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Abstract—Benchmarks are indispensable in evaluating the
performance implications of new research ideas. However, their
usefulness is compromised if they do not work correctly on a
system under evaluation or, in general, if they cannot be used
consistently to compare different systems.

A well-known benchmark suite of parallel applications is
the Splash-2 suite. Since its creation in the context of the
DASH project, Splash-2 benchmarks have been widely used
in research. However, Splash-2 was released over two decades
ago and does not adhere to the recent C memory consistency
model. This leads to unexpected and often incorrect behavior
when some Splash-2 benchmarks are used in conjunction with
contemporary compilers and hardware (simulated or real). Most
importantly, we discovered critical performance bugs that may
question some of the reported benchmark results.

In this work, we analyze the Splash-2 benchmarks and expose
data races and related performance bugs. We rectify the prob-
lematic benchmarks and evaluate the resulting performance.
Our work contributes to the community a new sanitized version
of thel Splash-2 benchmarks, called the Splash-3 benchmark
suite.

I. INTRODUCTION

Among benchmark suites for the evaluation of parallel
architectures, Splash-2 [1] stands out as the first with a
wide variety of complex parallel applications (not simply
numerical kernels) and continuous use for two decades.
Newer benchmark suites, such as PARSEC [2], are gaining
in visibility, albeit without replacing Splash-2 but rather
complementing it, as attested by the many studies that use
both newer suites and Splash-2.

Splash-2 was created in the context of the Stanford DASH
project [3] as a means to standardize benchmarking in the
then emerging large-scale cc-NUMA architectures. Emphasis
in Splash-2 optimizations was given towards enhancing scal-
ability. Among the many optimizations found in the Splash-2
applications, we focus on the ones that concern synchroniza-
tion.? Splash-2 applications are written in C (some ported to
C from FORTRAN) and synchronization in C programs, by
virtue of C’s low-level nature, closely interacts with memory
model semantics.

IThe Splash-3 source code is available at http:/splash3.argodsm.com

20ther work [4] contributed fixes and enhancements to the original
Splash-2 but without going into the synchronization structure of the ap-
plications.
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At the time the Splash-2 was created, the C language
standard did not specify a memory model. Lacking a clear C-
language memory model, Splash-2 were written with stricter
memory models in mind, such as the Sequential Consistency
(SC) [5] or Total Store Order (TSO) [6] memory models.
However, the latest C standards [7] define a memory model
that guarantees sequential consistency for data-race-free (SC
for DRF [8]) applications. Other high-level language stan-
dards (e.g., C++11 [9], [10], Java [11]) have also adopted
a memory model that provides SC for DRF applications. In
this model, applications containing data races may exhibit
unexpected behavior.

As recently shown, some of the Splash-2 applications
do contain data races [12]. These races exist in Splash-2
not because they are outright bugs but as synchronization
optimizations, presumably in an effort to enhance scalability
for a generation of machines where synchronization (e.g.,
locks) was deemed particularly expensive. Data races can
lead to unexpected and often incorrect behavior when the
applications containing them are used in conjunction with
contemporary C compiler (that supports SC for DRF) or
hardware (either simulated or real) that supports a more
relaxed memory model than TSO, as for example Release
Consistency (RC) [13] or a Weak memory model (e.g.,
ARM [14] or Power [15] architectures).

Unexpected behaviors translate to non-deterministic or
incorrect output, or even to performance bugs. Performance
bugs, in particular, can jeopardize trust on previous evalua-
tions of the troublesome applications. For example, our work
shows that two Splash-2 applications, precisely because of
the interaction of the data races in them with contemporary
C compilers or with weakly-ordered hardware, can perform
erratically. The first example is Radiosity where, because of
a race condition, it is possible that only one thread ends up
with all the work (while there are many other idling threads),
artificially increasing load imbalance (thus increasing run-
time and ruining scalability) in arbitrary configurations. The
second example is Volrend where, because of a data race,
the same task can be redundantly executed by more than
one thread, again artificially increasing run-time in arbitrary
configurations.

To analyze Splash-2 we developed our own tool to check


http://splash3.argodsm.com/

for SC for DRF compliance [16]. The tool detects data
races at run-time and although it cannot be used to prove
DREF correctness of programs (for this, other—perhaps more
formal—approaches are needed), it has proven invaluable in
pointing us to the troublesome spots in the source code for
the applications that did exhibit data races. We found seven
applications, out of 14 in the Splash-2 benchmark suite, with
data races (Section III).

We then proceeded to address the trouble spots. We
followed the least invasive strategy we could to remove
the data races, aiming to deviate as little as possible from
the functionality of the original code. Where necessary we
include additional synchronization either with locks (lock-
/unlock) or with conditional variables (signal/broadcast/wait).
In the process, we discovered critical performance bugs in
two applications that are perhaps the result of the initial
effort to optimize synchronization in the original application
(Section IV). The result of this process is a new version of
the applications that is compliant with the contemporary C-
standard memory model.

Finally, we characterize the new version with respect to
performance, scalability, and network traffic, using detailed
simulation of multiprocessor systems (Section V). Our modi-
fications affect the execution time of some of the applications,
but without affecting the average. We also report on the
additional synchronization introduced to remove data races.
The end result is a more robust benchmark suite that we
release as the Splash-3 benchmark suite.

