
Temporarily Unauthorized Stores:
Write First, Ask for Permission Later

Juan M. Cebrian
Computer Engineering Department

University of Murcia
Murcia, Spain

Email: jcebrian@um.es

Magnus Jahre
Department of Computer Science

Norwegian University of Science and
Technology (NTNU)
Trondheim, Norway

Email: magnus.jahre@ntnu.no

Alberto Ros
Computer Engineering Department

University of Murcia
Murcia, Spain

Email: aros@ditec.um.es

Abstract—x86 processors implement a total store order (x86-
TSO) consistency model, which requires stores to update memory
in a sequenced manner. The latency of stores is then hidden by the
store buffer (SB), which holds stores until the write is performed.
On a long latency cache miss, however, stores block the SB,
eventually stalling the processor and degrading performance.
Contemporary industrial high-performance processors deal with
this situation by overprovisioning the size of the SB, but this
comes at the cost of energy and latency overheads.

In this work, we remove the stalls caused by stores blocked
at the head of the SB while reusing existing processor resources,
either improving performance when SB size is kept constant or
maintaining performance while reducing SB size. Our proposal,
Temporarily Unauthorized Stores (TUS), achieves this by extending
the functionality of 1) the write combining buffers, to allow them
to coalesce stores while maintaining x86-TSO consistency, and 2)
immediately write data to the first-level cache upon a miss (i.e.,
providing an always-hit illusion) but temporarily keeping the
written data invisible to the cache coherence protocol, i.e., these
stores are temporarily unauthorized. TUS makes temporarily
unauthorized stores visible in x86-TSO order without speculation
or rollbacks once write permission is obtained. In essence, TUS
logically transforms the write combining buffers and the first-
level cache into an “extension” of the SB.

TUS improves performance by up to 26% (3.2% on average)
while reducing the total energy-delay-product (EDP) by up to
35.9% (6.4% on average) for SB-bound benchmarks with a 114-
entry SB compared to our baseline architecture with an SB of
the same size. When configured with a 32-entry SB, TUS yields
a performance improvement of 2% over a 114-entry SB baseline
while reducing SB energy per search by a factor of 2×, SB area
by 21%, and store-to-load forwarding latency from 5 to 3 cycles.

Index Terms—Store buffer, write operations, cache coherence
protocols, multi-core architectures

I. INTRODUCTION

Modern architectures allow store instructions to be commit-
ted immediately from the perspective of the processor core
as long as they are eventually made visible to the rest of
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the system in accordance with its memory consistency model,
e.g., Total Store Order (x86-TSO) in all x86 architectures [39].
Decoupling the update of the architectural state from the up-
date of the (shared) memory state enables hiding the execution
latency of store instructions. This capability is enabled by the
Store Buffer (SB)1 which keeps stored data after the store
instruction commits and until the memory subsystem has been
updated. The SB has finite capacity, and, if it becomes full,
the processor must stop dispatching stores, which in turn stalls
instruction execution. SB stalls have a detrimental effect on
performance — to the extent that leading performance analysis
approaches strive to capture SB stalls [20], [49].

Overprovisioning is the go-to strategy for enabling high-
performance store handling. One example of this trend is that
commercial architectures appear to focus on making the SB
as large as possible, e.g., Intel has increased the size of the
SB from 56 in Sky Lake to 114 in Alder Lake [25]. SBs are
typically implemented as content-addressable memory (CAM)
structures because they must be associatively searched on
every load [16]. Large CAMs are, however, costly in terms
of area and energy per access (search), and SB size can hence
only be increased so much before its search latency ends up
on the critical path and limits the processor’s clock frequency.
Large SBs also affect serializing events that require the SB to
be flushed (e.g., a fence). Moreover, since SB search latency
increases with the number of entries, there is an unnecessary
detrimental performance overhead on workloads that perform
well with (much) smaller SBs [3].

Although large SBs incur unattractive overheads, they also
yield suboptimal performance because they stall when en-
countering long-latency store misses (e.g., missing out on a
9.6% speedup for mcf) and long store bursts (e.g., leaving a
26.2% speedup on the table for gcc). Under x86-TSO, stores
must leave the SB (complete) in program order, and a store
instruction that misses in the Last-Level Cache (LLC) will
hence block the SB for hundreds of clock cycles and eventually
incur a stall. With store bursts, the challenge is that the stores
enter the backend much faster than they can be drained, which

1In this paper, we model a unified store buffer for non-committed and
committed store instructions as in x86 processors [24].



also causes the SB to block when the burst is sufficiently long.
Some state-of-the-art proposals [2], [47] scale the SB us-

ing additional hardware structures (i.e., perform even more
overprovisioning). For example, the Scalable Store Buffer
(SSB) [47] augments the SB with a large in-order queue
(which buffers both the address and the data of typically 1K
stores) and uses the first-level data cache (L1D) to provide
store-to-load forwarding. While the 1K in-order queue is much
simpler than the CAM-based SB, it still incurs significant
area and energy overheads. Moreover, the design complexity
of SSB is high because it has to iterate over the in-order
queue and re-play the stores upon receiving a data invalidation
request from another core. SSB also updates the second-level
cache for each store, since it does not perform store coalescing,
which further increases its energy overhead.

On the other hand, the Coalescing Store Buffer (CSB) [38]
non-speculatively coalesces stores to non-consecutive cache
lines while respecting x86-TSO — thereby improving SB uti-
lization and reducing the number of cache accesses compared
to SSB. CSB blocks the pipeline on long-latency store misses,
since it does not support store-wait-free mechanisms [47].
Furthermore, it requires either a collapsible SB or a separated
buffer for pre-commit and post-commit (i.e., coalesced) stores
and it is thus challenging to implement. For these reasons,
previous works [2], [38], [47] remain hard-to-implement in
hardware — and simply increasing SB size is currently the
most appealing option for the industry.

Therefore, there is a pressing need for a store handling
mechanism that yields both high performance and low over-
head, and we introduce Temporarily Unauthorized Stores
(TUS) to address this need. The key insight that enables TUS
is that the latency of store instructions can be hidden as long
as 1) the data written by all in-flight stores remain invisible
to external requests until write permissions for the required
cache lines are obtained, and 2) the updates to memory are
(eventually) made visible in program order (to comply with
x86-TSO). The challenge is thus to buffer all in-flight store
data with minimal area and energy overheads while ensuring
that dependent loads are provided with the most recently
stored value and memory updates follow program order. TUS
addresses these challenges by allowing stores to write in the
L1D without first obtaining write permissions. We call these
temporarily unauthorized stores which TUS stores in the L1D
but keeps invisible to the rest of the system (i.e., they are
non-coherent). TUS employs a small Write Ordering Queue
(WOQ) to track store order (no data) and ultimately make
unauthorized stores visible in program order (x86-TSO).

