
Complexity-Effective Multicore Coherence

Alberto Ros
Department of Computer Engineering

University of Murcia, Spain
aros@ditec.um.es

Stefanos Kaxiras
Department of Information Technology

Uppsala University, Sweden
stefanos.kaxiras@it.uu.se

ABSTRACT
Much of the complexity and overhead (directory, state bits,
invalidations) of a typical directory coherence implementa-
tion stems from the effort to make it “invisible” even to the
strongest memory consistency model. In this paper, we show
that a much simpler, directory-less/broadcast-less, multi-
core coherence can outperform a directory protocol but with-
out its complexity and overhead. Motivated by recent ef-
forts to simplify coherence, we propose a hardware approach
that does not require any application guidance. The corner-
stone of our approach is a dynamic, application-transparent,
write-policy (write-back for private data, write-through for
shared data), simplifying the protocol to just two stable
states. Self-invalidation of the shared data at synchroniza-
tion points allows us to remove the directory (and invalida-
tions) completely, with just a data-race-free guarantee from
software. This leads to our main result: a virtually cost-
less coherence that outperforms a MESI directory protocol
(by 4.8%) while at the same time reducing shared cache
and network energy consumption (by 14.2%) for 15 parallel
benchmarks, on 16 cores.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Parallel processors; B.3.2
[Memory Structures]: Design Styles—Cache memories

General Terms
Design, Experimentation, Performance

Keywords
Multicore, simple cache coherence, directory-less protocol,
dynamic write policy, self-invalidation, multiple writers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

1. INTRODUCTION
“For any given memory location, at any given moment in

time, there is either a single core that may write it (and that
may also read it) or some number of cores that may read it.
...” [31]

Among several definitions of Cache Coherence (CC), Sorin,
Hill, and Wood propose and cite the above for its insight.
To satisfy such a definition, coherence protocols react imme-
diately to writes, and invalidate all cached read copies. This
is a source of significant complexity. It requires snooping
or a directory to constantly track cached copies and send
invalidations (or broadcasts). It necessitates additional pro-
tocol states for performance (e.g., Exclusive, Owned), which
causes an explosion in the number of transient states re-
quired to cover every possible race that may arise. For ex-
ample, the GEMS [24] implementation of the MESI direc-
tory protocol –a direct descendant of the SUNfire coherence
protocol– requires no less than 30 states.

Complexity translates into cost. Storage is needed for
cache-line state, the directory (or dual-ported/duplicate tags
for snooping), and the logic required by complex cache and
directory controllers. Significant effort has been expended
to reduce these costs, especially the storage cost [2, 9, 10,
27], but also verification cost [11, 32]. In terms of perfor-
mance and power, complex protocols are characterized by a
large number of broadcasts and snoops. Here too, signifi-
cant effort has been expended to reduce or filter coherence
traffic [19, 25, 34] with the intent of making complex pro-
tocols more power- or performance-efficient. Verification of
such protocols is difficult and in many cases incomplete [1].

We take an alternate approach that eliminates the need
for directories, invalidations, broadcasts and snoops. Indeed,
this approach eliminates the need for almost all coherence
state (besides the rudimentary valid/invalid and clean/dirty
states). Our approach exploits a typical multicore cache
hierarchy organization with private L1(/L2) caches and a
shared Last-Level-Cache (LLC). Our motivation is to sim-
plify coherence and practically eliminate the hardware cost
(storage and logic), while at the same time achieving im-
provements in both performance and energy consumption.

Our proposal targets multicore/manycore1 architectures
where the relative cost of coherence is significant compared
to the complexity of the cores. This includes many accel-
erators based on simple cores (e.g., Tilera [6]), standalone
GPUs, but also cache-coherent shared virtual memory GPUs
coupled to general purpose cores. We do not envision our

1In the interest of brevity, we will use the term multicore to
describe both.



Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e

rc
e
n

ta
g
e

 o
f 

w
ri
te

 m
is

s
e

s
Private Shared

Figure 1: Percentage of write misses in a write-through pro-
tocol for both private and shared data

proposal for multicores based on few fat complex cores, where
the relative cost of implementing a snooping or directory
MESI protocol is not an issue, and such protocols are rou-
tinely implemented; nor do we explore workloads where per-
formance is dominated by off-chip memory accesses render-
ing the on-chip coherence effects negligible (e.g., commercial
workloads).

In addition, the focus of our work is the multicore cache
hierarchy. Thus, the scope of this paper does not extend
to inter-chip implementations which we discuss only briefly
in Section 6.1. The well-known and well-understood coher-
ence schemes employed widely today have been developed
for multi-chip SMPs or distributed shared memory machines
where the trade-offs are markedly different from a multicore
cache hierarchy.

Contributions. Our proposal is a simplification of mul-
ticore coherence to the bare necessities, but without sacrific-
ing performance or power compared to more sophisticated
versions. We achieve this in two steps:

1. We propose a dynamic write policy, a very simple
albeit novel idea, that simplifies the protocol to just
two cache states (Valid/Invalid), eliminates the need
to track writers at the (LLC) directory, and eliminates
read- indirection through the directory. Significant
complexity in current protocols comes from strategies
for efficient execution of sequential applications (e.g.,
the E state in MESI) or optimizations to avoid mem-
ory (e.g., the O state in MOESI) largely ignoring that
in multicores there is an LLC between the cores and
memory. A simple Write-Through policy to the LLC
would obviate almost all coherence states (even the
M state) but it is not acceptable as it sacrifices per-
formance. The observation, however, that drives our
approach is that most write misses (around 90%) in
a write-through protocol actually come from private
blocks, as Figure 1 shows. We select between Write-
Back and Write-Through to the LLC depending on
whether data are private or shared. The distinction
between private and shared data is determined dynam-
ically at a page granularity utilizing the page table and
the TLBs [12, 15] (Section 3.1).

2. We selectively flush shared data from the L1 caches
on synchronization points. Our approach is a general-
ization of read-only tear-off copies [19, 21] to all shared
data (including writable copies). This step eliminates
the need to track readers for invalidation, therefore ob-
viating the need for a directory/broadcast or snoops.
Write-throughs are performed by transferring only what
is modified (diffs) in a cache-line, allowing multiple

simultaneous writers per cache line (as long as their
writes constitute false sharing on separate words in a
cache line and not a true data race) (Section 3.2).

While write-through protocols and self-invalidation have
been proposed separately in the past, we combine them and,
for the first time, make them practical by applying them
dynamically, based on a run-time division of data to shared
and private at a page granularity. This leads to the main
novel result we report in this paper: a minimal, very sim-
ple, virtually costless coherence protocol that does not re-
quire any application involvement or guidance. While our
work bears some similarity to the work of Choi et al. we
pursue an application-transparent approach, as opposed to
their application-driven approach [11], we arrive at a truly
directory-less coherence protocol while they still implement
a “registry” in the LLC, and we provide support for synchro-
nization without a directory or invalidations that is lacking
in prior work.

Another advantage of our approach is that it is interconnect-
agnostic, meaning that our coherence protocol is exactly
the same whether implemented over a bus, a crossbar, or
a packet-based, point-to-point, NoC. This leads to seamless
scaling from low-end to high-end parts or free intermixing of
buses and NoCs on the same chip, e.g., in an heterogeneous
multicore/manycore chip. In the limited space of this paper
we cannot evaluate all the network options, so we limit our
discussion to the most general and challenging case of an
unordered, packet-based NoC.

