
Fast&Furious: A Tool for Detecting Covert Racing

Alberto Ros
Department of Computer Engineering

University of Murcia, Spain
aros@ditec.um.es

Stefanos Kaxiras
Department of Information Technology

Uppsala University, Sweden
stefanos.kaxiras@it.uu.se

ABSTRACT

Existing multi-threaded applications perform synchroniza-
tion either in an explicit way, e.g., making use of the func-
tionality provided by synchronization libraries or in an im-
plicit or “covert” way, e.g., using shared variables. Unfortu-
nately, the implicit synchronization constructs are prone to
errors and difficult to detect.

This paper presents a tool that is able to detect implicit
synchronization in multi-threaded applications. The detec-
tion is performed by ensuring that during the execution of an
application under a memory model that provides sequential
consistency for data-race-free applications (SC for DRF), ev-
ery read returns the same value as if running under sequen-
tial consistency. If the previous condition is not fulfilled by
the execution, the application has data races, which may be
intended to perform implicit synchronization.

We analyze the applications in the Splash2 benchmark
suite with the presented tool and we detect data races in 7
out of the 14 Splash2 applications. These data races perform
implicit synchronization in all but one of the applications (6
out of 7). We analyze these implicit synchronization con-
structs and discuss their correctness.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication—Model checking ; D.2.5 [Software Engineering]:
Testing and Debugging—Testing tools

General Terms

Verification, Reliability, Languages

Keywords

Parallel applications, synchronization, data races, race de-
tection

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

PARMA-DITAM ’15, January 19 - 21 2015, Amsterdam, Netherlands

Copyright 2015 ACM 978-1-4503-3343-6/15/01 ...$15.00

http://dx.doi.org/10.1145/2701310.2701315

/* Initially X = Y = 0 */

X = 1;

$r0 = Y;

Y = 1;

$r1 = X;

Figure 1: Dekker’s algorithm

Parallel programming is of increasing importance now that
multicore architectures dominate the market. Unfortunately,
parallel programming is difficult and prone to errors.

The memory consistency model, or simply memory model,
defines what value a read should return in a multithreaded
program. Arguably, the most intuitive memory model is
sequential consistency (SC) [7]. A hardware provides SC if
the result of any execution is the same as if the operations
of all the processors were executed in some sequential order,
and if the operations of each individual processor appear in
this sequence in the order specified by its program. Despite
being so intuitive, most processors do not adopt SC since its
performance limitations can be dramatic. The reason is that
it prevents both the software (compiler) and the hardware
(processor) from reordering instructions.

Sequential consistency for data-race-free (SC for DRF) [3]
is a memory model that provides sequential consistency for
programs that do not have data races. Although not as
intuitive as SC, it enables higher efficiency. In fact, Java and
C++ have recently adopted a memory model that provides
SC for DRF applications.

As defined by Sorin et al. [15], a data race occurs when
two threads access the same memory location, at least one
of the accesses is a write, and there is no intervening syn-
chronization (even transitive) between the threads. This
definition, therefore, assumes that the model distinguishes
between synchronization and ordinary (non-synchronization
or data) operations. In fact, languages like C++ include
the declaration of atomic variables (or volatile in Java), to
perform the synchronization among threads. If one consid-
ers all data races in a program as synchronization, the pro-
gram would be data-race-free. For example, as mentioned
by Adve and Boehm [2], to write Dekker’s algorithm (Fig-
ure 1) correctly under the SC for DRF consistency model,
one simply needs to identify the shared variables X and Y
as synchronization variables.

However, applications do not always implement thread
synchronization in an explicit or easy to detect way, e.g.,
calling the lock, unlock, signal, broadcast, and wait func-
tions provided by standard POSIX thread libraries or em-
ploying other synchronization libraries developed by pro-
grammers, as shown in Figure 2 (explicit synchronization

/* Initially X = 0 */

X = 1;

SIGNAL(cond); WAIT(cond);

$r1 = X;

Figure 2: Explicit synchronization

/* Initially X = flag = 0 */

X = 1;

flag = 1; while (flag == 0);

$r1 = X;

Figure 3: Implicit synchronization

from now on). Unfortunately, it is common to encounter
programs that synchronize using ad hoc codes created by
the programmer, as shown in Figure 3 (implicit or covert
synchronization from now on). This kind of synchroniza-
tion, which is commonly used for flexibility, performance
reasons, or merely by non-expert programmers, is difficult
to detect, difficult to debug, and prone to errors [19].

