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Abstract

Shared memory architectures are pervasive in the multicore technology era.

Still, sequential and parallel applications use most of the data as private in a

multicore system. Recent proposals using this observation and driven by a clas-

sification of private/shared memory data can reduce the coherence directory

area or the memory access latency. The effectiveness of these proposals de-

pends on the accuracy of the classification. The existing proposals perform the

private/shared classification at page granularity, leading to a miss-classification

and reducing the number of detected private memory blocks.

We propose a mechanism able to accurately classify memory blocks using the

existing translation lookaside buffers (TLB), which increases the effectiveness of

proposals relying on a private/shared classification. Our experimental results

show that the proposed scheme reduces L1 cache misses by 25% compared to

a page-grain classification approach, which translates into an improvement in

system performance by 8.0% with respect to a page-grain approach.
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1. Introduction

Shared memory architectures are pervasive in general-purpose systems. The

key reason is their easy-to-program memory model in which communication

happens through load and store operations to a shared address space. A cache

coherence protocol implemented in hardware is responsible for moving the copies

of the data across cores and keeping them coherent.

The two main approaches to implement cache coherence in hardware are

snooping and directory protocols [1]. The advantage of snooping protocols is

that they do not require to keep track of the copies cached in the private caches.

However, they can only scale up to a limited number of cores. The preferred

alternative for medium- or large- scale system are directory protocols. However,

they require to keep track of the copies cached in the private caches in a directory

structure.

Recent studies have shown no need for equal treatment of all memory ac-

cesses managed by the cache coherence protocol. Private and read-only shared

data does not require indeed a cache coherence mechanism. They can be treated

differently to achieve better scalability and performance [2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14].

Efficient and accurate classification of data as either private or shared is

essential to optimize private memory access. A memory block can be classified

as private if a single core accesses it and as shared if it is accessed by more than

one core. There are many approaches in the recent literature regarding data

classification, which differ in the level at which they are performed: compiler

[15, 7], operating system [6], and hardware [16, 17, 18, 19, 20]

Compiler-assisted approaches have the limitation of knowing at compile time

if a variable is going to be accessed or not, by which core will be accessed, or even

if two variables have the same address (alias). On the other hand, operating

system schemes are forced to work at page granularity. As a consequence, these

alternatives have accuracy limitations.

Hardware-based approaches are more accurate as they can gather complete
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and fine grain information about data sharing. Classification techniques in

hardware can be done at the directory level [17, 18, 19] or at the Translation

Lookaside Buffer (TLB) level [20, 21, 22]. The advantage of the TLB-based

classification techniques is that the memory block’s private/shared nature is

readily available at the cache access. Every memory request generated by the

processor has to access the TLB to find the virtual address’s translation to

the physical address. Therefore, more optimizations are possible. Directory-

based classification obtains the private/shared nature only when the directory

is accessed and after a cache miss. Thus, in this work, we focus on TLB-based

approaches.

The main disadvantage of current TLB-based methods is the detection of

private and shared data at page-level granularity. If a page is classified as shared,

all the blocks belonging to the page are also considered as shared. Hence,

there is a noticeable loss of classification opportunities or miss-classification.

On the other hand, if classification could be done at a finer granularity, e.g., at

block level, this miss-classification of data can be reduced, and the optimization

techniques will count with more private data, and therefore, performing better.

This work proposes a TLB-based classification mechanism that operates at

memory block granularity. It can address the missing opportunities of page-

grain approaches, improving the classification accuracy and, ultimately, perfor-

mance. Our classification technique adds to each TLB entry information about

the accessed and private memory blocks of the corresponding memory page.

An efficient communication protocol is responsible for updating that fine-grain

information at run time. We explore several techniques to reduce the classifi-

cation overhead of a block-based classification, including novel proposals that

extend our previous conference publication [13]:

• Basic approach: When a TLB miss takes place, a broadcast message is

sent to the TLBs of the other cores in a multicore to collect information

about the memory blocks accessed by other cores and decide on the pri-

vate/shared status for each block in the missing page. Each TLB offers
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as private any memory block not accessed by them. In addition, the page

address translation is provided to the requester if a TLB holds the trans-

lation. This accelerates the TLB miss resolution compared to a page table

walk.

• Spatial locality optimization: Consecutive blocks to the requested one are

offered as private if they have not been accessed. Blocks after the first

block accessed are never offered as private, as even if not accessed, spatial

locality predicts that they will be accessed by the current core.

• Access permission prefetch optimization: Blocks accessed by more than

two cores are collected and marked as shared and accessed (even if the core

does not access it). When the core accesses the memory block, the TLB

already identifies it as shared, saving extra traffic that otherwise would be

generated. This mechanism has been refined with respect to our previous

conference proposal, reducing its traffic requirements.

• Opportunistic data transfer optimization: Responses issued by the TLBs

also carry the data block of the address that generated the TLB miss. This

will save a subsequent cache miss in the requesting core, thus improving

performance. This is the main contribution of this work over the previous

conference publication and improves further the advantages of fine-grain

TLB classification.

In all our designs, the information about the privacy of the block is obtained

before the L1 cache miss occurs, i.e., when accessing the TLB. Therefore, we

can apply, without loss of generality, Coherence Deactivation [6], a technique to

reduce the directory bookkeeping by not tracking private blocks, to our classi-

fication mechanism.

We evaluate the proposed block-level approaches assuming a 16-core tiled

CMP architecture with a coherence deactivation mechanism. The results are

obtained for 15 parallel applications and show that block-grain techniques detect

18% more private miss blocks than page-grain system. This helps avoid 63.1%
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of the entries in the coherence directory compared to a directory that tracks all

accessed blocks and 43.8% of the entries than techniques that employ a page-

grain approach. This results in an overall improvement in execution time by 8%

compared to a page grain approach and 13.9% compared to a baseline approach.

The outline of the paper is as follows. A background on TLB-based classifi-

cation mechanisms is provided in Section 2. Section 3 describes our block-grain

classification techniques proposed to improve the accuracy of the classification.