There are two implications of our approach. First, the
protocol resulting from the second step cannot support Se-
quential Consistency (SC) for data races. This is because
without a directory or broadcasts, a core writing a memory
location cannot invalidate any other cores that may be read-
ing this location. This violates the definition of coherence
but it is actually an acceptable behavior for a weak consis-
tency memory model [31] (Section 3.4). Thus, our protocol
is incoherent for data races but satisfies the definition of co-
herence for the important class of Data-Race-Free (DRF)
programs. Data races are the culprits of many problems in
parallel software and the benefits of data-race-free operation
are well argued by Choi et al. [11]. Thus, similarly to SC
for DRF [3], our approach provides Coherency for DRF.

The second implication is that, synchronization instruc-
tions (such as T&S or Compare&Swap) which inherently
rely on data races, require their own protocol for a cor-
rect implementation. We propose an efficient and resource-
friendly synchronization protocol that works without in-
validations (Section 3.3) and in many cases eliminates spin-
ning.

Results. Our approach leads to a very simple cache co-
herence protocol that requires no directory, no state bits
in the caches (other than the standard Valid/Invalid and
Dirty/Clean bits), no broadcasts/snoops, nor invalidations,
and outperforms a directory protocol by 4.8%, on average for
15 parallel benchmarks on a 16-core architecture with 32KB
L1 caches. It minimizes control message traffic by not re-
quiring invalidations or unblock messages, and it minimizes
data traffic by sending only cache-line diffs to the LLC from
multiple simultaneous writers. Diffs are correctly merged in
the cache-lines –in the absence of data-races– thereby solv-
ing the false-sharing problem. Our evaluation focus is on a
tiled manycore architecture, reflecting our conviction that
very simple coherence is especially appealing in this case.



Results show that reductions in traffic and LLC power con-
sumption can lead to energy saving of 14.2%, on average,
with respect to a directory protocol.

2. BACKGROUND

2.1 Write-Through Caches and Coherence
A write-through policy for L1 caches has the potential to

greatly simplify the coherence protocol [31]. Just two states
are needed in the L1 cache (Valid-Invalid) and there is no
need for a Dirty/Clean bit (so evictions do not need to write-
back). Further, the LLC always holds the correct data so it
can immediately respond to requests. This means that there
is no indirection for reads and that there is no need to track
the writers at the directory. Invalidation is still required,
however, and the readers need to be tracked. Alternatively,
with a Null Directory in the LLC and Dir0B protocol [4],
or in a bus-based multicore, broadcasts to all the caches are
used for invalidation. Unfortunately, because the number of
write-throughs far exceeds the number of write-backs, this
results in abysmal performance, and significantly increased
traffic and power, as we show in Section 5.

2.2 Private vs. Shared Data Classification
Recent work realizes the importance of classifying private

and shared data. Some work uses hardware mechanisms for
performing this task [16, 29], other rely on the operating
system [12, 15, 20], and other on the compiler [22]. The
advantage of hardware mechanisms is that they can work at
cache-line granularity but can be prohibitive in their storage
requirements. On the other hand, the techniques which em-
ploy the OS do not impose any extra requirements for dedi-
cated hardware, since they store the information along with
the page table entries working at a page granularity. This
means that if a single block in the page is shared (or even
if two different private blocks within the same page are ac-
cessed by different cores) the whole page must be considered
as shared, thus, leading to misclassified blocks. Finally, the
disadvantage of the compiled-assisted classification is that it
is difficult to know at compile time if a variable is going to
be shared or not.

On the other hand, different proposals use this classifi-
cation to reach different goals. Some of them to perform
an efficient mapping for non-uniform cache access (NUCA)
caches [15, 22]. Others to reduce the number of broadcast
required by a snooping protocol [20], or to reduce the size
of the directory cache in a directory-based protocol [13, 12].
Finally, similarly to us, Pugsley et al. [29] and Hossain et al.
[16] use the classification for choosing among different behav-
iors for the coherence protocol but both of these approaches
rely on directory or bus invalidation coherence. Our goal
is to simplify coherence. Thus, the most appropriate way
of classifying blocks is the one managed by the operating
system, due to its simplicity, effectiveness, and lack of ex-
tra hardware. It allows us to define two completely isolated
protocols for private and shared data that can be verified
independently.

2.3 Self-Invalidation
Dynamic self-invalidation and tear-off copies were first

proposed by Lebeck and Wood as a way to reduce invalida-
tions in cc-NUMA [21]. The basic idea is that cache blocks
can be teared off the directory (i.e., not registered there) as

long as they are discarded voluntarily before the next syn-
chronization point by the processor who created them. As
the authors note, this can only be supported in a weak con-
sistency memory model (for SC, self-invalidation needs to
be semantically equivalent to a cache replacement).

Lebeck and Wood proposed this as an optimization on top
of an existing cc-NUMA protocol. Furthermore, they made
an effort to restrict its use only to certain blocks through
a complex classification performed at the directory. Their
design choices reflect the trade-offs of a cc-NUMA architec-
ture: not applying self-invalidation indiscriminately is be-
cause misses to the directory are expensive.

Self-invalidation was recently used by Kaxiras and Kerami-
das in their “SARC Coherence” proposal [19]. They ob-
serve that with self-invalidation, writer prediction becomes
straightforward to implement. The underlying directory
protocol is always active to guarantee correctness. Despite
the advantage for writer prediction, their proposal increases
the complexity of the base directory protocol with another
optimization layer and leaves the directory untouched. Fi-
nally, Choi et al. use self-invalidation instructions, inserted
by the compiler after annotations in the source program,
in their application-driven approach [11]. We discuss this
further in Section 7.

3. PROTOCOLS
Our approach boils down to two successive steps: i) reduce

protocol complexity by making a write-through policy to the
LLC practical; ii) eliminate the directory from the LLC and
all invalidation (including broadcasts).

3.1 Step 1: Simplifying the Protocol
The centerpiece of our strategy for reducing the complex-

ity of coherence is to distinguish between private and shared
data references. For the coherence of the shared data, we
rely on the simplicity of a write-through policy. However,
the write-through policy does not have to be employed on
the private data, for which a write-back policy can be safely
used without any coherence support (apart from the one
already required for uniprocessors). In the L1 a Dynamic
Write-Policy distinguishes between private and shared data
guided by page level information supplied by the TLB. Pages
are divided into “Private” and “Shared” at the OS level, de-
pending on the observed accesses. Because the resulting
protocols have only two states (Valid/Invalid) and we differ-
entiate between private and shared data, we call the overall
protocol VIPS (Valid/Invalid – Private/Shared).

We will just dwell on single point: our proposal is mini-
mally intrusive in the design of the core and its local cache.
In fact, it leaves the L1 cache unmodified. We assume
that each L1 line has the common Valid/Invalid (V ) and
Clean/Dirty (D) bits and that TLB entries use two bits from
the reserved ones to indicate the Private/Shared (P/S bit)
status of the page and to lock the TLB entry (L bit) when
we are switching from write-back to write-through. The dy-
namic write policy is implemented outside the L1. The P/S
bit of the accessed data controls whether a write-through
will take place.