To summarize, our contributions are:

« We systematically check Splash-2 with respect to its
synchronization optimizations. We uncover data races
using thorough code inspection and employing tools we
developed for this purpose (akin to the Fast&Furious
tool [12]).

o We expose unknown performance bugs in Splash-2
applications and show how these bugs could affect
previous simulations using these applications.

« We remove data races in the applications, adding syn-
chronization where necessary, and make them compliant
with the current C standard memory model. This makes
the applications data-race-free, by library synchroniza-
tion primitives only. Where necessary we change the
code to fix performance or correctness bugs.

o We quantify the performance, traffic, and synchroniza-
tion of the new applications using a simulation method-
ology that models in detail the memory hierarchy of
multiprocessors.

« We offer to the community a more robust suite of
applications, the Splash-3 benchmark suite.

II. DATA RACES

As defined by Adve and Hill [8], a data race occurs
when two threads access the same memory location, at least
one of the accesses is a store, and there is no intervening

synchronization (even transitive) between the threads (see
Sorin et al. for an authoritative tutorial [17]). What con-
stitutes synchronization depends on the underlying memory
model. This definition, therefore, assumes that the model
distinguishes between synchronization and ordinary (non-
synchronization or data) operations. In fact, languages like
C include the declaration of _Atomic (or atomic in C++,
volatile in Java) variables, to perform synchronization
loads and stores among threads, in conjunction with other
synchronization mechanisms such as locks and memory
fences. If one considers all data races in a program as
synchronization, the program would be data-race-free.

Why are, however, data races such a problem, especially
for the Splash-2 suite? If we take, as an example, the popular
x86 architecture, which specifies a model that is stricter than
release consistency (TSO), we will find that there is a lot of
software written for it that contains data races but has been
working correctly for many years. However:

o While software written with TSO in mind has indeed
been working for many years now, it is impossible to
use them on any other platform that requires some more
relaxed memory model. In the case of Splash-2, this limits
researchers in using the benchmark suite for evaluating
their modern designs.

o One of the reasons why software has been working so far,
and particularly C/C++ software, is that compiler writers
have been taking into consideration the stricter memory
model of x86 (and presumably other platforms as well) and
have been avoiding optimizations that might break their
users’ code. However, with the introduction of the C/C++
memory models in their respective standards, as well as
their respective thread support libraries, and by declaring
data races as undefined behavior, the compiler writers are
now free to apply any optimizations they see fit. This
means that programs that do not follow the memory model
will start (and already have, as we will see in Section IV)
exhibiting bugs and other unwanted behavior.

« An extension to the previous point, undefined behavior in
an application leads to both unpredictable and inconsistent
run-time performance characteristics.

III. DETECTING THE DATA RACES

In order to detect data races in the Splash-2 applications,
and in conjunction with manually analyzing the code, we
implemented a tool using Intel’s PIN [18], a dynamic binary
instrumentation framework. Our tool is an extension to the
Fast&Furious tool [12]. In particular, the tool implements a
memory model which is the same as the one defined in the C
standard. As we mentioned, this model provides sequential
consistency for data-race-free applications. The tool checks
the values obtained at every load operation and compares
them to the values that should have been obtained with an SC
model. If the values coincide, the tool concludes that no data
races where found during the execution of the application.



Otherwise, if inconsistencies in the value of the loads are
found, the tool alerts about the data race, since the application
should have an SC behavior in absence of data races. The
tool therefore prints the line of code of both the inconsistent
load and the last store to that address.

Although this run-time tool cannot verify DRF application
correctness, it can at least ensure SC-execution of the appli-
cations. Hence, we can guarantee that during the simulations
performed in this work no data races occurred, or if they
did occur they did not affect SC semantics. In addition to
that, we perform a large number of runs in an effort to find
some of the more rare races. With the detailed information
from the tool, we analyzed the races in the code and fixed
them following the least invasive strategy we could in order
to respect the intended behavior of the application.

Our goal for this release of Splash-3 is to have a bench-
mark suite that can be used for simulation, with the widely
used input parameters that the original Splash-2 paper [1]
describes. As such, we only checked and corrected the
applications for those parameters and not for every possible
input. The latter would be impossible to check dynamically
at run-time, since it is an NP-complete problem.

Out of the 14 applications in the Splash-2 benchmark suite,
seven were found to contain data races. These applications
are Barnes, Cholesky, FMM, Radiosity, Raytrace, Ocean-nc,
and Volrend. The data races can be classified in the following
(not mutually exclusive) categories:

Double-checked locks (DCL), (a.k.a. conditional synchro-
nization) which happen when a conditional statement (e.g.,
an if statement) that needs to be checked within a critical
section is first checked outside the critical section. This is
done in order to avoid acquiring the lock for the critical
section if the check fails. This is generally not considered
a good programming practice [19].

Spin-loops, almost always coupled with volatile vari-
ables, are meant as a lightweight implementation of sig-
nal/wait. Essentially, one or more threads will spin in a
while loop waiting for some shared variable (usually
qualified as volatile — it can either be a flag or
it might contain actual data) to get some specific value,
which is written by another thread. This is not correct,
since the only ordering volatile guarantees is that dif-
ferent volatile accesses will not be reordered in the
same thread [20]. In our modifications, we removed all
volatile qualifiers from the applications and we replaced
them with proper synchronization mechanisms. Namely, the
most common way of implementing signal/wait is by using
conditional variables [21] (also known as “monitors”).