The simulation environment is detailed in Section 4, and performance results

are shown in Section 5. Section 6 covers the related work, and finally, Section 7

offers the conclusions of this work.

2. Background

This work presents new proposals for improving TLB-based private/shared

data classification, and it applies them to the coherence deactivation tech-

nique [6]. This section offers a background for the classification and optimization

approaches employed to make the paper self-content.

2.1. TLB-based classification techniques

TLB-based classification techniques dynamically detect data as private, read-

only, or shared based on the information stored at the TLBs [20, 21]. These

techniques rely on querying the other TLBs in the system about their use of

the data. The communication among TLBs is done through TLB-to-TLB re-

quests and responses that use the same interconnection network as the memory

accesses. On every TLB miss, a broadcast message is sent to all the other TLBs

in the system and they reply with information about their usage of the page

and, additionally, with the page translation (if they hold it), which accelerates

the page table walk process [23, 24, 25]. Obtaining the page translation for

remote TLBs leverages low-latency core-to-core communication of current chip

multiprocessors, which is lower than page table accesses. As page table walk

happens parallel to TLB-to-TLB communication, address translation can be
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achieved from the page table if none of the core TLB holds the page. The page

may change from private to shared on new access to a memory page by a core.

A recovery mechanism has to be triggered to inform the system about the new

nature of the blocks in the page and perform the appropriate actions depending

on the optimization. This is described in the next section.

2.2. Coherence Deactivation

Directory-based cache coherence is the most scalable alternative to the cache

coherence problem, as it significantly reduces traffic requirements with respect

to snoop-based cache coherence. Directory-based protocols employ directory

caches that track all memory blocks stored in the private caches, such that

they can keep the coherence of such blocks on memory write. These caches may

entail large memory requirements that grow with the system size, and therefore,

it is important to reduce number of tracked cache blocks in order to keep their

size manageable. Evictions in the directory cache cause the invalidation of

blocks stored in the private caches, since the directory will not be able to track

those blocks anymore. These invalidations generate misses known as directory

coverage misses [26], which may degrade the system performance.

Cuesta et al. proposed to deactivate cache coherence for private blocks [6]

and later for read-only blocks [27]. The mechanism consists of storing only those

blocks in the directory which need coherence management, thus reducing the

directory size. This technique requires that the private nature of the block has

to be detected before the cache miss takes place, to deactivate its coherence

maintenance. Since coherence deactivation bypasses the coherence protocol, a

hardware recovery mechanism is required when a page becomes coherent, to

avoid inconsistencies. Blocks that transition from private to shared must be

either flushed from the cache (flushing-based recovery) or updated in the direc-

tory cache [6]. Once the recovery mechanism is executed, the directory cache

is in a coherent state according to the new page classification, and coherence is

maintained as established by the cache coherence protocol.
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3. TLB-based block-grain classification

This section describes our proposed fine-grain TLB-based classification mech-

anism to detect the private/shared nature of the memory blocks accessed by each

core. The mechanism extends the TLB entries with per-block information kept

updated using coherence messages exchanged by the TLBs in the system.

3.1. The concepts

We detect and classify a memory block as private if it is not being accessed

currently by any other core. A block is considered accessed by a core if the core

has recently accessed the block and the TLB entry of the page containing that

block is still present. When a core accesses a memory block for which its pri-

vate/shared nature is unknown, the core will query the other cores in the system

to know if the other cores are accessing the block. If the answer is positive, then

the block is classified as shared. Otherwise, the block is classified as private. A

block that is classified as private may become shared when another core accesses

it in the future. A recovery mechanism ensures that the corresponding block

status is restored, and after that, both cores can access them as a shared block.

3.2. Tracking the information

The information about accessed blocks can be stored along with the TLB

translation in order to be retrieved when cores ask for the private or shared

nature of a block. An Access bit vector, where each bit represents one block in

the page, stores access information for each block. A bit set to one indicates

that this core has accessed the corresponding block. A bit set to zero means

that it has not been accessed. The private or shared information is also stored

in the TLB to avoid sending queries for every memory access. This information

is stored again per block, using a Private bit vector. A bit set to one indicates

that the corresponding block is private, while a bit set to zero indicates that

the block is shared.

Figure 1 shows the structure of a TLB entry with its most relevant fields:

the Virtual Page Number (VPN) and the Physical Page Number (PPN), and
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Figure 1: TLB entry with extra fields

the two bit vectors with access and private information for the blocks belonging

to the corresponding page. When a block has been accessed, the Private bit

information gives the classification of the block. However, when a block has

not been accessed, the Private bit provides information on future accesses to

avoid extra queries. Table I shows the meaning of the different combinations

of the Access bit and the Private bit. In the remainder of the document, we

will represent these two values as a pair (Access, Private). When the block is

found in the state (1,*), the block has already been classified, and no additional

actions are necessary. When the block is in the state (0,1), the core is the only

one in the system with this status for the block – the status of the same block in

other cores is in (0,0). Therefore, (0,1) can silently transition to (1,1) without

communicating with other TLBs. If the core locally accesses a block in the state

(0,0), a TLB-to-TLB request has to be issued because of the TLB classification

miss.

The two vectors added to each TLB entry only need to be accessed and

updated on cache misses. Although we represent the vectors as part of the

TLB structure, both parts could be decoupled: the TLB structure is accessed

in parallel to the cache access and the vector is accessed only in case of a cache

miss. This way, the critical path of a cache hit is not affected.

3.3. The classification protocol

Figure 2 shows the basic concept behind the TLB communication which

helps to update the TLB vectors to know the classification of blocks. The basic

idea divides into three parts.

• First: A TLB sends the broadcast request to the other core TLBs to know

the status of the blocks. It broadcasts only in two scenarios: TLB miss
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Table 1: Access and private information and meaning

Access Private Meaning

1 1 The core has accessed the block. The block is private.

Only one core can have this block in this state.

1 0 The core has accessed the block. The block is shared.

0 1 The core has not accessed the block. No other core

has accessed it and the core has permission to access

it in private mode without needing to ask. Only one

core can have this block in this state.