3.1.1 VIPS Protocol: Write-Back for Private Lines
The protocol transactions for private lines are simple, since

no effort is expended on maintaining coherence. Figure 2
shows the read (PrRd), write (PrWr), and eviction (WrB)



0L1

GetS

Data

PrRd

LLC
V

I
Data

V

V

0L1

PrWr PrWrPrWr

LLC
V

I

GetX

I

V

Data

0L1
V

Data

Ack

WrB

LLC
I V

I

Figure 2: Read (PrRd), write (PrWr), and write-back (WrB)
transactions for private lines

0L1
V

GetS

V

Unblock

Data

DataPrRd

LLC
V

I

.

0L1

PrWr

1L1

PrWrWr

LLC
V

I/V

Data
/Ack

V

V

WT−Unblock

Invalidation
Ack

V

I

V*

* Write miss in MSHR

Write permission

GetX
/Upgr

Figure 3: Read (PrRd) and write (PrWr) transactions for
shared lines

initiated transactions. For private request the LLC con-
troller does not block the corresponding lines, i.e., there are
no transient states. The Write-Back transaction requires
an acknowledgment for memory ordering purposes (so that
fence instructions can detect its completion) in the corner
case when a page changes designation from private to shared
after it has been written.

3.1.2 VIPS Protocol: Write-Through for Shared Lines
The transactions for shared lines follow a write-through

protocol (Figure 3). As in a MESI implementation, the
LLC line is blocked both for PrRd and PrWr transactions
and requires Unblock messages to unblock it. A PrRd trans-
action that misses in the L1 gets the line and set its state
to Valid (Figure 3, left side). PrWr transactions (Figure 3,
right side) send a GetX to the LLC controller that blocks
the line (and gets the data if needed). Copies in other cores
are invalidated (with the acknowledgments returning to the
writer). When all acknowledgements arrive, the write (Wr)
is performed. The write-through can be delayed arbitrarily
(we call this Delayed Write-Through) keeping the LLC line
blocked. While the L1 line is in state V and dirty there
is still an entry for that line in the MSHR structure and
the line can be written repeatedly. The write-through (WT-
Unblock) clears the L1 dirty bit, unblocks the line, and writes
the new data in the LLC. A PrWr on a clean and valid line
initiates a write-through anew.

3.1.3 Transitions Between Write-Back and
Write-Through

A page accessed by a single core starts as private in the
page table, so a write-back policy is applied for every re-
quested line within that page. When a second core accesses
the same page it notices that it is tagged as private by
another core. The first core needs to be interrupted and
its TLB entry updated so it can see the page, henceforth,
as shared. The write policy of the lines within this page
will change from write-back to write-through. Consequently,
those lines marked as dirty in the L1 cache for the core be-
ing interrupted need to be cleared by means of a write-back
transaction. While this is an expensive operation, it is rather
rare. The same technique for detecting private and shared
pages has been used in recent work and in the interest of

space, we will refer the reader to the excellent and detailed
descriptions published elsewhere [12, 15].

3.1.4 Delayed Write-Throughs
The obvious optimization to any Write-Through cache

is to reduce the amount of write-throughs by coalescing
as many writes as possible. In the transactions presented
above, the write-through can be delayed. In the meantime,
the line can be written multiple times by the same core.
This corresponds roughly to a MESI “Modified” state, but
is strictly transient (exists only from the GetX to the write-
through that unblocks the LLC line) and invisible to trans-
actions from other cores. During that time, the address of
the line is in one of the core’s MSHRs. We assume that the
MSHRs track only addresses and meta-information but do
not carry a copy of the data. One simple implementation of
the delayed write-through is to augment the MSHRs with a
timer that causes the actual write-through to happen a fixed
delay after the initial write. Since the delayed write-through
is transparent to other cores, this allows our protocol to have
the same states as a traditional simple write-through pro-
tocol, thus significantly reducing the number of race condi-
tions, and therefore, transient states with respect to a MESI
protocol.

3.2 Step 2: Eliminating the Directory
Our next goal is to eliminate the directory. We have al-

ready removed the need for tracking the writer in the di-
rectory with the private-shared classification and the write-
through policy. What is left is to get rid of the need to track
the readers of a memory location just to invalidate them
later on a write. Self-invalidation serves exactly this pur-
pose [21]: readers are allowed to make unregistered copies
of a memory location, as long as they promise to invali-
date these copies at the next synchronization point they
encounter. Our approach is similar but with a difference:
all shared data in the L1 caches whether read or written to
–not just data brought in as Read-Only, e.g., as in [21] and
[19]– are tear-off copies. A core encountering a synchroniza-
tion point (lock acquire/release, barriers, wait/signal syn-
chronization) flushes its shared data from the L1. Since we
flush only shared and not private data, we call this Selective
Flushing, (SF). Implementing selective flushing incurs very
little change to the cache design. Valid bits are guarded by
per-line Private/Shared (P/S) bits. The P/S bits are set
when a line is brought into the L1. Subsequently a “flush”
signal, resets all the valid bits guarded by P/S bits in state
Shared. The implementation of the flush is straightforward
when valid bits are implemented as clearable flip-flops out-
side the L1 arrays. As is pointed out in prior work [11, 19,
21], self-invalidation, and by extension selective flushing, im-
plies a weak consistency memory model and only guarantees
SC for Data-Race-Free (DRF) programs [3].

However, even with a DRF guarantee the lack of invalida-
tions can cause problems. Consider two concurrent readers,
each holding a valid copy of the same cache line. Assume
that the two readers decide to write two different words in
the cache line –false sharing– without any intervening syn-
chronization. If their write-throughs happen at the granu-
larity of a cache line, they can overwrite each other’s new
value, leading the system to an incoherent state. LLC block-
ing does not help in this case, since the two write transac-
tions can be spaced sufficiently apart so they do not overlap.



0L1

GetS

Data

PrRd

LLC
V

I
Data

V

V

PrWr PrWr

V

I

GetX

V

V

Data

V

Ack

Timeout

V

V

WT

Figure 4: VIPS-M Read (PrRd), write (PrWr), and Delayed
Write-through (WT at Timeout) transactions

One solution would be to demand DRF guarantees at the
cache-line level but that would place a heavy burden on soft-
ware. Our solution is to perform write-throughs at a word
granularity which has the additional benefit of reducing the
amount of data transferred to the LLC.

Write-throughs at a word granularity require per-word
dirty bits. This allows multiple concurrent writers on a cache
line to write-through to the LLC just the words they modify
but no other. Delayed write-throughs send their cache-line
diffs which are then merged in the LLC. The important real-
ization here is that immediately seeing the new values writ-
ten by other writers is not a requirement in a weak consis-
tency memory model –already implied by self-invalidation.
We call this protocol Multiple-Writer-Merge and denote it
with a simple M suffix: VIPS-M.

An important implication of word granularity for the write-
throughs is that it makes blocking of the lines at the LLC
controller unnecessary. But this in turn, allows us to equate
the protocol for shared, data-race-free data to the protocol
for private data. At word granularity, we simplify the write
transaction to just a write-through (WT) followed by an ac-
knowledgment (Figure 4, right side). If the line is already
valid in the L1 (for example, as a result of a read –Figure 4,
left side) an upgrade request (Upgr) is no longer needed,
while from an invalid state, a GetX gets the data but does
not block the LLC line (Figure 4, middle) which remains
valid. Thus, shared-data write transactions become simi-
lar to private-data write transactions. Practically all data,
whether shared (data-race-free) or private, are handled with-
out any state in the LLC. The main difference is in when
dirty data are put back in the LLC. Private data follow a
write-back on eviction policy, while shared, data-race-free
data follow a delayed (up to a synchronization point or an
MSHR replacement) write-through policy. Synchronization
data, however, still require a blocking protocol, described
below in Section 3.3.

