pp. 40–51.

[19] Z. Hu, M. Martonosi, and S. Kaxiras, “Tcp: Tag correlating prefetchers,”
in 9th Int’l Symp. on High-Performance Computer Architecture (HPCA),
Feb. 2003, pp. 317–326.

[20] Intel, “Intel® 64 and ia-32 architectures optimization reference manual,”
www.intel.com, Jun. 2016.

[21] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Rebasing instruction
prefetching: An industry perspective,” IEEE Computer Architecture
Letters, Oct. 2020.

[22] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer, and
S. Kaxiras, “Fix the code. don’t tweak the hardware: A new compiler
approach to voltage-frequency scaling,” in 12th Int’l Symp. on Code
Generation and Optimization (CGO), Feb. 2014, pp. 262–272.

[23] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in
24th Int’l Symp. on Computer Architecture (ISCA), Jun. 1997, pp. 252–
263.

[24] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in 17th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 364–373.

[25] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in 42nd
Int’l Symp. on Computer Architecture (ISCA), Jun. 2015, p. 158169.

[26] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: Unified instruction
supply for scale-out servers,” in 48th Int’l Symp. on Microarchitecture
(MICRO), Dec. 2015, pp. 166–177.

[27] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,
“I-spy: Context-driven conditional instruction prefetching with coalesc-
ing,” in 53rd Int’l Symp. on Microarchitecture (MICRO), Oct. 2020, pp.
146–159.

[28] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 49th Int’l
Symp. on Microarchitecture (MICRO), Oct. 2016, pp. 60:1–60:12.

[29] A. Kolli, A. G. Saidi, and T. F. Wenisch, “Rdip: Return-address-stack di-
rected instruction prefetching,” in 46th Int’l Symp. on Microarchitecture
(MICRO), Dec. 2013, pp. 260–271.

[30] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end
bottleneck with shotgun,” in 23rd Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Mar. 2018,
pp. 30–42.

[31] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A
metadata-free architecture for control flow delivery,” in 23rd Int’l Symp.
on High-Performance Computer Architecture (HPCA), Feb. 2017, pp.
493–504.

[32] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in 2011 Int’l Conf. on Computer-Aided
Design (ICCAD), Nov. 2011, pp. 694–701.

[33] P. Michaud, “Best-offset hardware prefetching,” in 22nd Int’l Symp. on
High-Performance Computer Architecture (HPCA), Mar. 2016, pp. 469–
480.

[34] T. Nakamura, “ChampSim,” https://github.com/tomokinex/ChampSim,
Nov. 2020.

[35] T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya,
“D-jolt: Distant jolt prefetcher,” in The 1st Instruction Prefetching
Championship (IPC1), May 2020.

[36] J. Pierce and T. N. Mudge, “Wrong-path instruction prefetching,” in 29th
Int’l Symp. on Microarchitecture (MICRO), Dec. 1996, pp. 165–175.

[37] A. Ramirez, O. J. Santana, J. L. Larriba-Pey, and M. Valero, “Fetching
instruction streams,” in 35th Int’l Symp. on Microarchitecture (MICRO),
Nov. 371–382, pp. 3–14.

[38] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in 32nd Int’l Symp. on Microarchitecture (MICRO), Dec.
1999, pp. 16–27.

[39] G. Reinman, B. Calder, and T. M. Austin, “Optimizations enabled by
a decoupled front-end architecture,” IEEE Transactions on Computers
(TC), vol. 50, no. 4, pp. 338–355, Apr. 2001.

[40] A. Ros, “Berti: A per-page best-request-time delta prefetcher,” in The
3rd Data Prefetching Championship, Jun. 2019.

[41] A. Ros and A. Jimborean, “The entangling instruction prefetcher,” in
The 1st Instruction Prefetching Championship (IPC1), May 2020.

[42] ——, “The entangling instruction prefetcher,” IEEE Computer Architec-
ture Letters, vol. 19, no. 2, pp. 84–87, Jul. 2020.

[43] O. J. Santana, A. Ramirez, and M. Valero, “Enlarging instruction
streams,” IEEE Transactions on Computers (TC), vol. 56, no. 10, pp.
1342–1357, Oct. 2007.

[44] A. Seznec, “The fnl+mma instruction cache prefetcher,” in The 1st
Instruction Prefetching Championship (IPC1), May 2020.

[45] A. Smith, “Sequential program prefetching in memory hierarchies,”
IEEE Computer, vol. 11, no. 12, pp. 7–21, Dec. 1978.

[46] L. Spracklen, Y. Chou, and S. G. Abraham, “Effective instruction
prefetching in chip multiprocessors for modern commercial applica-
tions,” in 11th Int’l Symp. on High-Performance Computer Architecture
(HPCA), Feb. 2005, pp. 225–236.

[47] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in 13th Int’l Symp. on High-Performance Com-
puter Architecture (HPCA), Feb. 2007, pp. 63–74.

[48] V. Srinivasan, E. S. Davidson, G. S. Tyson, M. J. Charney, and T. R.
Puzak, “Branch history guided instruction prefetching,” in 7th Int’l
Symp. on High-Performance Computer Architecture (HPCA), Jan. 2001,
pp. 291–300.

[49] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors:
Improving both performance and fault tolerance,” in 9th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Nov. 2000, pp. 257–268.

[50] A. V. Veidenbaum, “Instruction cache prefetching using multilevel
branch prediction,” in 1997 High Performance Computing, Int’l Symp.
(ISHPC), Nov. 1997, pp. 51–70.

[51] Y. Zhang, S. Haga, and R. Barua, “Execution history guided instruction
prefetching,” in 16th Int’l Conf. on Supercomputing (ICS), Jun. 2002,
pp. 199–208.

[52] C. B. Zilles and G. S. Sohi, “Execution-based prediction using specula-
tive slices,” in 28th Int’l Symp. on Computer Architecture (ISCA), Jun.
2001, pp. 2–13.