0 0 The core has not accessed the block. On access, it is

necessary to check if the other core is accessing it as

private.

and TLB classification miss. The later, status (0,0), means even though

the TLB entry is present, the classification of the block is not known.

• Second: When the TLBs of the other cores receive the request they update

the vectors in the following way: if a block is private, status (1,1), no

other core TLB can have the same status for that block; if the block is

shared, status (1,0), other cores can be shared or (0,0); if the block is

potentially private, status (0,1), the other cores will have a status (0,0)

for that block. The information about the accesses for each block is sent

back to the requester TLB.

• Third: When the TLB receives all replies from the other TLBs in the

system, it updates its vectors as we detail in this section.

The TLB-to-TLB communication protocol proposed to classify blocks into

private and shared uses the same interconnection network as the memory ac-

cesses. The next sections detail how the protocol is initiated, how other TLBs

reply to the request, and how the private/shared information is gathered.
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Figure 2: Communication between core TLBs

3.3.1. Issuing TLB-to-TLB requests

TLB-to-TLB communication protocol is initiated in two situations: i) there

is a TLB miss or ii) there is a TLB classification miss [case (0,0)]. The commu-

nication protocol is initiated by broadcasting TLB-to-TLB requests to all other

TLBs in the system. The TLB-to-TLB request carries the virtual address of

the block (which includes the address of the page) that generated the TLB-to-

TLB request and the type of request (translation miss or classification miss).

This information helps to discover when to transition to shared and when to

stay private. The block’s access is stalled until the classification for the block is

determined, which happens when all responses from other TLBs are collected.

3.3.2. Receiving a remote TLB-to-TLB request

The TLB-to-TLB request is received by each of the TLBs in the system.

The TLBs receiving the request have to perform two actions: 1) Issue a TLB

response indicating if they use the requested block (the response also carries

the address translation if found in order to accelerate the virtual-to-physical

translation [23, 20]) and 2) Update the Private bit of the requested block. In

the case of a TLB request due to a TLB miss, the requester TLB does not have

private/shared information about any of the blocks belonging to the page. In

this case, the information about the use of the blocks is sent for all blocks in

the page in a bit vector field along with the response message. This provides a
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preliminary classification of blocks that have not been accessed yet (see Table 1).

If the TLB is not currently issuing a TLB request, the information sent in the

reply corresponds to the Access bit vector in the absence of the TLB entry or

a Nack in the presence of the TLB entry. If a TLB request has been initiated,

then the block that began the request is set to one in the bit vector, since the

core is currently accessing the block.

There are two prominent cases to consider regarding the update of the Pri-

vate bit vector depending on the TLB has initiated a TLB request or not. If the

TLB has not initiated a TLB request (and there is an entry for the requested

page in the TLB), all blocks that have not been accessed are set to potentially

shared (0,0), thus offering private permission to the requester TLB. The blocks

that have been accessed do not modify the Private bit, except for the requested

block. If the requested block is in the state (1,1), it is considered private, but

another TLB is asking it. In this case, the block transitions to (1,0), that is,

shared, and a recovery mechanism (see Section 3.5.3) is initiated. Until the

recovery mechanism does not finish, the TLB response cannot be sent, to avoid

race conditions (when a TLB is considering a private block and another TLB is

considering it as shared). When the TLB has initiated a request for the page, it

is crucial to know the block that generated the request, since if a remote request

is received for this block, then the block has to be set as shared, even if all cores

respond that they are not using this block. Table 2 summarizes the previous

behavior for each block on the page. The leftmost information (state and re-

quests) refers to the information known when receiving a remote TLB request

and the information on the right (send) represents the information sent back

in the reply and how the Private bit vector transitions. The first two columns

represent the Access bit of a block in the TLB (A) and the Private bit of a block

in the TLB (P). A dash (-) represents that the block is not found in the TLB

and a star (*) indicates that the value of that field is not relevant. The next

three columns represent if the local TLB has initiated a TLB-to-TLB request

for the page in question (LP ), if that local request is for the block in question

(LB) and if the remote request is for the block in question (RB). The next

12



Table 2: Receiving remote TLB-to-TLB requests

State TLB requests Send New State

A P LP LB RB Use P

- - 0 * * 0 -

- - 1 0 * 0 0 when LP resolves

- - 1 1 0 1 1 when LP resolves

- - 1 1 1 1 0 when LP resolves

0 * * 0 * 0 0

0 * 1 1 0 1 1 when LP resolves

0 * 1 1 1 1 0

1 0 * * * 1 0

1 1 * * 0 1 1

1 1 * * 1 1 0 (Recovery)

column represents what it is sent in the reply regarding that block and the last

column represents the value for the Private bit after the request is processed.

3.3.3. Collecting all TLB responses

After receiving all TLB responses, the private/shared nature of the block

is calculated. An OR operation of all bit vectors received is performed to find

the use by remote cores, and then a NOT operation will activate the not used

blocks. The result is stored in the Private bit vector. Note that if there is a

concurrent TLB request in this node, the Private bit vector’s information is

updated as indicated in the last column of Table 2.

3.4. Protocol state transitions

This section explains the different states and transitions for a block, depicted

in Figure 3. Blocks start in state Not Present (-,-) when their page has not been

requested yet by the core and are reset to that state when the page is evicted

from the TLB. If a core accesses the block then, a TLB miss happens and

a request is sent to the other TLBs. The accessed block transitions to state
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Figure 3: Protocol state transition diagram

Requested (1,-) while the other blocks belonging to the same page move to the

Requested state (0,-). After receiving all TLB responses, the accessed block (1,-

) transitions either to private (1,1) or shared (1,0), while other blocks belonging

to the same page move to potentially shared (0,0) or potentially private (0,1).

If while performing the TLB miss in state Requested (1,-), a remote request

for the accessed block is received, the state changes to Local&Remote request

(1,-) forcing the block to be shared (1,0) after collecting all replies. This way it

guarantees coherence between TLBs when more than one TLBs request happens

at the same time. The invariant here is that a block can be in (1,1) state in only

one TLB. A similar situation happens for blocks that are not the accessed ones.