The overhead of the M version is that we need to track
exactly what has been modified in each dirty line so we can
selectively write back only the modified words to the LLC.
One would assume that this means per-word dirty bits for
every line in the L1. But per-word dirty bits are needed
only for delayed write-throughs and are attached only to
the MSHRs. No additional support is needed in the L1 or
the LLC –other than being able to update individual words.

3.3 Synchronization Without Invalidation
Synchronization relies on data races. Instructions such

as Test&Set or Compare&Swap, race to read-modify-write
atomically a memory location if a condition is met (i.e.,
the “Test” or “Compare” parts). Otherwise, a copy of the
memory location allows a core to spin locally in its L1 until
the condition is changed by another core. In our approach,
because we have no invalidations, a core cannot “signal” a
change in the condition to the other cores that might be

0L1

1L1

Small critical 

section

Small critical 

section

LLC

I/V

WT−Unblock(0)

GetX

RMW

GetX

RMW

Rd(0)Wr(1)

I/V

I
Wr(0)

Rd(0)Wr(1)

Write permission

* Write miss in MSHR

WT−Unblock(0)

I
Wr(0)

V(0)

V*

V*

Data(0)

Data(0)
V(0)

Figure 5: Atomic RMW transactions for shared lines

spinning, endangering forward progress. Therefore, atomic
instructions always re-read the LLC copy.

The protocol is shown in Figure 5 for a simple atomic
instruction such as Test&Set. Regardless of the existence of
an L1 copy, an atomic instruction invariably sends a GetX
to the LLC. If the line is unblocked, its data are returned
to the core, and if the test succeeds, the line is written with
a new value (indicating, for example, that a lock is held by
a core). Throughout the duration of the read-modify-write
the line is blocked by the LLC controller; it is only unblocked
by a final write-through. In the interim no other core can
complete any transaction on that line (as core 2 in Figure 5).
Their requests enter a finite queue (bounded by the number
of cores) managed by the LLC controller.

At first sight, bypassing the L1 and re-reading the LLC
seems to make spinning very expensive. But this is not al-
ways so. By delaying the write-throughs of atomic instruc-
tions in the MSHRs, we are delaying the completion of a
successful lock acquire. This may seem counter-intuitive but
has a significant advantage. The more we delay the write-
through of a winning lock acquire the more we reduce the
LLC spinning of the other cores that are trying to get the
lock at the same time. Other cores are blocked at the LLC
controller and cannot even complete the Test part of the
Test&Set. In fact, it is quite possible, that for a short crit-
ical section, the write-back of the Test&Set can be delayed
in the MSHR for the whole duration of the critical section,
as shown in Figure 5. The lock release operation which is
a simple write on the same lock, coalesces with the delayed
write-through of the Test&Set. After the lock release, the
delayed write-through must complete immediately to pass
the lock to the next core in line. While we can eliminate
spinning for short critical sections, in longer ones the write-
through of the atomic instruction eventually completes and
spinning resumes by the other waiting cores. This spinning
in the LLC can increase traffic, so an exponential back off
in software is essential to lessen it.

3.4 Putting it All Together: Memory Consis-
tency and Coherence

Let us now return to the definition of coherence by Sorin,
Hill, and Wood, called the Single-Writer/Multiple-Reader
(SWMR)/Data-Value invariant. The definition (quoted from
[31]) has two parts:

• “For any given memory location, at any given moment
in time, there is either a single core that may write it
(and that may also read it) or some number of cores
that may read it.”

• “Data-Value Invariant: the value of a memory location
at the start of an epoch is the same as the value of
the memory location at the end of its last read–write
epoch.”



Table 1: SC litmus test

Core C1 Core C2 Comments
S1: x = NEW; S2: y = NEW; Initially x = 0, y = 0
L1: r1 = y; L2: r2 = x;

A coherence protocol that satisfies this definition is invis-
ible to the underlying memory consistency model [31]. In
other words, “correct” coherence cannot weaken a memory
model. We use this definition to reason about the behav-
ior of the two proposed protocols with respect to memory
models.

Step 1: VIPS protocol. The protocol in Step 1 adheres
to the SWMR definition without constraints. Even in the
face of data races and/or false sharing, it allows only one
writer at a time (because of the invalidation). Similarly to
MESI implementations [24], LLC blocking guarantees that
values are propagated correctly.2 It is therefore invisible to
the memory consistency model, and thus, can support even
the strictest model: SC.

Step 2: VIPS-M protocol. The lack of directory and
invalidations in Step 2 leads to a protocol that is incoherent
for data races, but adheres to the SWMR definition for data-
race-free operation.

It is easy to see how Step 2 violates the SWMR invariant
for data races. Consider the following classic example for SC
in Table 1. In an SC implementation r1 and r2 cannot be
both 0, after the execution of the code shown for cores C1
and C2. A coherence protocol adhering to the SWMR/Data-
Value invariant cannot change this. However, Step 2 does!
Assume that y is cached in C1 before the execution of the C2
code. Since C2 cannot invalidate the cached copy of y, L1
will load 0 into r1. Similarly for x in C2, resulting in both
r1 and r2 having the value 0, even after both writes have
been performed. The single-writer invariant is violated.

However, for DRF operation, VIPS-M does satisfy the co-
herency definition: i) false sharing does not violate the sin-
gle writer invariant because write-throughs happen at word
granularity; thus there is only one writer per word at a time
(otherwise there would be a data race); ii) the data value in-
variant holds because writes and reads are separated by syn-
chronization, whereupon all shared lines are flushed. Note
that on synchronization all outstanding write-throughs are
sent immediately to the LLC and fence instructions must
wait for the acknowledgments of the write-throughs for DRF
lines to guarantee proper memory ordering.

Thus, VIPS-M is invisible to SC for DRF. Similarly to the
reasoning of SC for DRF [3], we implement Coherence for
DRF. DRF satisfies by itself the single writer multiple reader
invariant. All we have to do is to guarantee the Data Value
invariant and this is achieved writing-through the correct
data, and flushing the L1 at synchronization. This is why
in VIPS-M we can equate the protocol for shared DRF data
to the protocol for private data.

3.5 Optimizations
So far we have been in the process of de-evolving coher-

ence: we removed most coherence state and the directory. It
is therefore important that any optimization we introduce

2An old value cannot be accessed at the LLC if a write-
through is in progress. This guarantees, for example, that
only the new value of a write-through that started before a
synchronization will be visible after the synchronization.

is neutral to complexity and cost. We consider only very
simple optimizations that adhere to this principle.

3.5.1 Classification Optimizations
Data classification is not the focus of this paper. We em-

ploy a very simple classification scheme that, nevertheless,
allows our protocols to outperform more complex protocols.
However, some classification optimizations are straightfor-
ward in our case.