TUS enables local stores to write multiple unauthorized
cache lines, allowing stores to coalesce across multiple non-
consecutive cache lines outside of the SB. We re-purpose the
Write Combining Buffers (WCBs), which modern processors
use to coalesce stores in code regions for which consistency is
not required (non-temporal stores), to coalesce coherent stores.
WCBs can be seen then as unauthorized L1D entries. When
acting as coalescing buffers, they improve L1D bandwidth
utilization and reduce L1D energy consumption.
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Fig. 1. Executing store instructions in a high-performance processor core

TUS non-speculatively avoids the deadlocks that can arise
upon external requests to temporarily unauthorized stores
while maintaining low hardware complexity. It enforces 1) a
global order on how cores acquire the resources required to
make temporarily unauthorized stores visible, and 2) that non-
consecutive stores that access the same cache line are made
visible to the memory system at the same time as those stores
between them, i.e., as an atomic group [38].

Our evaluation using the gem5 simulator demonstrates that,
compared to our baseline processor, and at a storage overhead
of only 272 bytes (for the WOQ), TUS improves performance
by 3.2% (3.5%) on average for SB-bound SPEC CPU2017 and
Tensorflow (Parsec) benchmarks, while reducing the EDP of
the processor by 6.4% (5.1%) on average. When configured
with a 32-entry SB, TUS yields a performance improvement of
2% on average compared to our 114-entry SB baseline while
reducing SB energy per search by a factor of 2×, SB area by
21%, and store-to-load forwarding latency from 5 to 3 cycles.

II. BACKGROUND

Store buffer primer. The processor front-end fetches and
decodes instructions in program order and dispatches them to
the functional units and the Re-Order Buffer (ROB). Figure 1
focuses on the key resources for processing store instructions
which are the dispatch stage, the ROB, the SB, the load queue,
the Write Combining Buffers (WCBs), and the L1D, and
shows the state of these resources in a single clock cycle.
When a store (load) instruction has been fully decoded, it
is dispatched to the SB (load queue) and the ROB in the
same cycle. The processor commits instructions when they
are fully executed and the oldest instruction in program order.
We model a core that can commit up to eight instructions each
clock cycle (see Section V for details about the experimental
setup).

When a store instruction reaches the head of the ROB, it
is committed immediately because committing store instruc-
tions only requires setting the “committed” bit in the SB. In
Figure 1, the committed stores have a red background and the
in-flight stores have a yellow background. The store instruction
AS

1 has hence been committed, whereas DS
1 has not (see 1 ).

Loads leave the load queue upon commit and all instructions
leave the ROB when they commit; AS

1 is therefore no longer in
the ROB. We label store and load instructions with the cache
line they access, and the subscript signifies the index of the



word accessed within the cache line. The superscript marks
if the instruction is a load or a store, i.e., XS

i and XL
i are

store and load instructions, respectively, that access word i in
cache line X . We will omit the store and load distinction in
examples that only consider stores.

Loads might access recently stored data, and hence the
processor must check if the SB has a more recent copy of
the data accessed by a load. In Figure 1, the load instruction
AL

1 will read the data written by the store AS
1 , and will

therefore retrieve stale data if it accesses the L1D. To account
for this situation, processors provide store-to-load forwarding
by accessing the SB and L1D in parallel on every load. Load
AL

1 will hence find the most recent data in the SB since it was
recently written by store AS

1 (see 2 ). This requires hardware
support for retrieving the data written by the youngest store
to an address, and the requirement to support this operation is
the root cause of the poor scalability of SBs. In contrast, load
BL

2 does not find any recent writes in the SB and therefore
accesses the L1D (see 3 ).
Write Combining Buffers (WCBs). Processor manufacturers,
including Intel [26], AMD [4], IBM [23], and Arm [41],
use WCBs to optimize operations that do not have to be
consistent (such as memory-mapped I/O), and the number of
WCBs has increased from six per core on Intel Core Duo to
twelve in Icelake [25]. The use of the WCBs is controlled
by marking memory regions as write-combining, either in the
kernel, device driver, or application (with permissions). WCBs
are located between the SB and L1D, and stores are written
to the WCB before they go to L1D. The WCBs hence also
need to be searched on every load, and load CL

3 in Figure 1
finds the most recent copy of its data in the WCB 3 .
Store prefetching. Prefetching can reduce the number of
stores that miss in cache and thereby improve the performance
of store-intensive applications without modifying the SB ar-
chitecture. A plethora of load-focused prefetchers [5], [7],
[8], [28], [29], [32], [34], [35], [37] have been proposed, but
they need to be conservative when requesting write permission
as this can lead to unnecessary invalidations [27]. The most
common store-focused approach is to request write permission
when a store commits [25], [45]. (Our baseline, described
in Section V, includes both a stream prefetcher and requests
write permission when stores commit.) Write permission can
also be speculatively requested when stores execute [18]. The
state-of-the-art store-focused prefetcher is Store Prefetch Burst
(SPB) [12] which prefetches write permission of all cache lines
in the memory page upon detecting a store burst. Prefetching in
general, and SPB in particular, are however limited because (i)
prefetchers thrive when access patterns are regular but irregular
access patterns are common for stores [6], and (ii) the SB will
still block on store bursts with prefetching enabled. (We will
demonstrate that SPB yields lower performance than TUS,
SSB, and CSB in Section VI).

III. TEMPORARILY UNAUTHORIZED STORES (TUS)

This section offers a conceptual description of how TUS
provides a coherent, non-speculative, and deadlock/livelock-

free way to perform out-of-order cache stores. Further details
on how to implement TUS will be discussed in Section IV.

A. Unauthorized Stores

Operation. The key design point of TUS is to provide the
illusion that stores leaving the SB always hit in L1D, without
additional structures to temporally store the data and without
waiting for permissions (unauthorized). The challenge is how
to handle multiple unauthorized stores, as the mandated store
sequence by x86-TSO may be disrupted if permissions arrive
out of order. A new structure, the write ordering queue (WOQ),
will hold enough information to keep track of the order cache
lines must be made visible to the rest of the cores to maintain
x86-TSO consistency as well as a mask that tracks which bytes
have been written for each cache line. This information is
required to update the cache line once it is received by L1D.