This paper presents Fast&Furious, a pin-tool [8] that checks
that, an application presents the same behavior under the
SC for DRF model as under the SC model during its execu-
tion. In essence, the tool checks that the value returned by
every read in the application assuming SC for DRF is the
same as the value returned assuming SC. In other words, the
key characteristic of our tool is that is able to detect data
races in the applications by emulating the SC for DRFmodel
and expecting SC behavior, since data-race-free applications
should provide such a behavior. (Section 2)

In applications where all synchronization is implemented
in an explicit way (like in Figure 2), Fast&Furious will not
find any data race during the execution of the application,
since all reads will return an SC value. On the other hand,
if the application has implicit synchronization or other data
races, our tool can detect them if a read returns a non-
SC value. In such a case, the tool shows the line of code
that read the non-SC value and, optionally, the line of code
that wrote the SC value. We categorize the applications
that show SC violations as non-DRF. If the data race is
intended to perform implicit synchronization, it should be
either marked as synchronization (thus exposing it to the
hardware) or re-implemented in a explicit way in order to
be correct under the SC for DRF model.

We analyze all the applications from the Splash2 bench-
mark suite [18] with our pin-tool (Section 3). We consider
as explicit synchronization every synchronization performed
through the POSIX threads macros file provided along with
the Splash2 benchmark suite. We found 88 data races in
7 out of the 14 Splash2 applications, 38 of them (in 6 of
the Splash2 applications) being actually implicit synchro-
nization. We analyzed the synchronization constructs and
found that for some of them the behavior of the synchro-
nization may not be the expected by the programmer.

Finally, we point out several research areas in which the
proposed tool can be of great interest, such as methods that
assume relaxed consistency models, accurate manycore sim-
ulation, debugging, and fence insertion in parallel applica-
tions (Section 4).

2. FAST&FURIOUS PIN-TOOL
This section describes the proposed tool, which is devel-

oped based on the PIN dynamic instrumentation tool [8].

Our tool checks that the value returned by every read per-
formed by the application assuming a SC for DRF consis-
tency model matches the value obtained assuming a SC
model. To this end, the tool implements the behavior of
both SC and SC for DRF consistency models.

The SC model is implemented assuming a unique shared
memory structure that stores atomically each written value
along with the written address. Every read will always ob-
serve the last written value, which is defined by the order in
which the pin-tool interleaves the threads of the application
during its execution.

The SC for DRFmodel allows reads and writes to be freely
reordered, that is, all these reordering are allowed: R→R,
R→W, W→R, and W→W. However, if these memory ac-
cesses are separated by explicit synchronization, reordering
is not allowed. Instead of forbiding any reordering across
synchronization points, our tool models acquire and release
semantics for synchronization [5]. These semantics only or-
der reads with respect to an acquire (ACQUIRE→R) and
writes with respect to a release (W→RELEASE).

We instrumented the applications checked in this work
to expose acquire and release semantics along with the ex-
plicit synchronization, which can be clearly identified, in the
particular case of the Splash2 benchmarks, in the predefined
POSIX thread macros. For example, synchronization in Fig-
ure 2, should have release semantics before the SIGNAL

statement and acquire semantics after the WAIT statement.
Otherwise, the read of the variable X could be performed
before both WAIT and X = 1, leading to the unexpected
result of zero.

In order to simulate the SC for DRF consistency model
in our tool, we implement (unlimited) private caches per
thread. Data blocks can be stored in the private caches
without affecting other thread’s caches (e.g., causing down-
grades or invalidations). Hence, reads and writes are per-
formed locally to these caches, without propagation. This
is equivalent to allowing any reordering of writes and reads
(R→R, R→W, W→R, and W→W).