Fuzzy barriers, usually coupled with job stealing, is a syn-
chronization mechanism where one or more threads reaches
a barrier, but instead of just waiting there, they also try to
find and perform some useful work. The problem with these
barriers is the underlying synchronization which is often
implemented in a racy manner.

Conditional statements, which are often used to implement
the three constructs named above, are data races where the
value obtained from a racy load is used to decide the result
of a conditional statement, such as an if or a while
statement.

“Benign” data races are these data races that are seemingly
safe to perform, even under a relaxed memory model. They
are usually (but not always) racy loads and stores to shared
data (a.k.a. racy assignments) that is not important to
keep fully coherent. Practically, all of the races mentioned
above can be characterized as “benign”. The name “benign”
comes from the fact that they are seemingly safe, however,
in reality it is possible that they might cause erroneous
behavior [22], [23], [24], [25].

IV. THE DATA RACES: IMPLICATIONS AND SOLUTIONS

In this section we discuss the data races and bugs that
we found in the Splash-2 benchmark suite, as well as their
implications for the execution of the applications, and how
we fixed them. We present only the most interesting code
samples; the complete set of modifications can be found by
comparing the source code of Splash-3 with Splash-2.

Generally, we try to keep our modifications as simple
as possible, for two reasons: First, introducing complex
synchronization mechanisms would hinder other researchers
from using the applications, since they might not be available
on every system. Second, we did not want to introduce
unnecessary changes to the behavior of the applications.
After all, one of the reasons why Splash-2 is so widely used
is simply because its behavior is well know and has been
extensively documented.

For these reasons, apart from requiring additional locks,
the only new synchronization mechanisms that we have intro-
duced are conditional variables (signal/broadcast/wait) [21]
and also one release memory fence in Barnes.

A. Barnes

Barnes contains a double-checked lock in the 1oadtree
function in the load.C file, which we fixed by removing
the unprotected conditional statement. Also, it contains some
unsynchronized spin-loops in the hackcofm function (same
file), which we replaced with conditional variables. The
conditional variable will unlock the lock that the thread is
holding and then it will put the threads to sleep. When
the condition is met, another thread will signal the variable,
which will awake the thread and relock the lock. The inter-
esting part in Barnes is that both the loads and stores to the
variable of the spin-loop were done without synchronization,
probably because it is a simple volatile flag variable.
However, this means that the compiler is free to reorder both
the loads and the stores in the code as it sees fit, which will
cause incorrect behavior.

Except for these races, Barnes also contains a couple of
other ”benign” data races, the first one regarding the positions



of the particles, and the second one regarding the parent
of a node. Neither of these are particularly interesting, in
the sense that for now the compiler seems to do the correct
thing. However, since in the C standard races are considered
bugs, we fixed these races by protecting the accesses with
the appropriate locks.

Finally, we found a data race that can lead to a race
condition and incorrect execution, in the loadtree func-
tion mentioned earlier. The skeleton of the racy code is
shown in Figure 1. Consider two threads A and B, as
well as a tree with just the root R and a leaf L, con-
taining the maximum number of bodies allowed in a leaf.
Thread A enters the loadtree function with mynode
= &R and gptr = &R.child[0] (=L) (Lines 1, 2),
acquires the lock for R, enters the leaf case (Line 10), and
calls SubdivideLeaf (Line 12). In SubdivideLeaf
A allocates a new empty node N and it sets (i) the first
child pointer of N (N.child[0]) to point to L. Then, after
returning from SubdivideLeaf, A sets (ii) »gptr =
&N (same line). Now assume that (ii) happens before (i). Of
course no x86 CPU will do that, but a standard compliant
compiler might, as it is allowed under the current C memory
model. Now let us assume that before (i) happens, thread
B enters loadtree, with mynode = &R and gptr =
&R.child[0] (=N) (Lines 1, 2). N is neither a leaf nor
NULL, so B proceeds to mynode = &N and gptr =
&N.child[0] (=L) (Lines 17, 18). Now B acquires the
lock for N, enters the NULL case (Line 7), allocates a new
leaf node L, adds the new particle to I and assigns gptr
= &L’. Now (i) takes place, overwriting the value of the
first child pointer of N from L’ to L, thus making L’ and
its particles disappear. In order to fix this issue, we inserted
a release fence between the call to SubdivideLeaf and
the assignment to »rgptr in order to prevent the reordering
of (i) and (ii). Usually the locks protecting the access to
the variables will also protect from such reorderings, but in
this case the fine grained locking prevented that. We avoided
adding additional locks to prevent deadlocks caused by the
overlapping locking pattern. This is an excellent example on
how subtle and hard to find such bugs in the code can be.

B. Cholesky

In Cholesky the data races appear in the implementation
of a task queue (Fig. 2). In particular, Cholesky utilizes
conditional DCL synchronization (Line 2 in Fig. 2b) and
a spin-loop (Line 15 in Fig. 2b), both in the task dequeue
operation. First, the availability of a new task is checked
without acquiring any locks, in an effort to avoid unnecessary
locking if no tasks are available. Then, if no new tasks are
available, the thread will spin on the head pointer of the
queue until a new task is enqueued by another thread.