If in Requested (0,-) state, a remote request for that block comes, the state will

be (0,0) when all replies are collected. The invariant here is that a block can be

in (0,1) state in only one TLB. When local access for a block in the state (0,1)

is received, the block is silently transitioned to state private (1,1). The reason is

that this is the only TLB in the system holding potential privacy for the block

(0,1). On the other hand, if on (0,1) a remote request is received, the state

changes to potentially shared (0,0) without the need to do recovery since the
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block has not been accessed yet. If the core locally accesses a block in the state

(0,0), a TLB-to-TLB request must be issued because of the TLB classification

miss. The request informs the other TLBs about the block’s access and gets the

actual classification for the block. The state changes temporally to Requested

(1,-). It will receive only Acks —if used— or Nacks —if not used— from other

TLBs, since only one block is requested in a TLB classification miss. Once it

receives all replies, it will become shared (1,0) if any Ack is received or private

(1,1) if only Nacks are received. If a block is evicted in a shared state (1,0) state

is going to change to the start state, not present(-,-).

If a TLB entry is evicted or flushed due to a lack of TLB capacity or a TLB

shootdown, private/shared block information is lost. Furthermore, the core will

be considered as not accessing currently any block within the evicted page, and

the blocks in the page may be classified as private from that point on by another

core. All blocks belonging to the evicted page have to be removed from the cache

to keep the data’s coherence. This is an iterative process that only affects the

blocks previously accessed by the core (1,*). This process also takes more time

than in a page-grain approach since a page-grain approach requires each block’s

lookup and eviction as the access information is not present.

3.5. Reducing TLB classification misses

A block-grain classification disadvantage to a page-grain type is the extra

TLB traffic generated due to TLB classification misses. To reduce this additional

traffic, we propose the following optimizations that exploit spatial locality, use

the available information in a more efficient way, and send data blocks along

with TLB responses.

3.5.1. Spatial locality (SL) optimization

The previously explained classification protocol does not consider spatial

locality in the accesses, and all potential private blocks –not accessed by the core

receiving a TLB request– are offered as private to the requestor. Considering

spatial locality can reduce the TLB-to-TLB requests generated as a consequence
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of TLB classification misses (0,0), which are extra TLB misses introduced by

the classification mechanism.

When employing the spatial locality optimization, on the receipt of a remote

TLB request, the TLB does not give away all potentially private states (0,1) for

the requested page block. In contrast, it offers only as potentially private blocks

those ranging from the requested one to the first block already accessed by the

local core (not included) in ascending address order. Due to spatial locality,

there is a high probability of accessing a block after accessing the previous one.

This way, blocks marked as potentially private (0,1) by a TLB that are not

expected to be accessed by the requester core are kept as potentially private,

indicating to the requester that it is in use, even if they are actually not in

use. Note that potentially private blocks (0,1) transition to private blocks (1,1)

silently when the core accesses them.

3.5.2. Access permission prefetch (APP) optimization

The key idea behind this optimization is to avoid having blocks that are

classified as shared in (0,0) state, since an access that find the memory block

in that state in the TLB generated a broadcast to collect the classification

information. It is therefore preferable to have the block in (1,0) state, i.e,

accessed and shared, even if it has not been accessed before. The reason is

that in this case, no communication among TLBs is required. We call this

optimization access permission prefetch, and it is an optimized version over our

previous conference approach [13], that removes the issue of an extra bit vector

per response through the interconnection network.

In particular, when the requesting TLB detects that a memory block is

shared as it received responses from several cores accessing it, it will mark the

block as accessed too, apart from as shared. That is, it sets the block in (1,0)

state, and a future access will not generate a TLB classification miss as it occurs

in (0,0) state.
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3.5.3. Opportunistic data transfer (ODT) optimization

When a private block is changing from private to shared, a recovery mech-

anism is triggered. Our current solution is to invalidate the block that will be

shared, and copy it to the last level cache in case it is dirty. Then, after the

block has been invalidated and classified as shared, the core willing to access

the new shared block will have a cache miss, will look for the data at the last

level cache, and will store it in its local private cache. The opportunistic data

transfer optimization aims to prefetch the data block that will be accessed after

a TLB miss or a classification miss. If the block is sent from the cache doing the

recovery to the requester cache in the TLB-to-TLB transaction, a cache miss

will be saved, thus improving performance and traffic.

Since the TLB-to-TLB requests already include the information about the

block triggering the TLB or classification miss, the TLB that receives a request

for a block classified as private can ask the cache controller to send the corre-

sponding memory block directly to the requester along with the bit vector and

address translation. Additionally, the receiver updates the directory informa-

tion with the new sharer. The requester can also indicate if the TLB request

was caused by a cache access requiring exclusive or read-only permissions, and

in the first case invalidate the memory block.

A detailed explanation of the coherence transaction implemented to support

opportunistic data transfers is depicted in Figure 4 and described here:

1. Core 0 issues a load or store operation to a memory block.

2. The load/store operation accesses the TLB. In case of a TLB or classifi-

cation miss for the requested memory block, a TLB broadcast request to

other core TLBs is generated.

3. The TLB of Core 1 receives the TLB request from core 0. Core 1 TLB

checks that the block state is accessed and private (1,1), and therefore a

recovery process is required. The state of block changes to shared (1,0).

4. The TLB of Core 1 locks the requested block until the recovery completes.

It generates a FWD GETS TLB message in case of a remote load opera-
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Figure 4: Opportunistic data transfer transaction

tion or a FWD GETX TLB message in case of a remove store operation.

5. The L1 of Core 1 updates the state of the block based on load/store

operation in the remote core. Core 1 sends the memory block along with

the use vector to TLB 0. The load or store operation in Core 0 is resolved

at this time.

6. The L1 of Core 1 also sends an Update message to the L2 cache in order

to inform the directory about the new sharer.