However, when a thread reaches a synchronization point
with either acquire or release semantics, some reorderings
are forbidden. Upon a synchronization point with acquire
semantics all the contents in the private cache of that thread
must be invalidated, and consequently cached data blocks,
if accessed, must be re-fetched again. This is equivalent
to ensuring ACQUIRE→R ordering. On the other hand,
when the thread reaches a synchronization point with release
semantics, writes performed in the cache must be performed
by writing-back the value in the (unlimited) memory. This
is equivalent to ensuring W→RELEASE ordering.

Our tool compares for every read in the application if the
value obtained is the same under both consistency models.
If it matches for all the reads, the application exhibits SC
behavior under a DRF consistency model. Otherwise, the
program contains implicit synchronization or other hidden
data races. The tool then shows the line of code where
the racy read happened and, optionally, at the expense of
performance, the last line of code that modified the value.
There is either a data race between those two lines of code,
or an intervening implicit synchronization.

As an example, let’s consider the racy code in Figure 3.
Our pin-tool will detect two races: one for the variable X and
one for the variable flag. Note that X is not actually a race
under SC, because of the order enforced by flag. However,

a compiler may move $r1 = X before the while statement,
since there is not a data dependence between them, thus
converting it into a race. The problem of this example is that
the synchronization requires release and acquire semantics.
For example, acquire semantics would forbid hoisting the
read of X before the read of flag.

In absence of any implicit synchronization, our tool allows
any access reordering inbetween explicit synchronizations.
We take advantage of this in the SC for DRF model by
“hoisting” all reads of a thread above the writes of other
threads. This is possible because, in this particular model,
we implement infinite caches that are not affected by the
outside, until an explicit synchronization is encountered.

Our ability to detect a race between a read and a write
under these conditions depends on the three possible sce-
narios in SC: (i) the write always happens before the read
(due to some implicit synchronization), (ii) the write always
happens after the read (again due to some implicit synchro-
nization), and (iii) the write may happen either before or
after the read (there is not implicit synchronization to or-
der them). In the first scenario, our tool will always detect
the implicit synchronization. In the second scenario our ap-
proach does not detect a different value between the SC and
the SC for DRF models, and therefore fails to identify the
implicit synchronization. In the third scenario, our tool may
or may not detect the race, depending on whether thread in-
terleaving allows the write to be performed before the read
in program order.

However, it is the first case (write before the read in SC)
rather than the other two that is of interest (for detecting
possible SC violations in the SC for DRF model). This is
because in the third case, the SC model does not specify
which value should the read return, and in the second case,
in the SC for DRF model the read would never return the
value of the write, which is the expected behavior: both the
SC and the SC for DRF models result in the same read value
for the variable.

In contrast to other tools such as Helgrind [17] or Thread-
Sanitizer [14], our tool does not show false positives in the
sense that if it detects a data race, it is either a real race
under SC or there is implicit (racy) synchronization between
the write and the read. For example, in the false positive
examples shown in ThreadSanitizer [14], our tool does not
detect them because it considers acquire semantics for locks
and release semantics for unlocks.

3. EXPERIMENTAL RESULTS

3.1 Methodology
We run our tool 100 times for each Splash2 application

with the number of threads varying from 2 to 64. The input
sizes are the recommended in Splash2 [18]. We can only
detect races that can appear for the specific inputs. The
applications are compiled with the -g flag in order to be able
to identify the lines of code where races occur. The non-SC
values reported by some executions under the SC for DRF
model where analyzed to find the reason of the data race
and are discussed in the following sections. It is useful to
note that with a single run for each application and from 2
to 64 threads, our tool was able to detect 68 out of the total
88 data races that have been detected after the 100 runs per
application at each thread count.

3.2 Detected implicit synchronization
Table 1 shows for each application, both the explicit and

implicit synchronizations. For the explicit synchronizations
we show the number of locks, barriers, and signal/wait found
in the code (not the number of times that they were ex-
ecuted). If implicit synchronization (or data races) were
not found by our tool, we consider the application as DRF.
Otherwise, the data races that where found are classified as
spin-loops, conditionals, or assignments.