As both races are related, we fixed both of them at the same
time. We removed the first conditional statement and we also
moved the spin-loop inside the critical section, replacing it

I nodeptr mynode = root;
nodeptr *qptr = &mynode—>child [...];

L while (...) {

6 LOCK(mynode—>lock) ;
7 if (xqptr == NULL) {

8 le = InitLeaf (...); le—=body[0] = ...
9 sxqptr = le;
10 } else if (Type(xqptr) == LEAF) {

1 if (xqptr—>num_bodies == MAX_BODIES_PER_LEAF) {
12 #qptr = SubdivideLeaf (...)
13 } else { ...
}
15 UNLOCK (mynode—>lock) ;
17 mynode = xqptr;
18 qptr = &mynode—>child [...];
9}

Fig. 1: The code containing the data race bug in Barnes

I LOCK(tasks[i].taskLock);
> if (is_probe) {

4 tasks[i].probeQ = t;

6 } else {
8 tasks[i].taskQ = t;
M

11 UNLOCK(tasks[i].taskLock);
(a) Enqueue

1 for (53) {
if (tasks[j].taskQ || tasks[j].probeQ) {
LOCK(tasks[j].taskLock);
4 if (tasks[j].probeQ) {

6 t.a.léks[j].probeQ = ...

: if'i'lasks[j].last) {

10 t.a.léks[j].tast = ...;

12 UNIbéK(tasks[j ].taskLock);

L} else

15 while (! tasks[j].taskQ && !tasks[j].probeQ)

(b) Dequeue
Fig. 2: Implicit synchronization in Cholesky

with a conditional variable (wait). The conditional variable
releases the lock and suspends the spin-loop while waiting for
another thread to signal that a new task has been enqueued.
The enqueue function was modified accordingly, in order to
signal the conditional variables waiting for the new tasks.
The signal is placed inside the critical section in Figure 2a.

C. FMM

FMM has multiple spin-loops in the cost_zones.C,
construct_grid.C, and interactions.C files. All
of them are used in place of conditional variables, and since
they are unsynchronized they cause a large number of other
data races as well. Much like all the other places where
we encountered similar patterns, we introduced conditional



I void process_tasks (...) {

t = DEQUEUE_TASK(...) ;
4 retry_entry :
while (t) {
6 switch (t—>task_type) {

}
. t = DEQUEUE_TASK(...):
10 }

12 while (global —>pbar_count < n_processors) {
13 if (_process_task_wait_loop())

14 break ;

15 t = DEQUEUE_TASK (...)

16 if(t) {

17 LOCK( global =>pbar_lock);

18 global —>pbar_count— ;

19 UNLOCK( global —pbar_lock);

20 goto retry_entry

21 }
2 }
BARRIER( global —barrier , n_processors);

SN
(a) Barrier loop

1 long _process_task_wait_loop () {
finished = 0 ;
3 for(i = 0; i < 1000 && !finished ;
4 if ((1i & O0xff) == 0)
5 if ((volatile long)global —pbar_count
6 >= N_processors)
finished = 1 ;

i++) {

9 return(finished);

0}
(b) Backoff function
Fig. 3: The fuzzy barrier implementation in Radiosity

variables for both the load and the store operations, thus
fixing all the races.

In addition to these races, FMM also contains a number
of ”benign” racy assignments when accessing the type,
children, and num_particles variables of the boxes,
in the construct_grid.C and partition_grid.C
files. While they are not quite used as implicit synchro-
nization mechanisms?®, reordering how these variables are
stored or loaded would cause the program to misbehave.
For example, it is possible to read the wrong number of
children before the child pointers have been updated, since
the accesses are done completely unprotected. Surrounding
the offending code with locks prevents any such reorderings.

Finally, there are a number of racy assignments when
accessing the expansion terms, in the interactions.C
file. Presumably those races exist because there is no need
for complete correctness when reading the expansion values,
and the programmer(s) wanted to avoid unnecessary lock
contention. As always, we fixed them by introducing the
necessary locking.

D. Radiosity
In Radiosity we found three different cases of data races.
The first case, and the most interesting one, is the “fuzzy”

3For one, eliminating those races does not eliminate any other races that
we found.

barrier implementation.

Radiosity implements a barrier by increasing a counter and
waiting until all threads arrive to the barrier. However, in
the mean time, it checks if there is any work to do. This
is implemented by polling both the barrier counter and the
task queue inside a while loop. A simple backoff function
(from the queue) is also used (called in Line 13 in Fig. 3a
and defined in Fig. 3b). If a thread finds some work to do,
it decrements the barrier counter and processes the work.
When it finishes, the counter is increased and the thread once
again waits for the other threads to arrive. The counter is
not declared as volatile, but is temporarily qualified as
volatile inside the backoff function (Line 5 in Fig. 3b).
After the fuzzy barrier, there is also an explicit normal barrier,
presumably to prevent either instruction reordering or threads
exiting the fuzzy barrier prematurely. The data races in this
case happen when the barrier counter is checked in two places
without acquiring any locks, while other threads might be
updating it.