7. Once the L2 receives the Update message, it allocates an entry in the

directory and adds the corresponding sharers.

8. The L2 sends the Unlock signal to the L1s of Core 0 and Core 1 to complete

the recovery process.

9. Once the TLB of Core 1 receives the unlock signal from the L2 cache, it

unlocks the block doing recovery and finishes the process.

10. Once the TLB of Core 0 receives all replies from other core TLBs and the

Unlock message from L2, the L1 of Core 0 state changes to a shared state.

It is important to note that the block grain recovery mechanism is much
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simpler and faster than a page-grain approach as block grain recovery expels or

updates the requested block only, while page grain evicts or updates all blocks

in a page. This is shown in Section 5.

3.6. Size of TLB response messages

Table 3 shows the different types of TLB response messages and size for each

optimization. For each scheme we show the larger possible message. Therefore,

not all TLB responses contain all the information listed.

Table 3: Types of TLB response messages and size

Scheme Message type Size (bytes)

Page Control message, address trans-

lation

8 + 4

Block Control message, address trans-

lation, use vector

8 + 4 + 8

Block+SL Control message, address trans-

lation, use vector

8 + 4 + 8

Block+SL+APP Control message, address trans-

lation, use vector

8 + 4 + 8

Block+SL+APP+ODT Control message, address trans-

lation, use vector, data block

8 + 4 + 8 + 64

3.7. Dealing with synonyms

Our mechanism works at the TLB level where the information about the

page translation and other permission bits for the page reside. Synonyms, that

is, two different virtual addresses pointing to the same physical page, could

be miss-classified as private by the described mechanism. This is because two

blocks with different virtual addresses cached in different cores but mapping to

the same physical address will be classified as private, while indeed they are

shared.
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Synonyms can be introduced by different reasons. The most common are

due to page evictions and allocation. However, existing mechanisms in current

operating systems, such as TLB shutdown, already take care of preventing these

synonyms to coexist in the system.

It is also possible for the programmer to force the presence of synonyms.

While we do not encounter such behaviour in our applications, a possible so-

lution could be to rely on the operating system to detect pages with such

synonyms. Memory pages containing synonyms would be therefore treated as

shared by default. When a page containing synonyms is accessed for the first

time, the TLB vectors would be filled with the status (1,0) and it will remain

with that status until page eviction.

3.8. Impact of thread migration

Our classification mechanism classifies accesses performed by the cores and

it is not aware of thread migration. In presence of thread migration a cache

block that is accessed by a single thread can be thus classified as shared by

our classification technique. This will only happen however when the page

translation information still present in the TLB where the thread was running

before. Otherwise, the block will be classified as private. Since thread migration

is not a frequent event, takes thousand of cycles, and it happens when cores are

contended, thus leaving the thread de-scheduled for sometime, this is a very

infrequent scenario. Hence, TLB classification is a good proxy for thread-level

classification.

3.9. Supporting large pages

Most of the operating system have a standard page size of 4KB as it provides

more granular control. However, in some cases large pages can be supported,

requiring larger bit vectors in the TLB, which can dramatically increase the

storage requirements of our approach.

To compensate for this effect, or even to reduce the TLB bit-vectors’ size

when 4KB pages are used, an alternative is to use one bit to represent a group

20



Table 4: Baseline system configuration

Memory configuration

Processor 2.20GHz, 16-core in order CPU

Cache hierarchy Non-inclusive

Split instr. and data L1 caches 64KB, 4-way (256 sets)

L1 cache hit time 1 (tag) and 2 (tag+data) cycles

Shared unified L2 cache 1MB/tile, 8-way (2048 sets)

L2 cache hit time 2 (tag) and 6 (tag+data) cycles

Directory cache per core 512 sets, 4 ways, 1 cycle

Memory access time 160 cycles

Split instr. and data TLB 128 sets, 4 ways, 1 cycle

Page size 4KB (64 blocks)

Network configuration

Topology 2-dimensional mesh (4x4)

Flit size 16 bytes

Routing technique Deterministic X-Y

Routing, switch, and link time 2, 2, and 2 cycles

Data and control message size 5 flits and 1 flit

of consecutive blocks (coarse grain representation). For example, using 64 bits

in the bit vector and considering 64KB pages (1024 blocks), each bit would

represent 16 blocks that would be classified as private or shared all together.

The impact of this approach is twofold. On one hand, the classification accuracy

would be reduced, but will be always more accurate than classifying full pages.

On the other hand, the traffic requirements would be reduced, since with a

single broadcast we classify several cache blocks. Analysing the impact of a

coarse-grain representation is out of the scope of this work.
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4. Simulation environment

The proposed approaches are implemented with a full-system simulation

using Virtutech Simics [28] and Wisconsin GEMS toolset [29]. The simulated

architecture is a 16-tile CMP architecture with directory-based cache coherence.

Table 4 shows the configuration for the simulated system. We have refined our

simulation model with respect to our previous conference publication to account

for message size overheads accurately. The TLB-to-TLB traffic uses the same

interconnect as the coherence messages for data blocks. Contention is modeled

in the network using the Garnet simulator [30], and we employ the same network

topology and bandwidth for all configurations.

Proposed schemes were evaluated for 15 different benchmarks consisting of

parallel workloads from SPLASH [31] and PARSEC [32]. Table 5 shows the

simulated benchmarks with their input size. All the reported experimental

results correspond to the region of interest of these benchmarks, that is, their

parallel phase. Once the slower thread completes its work, the parallel phase

concludes and results are reported.

5. Results

This section shows a quantitative comparison of block-grain classification

approach, comparing them to a TLB-based classification mechanism that oper-

ates at the page level (Page) and to a baseline system that does not employ any

classification (Base). For the block-grain approaches we show the effect of each

of the optimizations: Block represents the basic approach without optimization,

Block+SL includes the spatial locality optimization, Block+SL+APP adds on

top the access permission prefetch optimization, and Block+SL+APP+ODT

improves the previous approach by reducing the L1 cache misses with oppor-

tunistic data transfers.