When the stored data reaches the L1D controller, two things
can happen: 1) the cache line does not have write permissions;
or 2) the cache line has write permissions. In the first case,
the data is written into an L1D entry (evicting an existing
one if necessary – although usually an allocated entry from
the prefetch-at-commit should be found). A new bit is added
for each entry in the L1D to mark cache lines as not visible
when they write unauthorized data, and a write permission
request is sent to the memory hierarchy. While unauthorized,
the cache line is not visible to the coherence protocol, it cannot
be selected for replacement — since there is no other copy of
this data — and it cannot be forwarded to other cores — since
this would violate x86-TSO. When the memory subsystem
has retrieved the cache line with exclusive (write) permission
and it reaches L1D, its data is combined with that stored
in L1D using the mask, and the WOQ entry is marked as
”ready”, but it is not yet made visible to external cores. Stores
will eventually be made visible respecting x86-TSO order as
specified by the WOQ. Deadlock and livelock avoidance will
be discussed Section III-C. Still, we can advance that it is
based on cores deciding who relinquishes write permissions
according to a global order that guarantees forward progress.
In the second case, the cache line was authorized in L1D,
meaning it is not in the WOQ. Therefore, an entry in the
WOQ is allocated for this cache line. However, if the cache
line is modified, an update to the private L2 is sent to keep
a valid updated copy there. The cache line is marked as
”ready” directly, but not visible (unauthorized) to external
cores. Again, stores are made visible respecting x86-TSO
order as specified by the WOQ.

In both cases, when the WOQ is full or there is no cache
way available for replacement in the said set, the store cannot
be serviced. Note that this does not necessarily cause a pipeline
stall if the SB is not full. In addition, when the core detects
a serializing event that requires the SB to be flushed (e.g.,
a fence), we must also wait for all cache lines to have been
made visible to the coherent world in x86-TSO order based
on the WOQ information. At worst, it will take TUS the same
time to flush both structures since the stores are the same.
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Example. Figure 2 depicts a simplified example of the new
store path when using TUS (assuming normal behavior). A
write to word 1 in cache line K is committed, and a prefetch
requesting write permission is sent to L1D cache 1 . K1 is
written into L1D and the WOQ is updated to include K in the
store sequence 2 . Writes to cache lines A, J and K missed in
L1D, but wrote their data as temporarily unauthorized. They
will remain unauthorized until permissions arrive, and be made
visible (authorized) in the order set by the WOQ 3 . Write
permissions and data from memory eventually arrive at L1D
for cache line A, where they are combined with existing data.
Finally, cache line A is made visible to the rest of the cores
according to x86-TSO order based on WOQ information 4 .

B. Store Cycles and Coalescing

Handling cycles. TUS can handle multiple unauthorized stores
by simply tracking their order in the WOQ to respect x86-
TSO. However, cycles may appear among the stores, that is,
a write targets an old unauthorized cache line that is different
than the last one. For example, the sequence of stores ABA
forms a cycle, where A must be made visible both before and
after B. The only way to do that is to make them visible
at the same time. In order to allow for cycles we extend the
WOQ to support the concept of atomic groups [38]. If we can
guarantee atomicity concerning external loads and stores, the
order of the stores inside the atomic group does not matter,
meaning x86-TSO is preserved (see details in Section III-D).
Initially, each store will create a new atomic group of a single
element and queue in the WOQ, unless a cycle is found. When
a store hits in L1D, it checks its not visible bit. If it is set, we
found a cycle, and an entry must exist in the WOQ. In this
scenario, since our goal is to continue writing unauthorized
stores, we need to combine several atomic store groups into a
single one to respect x86-TSO. Since all previous unauthorized
stores have already allocated an entry in L1D, progress in this
situation is guaranteed. Further details about deadlock freedom
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in the presence of limited hardware resources are given in
Section III-C.
Example. Let us assume the following sequence of stores that
have already been completed (left the SB), A1, J1. Figure 3
shows the state of L1D and the WOQ. The WOQ shows that
currently, each cache line (A and J) is its own atomic group.
When A2 completes 1 , it finds A in ”not-visible” state in
L1D 2 . Since cache line A is already present in the WOQ,
adding A at the end will generate a cycle. In essence, A would
need to be made visible both before and after J. The only
solution is to create a new atomic group {A, J}. A2 can safely
write into L1D, update the mask at the WOQ (MA), and mark
at the WOQ that both cache lines form an atomic group 3 .
Supporting coalescing. TUS also enables coalescing mul-
tiple non-consecutive writes2 to the same cache line while
maintaining x86-TSO consistency. To enable this, TUS needs
to buffer multiple unauthorized stores while coalescing them,
which is similar to the requirements of WCBs for stores that
do not require consistency. In order to save resources, TUS
will hence not use new hardware to implement these buffers,
but extend the WCBs to support temporal stores for non-
consecutive writes to multiple cache lines. TUS achieves this
by reusing the same hardware used for maintaining multiple
atomic groups in cycles.

Starting with empty WCBs, the store at the head of the SB
is placed in the first buffer. If the next store at the head of the
SB is to the same cache line as the one in the WCBs, then it
coalesced in the same buffer. If not, it will try in the next buffer
(this allows for shuffling and interleaving of stores across n
unique cache lines). If it writes to an existing WCB different
than the last one it wrote, there is a cycle and the WCBs must
be treated as an atomic group. The resulting combined store
group from multiple buffers cannot exceed the associativity
of the cache in any given set used in the group. This means
that when stores write to L1D, TUS can only proceed if there
are available ways for all of them in L1D. This is the same

2Physical addresses must be valid to perform coalescing, e.g., TUS does
not coalesce stores due to interrupts and programmed input/output.
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restriction we had previously but extended to n cache lines
per atomic group. Therefore, all checks involving the atomic
group must be performed to all its cache lines as a whole,
otherwise, we cannot guarantee deadlock freedom when they
reach the WOQ.
Example. Figure 4 shows an example of how using atomic
groups can coalesce writes independently. Let us assume the
sequence of committed stores A1, A2, B1, B2, A3, L2. Upon
completion, A3 searches the WCBs to find cache line A 1 . A
is found in a WCB, but there is another WCB in use, so a cycle
is possible 2 . Since the last written WCB contained B and
the new one is A, there is a cycle. The atomic group {A,B}
is formed in the WCBs. Now L2 completes and searches for
L in the WCBs. L is not found and there are no available
WCBs, so they must be written into L1D as unauthorized 5 .
The atomic group {A,B} can use, at worst, two ways of the
same set. If we assume that the associativity of the system is
4, this atomic group can always fit in any given set 3 4 .
A and B are written into L1D, the WOQ is updated with the
new atomic group 6 . Note here that J remains its own atomic
group since the cycle only affects A and B, and according to
the order in the WOQ, J will always be made visible first.