Self-invalidation can cause needless misses on shared data
that have not been modified. Complex techniques to ex-
clude such data have been proposed [21]. In our approach,
we simply tag pages as Read-Only (RO) if they are not writ-
ten, and Read-Write (RW) otherwise. A page stars as RO
but transitions to RW on the first write (there is no reverse
transition). Because the page is shared, all the cores that
have a TLB entry must be interrupted and notified of this
change. Cache lines belonging to RO pages are spared from
self-invalidation. Although a crude approximation to the
optimization proposed by Lebeck and Wood, it yields good
results and we use it in the evaluation. More sophisticated
approaches can be explored in future work (e.g., accounting
for thread migration to perform the page classification as
suggested by Hardavellas et al. [15]).

3.5.2 Relaxing Inclusion Policies
In a MESI protocol, in which the directory information

is stored along with the LLC entries, inclusion between the
L1 and the LLC is enforced. When a line is evicted from
the LLC, the directory information is evicted as well, and
all copies in L1 are invalidated to maintaining coherence.
In the VIPS protocol, private lines do not require directory
information, and therefore we can selectively relax the in-
clusion policy for them. An exclusive policy for private lines
can make better use of the LLC storage, potentially reduc-
ing expensive off-chip misses. But, silent conflict evictions
of clean L1 copies result in subsequent misses in the LLC.
One option is to victimize clean L1 copies into the LLC.
This increases traffic but saves latency in L1 conflicts. A
middle-of-the-road approach that reduces this traffic is to
opt for a non-inclusive policy where data requested by the
L1 with read-only permission are also stored in the LLC.
This way, evictions of clean lines can be silent both in the
L1 and in the LLC. Because the LLC is not stressed by our
benchmarks, we have seen that the later approach can re-
duce traffic requirements. In the VIPS-M protocol inclusion
is not required for any line, since we do not have directory
information in the LLC. Therefore, the same optimizations
for private lines in the VIPS protocol, are applicable to all
lines in the VIPS-M protocol.

4. EVALUATION METHODOLOGY

4.1 Simulation and System Configuration
The evaluation of the protocols proposed in this work is

carried out with full-system simulation using Virtutech Sim-
ics [23] and the Wisconsin GEMS toolset [24]. The intercon-
nection network is modeled using GARNET [5]. We simu-
late a 16-tile chip multiprocessor (CMP) architecture. The
values of the main parameters used for the evaluation are
shown in Table 2. Through experimentation we have found
that only 16 entries per MSHR are needed to keep shared
data as dirty for enough time to avoid most write misses.



Table 2: System parameters (between brackets: ranges for
sensitivity analysis; in bold: main configuration)

Memory Parameters

Processor frequency 3.0GHz

Block/Page size 64 bytes/4KB

MSHR size/Delay timeout 16 entries/1000 cycles

Split L1 I & D caches [16KB, 32KB, 64KB], 4-way

L1 cache hit time 1 (tag) and 2 (tag+data) cycles

Shared unified L2 cache 8MB, 512KB/tile, 16-way

L2 cache hit time [2, 6] (tag) and [4, 12]

(tag+data) cycles

Memory access time 160 cycles

Network Parameters

Topology 2-dimensional mesh (4x4)

Routing technique Deterministic X-Y

Flit size 16 bytes

Data message size 5 flits (if MWM not used)

Control message size 1 flit

Routing time 2 cycles

Switch time 2 cycles

Link time 2 cycles

Likewise, a timeout between 500 and 2000 cycles for the de-
layed write-throughs (or up to eviction in the MSHR) offers
a good compromise between the reduction in the number of
extra write-misses and the time the LLC remains blocked.
MSHR timeout timers are implemented as cache decay hier-
archical counters [18]. Cache latencies, energy consumption,
and area requirements are calculated using the CACTI 6.5
tool [26] assuming a 32nm process technology. Likewise,
the energy consumption overhead from extra L1 hardware
(timers, selective flush support, etc.), is estimated to be a
very small part (less than 1%) of the L1 energy.

We evaluate the five cache coherence protocols shown in
Table 3. This table summarizes some of their characteristics.
The first protocol (Hammer) corresponds to a broadcast-
based protocol for unordered networks [28]. Since in this
protocol invalidations are sent to all cores, there is no need
for a directory. However, this protocol generates a signif-
icant amount of traffic, which dramatically increases with
the number of cores. The second protocol (Directory) cor-
responds to a MESI directory-based protocol where the di-
rectory information is stored along with the LLC tags. The
directory information allows the protocol to filter some traf-
fic, and therefore, save energy consumption. Inclusion be-
tween L1 caches and the LLC is enforced in this case. The
main advantage of the third protocol (Write-Through) is its
simplicity, since it only has two base states for lines in L1
caches (as do our protocols). Although this protocol accel-
erates read misses by removing their indirection, the write-
through policy increases the number of write misses and
severely hurts performance. The fourth protocol is our SC
protocol (VIPS). It only has two base states, and can relax
the inclusion policy for private blocks. Despite being sim-
ple it still requires invalidations. Finally, the fifth protocol
(VIPS-M) provides SC only for DRF applications. The main
characteristic of this protocol is that it completely removes
both the need of storing directory information and sending
invalidations, as well as the indirection for all cache misses.
The absence of a directory reduces the LLC tag area, and
allows the protocol to relax the inclusion policy.

4.2 Benchmarks
We evaluate the five cache coherence protocols with a

wide variety of parallel applications. Barnes (16K particles),

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
o
rm

a
liz

e
d
 W

ri
te

 m
is

s
e
s WT-shared

WT-shared-delayed
Write-back

0.52 0.71 0.63

Figure 6: Reduction in write misses due to the pri-
vate/shared classification and delayed write-through. Write
misses have been normalized with respect to the simple
write-through policy.

Cholesky (tk16), FFT (64K complex doubles), FMM (16K
particles), LU (512×512 matrix), Ocean (514×514 ocean),
Radiosity (room, -ae 5000.0 -en 0.050 -bf 0.10), Raytrace
(teapot, optimized version that removes unnecessary locks),
Volrend (head), Water-Nsq (512 molecules) and Water-Sp
(512 molecules) belong to the SPLASH-2 benchmark suite
[33]. Em3d (38400 nodes, 15% remote) is a shared-memory
implementation of the Split-C benchmark. Tomcatv (256
points, 5 time steps) is a shared-memory implementation of
the SPEC benchmark. Canneal (simsmall) and x264 (sims-
mall) are from the PARSEC benchmark suite [7].

To accurately simulate our VIPS-M protocol we have in-
strumented the synchronization mechanisms (locks, barriers,
conditions) used by the benchmarks so they are “visible” by
the hardware. Synchronization points are signaled by fences
preceding synchronization. In this way, processors can per-
form the selective flushing on their caches when required.
Data accessed by atomic instructions follow the synchro-
nization protocol described in Section 3.3. We simulate the
entire applications, but collect statistics only from start to
completion of their parallel part.

5. EXPERIMENTAL RESULTS

5.1 Impact on Write Misses
As discussed throughout this paper, the main drawback

of a write-through policy is the significant amount of write
misses it entails. In this section, we show the ability of
both the private/shared classification and the delayed write-
throughs to reduce this overhead. Figure 6 shows the num-
ber of write-misses for the different mechanisms normalized
with respect to a write-through policy (not shown). Since
most of the write misses in a write-through protocol come
from private blocks (Figure 1), by switching to a write-back
policy for private blocks we can save 72.7%, on average, of
write misses (first bar). However, if we compare to a write-
back policy (third bar), we can see that we still incur ex-
tra misses. Although the effectiveness of the private/shared
classification in reducing write misses is noticeable, a de-
layed write-through mechanism is still necessary to be com-
petitive to a write-back policy (a MESI directory protocol
in this case). This is shown in the second bar (WT-shared
delayed), where the number of write misses is reduced by
90.4%, on average, compared to a write-through protocol,
thus making this number close to the one obtained by a
write-back policy (94.6%, on average).