In particular, we show how our proposals classify more accesses as private,

and how the overhead of the block-based classification is kept low thanks to our

optimizations. Recovery scheme helps to reduce the L1 cache misses. Then,

22



Table 5: Benchmarks and input sizes

Benchmark Input size

SPLASH Benchmarks

Barnes 8192 bodies, 4 time steps

Cholesky tk15.O

FFT 64K complex doubles

FMM 16K particles

LU 512×512 matrix

LUNC 1024×1024 matrix, 64×64 blocks

Ocean 258×258 ocean

Radiosity room, -ae 5000.0 -en 0.050 -bf 0.10

Volrend Head

Watersp 4096 molecules

Radix 8,388,608 integers

PARSEC Benchmarks

Blackscholes Simmedium

Fluidanimate Simsmall

Swaptions Simsmall

x264 Simsmall

we evaluate the impact of the classification when the coherence deactivation

approach is employed. The increased number of private misses translates into

fewer blocks tracked by the directory caches. A less occupied directory generates

fewer invalidation requests, which consequently reduces the L1 cache misses.

Finally, we show the overall improvement in execution time.

5.1. Private accesses

The main goal of the block-grain approach is to detect more private blocks

by removing the miss-classification of blocks in page-grain counterparts. Block-

grain achieves more accuracy in detecting private blocks than the page-grain

approaches as it detects private blocks in shared pages. Figure 5 shows the per-
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centage of L1 accesses for private blocks (hits and misses) in a page-grain scheme

(Page, First bar) and the proposed block-grain schemes: Block (Second bar),

Block+SL (Third bar), Block+SL+APP (Fourth bar) and Block+SL+APP+ODT

(Fifth bar). Results show that Page, Block, Block+SL, Block+SL+APP and

Block+SL+APP+ODT detected, on average, 22.4%, 30.7%, 32.9%, 33.4%, and

33.4% private L1 hits respectively and 0.12%, 0.24%, 0.29%, 0.29%, and 0.30%

private L1 misses, respectively. Our block-grain approaches remove the miss-

classification of page level approaches and access on average 1.5 times more pri-

vate blocks that miss in L1 than the page-grain approach. The Block, Block+SL,

Block+SL+APP and Block+SL+APP+ODT accessed, on average 12%, 17%,

17%, and 18% more private miss blocks than the page level scheme. This clearly

shows that block-grain approaches remove the miss-classification of page-level

approaches. As we will see, this more accurate classification of private blocks

reduces the number of entries required in the directory structure.

Figure 5: Private hit and private miss accesses in percentage

5.2. TLB traffic overhead

Our block-grain approach increases the number of TLB requests issued with

respect to a page-grain approach, as when the block state is potentially shared

(0,0) a TLB classification miss happens. We analyze in this section the over-

head of the TLB classification misses over the TLB misses that happen in our

baseline configuration when the page translation is not found. Figure 6 shows

this overhead, differentiating the number of TLB-to-TLB requests because of
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TLB misses (normalized with respect to Page) and because of TLB classifica-

tion misses. On average, the overhead of the number of TLB requests in Block,

Block+SL, Block+SL+APP, and Block+SL+APP+ODT is 3.1%, 2.9%, 1.0%,

and 1.0% respectively compared to the page-grain approach. Block+SL+APP

and Block+SL+APP+ODT reduce the number of TLB requests due to TLB

classification misses thanks to the access permission prefetch optimization. The

overall overhead in TLB requests is not as critical as the time resolution for this

request is lower in block-grain approaches, as discussed in the next section. LU

and Cholesky are the applications showing more TLB request overhead.

Figure 6: TLB miss broadcast overhead in Block grain

5.3. Coherence recovery latency

An advantage of the block-grain approaches is that the recovery mechanism

entails the eviction of a single block rather than all blocks belonging to the page,

as happens in the page-grain approach. As a consequence of flushing a single

block instead of iterating the whole page, block-grain approaches have a shorter

recovery mechanism and hence require less latency to resolve TLB misses com-

pared to page-grain approach. This low TLB miss latency results in reductions

in execution time. Figure 7 shows the latency of the recovery mechanism both

in the page-grain approach and in the block-grain approaches. The page (First

bar)requires on average 97.7 clock cycles for the recovery operation. On the

other hand, block-grain approaches require considerably less time: 24.2 cycles
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on average for Block (Second bar), 24 cycles on average for Block+SL (Third

bar), 24 cycles for Block+SL+APP (Fourth bar), and 26.3 cycles on average

for Block+SL+APP+ODT (Fifth bar) scheme. The Block+SL+APP+ODT

scheme merges TLB communication with the cache miss resolution which results

in 2.4% extra recovery latency compared to the other block grain approaches.

However, it is still lower than the page grain approach, since the page grain

approach manages the recovery of up to 64 blocks.

Figure 7: The latency of the recovery mechanism(cycles)

5.4. Average directory entries required (per cycle)

The main metric to measure the benefit of our block-grain approaches on

the coherence deactivation technique is the number of directory records required

to keep track of the cached blocks. Figure 8 shows the normalized number of

directory entries required with respect to Base, where all cached blocks are

tracked by the directory (no deactivation is performed). When employing our

fine-grain approach the required directory entries fall dramatically. Page(Second

bar) avoids the storage of 34%, Block (Third bar) avoids the storage of 50.6%

of the entries, Block+SL (Fourth bar) avoids the storage of 51.6% of the en-

tries, Block+SL+APP (Fifth bar) avoids the storage of 63.1% of the entries and

Block+SL+APP+ODT (Sixth bar) avoids the storage of the 62.3% compared

to baseline approach. Additionally, when compared to the page-grain scheme,

our block-grain schemes reduce the number of required entries by 25.3%, 26.3%,

43.8%, and 42.6%, respectively, for the Block, Block+SL, Block+SL+APP, and
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Block+SL+APP+ODT. Blackscholes just require 5.0% of the entries in the di-

rectory cache as being a highly scalable benchmark it has more private blocks.

Ocean requires only 19.0% entries in directory compared to the page-grain ap-

proach.