This case is particularly interesting because here we can
find an example of the compiler doing something un-
wanted. Specifically, when compiling with gcc-5.2.0
or clang—-3.6.1 the compiler will optimize away the
backoff function completely. The compiler sees only a loop
checking a variable without any synchronization and assumes
that the variable is not modified from any other threads. At
the same time, the cast to volatile is discarded by the
compiler, since according to the C standard [7] (6.5.4 “Cast
Operators” § 5) a cast does not produce an lvalue and thus
casting to a qualified type is the same as casting to the
unqualified version of the type. This means that all the
compiler sees is a loop (which is guaranteed to finish after a
set number of iterations) that reads the same variable multiple
times, without the variable being modified anywhere. Thus,
for the compiler, it makes perfect sense to remove the loop
altogether. As we explain in the introduction, before the
new C standard and accompanying memory model, compiler
writers used to be hesitant to perform such optimizations,
but nowadays they are becoming more and more prevalent.
For example, this optimization will not happen with the older
gcc—5.1.0. In order to fix these issues, we protected all the
accesses to the barrier counter variable with the preexisting
appropriate lock.

The second case of data races is once more that of double-
checked locking in the task queue. When trying to dequeue a
task, the number of tasks in the queue is checked outside the
critical section, in an attempt to avoid unnecessary locking
if the task queue is empty. We know how DCL can be
harmful, so we removed the conditional checks outside the
critical section. In a similar manner, the length of the queue
is also checked for load balancing reasons, again without
any synchronization. We rectified this using the preexisting
appropriate locks.

Finally, the third case is a number of unsynchronized



accesses to the radiosity values of the elements. Presumably,
due to the iterative nature of the algorithm, reading an
inaccurate radiosity value is not an issue, and the program-
mer(s) wanted to avoid unnecessary synchronization. While
these accesses are not used for synchronization, and thus the
possibility of them introducing bugs into the application is
somewhat lower, we know that every data race is considered
a bug in the C standard, so we fixed them by protecting them
with the appropriate locks.

Except for the data races, we have also identified a race
condition, in the same fuzzy barrier, which can lead to bad
performance and scalability. Assume two threads (two for
simplicity; this is worse with more threads) A and B. A
finishes its work and reaches the barrier, incrementing the
counter and spinning while waiting for B to finish as well
(Lines 12 and so forth). Then, while B is processing its
current task, it creates a new task and enqueues it into its
task queue. Now assume that A sees that task and steals it
from B’s queue (Line 15). It is now possible for B to finish
the task it has been working on, reach the barrier, see that
A has also reached the barrier, and thus exit it and reach the
final barrier. In the meantime, A exits the barrier (Line 18)
and starts working on the new task, potentially generating
even more tasks. This can be generalized to more than two
threads, and it is easy to see how a load imbalance can happen
in this case, with one thread doing all the work while all the
other threads are idle at the final barrier.

In order to fix this potential performance issue, we im-
plemented a peek function for the queue. Instead of trying
and potentially succeeding in dequeuing a task from the task
queue before exiting the barrier, we first check if there are
any tasks available. If yes, then we proceed to first exit the
barrier and then try to dequeue one. The reason we chose
this over simply exiting the barrier before trying to dequeue
a task (without peeking) is because the latter was found to
cause extreme scalability issues to the application.

E. Raytrace

Raytrace contains two DCL races on conditional state-
ments in the file workpool.C. The synchronization skeleton
of Raytrace is shown in Figure 4. It essentially extracts work
items from a pool, trying to avoid locking the queue if
no items are available to be extracted (Line 1 in Fig. 4b).
In this example on double-checked locking (DCL), for this
synchronization to be correct, the conditions are re-checked
inside a critical section of the thread extracting the work
item from the pool, since otherwise the conditions can be
simultaneously modified by another thread (the unprotected
check is racing with a store).

We chose to fix the races by simply removing the con-
ditional statements that are executed outside the critical
sections, as protecting them with the locks would make little
sense.

B

I GetJob (...) { if (gm>wpstat[0]==1)
2 if (Getlob(...) == 1)
LOCK(gm—>wplock) ; ..
4 w = gm—>workpool [0];
if (lw) {
6 gm—>wpstat[0] = 0;
7 UNLOCK (gm—>wplock) ;
8 return 0;

10 gm—>workpool [0] =
w—>next;
1 UNLOCK (gm—>wplock) ;

13 return 1[;

(@) (b)
Fig. 4: Implicit synchronization in Raytrace
1 Ray_Trace_Non_Adaptively (...) {

Global—>Queue [ local_node ][0] = 0;
while (Global—=>Queue[num_nodes][0] > 0) {

6 ALOCK( Global—QLock, local_node) ;

7 work = Global—>Queue[local_node J[0]++;
8 AULOCK( Global—QLock, local_node) ;

9 while (work < Inum_blocks) {

1 ALOCK( Global—QLock, local_node) ;
12 work = Global—>Queue[local_node J[0]++;
13 AULOCK( Global—QLock, local_node) ;

15 if (my_node == local_node) {

16 ALOCK( Global—QLock , num_nodes) ;
17 Global—>Queue [ num_nodes][0] — —;

18 AULOCK( Global—QLock , num_nodes) ;

19

20 local_node = (local_node+1)%num_nodes;
21 while (Global—Queue[local_node][0] >= Inum_blocks

&& Global—>Queue [ num_nodes |[0] > 0)
local_node = (local_node+1)%num_nodes;

}
Fig. 5: Implicit synchronization and a bug in Volrend

F. Ocean-nc

Ocean-nc contains one data race, which happens when
computing the input curl of wind stress. Instead of per-
forming the computation, the value is read from another
core’s memory. The computation itself consists of just one
multiplication operation, so in order to fix the race we
decided to simply compute the value locally. We know
that our modification does not affect the correctness of the
application because a) the value is computed the same way in
the contiguous version of Ocean and b) because it is possible
to verify the output results.