The Spin-loops label implies that the racy read is the exit
condition of a loop. This represents implicit synchronization
in the code of the application, similar to a signal/wait or a
barrier construct. The conditionals label reflects those races
where the read is the condition of an if statement. For exam-
ple, this can be the case of a thread that performs some work
on a data structure only if it has been already created or
updated by another thread, so they employ double-checked
locking to reduce lock contention. Finally, assignments, are
data races not involved directly in synchronization. They
are either real data races, where the programmer may not
care to get the last written value, or a write and a read at the
opposite sides of implicit synchronization, as the variable X

in Figure 3.
Our tool shows that half of the applications in the suite

contain data races. In particular, 6 out of the 14 contain
spin-loops or conditionals, in which the update of the con-
dition variable is part of a data race, similar to the example
shown in Figure 3, or double-checked locking.

Additionally, we have found subtle differences in the syn-
chronization constructs with respect to ones described in
Splash2 [18]. They do not match completely either with
the explicit set of synchronization or with the explicit plus
implicit set of synchronization reported in this work. For
example, Cholesky, is supposed to have signal/wait synchro-
nization, but in fact, it is implemented in an implicit way.
However, other applications like Barnes or FMM have im-
plicit synchronization that matches the signal/wait pattern,
but such construct is not present in the description of the
Splash2 applications.

Finally, neither our results nor the results obtained with
the Helgrind tool [17], a data race detector part of the Val-
grind binary instrumentation tool [11], match with the re-
sults presented in SyncFinder [19]. In particular, we did
not find in the FFT application any implicit (i.e., ad hoc)
synchronization.

3.3 Volatile type and Synchronization in C/C++
We also found during our analysis that in most of the im-

plicit synchronization constructs —in particular when using
spin-loops— the programmer marks the condition variable
as volatile. Before discussing this practice, we first describe
the semantics of the volatile qualifier in C, as summarized
by Regehr [12].

1. For every read from a volatile variable, the machine
must load from the memory address corresponding to
that variable.

2. For every write to a volatile variable, the machine must
store to the corresponding address.

3. Accesses to volatile variables should not be reordered.

Although performing ad hoc synchronization with volatile

variables is not a good practice [13], it is employed in spin-

Table 1: Synchronization in the Splash2 benchmarks

Explicit Implicit
Benchmark Locks Barriers Signal/Wait Is DRF? Spin-loops Conditionals Assignments
Barnes 6 6 0 No 5 5 23
Cholesky 7 4 0 No 1 1 0
FFT 1 7 0 Yes 0 0 0
FMM 28 13 0 No 9 3 19
LU-nc 1 5 0 Yes 0 0 0
LU 1 5 0 Yes 0 0 0
Ocean-nc 4 19 0 No 0 0 1
Ocean 4 20 0 Yes 0 0 0
Radiosity 37 5 0 No 1 7 6
Radix 1 7 3/2 Yes 0 0 0
Raytrace 12 1 0 No 0 2 0
Volrend 14 13 0 No 4 0 1
Water-Nsq 9 9 0 Yes 0 0 0
Water-Sp 10 9 0 Yes 0 0 0

loops found in Splash2 applications to enforce a load from
memory on every check of the exit condition. Otherwise, the
value of the condition can be kept in a register, which would
not be updated with the value written by other threads, and
consequently, the loop would spin infinitely. As an example,
if in the code given in Figure 3, the flag variable is not
qualified as volatile, the while loop may never exit.

But there is another issue with synchronizing by spinning
on volatile variables, and it has to do with the reordering
of accesses preformed either due to compiler optimization or
run-time speculation. As discussed by Sutter [16], there is
currently no convergence in the C/C++ compiler implemen-
tations about reordering ordinary reads and writes across
volatile reads and writes. This is because the C++ Stan-
dard leads to different interpretations, and as a result, each
compiler vendor has its own interpretation. For example,
GCC, Intel CC, Sun CC, and Open64 compilers allow read
and writes to move across volatile memory operations, even
ordinary writes to volatile writes. On the other hand, other
compilers such as LLVM and Microsoft C/C++ do not allow
any reordering across accesses to volatile variables.