Table 3: Evaluated protocols

Protocol Invalidations Directory Indirection Inclusion L1 base states LLC tag area (mm2)
Hammer Broadcast None Yes No 5 (MOESI) 0.0501
Directory Multicast Full-map Yes Yes 4 (MESI) 0.0905
Write-Through Multicast Full-map Only for write misses Yes 2 (VI) 0.0905
VIPS Multicast Full-map Only for write misses Only for shared blocks 2 (VI) 0.0905
VIPS-M None None No No 2 (VI) 0.0501

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

P
e
rc

e
n

ta
g

e
 o

f 
b

lo
c
k
s

Invalid Private Shared-Read-Only Shared-Written

(a) Lines found in the cache upon a selective flushing

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
a

c
h

e
 m

is
s
 c

la
s
s
if
ic

a
ti
o

n

Cold-cap-conf
Coherence

Selective-flushing
Write-through

5.2 1.71. Directory
2. VIPS-M

(b) Cache misses normalized w.r.t. Directory

Figure 7: Impact of selective flushing

5.2 Selective Flushing
VIPS-M relies on selective flushing at synchronization points

to keep coherence (and provide SC) for DRF applications.
We only flush lines whose page is being shared among dif-
ferent cores and modified by at least one of the cores (read-
only optimization, Section 3.5.1). As shown in Figure 7a
this selective flushing prevents about 73.9%, on average,
of valid lines from being evicted from cache. This signifi-
cantly lessens the number of misses as consequence of self-
invalidations. We can also observe that 14.2% of cache lines
will be flushed. Most of them are silently invalidated be-
cause their copy is clean. This happens for lines brought in
the cache as consequence of read misses, or lines that have
performed a write-through (synchronization or DRF lines).
Dirty lines for which a write-through has not happened will
be sent immediately to the LLC. Fence instructions must
wait for the acknowledgments of such write-throughs to guar-
antee proper memory ordering. Frequent synchronization
results in parts of the cache already being invalid in the
next flush.

Selective flushing prevents significant part of the cache
from being needlessly invalidated so it can be competitive to
directory invalidations. Figure 7b shows the L1 misses in a
directory protocol and in VIPS-M classified by the event that
caused them. The percentage of cold, capacity, and conflict
misses (Cold-cap-conf ), slightly decreases in VIPS-M due
to the lack of write misses for DRF lines. For some applica-
tions, e.g., FFT, LU, Em3d, Tomcatv, and x264, the impact
of the selective flushing on the miss rate is negligible. In

Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Hammer Directory Write-through VIPS VIPS-M

2.83 2.42 2.85 2.19 2.13 2.12 2.21

Figure 8: Normalized execution time w.r.t. Directory

FFT and LU, this is because they have only a few barriers,
so the selective flushing is not frequent. In Em3d, Tomcatv,
and x264, the working set accessed between synchronization
points is much larger than the cache size (few invalid lines
are flushed, as shown in Figure 7a), thus, after a synchro-
nization point, misses are not due to self-invalidation. On
the other hand, applications like Radiosity and Volrend in-
cur numerous extra misses due to self-invalidation because
of frequent locking. This impacts performance and energy
consumption as we show in next section. For the remaining
applications, the number of misses is comparable in both
protocols.

5.3 Performance Results
Figure 8 shows the applications’ execution time for the

five protocols evaluated in this work (see Table 3). The exe-
cution time has been normalized with respect to a directory
protocol. The broadcast-based Hammer protocol slightly
increases application’s execution time with respect to Di-
rectory. The performance of the Write-through protocol is
prohibitive due to the dramatic increase in the miss rate
for writes. But this increase can be lessened if private lines
are detected (and their write misses removed) and a delayed
write-through mechanism is implemented. As we can ob-
serve, the simple VIPS protocol has similar performance to
the complex directory protocol. In some applications it is
faster, while in other ones slightly slower (but no more than
10%). VIPS-M, despite not having a directory structure
at all, is faster in most applications (e.g., Cholesky, FFT,
Ocean, Em3d, Tomcatv, Canneal, and x264, ranging from
7.7% to 21.5% faster). The exceptions being Radiosity, Ray-
trace (15.5% slower), and Volrend due to selective flushing.
On average over the 15 applications, VIPS-M is 4.8% faster
than Directory because of faster writes (no write-misses),
faster reads (no directory indirection), and less traffic in the
NoC.

Sensitivity Analysis. Figure 10a shows the average per-
formance (over the 15 applications) of the two proposed pro-
tocols by varying the L1 cache size from 16KB to 64KB. The
performance of VIPS with respect to MESI is not affected
significantly by the cache size. However, VIPS-M flushes
shared blocks from the L1 upon fence instructions and there-
fore, larger cache sizes impact its performance more. VIPS-



Barnes

Cholesky
FFT

FMM LU
Ocean

Radiosity

Raytra
ce

Volre
nd

Water-N
sq

Water-S
p

Em3d

Tomcatv

Canneal
x264

Average

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

LLC Network

8.3 5.3 4.2 5.0 8.8 22.9 5.1 15.5 9.6 56.2 3.3 7.0

1. Hammer 2. Directory 3. Write-through 4. VIPS 5. VIPS-M

Figure 9: Normalized energy consumption w.r.t. Directory

16 32 64

L1 cache size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

VIPS
VIPS-M

(a) Performance 16KB–64KB L1

16 32 64

L1 cache size (KB)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n

LLC
Network

1. VIPS
2. VIPS-M

(b) Energy 16KB–64KB L1

Figure 10: Sensitivity analysis

M improvements still range from 6.2% (16KB), 4.8% (32KB),
to 4.0% for the 64KB L1 cache. We have also studied larger
sizes that would approximate private L1/L2 caches. VIPS
becomes slightly slower than MESI for large private hierar-
chies (but less than 3% for 256KB). VIPS-M is still faster
than MESI for 128KB caches, but becomes slightly slower
(less than 2%) for 256KB caches. Tripling the latency of the
LLC (to 12 cycles) does not affect the relative performance
of VIPS and VIPS-M to MESI.

5.4 Energy Consumption
Figure 9 shows the energy consumed by the network and

the LLC for the applications and protocols evaluated in this
work for 32KB L1 caches. Broadcasting invalidations and re-
ceiving acknowledgments in Hammer leads to a significant
increase in the energy consumed by the network (around
1.75× compared to Directory). Additional write misses in a
write-through protocol result in a dramatic increase in traffic
and LLC accesses. As with execution time, the detection of
private pages, and the delayed write-throughs help to reduce
L1 misses, and therefore, traffic and LLC accesses. Thus,
VIPS reduces significantly the consumption when compared
with Write-through, consuming less than a directory proto-
col for many applications (e.g., Barnes, Cholesky, Radios-
ity, Em3d, and Tomcatv). Finally, although the selective
flushing in VIPS-M causes extra L1 misses, thanks to the
Multiple-Writer-Merge protocol the amount of data written
back into the LLC is significantly reduced, which translates
into a reduction in dynamic consumption of 14.2%, on aver-
age, with respect to a directory protocol.