Since our modification is trivial, we will not include
Ocean-nc in any further discussion.

G. Volrend

Volrend exhibits races in its task queues. The queues are
implemented as simple integers, using locks for increment
and decrement operations (Lines 7, 12, and 17 in Fig. 5), but
not for load operations (Lines 4 and 21). The races appear
when one thread finishes its task queue and it starts polling
the other task queues for work (job stealing). The problem
is that both the loop that checks if there is any work to do in



Parameter Value

Processor frequency 3.0GHz

Block and page size 64 bytes and 4KB
Private L1 cache 32KB, 4-way

L1 cache access time 1 cycle

Shared L2 cache
L2 cache access time

512KB per bank, 16-way
Tag 6 cycles; tag+data 12 cycles

Memory access time 160 cycles
Network topology 2D mesh

Routing technique Deterministic X-Y
Flit size 16 bytes
Switch-to-switch time 6 cycles

TABLE I: System parameters.

general, as well as the loop that polls every task queue, do
not use locks when accessing the queue variables. Of course,
the variables in question are set as volatile, but that does
not guarantee correct ordering. The solution is simple, we just
protected the accesses to the task queue with the appropriate
locks.

Volrend also contains a bug due to a race condition. Before
entering the work loop, each node initializes its own task
queue (Line 3). However, it is possible (although unlikely)
for a thread A to finish all its tasks and then try and steal
from another thread B, before B has initialized its task queue.
Fortunately, there is a barrier synchronizing the threads just
shortly before this happens, so we fixed the bug by simply
moving the queue initialization code before the barrier.

V. EVALUATION

We evaluate the behavior of the modified (Splash-3) ap-
plications in order to quantify the changes we introduced.
Many of the run-time characteristics of the applications
depend on the underlying (simulated) hardware, so we do
not evaluate every single one of them in depth. Instead, we
focus on some of the major performance metrics, namely
execution time, network traffic, and scalability. We also
present the number of synchronization primitives operations
issued during execution, as well as the time spent waiting at
them.

This evaluation is intended to give an overview of how our
changes affected the applications, and not to investigate if our
version is faster or more efficient. Our goal is to produce a
correct and properly synchronized version of Splash-2, not a
faster one.

A. Simulation Environment

In our evaluation we use Wisconsin GEMS [26], a detailed
simulator for multiprocessor systems. We model an in-order
processor, that along with the Ruby cycle-accurate memory
simulator (provided by GEMS) offers a detailed timing
model. The interconnect is modeled with the GARNET
network simulator [27]. We instrument the applications using
our pintool to obtain information about all memory accesses
and synchronization events, similarly to what Monchiero et
al. [28] propose, and to drive the simulations. As mentioned
before, the pintool also ensures that the applications exhibit

correct SC behavior during the run. We do this five times for
each application, to account for the variability that parallel
applications often exhibit [29]. We simulate systems ranging
from a single core to 64 cores, implementing a standard
directory-based cache coherence protocol (with MESI states)
and with the parameters shown in Table I.

We used the gcc-4.9.0 compiler for compiling all of
the applications. This version will not remove the backoff
function from Radiosity. The reason why we opted for an
older version instead of the newest one is because we wanted
to avoid running into breaking behavior when evaluating the
unmodified applications.

We evaluate the Splash-3 suite with the same input param-
eters as in the Splash-2 paper [1]. Our aim for Splash-3 is
to be used for simulation with the same input parameters,
as has been traditionally done. As such, we did not evaluate
any alternatives. At the same time, we do not evaluate the
whole suite, but only the applications we modified, since
characterizing every single application is outside the scope
of this paper. For each of the six applications* we simulate
the entire application, but collect statistics only from start
to completion of their parallel section. Some of our results
differ from the original Splash-2 characterization paper [1]
due to differences in the underlying hardware model.

B. Synchronization

Tables II and III present the average amount of synchro-
nization operations each application uses during its execution,
for 8 and 16 threads respectively. The numbers in parentheses
indicate the standard deviation, displayed as a percentage of
the average.

We start by observing the number of locks. We see that
Barnes, FMM, and Radiosity in Splash-3 have one or two
orders of magnitude more locks than the ones in Splash-
2. That is mostly due to the “benign” data races, which
happen often and thus require a lot of lock and unlock
operations. This can lead to performance degradation, as it
will be discussed in Section V-C.

Next, we have Cholesky, Raytrace, and Volrend. In these
applications, the data races are only employed as implicit
synchronization, and thus happen much less often. While
Raytrace and Volrend still see an increase in the amount of
locking, it is not as significant as in the previous three appli-
cations. Furthermore, Cholesky runs without any additional
lock operations at all.

Unfortunately, in the case of Radiosity, we also see an
increase in the variability of the number of lock operations.
This is not ideal, since it means that an increased number of
runs is required in order to achieve more precise results [29].
For the rest of the applications, that is not the case.

For reference, Table II also contains the number of barrier
operations. Since we did not add any additional barriers in

4We skip Ocean-nc due to the triviality of the changes we introduced.