Figure 8: Average directory entries required (per cycle)

5.5. L1 cache misses

Thanks to the reduction in the directory cache requirements that cause fewer

evictions in the directory cache and less coverage misses, thanks to having less

flushed blocks from the L1 cache, a reduction in L1 cache misses is found in

block-grain schemes. Additionally, the Block+SL+APP+ODT scheme sends

the data block along with the TLB communication on recoveries. This helps to

improve the hit rate of shared blocks and reduces the L1 cache misses. Fig-

ure 9 shows the L1 cache miss ratio normalized with reference to Base for

the page approach (First bar), Block (Second bar), Block+SL (Third bar),

Block+SL+APP (Fourth bar) and Block+SL+APP+ODT (Fifth bar). Cache

misses classify in 3C (Compulsory, Conflict, Capacity), Coherence miss (because

of invalidation due to other core write), Coverage miss (because of invalidation

due to eviction from the directory cache), and Flushing miss (because of the

recovery mechanism or TLB evictions). Compared to baseline protocol, Block

reduces L1 cache-miss of 50% of the entries, Block+SL avoids the L1 cache-miss

of 53% of the entries, Block+SL+APP reduces L1cache-miss of the 53% and
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Block+AL+APP+ODT reduces L1cache-miss of the 55%. Additionally, when

compared to Page, our block-grain schemes reduce the L1 cache-miss by 17%,

24%, 24% and 25%, respectively, for the Block, Block+SL, Block+SL+APP,

and Block+SL+APP+ODT. On average, the page has 31% of coverage misses

compared to the total amount of misses while the Block has on average 10%

of coverage misses compared to the total amount of misses of the page-grain

approach. x264 does not reduce the cache miss rate as it does not increase the

number of classified private-miss accesses. Our new Block+SL+APP+ODT

scheme reduces the L1 cache misses by 2% (up to 5% in Radix) compared to

the BLOCK+SL+APP scheme.

Figure 9: Normalized L1 cache miss rate with respect to baseline

5.6. Normalized network traffic under coherence deactivation

The network traffic is also reduced in the proposed block-grain approaches

even with some TLB communication overhead. The reduction in messages oc-

curs because of fewer invalidation messages from the directory cache and a lower

L1 cache miss ratio. Figure 10 shows the normalized network traffic compared to

baseline for the page approach (First bar), Block (Second bar), Block+SL (Third

bar), Block+SL+APP (Fourth bar) and Block+SL+APP+ODT (Fifth bar).

Each bar differentiates the traffic based on cache request, cache response control,

cache response data, TLB request, TLB response control, and TLB response

data. Block-grain approaches detect more private data and less cache misses,
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which results in less traffic. On the other hand, the TLB-to-TLB communica-

tion network’s overhead increases the amount of on-chip network traffic. These

two opposite communication trends can roughly balance out and still proposed

approaches to reduce the network traffic. Block, Block+SL, Block+SL+APP,

and Block+SL+APP+ODT reduce the network traffic by 33.4%, 40.2%, 44.1%,

and 45.9% respectively compared to the baseline setup. Block increases network

traffic 11% compared to Page as having more TLB communication overhead.

Block+SL has same network traffic as page and Block+SL+APP reduces 7%

network traffic compared to Page with the help of a reduction in TLB broad-

cast. The Block+SL+APP+ODT scheme reduces the 10.1% reduction in net-

work traffic compared to page scheme because of reduction in L1 cache misses.

Watersp reduces around 93.0% traffic as it has a 95.0% reduction in L1 cache

misses with respect to the baseline cache protocol. Cholesky increases traffic

3.5% as it has a number of TLB broadcast overhead.

Figure 10: Normalized network traffic under coherence deactivation

5.7. Execution time for coherence deactivation

Given all the previous analysis (lower L1 cache miss rate, a larger number

of private misses, less network traffic, and less directory occupancy) we can

expect reductions in execution time with the block-grain approaches. Figure 11

shows the execution time for Base (First bar) with 100% coverage directory,

Base 1/8 (8 times less entries in the directory - Second bar), Page 1/8 (Third

bar), Block 1/8 (Fourth bar), Block+SL 1/8 (Fifth bar), Block+SL+APP 1/8
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(Sixth bar), and Block+SL+APP+ODT (Seventh bar) normalized with respect

to Base, which does not detect private blocks. The directory cache employed

for both Page and Block in this study has been reduced to 1/8 of its original

size, in order to stress the advantages of the classification approaches. Block,

Block+SL, Block+SL+APP, and Block+SL+APP+ODT reduce the execution

time by 8.4%, 10.4%, 11.8% and, 13.9%considering 8 times smaller directory

cache when compared to Base. Furthermore, when compared to Page, they

reduce the execution time by 2.0%, 4.1%, 6.0% and 8.0% respectively.

Figure 11: Execution time for coherence deactivation

5.8. Scalability analysis

This section shows how the different fine-grain schemes scale with the coher-

ence deactivation. We just perform the scalability analysis for the applications

that finished within 5 days for 32 cores for each application, that is, all bench-

marks mentioned in Table 5 except x264 and swaptions. Figure 12 shows how

the Block+SL+APP+ODT scheme scales better compared to the Page scheme.

Block+SL+APP+ODT reduces the execution time by 13% for 8 cores, by 15%

for 16 cores, and by 21% for 32 cores with respect to the baseline configuration.

On the other hand, the page scheme reduces the execution time by 9% for 8

cores, by 8% for 16 cores, and by 13% for 32 cores over the baseline. This differ-

ence shows that how performing a more accurate classification provides better

directory usage, and ultimately better system performance and scalability.
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Figure 12: Execution time for coherence deactivation for different number of cores

5.9. Memory overhead

Our block-grain approaches trade off non-scalable directory entries with scal-

able TLB bit vectors. Therefore, as the number of cores grows in the system,

more memory will be saved than a baseline approach. For the configuration

employed in this work, the memory pages (4KB) and memory blocks (64B).