Sensitivity Analysis. Figure 10b shows the energy con-
sumption of our protocols varying the cache size (from 16KB
to 64KB) with respect to a directory protocol. Our protocols
increase their traffic and accesses to the LLC relative to a di-
rectory protocol, for larger cache sizes. This is mainly due to
two reasons: First, in VIPS and VIPS-M the rate of write-
throughs is independent of the cache size (since they are
always delayed the same) but in MESI, shared blocks stay

longer in larger caches before they are written-back. Sec-
ond, flushing in VIPS-M affects more lines in larger caches.
This is why energy consumption (normalized to Directory)
in VIPS-M increases faster than VIPS with cache size.

6. DISCUSSION
There are several issues concerning our proposal that we

discuss in this section to argue for its applicability in real-
world situations.

6.1 Inter-Chip Coherence
Extending our simple protocol to go beyond a single chip

faces a different set of trade-offs. Näıvely, one could extend
the same scheme outside the chip: write-backs would have
to go through the LLC to the external memory and the en-
tire LLC would need to be flushed of all the shared data
on any synchronization. Because of limited bandwidth and
high latency outside the chip both of these propositions are
prohibitive. Consequently, an invalidation strategy is more
appropriate for inter-chip coherence but comes at a cost.
Here, we describe in broad strokes this strategy. Only the
LLC of each chip needs to be interfaced to an invalidation-
based protocol (e.g., MESI or MOESI), with state for LLC
blocks and an inter-chip directory, –alternatively, external
broadcasts and snooping. The rest of the on-chip cache hi-
erarchy remains the same. Because there is no invalidation
for the L1s, even with external invalidations the DRF se-
mantics need to be preserved. Assume, for example, that a
write to the memory location A in chip M1, invalidates a
copy of A in the LLC of chip M2. Although the LLC copy
in M2 is invalidated, there is no way to forward this inval-
idation to the (M2) L1s. There are two cases: either there
are copies of A in the L1s or they have been self-invalidated.
The former case constitutes a data race if the L1 copies are
read. This is forbidden. In the later case, coherence is ex-
tended across chips.

6.2 OS, Migration, and Multithreading
OS or thread migration from one core to another can

(falsely) tag a private page as shared in our classification
scheme. Better classification (possibly with reverse adapta-
tion) or migration-aware classification by the OS itself, as
described by Hardavellas et al. [15], alleviates these prob-
lems. Another issue is the flushing of shared data by the OS.
In the implementation for this paper, context switches, sys-
tem calls, I/O, thread migration, etc., conservatively flush
all shared data. This can be optimized by tagging L1 lines
as system or user lines. Similarly, tagging L1 lines with
a thread ID and differentiating operations on them, avoids
data classification or data flushing problems that may arise
due to multithreading.

6.3 Debugging
VIPS-M can be incoherent in the presence of data races

which may complicate debugging when a program is mal-
functioning. Fortunately, a significant body of work on de-
tecting data races already exists [30]. It is worth mention-
ing here some of the data-race debugging tools available
that do not require any hardware support: Velodrome, Rec-
Play, RaceTrack, FastTrack, RacerX, Eraser, and Goldilocks,
among others. With respect to debugging, we believe this is
the way to go rather than relying on coherence being contin-
uously present. Furthermore, eliminating the possibility of



races at the programming model (e.g., as in DPJ or DRFx)
would significantly help debugging.

6.4 Verification
VIPS has similar properties to MESI, only fewer states.

Therefore it is easier to verify. In VIPS-M, the protocols for
private and shared (DRF) data are nearly identical. There
are only two stable states (Valid/Invalid) and two transient
states (I–V and V–I) in the L1s and no states at all in the
LLC (no blocking). Compared to standard protocols (e.g.,
MESI), there is a fundamental difference for the transient
states: in VIPS-M there are no downgrades, invalidations,
or data requests, so its transient states are invisible to the
outside world.3 They exist only in the MSHRs, and only to
wait replies from the LLC. VIPS-M is thus simple to verify
and significantly easier than MESI which requires extensive
state exploration [11].

6.5 Speculation
Although we envision our coherence protocols as a better

fit for simple cores, they can also be used to advantage with
complex cores that support speculation and dynamic execu-
tion. In this case, a new possibility for optimization opens
up. Selective flushing in VIPS-M leads to a small number
of extra misses compared to a standard directory protocol.
These misses are due to self-invalidated cache lines that are
reused after synchronization, but without having been mod-
ified by any other core in the interim. With speculative
execution mechanisms available, one can hide the latency
of these misses by performing a Speculative Cache Lookup
(SCL) and applying Coherence Decoupling as proposed by
Huh et al. [17] on top of VIPS-M. Speculative cache lookups
in VIPS-M, allow the cores to continue execution with self-
invalidated data while the decoupled protocol reloads invalid
cache lines with their latest version from the LLC. If the self-
invalidated and LLC data differ (i.e., the line has been mod-
ified), speculation is squashed. In this case, the cost is just
the wasted speculative execution. If, on the other hand, the
data are the same (i.e., the line has not been modified), the
speculation is verified and the latency of going to the LLC
is completely hidden. The benefit of this optimization is ob-
vious: it completely hides any performance penalty from se-
lective flushing, but at the expense of some extra, discarded,
speculative execution.

7. RELATED WORK
We have already discussed in passing most of the related

work. Here, we will just summarize the similarities and dif-
ferences with the work closest to ours, the DeNovo work of
Choi et al. [11]. Relying on disciplined parallelism, Choi et
al. take a similar approach to simplify coherence. However,
in contrast to our approach, they require significant feed-
back from the application which must define memory regions
of certain read/write behavior and then convey and repre-
sent such regions in hardware. This requires programmer
involvement at the application layer (to define the regions),
compiler involvement to insert the proper self-invalidation
instructions, an API to communicate all this information to
the hardware, and additional hardware near the L1 to store
this information.

3With respect to verification this makes the treatment of the
delayed write-throughs analogous to that of write buffers.

The DeNovo approach still implements a directory (“reg-
istry”) that tracks the writers (but not the readers), and
cleverly hides it in the data array (since LLC data are stale
in the presence of a writer). Although the directory stor-
age cost is hidden, there is still directory functionality, and
therefore, directory indirection, in the LLC. In our VIPS-
M protocol the directory is fully abolished leaving behind a
“passive” LLC. We rely on keeping the LLC up-to-date with
write-throughs; fresh (non-stale) data are always found in
the LLC. This also leads to another difference: the DeN-
ovo approach has directory indirection for reads (to get the
new values), but we do not. To eliminate this indirection
Choi et al. use writer-prediction, as proposed by Kaxiras
and Keramidas, and revert to the registry on mispredictions.
This adds complexity and cost. Finally, although Choi et al.
simplify coherence for DRF, they do not address the issue
of synchronization races.

The heavy reliance of the DeNovo approach on applica-
tion involvement –and without having access to the source
code annotations for the regions, the same compiler for the
self-invalidation instructions, and the API to convey infor-
mation to the hardware– prevents us from replicating their
results for a direct comparison. By inspecting the published
results, however, we can make the following observations: i)
both approaches are competitive to MESI; ii) DeNovo per-
forms well, but this is to be expected since it has access
to much more in-depth information on application behavior
–our page classification is coarse-grain in comparison, but
completely transparent; iii) their results do not, apparently,
include synchronization operations. Overall, we consider the
results of the two approaches to be representative of the
trade-off between application involvement and application-
transparent implementation.