Benchmark Lock Barrier  Signal Broadcast Wait Benchmark Lock Barrier ~ Signal Broadcast Wait
Barnes | 34457 (0%) 64 (0%) 0 (0%) 0 (0%) 0 (0%) Barnes | 34508 (0%) 128 (0%) 0 (0%) 0 (0%) 0 (0%)
Cholesky | 14686 (0%) 25 (0%) 0 (0%) 0 (0%) 0 (0%) Cholesky | 26124 (0%) 54 (5%) 0 (0%) 0 (0%) 0 (0%)
FMM | 27281 (0%) 160 (0%) 0 (0%) 0 (0%) 0 (0%) FMM | 27807 (0%) 320 (0%) 0 (0%) 0 (0%) 0 (0%)
Radiosity | 94632 (0%) 73 (1%) 0 (0%) 0 (0%) O (0%) Radiosity | 95729 (0%) 150 2%) 0 (0%) 0 (0%) O (0%)
Raytrace | 2056 (0%) 1 (0%) 0 (0%) 0 (0%) 0 (0%) Raytrace | 2064 (0%) 8 (0%) 0 (0%) 0 (0%) 0 (0%)
Volrend | 63508 (0%) 336 (0%) 0 (0%) 0 (0%) 0 (0%) Volrend | 64191 (0%) 672 (0%) 0 (0%) 0 (0%) 0 (0%)
TABLE II: Run-time Synchronization in Splash-2 for 8 (left) and 16 (right) threads (stddev in %).
Benchmark Lock Signal Broadcast Wait Benchmark Lock Signal Broadcast Wait
Barnes | 1064030 (0%) 0 (0%) 11833 (0%) 17 (17%) Barnes | 1064043 (0%) 0 (0%) 11833 (0%) 32 (8%)
Cholesky | 14686 (0%) 3908 (0%) 0 (0%) 252 (5%) Cholesky | 26125 (0%) 6762 (0%) 0 (0%) 1197 (3%)
FMM | 252894 (0%) 3759 (0%) 14100 (0%) 184 (1%) FMM | 253611 (0%) 3759 (0%) 14100 (0%) 342 (3%)
Radiosity | 431959 (4%) 0 (0%) 0 (0%) 0 (0%) Radiosity | 1945412 (5%) 0 (0%) 0 (0%) 0 (0%)
Raytrace 2815 (1%) 0 (0%) 0 (0%) 0 (0%) Raytrace 3777 (1%) 0 (0%) 0 (0%) 0 (0%)
Volrend 64162 (0%) 0 (0%) 0 (0%) 0 (0%) Volrend 67311 (0%) 0 (0%) 0 (0%) 0 (0%)
TABLE III: Run-time Synchronization in Splash-3 for 8 (left) and 16 (right) threads (stddev in %).
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Fig. 6: Percentage of time spent waiting for blocking synchronization primitives for 8 (left) and 16 (right) threads.

the modified applications, there is no need to compare the
two versions.

In addition to the number of synchronization operations,
we can also observe the time spent waiting on them, seen
in Figure 6. We can make two interesting observations
here. First of all, in almost all of the cases, the Splash-3
applications spend a bigger percentage of their execution time
waiting to acquire locks, which is not surprising since we
have introduced more locks. The applications that are affected
the less are Cholesky, Raytrace and Volrend, which are
also the ones with the smallest amount of locks introduced.
Secondly, we can see that (with the exception of Cholesky in
Splash-2) increasing the number of threads also increases the
amount of time spent waiting. This can be explained by the
facts that a) there is higher contention and work imbalance,
and b) some applications make more synchronization calls.

Finally, in addition to the locks, we also introduced condi-
tional variables in three of the applications, namely Barnes,
Cholesky, and FMM. Prior to our modifications, none of
the Splash-2 applications actually contained any conditional
variables, only “conditional-variable-like” synchronization
constructs. In that respect, it is interesting to see that the
number of signal/broadcast operations in Barnes and FMM
remain the same both for 8 and for 16 threads, while in
Cholesky doubling the threads leads to a 75% increase in
signal operations. The number of wait operations on the
other hand vary with the number of threads and also between

executions. This was expected, since unlike signal/broadcast,
which happen every time data is produced, wait happens only
when data happens to not be available’ and is thus very
timing sensitive.

C. Performance and Traffic

Performance depends on the underlying hardware (Sec-
tion V-A), but it is still interesting to see some basic metrics
and how our modifications affected the applications.

We start by measuring execution time, and specifically by
comparing the execution times for Splash-2 and Splash-3. We
see (Fig. 7) that our modifications mostly affected two appli-
cations, Barnes and Radiosity. In the first case, the execution
time increased (by 25% for 8 threads, 57% for 16), while in
the second, the execution time decreased (by 28% and 58%
respectively). The Radiosity results were unexpected, since
our modifications introduced a large number of additional
locks (Section V-B).

In order to figure out why Radiosity is significantly faster,
we measured the lock contention exhibited in the applica-
tion. What we noticed is that in the Splash-2 version, the
contention is centered around the locks used for the queue.
In the Splash-3 version however, the contention is centered
around the locks used for the fuzzy barrier. This is due to the
facts that a) we have more locks around the barrier variables

5In a manner similar to producer-consumer.



Normalized execution time

2.0
1.87
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0—
2] S <> D @ > ]
Q X X O I
$ &g T 8 L ¢ &
o S S AN 5 @
Q NS & @ X >
O & < <

Fig. 7: Normalized execution time for 8 (left) and 16 (right) threads.
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Fig. 8: Normalized network traffic for 8 (left) and 16 (right) threads.

and b) the backoff function is more effective. Moving the
contention from the queue to the barrier significantly boosts
performance. This is because threads waiting in the fuzzy
barrier are not doing any useful work and do not contribute
to the forward progress of the application® thus slowing
them down is inconsequential. In contrast, lock contention
in threads that are accessing the queue affects performance.