C. Dealing with External Requests

Avoiding deadlocks. To maintain x86-TSO consistency, local
stores must be made visible to other cores in the same order
as in the program. Our proposal achieves this goal by making
cache lines visible in the (atomic) order they are placed in
the WOQ. However, cache lines in TUS can be ready (we
have permissions and data has been combined), but not-visible,

since there may be an older atomic group in the WOQ that is
not ready yet. This could easily lead to a deadlock scenario
when two cores have atomic groups that are not disjoint and
both have obtained permissions over some of the cache lines.
To avoid deadlocks, TUS decides which core will relinquish
cache line(s) in a way that guarantees forward progress.

To do so, we will rely on the lexicographical (lex) order
of memory addresses [14], [38]. The lex order sets a global
sub-address order to each cache line and is dictated by a set
of bits that are used to map it on a resource. We represent
that order using alphabet letters in our examples. By acquiring
write permissions for all cache lines older than the conflicting
store in lex order, including older atomic groups, we guarantee
forward progress. This means that multiple cache lines that we
have acquired permissions for, and have already combined, can
lose permissions. When an external request is received, TUS
disables the creation of new cycles that involve that atomic
group, so that the lex order does not change due to newly
completed stores trying to leave the SB. While cycle support
is disabled, the store at the head of the SB that creates the cycle
is not allowed to complete. The core that violates lex order will
relinquish permissions for all cache lines with lesser lex order
than the conflicting store, but only for older stores (based on
WOQ order). A new write permission request will be created
when the store has the lowest lex order of all older stores
in the WOQ. This adds another restriction when combining
groups, i.e., a lex conflict (two cache lines that share the same
lex order) in a group is not allowed. In that case, coalescing is
disabled and the store is not attended until the lex-conflicting
store has been made visible.
Lex conflicts and limited resources. Lex conflicts serve as
an ordering point for stores, by preventing the creation of
atomic groups that could compromise forward progress due
to limited resources in the cache hierarchy. Disallowing lex
conflicts within atomic groups simplifies the reasoning and
mechanisms required to achieve forward progress. Otherwise,
when conflicts are allowed [19], new messages need to be
introduced in the memory hierarchy.

The choice of a proper sub-address has been studied in
previous works [19], [38]. We opt for choosing the 16 less
significant bits of the cache line address, which are also the
same number of bits used to index the directory (and the LLC).
This way, once exclusivity of the cache line is obtained to
write an atomic group, it is guaranteed that no other cache
line within the same group would require an entry in the
same directory set. If several cores performing atomic writes
have lex-conflicting writes, those acquiring an entry in the
specified set are guaranteed to complete. When an atomic
group is made visible, new space will be available to be
replaced in the shared resources for other conflicting writes
(as directory-induced invalidation will not be delayed once the
atomic group write completes). Hence, no deadlocks because
of a directory-induced invalidation can occur when (i) using
the aforementioned lex order and (ii) preventing the presence
of conflicts in a group.

When a store needs to perform an authorized write in a



modified L1D entry, the current written data needs to be
updated to L2. Since our L1D and L2 are inclusive, the
L2 always has a copy of the cache line, thus guaranteeing
progress. In addition, the L2 cannot choose the eviction of
a cache line that preserves lex order, the invalidation request
will be NACKed if it preserves lex order, forcing the L2 to
”refresh” the replacement policy and ask for another cache line
to be replaced (similar to [19]). The associativity restriction
when forming atomic groups guarantees there will be several
entries that can be replaced.
Example. Figure 5 shows an example of how TUS resolves
deadlocks. Let us assume core 0 has obtained the write
permission and modified cache line C in L1D. This cache
line is no longer unauthorized, it is modified (dirty), but not
visible yet 1 . In order to become visible, it requires both
that cache line R is made visible (WOQ order), and cache
line D to be ready, since it is part of the same atomic group.
Meanwhile, core 1 has obtained write permission and modified
cache line D in L1D 1 , and is in a similar situation with
cache lines P and C. At some point, core 0 L1D will receive
an invalidation coming from its L2 for cache line C forced by
a write permission request from core 1 2 . At the same time,
the L1D of core 1 receives an invalidation coming from its L2
for cache line D forced by a write permission request from
core 0 2 . Neither of the cores can remove the cache line from
their L1D since there is no other copy of the valid, authorized,
but not yet visible data in the core. However, if they do not
reply while waiting for the stores to become visible, we have
a deadlock scenario 3 .

The solution is to make one core proceed and ensure that
the other core relinquishes its write permissions and waits.
We use the lex order to ensure that all cores in the system
agree upon which core(s) shall relinquish write permissions
and let other(s) proceed. First, we disable the formation of
new cycles that involve the atomic group {C,D}, to prevent
changes in the existing atomic groups. We then check which
core has acquired write permissions for all cache lines with
lesser or equal lex order than the conflicting cache line. Core
0 checks the lex order to see if it owns all cache lines with lex
order lesser than C 4 . Since it does, it will not give away the
permissions, and make core 1 wait 5 . In contrast, the lex order
check of core 1 reveals that another core wants permissions
to D, while it is still waiting for permissions for C, which
has a lower lex order 6 . In this case, core 1 gives away the
permissions for D, which then becomes unauthorized again,
but keeps the modified data for D in its L1D cache 7 . Core 0
will be provided with the old, unmodified, version of D that is
stored in the private L2 8 . This will allow core 0 to proceed,
thereby removing the deadlock.

Core 1 however needs to get write permissions for D at
some point, and, once permissions are acquired, combine the
updated data from core 0 with its unauthorized write. To
prevent continuous exchange of write permission requests and
invalidation requests, core 1 will re-send the write permission
request for D only when the cache line is the lesser-most
address in lex order in the atomic group at the head of the
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WOQ. In our example, the order is shown at 6 , and the new
request will be issued when (i) core 1 obtains permissions for
C, and (ii) P has been made visible.

D. TUS preserves TSO

TUS preserves all TSO orders. Conceptually, unauthorized
stores can be considered as part of the SB, and making
them visible is akin to leaving the SB in a standard TSO
implementation. As stated by Ros and Kaxiras [38], allowing
coalescing can violate TSO with respect to loads and stores.
However, when (i) coalesced stores are written atomically and
(ii) loads are delayed until those stores complete their write,
TSO is preserved. Similarly, next, we elaborate on how each
TSO order is preserved in TUS:

• Store→Store: Stores are made visible to other cores in
program order, or atomically when they coalesce. Hence,
no other core can see two stores performing (made
visible) out of order.