The consequence of these different interpretations is that,
even assuming that the flag variable in Figure 3 is qualified
as volatile, the code is not portable, since when compiled
with, for example, GCC, the load of X can be moved before
the while statement, thus being able to get the value of zero
in $r1, which is not the intention of the programmer.

3.4 Details of races
This section analyzes the six applications where we found

implicit synchronization, starting with the application with
the least implicit synchronization, and ending with the one
with most. We do not comment on assignment data races,
since they are either: i) races where the programmer does
not expect one thread to see the last value written by an-
other thread, or ii) are a consequence of an implicit synchro-
nization separating the read and the write (and therefore
would disappear if the synchronization was made explicit).

3.4.1 Raytrace

Raytrace contains two races on conditionals in the file
workpool.c. The synchronization skeleton of Raytrace is shown
in Figure 4. It essentially extracts work items from a pool.
This in an example of double-checked locking, which is not
considered a good programming practice [9]. In fact, for this

GetJob(...) {
LOCK(gm->wplock);

w = gm->workpool[0];

if (!w) {
gm->wpstat[0] = 0;

UNLOCK(gm->wplock);

return 0;

}
gm->workpool[0] = w->next;

UNLOCK(gm->wplock);
...

return 1;

}

if (gm->wpstat[0] == 1)

if (GetJob(...) == 1)
...

Figure 4: Implicit synchronization in Raytrace

LOCK(tasks[i].taskLock);

if (is_probe) {
...

tasks[i].probeQ = t;
...

} else {
...

tasks[i].taskQ = t;
...

}

UNLOCK(tasks[i].taskLock);

for (;;) {

if (tasks[j].taskQ

|| tasks[j].probeQ) {

LOCK(tasks[j].taskLock);

if (tasks[j].probeQ) {
...

tasks[j].probeQ = ...;

... }
if (tasks[j].taskQ) {

...

tasks[j].taskQ = ...;

... }
UNLOCK(tasks[j].taskLock);
...

} else
while(!tasks[j].taskQ

&& !tasks[j].probeQ);

}

Figure 5: Implicit synchronization in Cholesky

synchronization to be correct, the conditions are re-checked
inside a critical section of the thread extracting the work
item from the pool, since otherwise the conditions can be si-
multaneously modified by another thread (the unprotected
check is racing with a write).

3.4.2 Cholesky

The spin-loop and the conditional synchronization found
in Cholesky corresponds to the same synchronizing construct
in the file fm.c whose skeleton is shown in Figure 5.

A thread creates some tasks within a critical section, and
the other thread checks their availability out of the critical
section (both in the first if and in the while statements). If
the if condition is true, the lock will be acquired and the

LOCK(Global->CountLock);

Global->Counter- -;

UNLOCK(Global->CountLock);

while (Global->Counter);

Figure 6: Implicit synchronization in Volrend

/* Initially X = 0 */

X = 1;

LOCK(Global->CountLock);

Global->Counter- -;

UNLOCK(Global->CountLock);

while (Global->Counter);

LOCK(Global->CountLock);

Global->Counter- -;

UNLOCK(Global->CountLock);

while (Global->Counter);

$r1 = X;

Figure 7: Undesired behavior for implicit barrier

task will be processed.
Again, this is an example of double-checked lock, but ad-

ditionally, for the while loop not to spin forever, taskQ and
probeQ are marked as volatile, which depending on the com-
piler used can prevent some optimizations, as described in
Section 3.3.

This synchronization, although awkward, is correct. But
in some systems it maybe be a long time until it sees the
value of the spin-waiting variable, or even it could never see
the current value, therefore, leading to a livelock.

3.4.3 Volrend

Volrend has four implicit synchronizations in the file adap-
tive.c. Two of these synchronizations correspond to barriers
implemented with locks to decrease a counter inside a critical
section and a while loop outside the critical section spinning
on the counter until it reaches zero. Figure 6 shows the code.