After Barnes and Radiosity, Cholesky’s execution time is
also affected, although not as much (reduced by 5% for
8 threads, 12% for 16). The reason is simple: conditional
variables are a more efficient method of synchronization than
spin-loops’. This becomes more obvious the more threads we
are using.

Surprisingly, FMM’s execution time increased only in-
significantly, even though we introduced a large number of
locks there as well. This can be explained by the fact that
there is low lock contention, especially in comparison with
Barnes. At the same time, the data accessed in the critical
sections were already shared data, so we have not introduced
any significant additional coherence traffic.

Except for the average execution time, its variation is also
of interest to us. We see that most applications display at least
some small variation, which is expected. Only Radiosity’s

6Unless they find work to steal in which case they exit the barrier.
7Exceptions exist, especially for the cases where the thread(s) only need
to wait for a very short period of time.

executions vary significantly, particularly for 8 threads. This
can be seen in both the Splash-2 and the Splash-3 versions.

We also measure the network traffic (Fig. 8) for the eval-
uated applications. As expected, we see significant increases
in network traffic for all the applications where we intro-
duced a significant amount of locks. Specifically, Barnes’s
traffic is increased by 34% and 36% (for 8 and 16 threads
respectively), FMM’s by 22% and 26%, and Radiosity’s by
44% and 228%. Overall, our modifications cause an average
increase of network traffic of 17% and 48%, for 8 and 16
threads respectively.

The large increase in traffic observed in Radiosity is
attributed to the fact that in Splash-2 the threads spend a
lot of time spinning while waiting in a barrier, which is
performed by accessing the L1 cache and thus generates little
traffic, while at the same time making no progress in the
execution. The Splash-3 version, on the other hand, executes
less instructions, and consequently, causes less accesses to the
cache by waiting less time at the barriers. At the same time,
the threads cause more cache misses due to frequent data
sharing, which indicates that more threads are collaborating
actively in the production and consumption of tasks.

Similarly to the execution time, Radiosity’s network traffic
also varies significantly with each run. Additionally, we see
that there is some variation in Volrend’s traffic, both for 8
and for 16 threads, in the range of 3% and 4% respectively
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Fig. 9: Scalability of Splash-2 (left) and Splash-3 (right).

for Splash-2 and 3% for both cases for Splash-3.

D. Scalability

Figure 9 presents the scalability (i.e. speedup) of all the
applications, from one to 64 threads.

We see that the most scalable application (out of the ones
being evaluated) is FMM, which comes the closest to perfect
scaling with a 56x speedup for the Splash-2 version and 47x
for the Splash-3 one (for 64 threads).

Next, we have Barnes with 34x and 18x, and Cholesky
with 28x and 35x respectively. We see that Barnes has better
scalability in the Splash-2 version, while Cholesky is greatly
improved in the Splash-3 version. This is explained the same
way as the performance differences in those versions: Splash-
3 Barnes has greater lock contention while Cholesky is more
efficient with the conditional variables than without.

Then, we have the less scalable applications, Raytrace
and Volrend. Raytrace scales up to 32 threads (20x and 21x
for Splash-2 and Splash-3 respectively) but its performance
degrades after that point. Volrend on the other hand does
not exhibit a performance degradation, but it only achieves
a speedup of 19x for Splash-2 and 18x for Splash-3 (for 64
threads). In addition to this, by observing the curve in the
figure, we can clearly see that the scaling is approaching its
limit.

Finally, the case of Radiosity is a peculiar one. In the
Splash-2 version, we observe that for 16 threads there is
a sudden performance decrease (only 2.5x speedup), which
does not appear for 8 or 32 threads (5x and 13x respectively).
The variation in the performance results is too small to
allow for the explanation of some unlucky executions. In
contrast to the Splash-2 version, our fixes eliminate the
inflection point in the speedup curve, so the Splash-3 version
does not exhibit this unexpected decrease in performance.
However, the application only scales up to 8 threads (7x)
before performance starts to drop.

10
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VI. CONCLUSIONS

In this paper, we focus on the synchronization of Splash-2.
We present data races (and some race conditions) we found in
seven Splash-2 benchmarks. We explain not only how those
data races limit the researchers in using Splash-2 for different
memory models, but also how they are illegal in the current
C standard and cause undefined behaviors. We illustrate
our point with concrete examples picked from the Splash-2
applications. Finally, we present a version of the suite with
the applications corrected, dubbed “Splash-3,” and evaluate
how our changes affect the performance characteristics of the
applications. Our version is not necessarily “better” than the
previous suite, but it is properly synchronized and we hope
it will aid many researchers in their pursuits.

VII. FUTURE WORK

The main issue we encountered during our work with
Splash-3, is that a lot of the synchronization is not opti-
mal. This goes for some of both the preexisting and the
new synchronization. For example, a large number of locks
(particularly the ones used for racy assignments) can be
replaced with (potentially relaxed, i.e. non-synchronizing
atomics that do not follow release/acquire semantics while
still not causing data races) atomic memory accesses to the
shared data. In addition, some the spinning that could not
be replaced with conditional variables can be made more
efficient, for example with the addition of proper backoff
routines.
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