• Load→Load: Loads can execute out of order, but the
reordering is only visible by other cores if they write
to the same load addresses. Typically, TSO squashes
loads when the accessed cache line loses read permission,
by snooping the load queue [18]. For an unauthorized
store to be made visible, it requires exclusive permission,
squashing remote loads to the same cache line in the
process. While writing atomically, remote loads to the
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involved cache lines are delayed. Hence, load→load
reordering cannot be observed.

• Load→Store: Loads perform before committing and
stores perform after committing. Since commit happens
in program order, the load→store order is always en-
forced.

IV. IMPLEMENTATION OF TUS

Hardware support. Figure 6 describes TUS’ main hardware
units. TUS does not require any changes to the SB 1 , but it
requires a set of buffers to coalesce stores that include a mask
to identify the bytes that have been written in the cache line;
TUS exploits WCBs for this purpose 2 . In addition to the
data and the mask, TUS requires log2 N additional bits per
entry, where N is the number of buffers used for coalescing,
to identify which buffers belong to a coalesced (atomic) group
(CID). We empirically determined that two buffers are enough
for our applications and system configuration, so only one
extra bit per WCB is required. L1D entries need to be extended
with two bits 3 , The first bit is used to mark the entry as not
visible. The second bit marks it as ready, that is, it has acquired
write permissions and combined the new data with the one that
came from memory.
Overhead. The WOQ can be implemented as a circular buffer
that stores the necessary information to track the order in
which unauthorized cache lines must be made visible to the
coherent world 4 . In contrast to the SB, the WOQ is not on
the critical path. It is also smaller than the SB and searched
less frequently, i.e., the WOQ is searched on store accesses
that hit in the L1D and when data or invalidation requests are
received from the L2 whereas the SB must be searched for
every load instruction. Moreover, we search the WOQ to find
10-bit tags that yield substantially lower logic complexity than
the 64-bit virtual addresses.

Each entry in the WOQ records: 1) The location of the cache
line in L1D in the form of set/way. For a 48KB L1D with an
associativity of 12, 10 bits are required. 2) The atomic group
id (AtomicGID). Since each cache line written starts as its

own atomic group, we require log2 X for an X-entry WOQ.
We have determined that 64 entries are a cost-effective size for
the WOQ, so 6 bits are required. 3) A mask to track the written
bytes in the cache line. For the sake of simplicity we currently
only track 32 and 64-bit stores when coalescing. Therefore, 16
bits are required for a 64B cache line. 4) One bit that marks
a WOQ entry as unable to participate in a cycle. This is used
to prevent changes in the atomic groups when resolving a
conflict using the authorization unit. 5) A bit that marks an
atomic group as ready to be visible. This bit is set when the
data from L1D is combined with the one coming from the
memory subsystem. It is cleared only if we lose permissions
due to relinquishing a cache line to an external request. The
total storage overhead of each WOQ entry is 34 bits, and the
storage overhead of our default WOQ is 272 bytes (i.e., 34
× 64 = 2,176 bits). Finally, we require a simple circuit to
determine (lex) order, the authorization unit 5 , which yields
no storage overhead.
TUS operation flow. Next, we describe a flow chart that
shows the interaction between the different hardware structures
(Figure 7). We focus on a single write, but N writes with the
same CID will behave similarly, just requiring to perform all
the steps as an atomic group, that is, if one write fails a test, all
fail. Stores coalesce in the WCBs until they are ready to write
into L1D. If the cache line is not found in L1D, the cache
controller will try to allocate a way in the corresponding set.
If all ways are blocked, either due to cache locks or invisible
cache lines or the WOQ is full, the write is not allowed 1 . If
not, a way is reserved, and the data is written and marked as
not ready and not visible. In addition, an entry in the WOQ
is allocated at its tail, and the pair set/way is pointed to the
correct location in L1D. The mask is stored in that WOQ
entry, and a new AtomicGID is assigned (note that this ID is
different than the CID from the WCBs). The bit CanCycle is
set to true and the bit Ready to false 2 .

On the other hand, if the cache line is found in L1D, it can
be visible or not. If the cache is found as visible it means it is
no longer at the WOQ. If there is no room in the WOQ, the
write is delayed. Since this is now the most up-to-date coherent
copy, we first update the copy in L2 3 , and then proceed to
write the new data, this time marking the cache line as ready,
but not visible. A new entry in the WOQ is allocated as stated
previously 2 . If the cache is found as not visible, it means we
found a cycle, and we need to search the WOQ using its set
and way (10 bits). When the entry is found, its AtomicGID

must be copied to all entries between itself and the tail of the
WOQ, and its ready bit is set to false. Please note that there is
no possible deadlock due to resources since those cache lines
are already allocated in L1D and contain actual data.

When the write permissions and data arrive 4 , the WOQ
is searched with the set and way of the L1D entry to retrieve
the mask. The entry is set to ready in both the L1D and the
WOQ, and the data is combined using the mask. If the entry
belongs to the oldest AtomicGID (the one at the head), we
check if all entries from the AtomicGID in the WOQ have
their ready bit set. If they have, we access each L1D entry
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pointed in the WOQ and set them as visible, moving the head
of the WOQ to the next AtomicGID. We repeat this process
iteratively until we find an AtomicGID that is not ready.

If an invalidation arrives at the L1D, it checks its visible
bit 5 . If it is visible it returns the data as usual, since that
cache line is both coherent and consistent. If it is invisible, we
search the WOQ for the entry and set its CanCycle bit to false.
Then, all cache lines pointed by the WOQ from that entry to its
head need to be checked in the authorization unit for their lex
order 6 . If the core has permissions for all addresses with lex
order lesser or equal than the requested cache line it delays the
request, since there is no risk of deadlocks 7 . On the contrary,
for each entry in the WOQ that does not respect the lex order,
it will mark the WOQ entry as not ready, the corresponding
cache line as not ready, and change its coherence state to
”retry”, relinquishing the cache line 8 . It will also reply to
the L2 with a new packet that acknowledges the invalidation
but instructs the L2 to return the unmodified version of the
data that it contains. When an AtomicGID that contains a bit
of CanCycle set to false reaches the head of the WOQ, we
re-check the authorization unit to see if the ordering is now
respected. If it does, permissions are requested again, and this
time the permission request is guaranteed to succeed.
Other considerations. Store-to-load forwarding can be real-
ized at L1D, but only for those data elements specified by the
mask stored in the WOQ. This however requires an associative
search of the WOQ to find the entry that contains the mask,
or alternatively, add a mask field to each L1D entry. We did
not observe any meaningful performance improvement from
enabling store-to-load forwarding at L1D, because the store
was previously in the SB and performed store-to-load for some
time; we hence disabled store-to-load forwarding at the L1D.