Again, the Counter variable is declared as volatile. Al-
though this prevents the while loop from spinning forever,
even if another thread sets the value of Counter to zero, it
could have a non desired behavior. Consider, for example,
the following scenario. Figure 7 shows a possible execution,
where $r1 = X is executed before the while loop (due to ei-
ther compiler reordering or out-of-order execution). In this
case, $r1 can contain the value 0 at the end of the execution.

The other two implicit synchronizations found in Volrend
correspond to the same synchronization construct which, in
essence, acts as a barrier similar to the one discussed previ-
ously. The same issues, found in the previous barrier, apply.

3.4.4 Radiosity

Radiosity implements a barrier by increasing a counter
and waiting until all threads arrive to the barrier. However,
in the mean time, it checks for some work to do. If a thread
finds some work to do, it decrements the barrier counter
and processes the work. When it finishes, the counter is in-
creased and the thread waits again for the other threads to
arrive. The counter is not qualified as volatile when load-
ing it to check the exit condition in the while statement,
but is temporally qualified as volatile inside the while. In
order to prevent dangerous reordering of accesses, there is
an explicit barrier at the end of this implicit barrier. Ra-
diosity contains also some racy conditionals that are, again,
examples of double-checked locking.

3.4.5 Barnes

Barnes concentrates most of its races in the file load.c, al-
though it also has one race in the exit condition of a for loop

while(!(r->done)) {

/* wait */

}

Figure 8: Implicit synchronization in Barnes

while (b->interaction_synch != b->num_children) {

/* wait */

}

Figure 9: Implicit synchronization in FMM

and two assignment races in code.c and grav.c respectively.
In load.c, Barnes has three spin-loops and four conditionals
that race. In two of the loops, the racy load is in the exit
condition of a for loop. The racy variables in the for loops
are not qualified as volatile.

The other loop of load.c corresponds to a busy waiting
construct, as shown in Figure 8. In this case, done is quali-
fied as volatile, but again, as in Figure 7 a subsequent load
can be executed before the while statement, thus possibly
returning an undesirable value.

3.4.6 FMM

FMM has multiple implicit spin-loops in construct grid.c,
cost zones.c, and interactions.c, similar to the one in Fig-
ure 9. Again, even with the condition variables qualified as
volatile, this code can produce undesired behaviors due to
reordering of memory accesses. It also has double-checked
locking constructs in the files construct grid.c, cost zones.c,
and partition grid.c.

4. APPLICABILITY
The Fast&Furious tool presented in this work has appli-

cability in several research areas. This section describes its
applicability in the most relevant areas.

4.1 Checking applications under weak mem-
ory models

Some memory models such as Release Consistency (RC) [5]
or SC for DRF [3] rely on exposing synchronization to the
hardware. For applications with implicit synchronization (or
data races) these models do not provide SC. This tool identi-
fies implicit synchronization by detecting if a read returned
a non-SC value, thus probably not following the program-
mer’s intention and being able to cause even livelocks (e.g.,
spinning forever in the while statement in Figure 3). It is
also important for this models to propagate the racy accesses
in a fast way. For example, the write that releases a lock
should be seen by the acquire as fast a possible to reduce the
acquire waiting time. Our tool identifies such races which
could be marked for efficiency as fast-propagating.

4.2 Large-scale and accurate simulation
New methodologies for simulating manycore architectures

suggest the usage of binary instrumentation tools [10]. When
the consistency model simulated is weaker than the one pro-
vided by the host system, it is hard to ensure the correct be-
havior of the application. By attaching our tool to this sim-
ulation methodology the correctness of the executions evalu-
ated in the simulation can be ensured. Additionally, having
explicit synchronization is desirable for accurate trace sim-
ulation, as discussed by Goldschmidt and Hennessy [6].

4.3 Debugging and fence insertion
Our tool is able to isolate data races, where most of the

concurrent bugs lie. Particularly, in this work we already
inspect the isolated synchronization constructs and found
non-desirable behaviors. Additionally, the synchronization
skeletons found can be used as input in tools that provide
optimal fence insertion for relaxed memory models, such as
Memorax [1] which can only scale up to a small number
of lines of code. Once all required fences are found, the
application code can be fenced.