Since, each TLB entry includes two bit vectors and there are a total of TLB 1K

entries per core, the overhead is 16KB per core. On the other hand, block-grain

techniques allow us to reduce the directory size. The directory is a non-scalable

structure, as many implementations employ a bit vector that grows linearly

with the number of cores. A directory with the same number of entries as the

private caches in this work requires 2K entries per core. Each entry accounts

for a tag, state bits, and the non-scalable bit vector (6 bytes). The directory

requires 12KB. We can improve performance with one-eighth of this size, that

is 10.5KB storage savings. As the number of cores increases, the directory size

increases too. For example, a similar directory for just 64 cores requires 4 (tag)

+ 8 (bit vector) bytes per entry, that is a directory of 24KB. Reducing it to one

eighth would mean to save overall storage requirements of 21KB compared to

the baseline configuration.
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6. Related work

There have been recently several research works aimed at classifying data

between private and shared to employ the classification for optimizing cache

coherence protocols [14]. Classification of data can be done at either fine grain

(cache block or even data access) or coarse grain (memory page), and it should

be as adaptive as possible [33].

6.1. Fine-grain approaches

Fine grain approaches include compiler- and directory-based approaches. In

a compiler-based approach [7, 15] it is hard to know at the time of compilation

what will be the sharing status of a variable at run time, mostly if the status is

detected in a certain period of time. Our fine-grain proposal works at run time

which gives a more accurate classification.

Directory-based techniques work at block level but the classification is de-

tected after a cache miss, disabling the use of coherence deactivation techniques.

In SWEL [17] the L1 cache stores non-coherent blocks and the L2 cache stores

coherent blocks. POPS [34] optimizes the protocol by combining private and

shared memory blocks on various L2 cache slices in the NUCA architecture.

Valls et al. [35] designed a two-level directory where the first level is small and

stores shared data cache and the second level is large and stores private data.

The reason behind this is that most hits occur for shared records. Multigrain

[19] is a directory-based mechanism that temporarily allocates a single record to

a private region rather than assigning a record for each private block. It adjusts

the area of the region at run time, thus saving directory storage. Our block-

grain approach can support coherence deactivation and any other optimization

technique that requires the classification to be known before the cache miss.

Additionally, it does not entails any modification to the directory structure.

6.2. Coarse-grain approaches

Coarse grain approaches perform a classification of memory pages with the

page table’s help and/or the TLB [6, 20, 36, 10]. Cuesta et al. [6] use the page
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table to detect the memory pages’ nature and deactivate coherence for blocks in

private pages. Ros et al. [20] improve the classification accuracy thanks to TLB-

to-TLB communication and a late discovery of TLB evictions. TokenTLB [21]

is a token-based coherence mechanism [37], that reduces TLB communication.

With a prediction of the use of pages [22] the accuracy of classification can

be improved, as TLB evictions can be detected earlier. The forced-sharing

predictor [36] helps to reduce extra classification traffic introduced when a block

is private to different cores for a small period of time. Some of these optimization

are orthogonal to our work, but we increase classification accuracy thanks to a

fine-grain classification.

Recently, Caheny et al. [11] have proposed a hardware-software co-design

proposal using a parallel programming model to deactivate the cache coherence

protocol, reducing the directory area energy consumption with the help of extra

hardware. Studies at sub-page granularity have also been performed recently

[38], by using an on-chip page table to find address translation. This proposal

requires to modify the operating system and the page tables to store, among

other information, a keeper for each of the sub-pages. The amount of storage

required to hold all keepers, information that increases as the number of cores

increases, for the vast virtual space can be prohibitive. In contrast, our proposal

is able to work with finer granularity, and consequently achieving higher accu-

racy, with low and scalable storage requirements, at the same time that it does

not require modifications to the operating system. In addition, a block-grain

approach enables a much simpler recovery mechanism compared to page-level

or coarser-grain since only a single cache line per TLB request is recovered. Fi-

nally, in order to reduce the traffic required to communicate TLBs, we propose

three optimization techniques: spatial locality, access permission prefetch, and

opportunistic data placement, which could be also applicable to sub-page grain

schemes. Finally, a real time prototype of private/shared data classification

has been recently implemented on LEON SPARC multiprocessor[39] using a

page-grain approach.

33



7. Conclusions and future work

Categorizing memory accesses into private and shared helps to achieve scala-

bility and efficiency in a multicore system. This paper proposes a novel approach

to augment each TLB entry with bit vectors that denote each cache block’s shar-

ing and access status within the corresponding page. This way we can categorize

data as private or shared at a finer granularity than existing approaches using

the TLB structures. Without loss of generality this classification can used to

avoid coherence for private data, freeing up directory entries.

The proposed scheme detects, on average, more accessed private miss blocks

18.0% than previous approaches and results in performance improvement of

8.0% compared to a page-grain approach. Additionally, our block-grain ap-

proach trades off non-scalable directory entries for scalable bit vectors at the

TLB. Our future work aims study classification mechanisms in a snooping based

cache coherence scenario, eliminating the non-scalable directory structure and

using only scalable TLB bit vectors, while reducing interconnection traffic.
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[6] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, J. Duato, Increasing the ef-

fectiveness of directory caches by deactivating coherence for private mem-

ory blocks, in: 38th International Symposium on Computer Architecture

(ISCA), 2011, pp. 93–103.

[7] Y. Li, R. Melhem, A. K. Jones, Practically private: Enabling high perfor-

mance cmps through compiler-assisted data classification, in: 21st Inter-

national Conference on Parallel Architectures and Compilation Techniques

(PACT), 2012, pp. 231–240.

[8] A. Ros, S. Kaxiras, Complexity-effective multicore coherence, in: 21st In-

ternational Conference on Parallel Architectures and Compilation Tech-

niques (PACT), 2012, pp. 241–252.

[9] S. Shukla, M. Chaudhuri, Tiny directory: Efficient shared memory in many-

core systems with ultra-low-overhead coherence tracking, in: International

Symposium on High Performance Computer Architecture (HPCA), 2017,

pp. 205–216.
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