TABLE I
CONFIGURATION PARAMETERS

Branch predictor 64KB L-TAGE + ITTAGE [40]
TLB 64-entry L1 and 2048-entry L2
Front-end width 8 (fetch), 6 (decode), 6 (rename) instr.
Back-end width 12 (dispatch), 12 (issue), 8 (commit) instr.
Physical registers 332 integer + 332 floating point
Load/store queue 192/114 entries
Re-order buffer 512 entries
Functional units 1 Int ALU + 3 Int/FP/SIMD ALU
Instr. latency (int) add (1c.), mul (4c.), div (12c.)
Instr. latency (fp) add (5c.), mul (5c.), div (12c.)
L1I 32KB, 8-way, 1-cycle latency, 64 MHSRs
L1D* 48KB, 12-way, 5-cycle latency, 64 MSHRs,

stream prefetcher (stride)
L2* 1MB, 16-way, 16-cycle round trip, 64 MSHRs
L3* 64MB, 16-way, 34-cycle round trip, 64 MSHRs
DRAM 160-cycle latency
(*) Write-Allocate/Write-Back. L1D and L2 inclusive

Loads will therefore be aliased to the cache line address and
will be serviced later when the write permission arrives.

Some programming languages overwrite application code at
runtime. In this scenario, our core generates requests to cache
lines to L1D for writing and to L1I for reading. We decided to
prioritize L1I over L1D, so the pipeline will stall on stores that
have been requested by L1I. We can simply set the CanCycle
bit to false in order to force this cache line to be visible as
soon as possible. These entries cannot participate in cycles,
since they must be evicted from L1D to be moved to L1I.

V. METHODOLOGY

Simulator. We use gem5 [10] to model an x86 full-system
environment in which we simulate both single- and 16-core
processors using gem5’s detailed out-of-order core model and
detailed memory hierarchy. The simulated system runs Ubuntu
16.04 with Linux kernel version 4.9.4. Our design assumes
a three-level cache hierarchy with private L1I/L1D and L2
caches and MESI coherence protocol. Our baseline configura-
tion includes three important modifications to mainline gem5:
(1) a prefetch at commit mechanism for stores [24], [45], (2)
support for pipelined L1D accesses for stores and (3) varying
store-to-load latency based on SB size (5 cycles for 114, 4
for 64, and 3 for smaller sizes as reported by Fog [15]).
These modifications significantly improve the rate at which
store operations are performed. We also rely on Fog to model
execution and issue latencies for instructions that match real
hardware. Table I summarizes our main simulation parameters
chosen to resemble a modern processor.

Energy consumption is evaluated with McPAT [31] as-
suming a 22nm technology node (minimum available in the
current version), a voltage of 0.6V, and the default clock
gating scheme. We incorporate the changes suggested by
Xi et al. [48] to improve the accuracy of the models, and
faithfully model the overheads incurred by the extra resources
and tables required by TUS. The energy overhead of TUS is
dominated by L2 updates when a second write is performed
over a visible value that is only available in L1D. The WOQ
area requirements are 13× smaller than the 114-entry SB



while using 10× less energy per search when the WOQ is
implemented as a CAM. Also, the WOQ is searched on store
accesses that hit in the L1D and when data or invalidation
requests are received from the L2 whereas the SB must be
searched for every load instruction. The WOQ is 13× smaller
and uses 5× less energy per search than a 32-entry SB.
Configuring a 32-entry SB reduces energy per search by 2×
and area by 21% compared to an SB with 114 entries.
Benchmarks. For sequential applications, we run all bench-
marks with reference input sets from SPEC CPU 2017 com-
piled using GCC 5.5 with -O2 optimization flags as well as
TensorFlow benchmarks from the BigDataBench suite [17].
For benchmarks with multiple input sets, we identify the
selected input set by appending an integer identifier to their
name (e.g., 502.gcc1 is 502.gcc with input set #1). We define
SB-bound applications as those that show more than 1% of
SB-induced stalls for our baseline configuration. We simulate
10 simulation points for each application [42]. Each simulation
point runs for 2 billion instructions after a brief warm-up
period of 200 million instructions. We include performance
figures that cover the geometric mean for All benchmarks.
However, for the sake of clarity, our detailed evaluation shows
per-application results for SB-bound benchmarks.

For parallel workloads, we run a subset of PARSEC-3.0 [9]
multi-threaded benchmarks compatible with our simulator us-
ing 16 threads and simsmall inputs. We measure performance
within the region of interest (ROI), including all instructions
executed after initialization and before output generation.
Statistics are gathered after 100 million cycles within the ROI
to warm up the caches. We run 10 seeds per application and
average the 3 fastest executions for our evaluation.
State-of-the-art approaches. We compare TUS to the fol-
lowing previously proposed mechanisms, which also aim at
improving performance by alleviating SB bottlenecks:

• The Scalable Store Buffer (SSB) [47] extends the SB
size by using a 1K-entry in-order queue (called TSOB).
We implemented an idealized version of SSB that con-
siders a “magic” 0-cycle recovery for invalidations and
hence provides an upper bound on the performance that
SSB can achieve.

• The Coalescing Store Buffer (CSB) [38] allows coalesc-
ing non-consecutive store operations before initiating the
write to L1D. Our CSB implementation uses the WCBs
to perform coalescing. However, when a WCB that needs
to write to the cache suffers a miss, the SB stops draining.

• The Store Prefetch Burst (SPB) [12] aggressively
prefetches a full 4KB page when it detects that stores
are filling consecutive cache lines. Still, on cache misses,
the SB stops draining, which may happen frequently in
applications with an irregular write pattern.

VI. EVALUATION

In this section, we compare our proposal (TUS) to other
state-of-the-art proposals, SSB [47], CSB [38], and SPB [12]
in terms of both performance and energy-delay product (EDP)
for sequential and parallel workloads. We also analyze how the
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different mechanisms affect SB-induced stalls. A design space
exploration (DSE) was performed to determine the configura-
tion parameters for TUS which led us to configure two WCBs
and a 64-entry WOQ, as well as set the maximum length
permissible for a cycle to 16 (that is, the maximum number of
cache lines in an atomic group). For sequential applications,
after 8 there is no significant difference or drawback. However,
for parallel applications, we found out that allowing big
atomic groups is detrimental for some applications due to
serialization, while others benefit from additional locality.