5. CONCLUSIONS
We developed a pin-tool that checks if the applications

provide SC under the SC for DRF model. If SC is not pro-
vided, the program contains data races. We analyze the data
races, and classify them. We discuss races that are used for
implicit synchronization of threads. We found that almost
half of the Splash2 applications contain data races.

This work leads to several interesting future directions,
apart from the cases already discussed. For example, our
tool does not ensure that an application is DRF under every
possible interleaving. A combination with tools like Concur-
rit [4] would allow us to force other thread interleavings and
discover all possible races during the execution, at least for
a given input and a given thread count.

6. ACKNOLEDGMENTS
This work was supported by the ”Fundación Seneca-Agencia

de Ciencia y Tecnoloǵıa de la Región de Murcia”under grant
”Jóvenes Ĺıderes en Investigación” 18956/JLI/13, and by
by the Spanish MINECO, as well as European Commission
FEDER funds, under grant TIN2012-38341-C04-03.

7. REFERENCES
[1] P. A. Abdulla, M. F. Atig, Y.-F. Chen,

C. Leonardsson, and A. Rezine. Memorax, a precise
and sound tool for automatic fence insertion under
tso. In 19th Int’l Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS),
pages 530–536, Mar. 2013.

[2] S. V. Adve and H.-J. Boehm. Memory models: A case
for rethinking parallel languages and hardware.
Communications of the ACM, 53(8):90–101, Aug.
2010.

[3] S. V. Adve and M. D. Hill. Weak ordering – a new
definition. In 17th Int’l Symp. on Computer
Architecture (ISCA), pages 2–14, June 1990.

[4] T. Elmas, J. Burnim, G. Necula, and K. Sen.
Concurrit: A domain specific language for reproducing
concurrency bugs. In 34th ACM SIGPLAN Conf. on
Programming Language Design and Implementation
(PLDI), pages 153–164, June 2013.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. L. Hennessy. Memory consistency
and event ordering in scalable shared-memory
multiprocessors. In 17th Int’l Symp. on Computer
Architecture (ISCA), pages 15–26, June 1990.

[6] S. R. Goldschmidt and J. L. Hennessy. The accuracy
of trace-driven simulations of multiprocessors. In 1993
ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pages 146–157, May
1993.

[7] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers (TC), 28(9):690–691,
Sept. 1979.

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In 2005
ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), pages 190–200,
June 2005.

[9] S. Meyers and A. Alexandrescu. C++ and the perils
of double-checked locking: Part i. Dr. Dobb’s Journal,
http://www.drdobbs.com/cpp/

c-and-the-perils-of-double-checked-locki/184405726,
July 2004.

[10] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and
P. Faraboschi. How to simulate 1000 cores. Computer
Architecture News, 37(2):10–19, July 2009.

[11] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In
2007 ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), pages
89–100, June 2007.

[12] J. Regehr. Nine ways to break your systems code
using volatile. http://blog.regehr.org/archives/28,
Feb. 2010.

[13] A. D. Robison. Volatile: Almost useless for
multi-threaded programming. Intel developer zone,
https://software.intel.com/en-us/blogs/2007/11/30/

volatile-almost-useless-for-multi-threaded-programming/,
Nov. 2007.

[14] K. Serebryany and T. Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In Workshop on
Binary Instrumentation and Applications (WBIA),
pages 62–71, Dec. 2009.

[15] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on
Memory Consistency and Cache Coherence. Synthesis
Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2011.

[16] H. Sutter. Volatile vs. volatile. A tale of two similar
but different tools. Dr. Dobb’s Journal, http://www.

drdobbs.com/parallel/volatile-vs-volatile/212701484,
Jan. 2009.

[17] Valgrind-project. Helgrind: A data-race detector.
http://valgrind.org/docs/manual/hg-manual.html,
2007.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In 22nd Int’l
Symp. on Computer Architecture (ISCA), pages
24–36, June 1995.

[19] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad
hoc synchronization considered harmful. In 9th
USENIX Conf. on Operating Systems Design and
Implementation (OSDI), pages 1–8, Oct. 2010.