8. CONCLUSIONS
This paper goes contrary to the experience of more than

three decades in coherence complexity, and takes us back to
before the IBM centralized directory, Censier and Feautrier’s
distributed directory [8] or Goodman’s write-once protocol
[14]. Inspired by efforts to simplify coherence and/or reduce
directory cost [11, 12, 13, 16, 19] we go a step further and
completely eliminate the need for a directory. In a multi-
core cache hierarchy, as long as we treat private and shared
data separately, we can improve both performance and en-
ergy consumption even with the simplest protocol. Our ap-
proach is based on a dynamic write policy (Write-Through
for shared and Write-Back for private data) and selective
flushing of the shared data from the L1 caches upon syn-
chronization. By separating private from shared data at the
page level, we minimize the impact of the write-through pol-
icy, since many of the write-misses are due to private data.

In the interest of programming clarity and correctness
there is a growing consensus that data races should be banned.
In our work, we show that in the absence of data races, we
can simplify the coherence protocols for shared data to that
of private data with just a simple rule of when to write data
back to the LLC. The end result outperforms more complex
protocols while at the same time consumes less energy. Data
races, however, are still pertinent to synchronization opera-
tions. In our proposal, we maintain the memory semantics of
atomic instructions with a simple synchronization protocol
that does not need a directory or invalidations.



9. ACKNOWLEDGMENTS
This work is supported, in part, by the Swedish Research

Council UPMARC Linnaeus Centre and the EU HEAP Project
FP7-ICT-247615.

10. REFERENCES
[1] D. Abts, S. Scott, and D. J. Lilja. So many states, so little

time: Verifying memory coherence in the Cray X1. In 17th
Int’l Parallel and Distributed Processing Symp. (IPDPS),
Apr. 2003.

[2] M. E. Acacio, J. González, J. M. Garćıa, and J. Duato. A
new scalable directory architecture for large-scale
multiprocessors. In 7th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pages 97–106, Jan. 2001.

[3] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66–76, Dec. 1996.

[4] A. Agarwal, R. Simoni, J. L. Hennessy, and M. A.
Horowitz. An evaluation of directory schemes for cache
coherence. In 15th Int’l Symp. on Computer Architecture
(ISCA), pages 280–289, May 1988.

[5] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha.
GARNET: A detailed on-chip network model inside a
full-system simulator. In IEEE Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), pages 33–42,
Apr. 2009.

[6] S. Bell, et al. TILE64TM processor: A 64-core SoC with
mesh interconnect. In IEEE Int’l Solid-State Circuits
Conference (ISSCC), pages 88–598, Jan. 2008.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In 17th Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), pages 72–81, Oct.
2008.

[8] L. M. Censier and P. Feautrier. A new solution to coherence
problems in multicache systems. IEEE Transactions on
Computers (TC), 27(12):1112–1118, Dec. 1978.

[9] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
directories: A scalable cache coherence scheme. In 4th Int’l
Conf. on Architectural Support for Programming Language
and Operating Systems (ASPLOS), pages 224–234, Apr.
1991.

[10] G. Chen. Slid - a cost-effective and scalable
limited-directory scheme for cache coherence. In 5th Int’l
Conf. on Parallel Architectures and Languages Europe
(PARLE), pages 341–352, June 1993.

[11] B. Choi, R. Komuravelli, and H. Sung, et al. DeNovo:
Rethinking the memory hierarchy for disciplined
parallelism. In 20th Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), Sept. 2011.

[12] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato.
Increasing the effectiveness of directory caches by
deactivating coherence for private memory blocks. In 38th
Int’l Symp. on Computer Architecture (ISCA), pages
93–103, June 2011.

[13] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi.
Cuckoo directory: A scalable directory for many-core
systems. In 17th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pages 169–180, Feb. 2011.

[14] J. R. Goodman. Using Cache Memory to Reduce
Processor-Memory Traffic. In 10th Int’l Symp. on
Computer Architecture (ISCA), pages 124–131, June 1983.

[15] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Reactive NUCA: Near-optimal block placement and
replication in distributed caches. In 36th Int’l Symp. on
Computer Architecture (ISCA), pages 184–195, June 2009.

[16] H. Hossain, S. Dwarkadas, and M. C. Huang. POPS:
Coherence protocol optimization for both private and
shared data. In 20th Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), Sept. 2011.

[17] J. Huh, J. Chang, D. Burger, and G. S. Sohi. Coherence
decoupling: Making use of incoherence. In 11th Int’l Conf.
on Architectural Support for Programming Language and
Operating Systems (ASPLOS), pages 97–106, Oct. 2004.

[18] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache leakage
power. In 28th Int’l Symp. on Computer Architecture
(ISCA), pages 240–251, June 2001.

[19] S. Kaxiras and G. Keramidas. SARC coherence: Scaling
directory cache coherence in performance and power. IEEE
Micro, 30(5):54–65, Sept. 2011.

[20] D. Kim, J. A. J. Kim, and J. Huh. Subspace snooping:
Filtering snoops with operating system support. In 19th
Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), pages 111–122, Sept. 2010.

[21] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:
Reducing coherence overhead in shared-memory
multiprocessors. In 22nd Int’l Symp. on Computer
Architecture (ISCA), pages 48–59, June 1995.

[22] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones.
Compiler-assisted data distribution for chip
multiprocessors. In 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), pages
501–512, Sept. 2010.

[23] P. S. Magnusson, M. Christensson, and J. Eskilson, et al.
Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58, Feb. 2002.

[24] M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al.
Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. Computer Architecture News,
33(4):92–99, Sept. 2005.

[25] A. Moshovos, G. Memik, B. Falsafi, and A. N. Choudhary.
JETTY: Filtering snoops for reduced energy consumption
in SMP servers. In 7th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pages 85–96, Jan. 2001.

[26] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
Cacti 6.0. Technical Report HPL-2009-85, HP Labs, Apr.
2009.

[27] B. W. O’Krafka and A. R. Newton. An empirical
evaluation of two memory-efficient directory methods. In
17th Int’l Symp. on Computer Architecture (ISCA), pages
138–147, June 1990.

[28] J. M. Owen, M. D. Hummel, D. R. Meyer, and J. B. Keller.
System and method of maintaining coherency in a
distributed communication system. U.S. Patent 7069361,
June 2006.

[29] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and
R. Balasubramonian. SWEL: Hardware cache coherence
protocols to map shared data onto shared caches. In 19th
Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), pages 465–476, Sept. 2010.

[30] A. Raza. A review of race detection mechanisms. In 1st
International Computer Science Conference on Theory and
Applications, pages 534–543, June 2006.

[31] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on
Memory Consistency and Cache Coherence, volume 6 of
Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, May 2011.

[32] D. Vantrease, M. H. Lipasti, and N. Binkert. Atomic
coherence: Leveraging nanophotonics to build race-free
cache coherence protocols. In 17th Int’l Symp. on
High-Performance Computer Architecture (HPCA), pages
132–143, Feb. 2011.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In 22nd Int’l Symp. on
Computer Architecture (ISCA), pages 24–36, June 1995.

[34] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE:
Sharing pattern-based directory coherence for multicore
scalability. In 19th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages –, Sept. 2010.