Figure 8 shows a scalability analysis with SB size for the
different workloads analyzed in this study. Please note that
while SSB is included in the figures, it incurs (significantly)
higher area and energy overheads than the other proposals,
primarily due to its 1K-entry in-order queue (i.e., the TSOB)
and direct writes to L2. TUS yields higher performance than
SSB, CSB, and SPB regardless of SB size (up to 3.5%),
and more importantly, with an SB of 32 entries, it still
outperforms the baseline configuration with 114 entries. In
addition, we see performance improvements relative to all
state-of-the-art proposals when reducing SB size from 114
to 64 entries. Having a smaller SB allows for a faster CAM
search time and a one-cycle reduction of the store-to-load
forwarding latency (i.e., from 5 to 4 cycles). The key takeaway
from Figure 8 is thus that by handling stores in a way that
minimizes the performance impact of long latency stores and
store bursts, TUS achieves better performance than the SB-
overprovisioning strategy used in commercial cores, SSB,
CSB, and SPB across all SB sizes.

A. Detailed Analysis of Single-Threaded Workloads

Figure 9 shows the SB-induced stalls, sorting benchmarks
based on this metric. Please note that dispatch stalls can be
due to different resources, such as ROB, reservation stations,
or load queue. The stall is only attributed to the first resource
that is missing, and they are not disjoint. Therefore, some SB-
stalls may not be accounted for if they overlap with another
resource and vice versa. Nevertheless, we see a clear trend for
TUS reducing the overall stalls from 6% to 2% on average.

Figure 10-left shows an S-curve of the performance po-
tential for all the analyzed benchmarks (SPEC, Parsec, and
TensorFlow) with a 114-entry SB. TUS demonstrates per-
formance gains exceeding 1% in 21 applications, achieving
improvements of up to 26%. Figure 10-right shows execution
time speed-up over our baseline core design and a 114-entry
SB for SB-bound benchmarks sorting benchmarks by SB-
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induced stalls. We can see a clear dominance of TUS over
the state-of-the-art proposals, with no negative side effects
on SB-bound applications and an overall gain of 3% over
the baseline. SSB achieves 0.9% gains, followed by CSB
with 2.4% and 1.1%. The highest gain for TUS comes from
502.gcc5, with an improvement of 26.1%, and the lowest from
503.bw2 with no performance gain. 502.gcc5 benefits mostly
from coalescing, given that CSB and SPB perform similarly
to TUS and both still write in x86-TSO order. Checking the
store instructions that cause the stalls we see they belong to
a store burst. It is also worth highlighting the behavior of
505.mcf. Coalescing (CSB) and prefetching (SPB) do not help
much to reduce SB-induced stalls, but the over-provisioning
provided by SSB does. This means that 505.mcf is dominated
by long latency stores, that are captured and hidden by TUS.
SPB is having trouble matching the store access patterns on
TensorFlow kernels. The execution stalls for SPB while L1D
misses are pending increases by 32%, while stalls while L2
misses are pending increase by 41%. This means SPB is being
too aggressive and affecting loads. Overall TUS combines the
performance gains of CSB and SSB with a simple and elegant
design, without the speculative cache pollution caused by SPB.

Figure 11 reports normalized EDP for the same benchmarks
and configurations as shown in Figure 10. SSB increases the
total EDP of the system by 5.9%, while CSB reduces EDP by
6.1%. TUS improves over these proposals, reducing EDP by
6.4%. The hardware resources of SSB are much higher than
those of TUS, and they are required to write to the coherent
cache (LLC) on every store, while TUS only requires sending
updates to the L2 whenever a write hits in L1D and becomes
unauthorized. This energy overhead has been accounted for in
our results. In addition, TUS reduces the total number of writes
to L1D by a factor of 2×, with a peak of 5.5× for 502.gcc5.
This reduction is almost identical in CSB, and both proposals
manage to reduce the dynamic component of the energy used
by the memory subsystem. Over-provisioned designs, such as
SSB or increased SB sizes, harm EDP. Moreover, TUS is the
only approach capable of addressing both long-latency stores
and store bursts. On applications with SB-induced stalls due
to long latency stores (505.mcf ), TUS improves EDP by 10%.

B. Detailed Analysis of Parallel Workloads

Figure 12-left shows the performance speed-up relative
to the 114-entry SB baseline for the multi-threaded Parsec

benchmarks. Normalized performance shows up to 17.1%
improvements (3.2% average) for TUS, outperforming SSB
(2.2%) and CSB (1%). Dedup has both bandwidth issues,
which are addressed by CSB and TUS, and long latency
stores, that can be hidden by both SSB and TUS; SPB
addresses neither issue. Ferret is dominated by bursts of
interleaved stores. Finally, we have streamcluster, where SPB
is the best-performing state-of-the-art approach. This means
that SB-related stalls are related to bursts, and the difference
in performance comes from an increase in cache temporal
locality. Indeed, TUS retains stores in L1D until permissions
are obtained, while SPB will continuously prefetch more cache
lines, and both loads and other prefetches can replace the
already prefetched lines. TUS reduces the number of stalls
while L1D misses pending for streamcluster by 27% over
SPB.

Finally, Figure 12-right shows the EDP results for Parsec.
TUS manages to improve on CSB with EDP improvements of
5.1% (over 2.4%). This is clearly shown in applications such
as dedup and ferret, where coalescing significantly reduces the
dynamic energy component of the memory subsystem with a
reduction in write accesses of 4.9× and 2× (average of all
Parsec is 2.1×). The speedup achieved in streamcluster is the
main reason for its overall reduction in EDP.

C. Reducing SB Size while Maintaining Performance

In this section, we analyze how TUS behaves under high
SB utilization. To do so, the SB size is reduced to 32 entries.
A smaller SB reduces the time and energy required to perform
CAM searches for store-to-load forwarding. Furthermore, on
processors that support simultaneous multi-threading (SMT),
the effective size of the SB is divided by the number of
hardware threads as the SB is statically partitioned across
threads (Section 2.6.9 of Intel’s optimization manual [24]).
This partitioning is related to the consistency model, and in
particular, to store atomicity semantics as dictated by the read-
own-write-early-multiple-copy atomic model (rMCA) that is
followed in actual x86-TSO implementations [1], [46].

Figure 13-left shows the performance S-curve for all eval-
uated applications, normalized to a baseline with a 32-entry
SB. TUS achieves a peak gain of 36.6% in performance, with
21 applications improving over 5%. Figures 13-right and 14-
left show the detailed speedups normalized to a 32-entry SB.
TUS maintains its performance gains even with a reduced
SB size, with average gains of 10.1% for single-threaded SB-
bound and 5.8% for Parsec. Figures 15 and 14-right show the
EDP improvements for single-threaded SB-bound and Parsec,
respectively. TUS improves EDP by 15.7%, followed by CSB
with 12% and SSB (5.2%) on single-threaded SB-bound. For
Parsec, TUS gains 10.2% followed by SSB with 7.4%.

TUS can achieve better performance than the 114-entry SB
baseline using only 32 entries and two WCBs. It does so
without causing cache pollution, unlike speculative proposals
such as SPB. Note that modern processors implement a store
prefetch-at-commit [24], [45] strategy, (+15% performance
over the default gem5). Since cache lines have already been



-2

-1

0

1

2

3

4

5

6
SSB-114 CSB-114 SPB-114 TUS-114

S
p

e
e

d
u

p
 (

%
)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
-10

-5

0

5

10

15

20

25

30
SSB-114 SPB-114 CSB-114 TUS-114

Benchmarks

S
p

e
e

d
u

p
 (

%
)

26
.1

21
.2

26
.2

9.
0

9.
6

-3
.7

-3
.7

-7
.0

-2
.8

-2
.2

Fig. 10. Speedup S-curve for all applications (left) and single-threaded SB-bound breakdown (right) normalized to a 114-entry SB. Higher is better

50
2.g

cc
5

m
ax

poo
l

av
gpo

ol

m
ul

tip
ly

50
5.m

cf
co

nv

53
1.

de
e

50
2.g

cc
4

52
7.c

am
4

50
7.c

ac

50
2.

gc
c2

50
2.g

cc
3

50
2.

gc
c1

m
at

m
ul

re
lu

dr
opo

ut

sig
m

oid
ta

nh

ba
tc

hno
rm

50
3.

bw
2

50
3.

bw
4

51
0.p

ar

50
3.b

w1

G
eom

ea
n

0.6

0.7

0.8

0.9

1.0

1.1

1.2
SSB-114 CSB-114 SPB-114 TUS-114

E
D

P
 (

N
o

rm
. t

o
 B

a
se

lin
e

)

Fig. 11. Normalized EDP to 114-entry SB for single-threaded SB-bound
applications. Lower is better
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Fig. 12. Speedup (left – higher is better) and EDP (right – lower is better)
normalized to a 114-entry SB (Parsec)

replaced by prefetch requests in L1D when TUS writes, it
just re-uses those allocated cache lines to store unauthorized
data. L1D hit rate goes from 96.36% on the baseline to 96.33%
under TUS for a 32-entry SB. cactuBSSN and mcf are the most
load-bound applications in SPEC 2017 (86.3% and 88.1% load
hit rates with an SB of 32 entries), both included in our results.
The next one is xalancbmk, with 91.5%. The hit rates with
TUS are 86.39%, 88.2%, and 91.4% for the same applications.
More importantly, the number of cycles the pipeline is stalled
while there are L1D misses pending drops from 7.2% to 5.8%.
This statistic defines the level of memory-boundness of an
application [33].

VII. RELATED WORK

Masked writes. TUS can reuse the WCBs to perform write
coalescing. WCBs include dirty bits to know the part of the
cache line that has been modified to allow non-temporal stores
to combine their data with the one coming from memory [25].
TUS extends this functionality to allow temporal stores to
write partly cache blocks to L1D. In addition, most modern
vector support, such as AVX512 and SVE, already support
masked writes to L1D [25], [43].

Atomically writing a group of stores. TUS requires making a
set of written cache lines atomically visible to memory. A large
body of work has proposed solutions towards this goal [13],
[19], [21], [22], [30], [36], [38], [44], [47].

The Oklahoma update [44], ”all-or-nothing”, is a pioneering
approach to performing a set of writes atomically. The pro-
posed solution is speculative, which in case of conflicts, rolls
back execution. Being the precursor of transactional memory
(TM) [22], [30] it also suffers from livelocks. Commonly,
livelocks in TM solutions are addressed by using aging mech-
anisms and a global lock as a backup solution.

Hardware transactional memory (HTM) implementa-
tions [21] include support for making a set of writes atomically
visible. Essentially, transactional stores speculatively write to
the L1D. Transactions can only be committed if the core has
write permission for all cache lines involving writes. Stores
are then made visible by resetting in bulk a transactional bit
stored along with the cache lines. The L2 holds the write
permissions and the unmodified copy of data as a backup
in case the transaction aborts. We borrow that mechanism
from HTM implementations, but without the need to abort the
atomic write when losing write permission, since we do not
require write permission to allocate the written data in cache.
In case of requests from other cores, the L2 data is used.

Similarly, using speculation and rollback-on-conflict mech-
anisms, BulkSC [13] and ASO [47] aim for enforcing Se-
quential Consistency while allowing load/store re-orderings
within runtime-defined atomics regions. The main difference
with TUS is that our approach does not need to roll back on
conflicts, i.e., TUS performs writes non-speculatively, saving
the storage and complexity required by the speculative state.

CSB [38] can coalesce non-consecutive stores while guaran-
teeing x86-TSO. Non-consecutive store coalescing can violate
x86-TSO if the stores between the coalesced ones do not
update memory atomically. By using a global (lexicographical)
order and restricting coalescing, CSB can perform the atomic
memory updates in a non-speculative way. TUS borrows the
global order concept to also perform non-speculative updates.
Unlike TUS, CSB requires write permission to update mem-
ory, and TUS therefore outperforms CSB (see Section VI).

Using a predetermined global order, other works have pro-
posed hardware multi-address read-modify-write atomic op-
erations [19], [36]. However, these approaches require adding
new architectural instructions to read and write multiple cache
lines atomically. Again, as with CSB, write permission is also
required to execute these multi-address atomic operations.
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Store-wait–free multiprocessors. Store-wait–free multipro-
cessors [47] proposes SSB which relies on a large FIFO
structure that maintains all stores (TSOB). Similarly to TUS,
this approach does not require write permissions to hold blocks
that exit the SB in L1D. The key benefit of SSB is the removal
of associative search in the large TSOB queue, as store-to-
load forwarding is carried out by the L1D. However, SSB
drains the TSOB by performing the writes in the shared cache
store by store (without allowing coalescing) and in order,
which increases energy consumption. Furthermore, it requires
extra logic to iterate over the TSOB to perform invalidations.
Similarly, Akkary et al. [2] proposed a two-level SB design,
with a filter mechanism to reduce snoops in the L2 SB.

InvisiFence [11] uses post-retirement speculation to reduce
the performance penalty presented in memory ordering in
consistency models. As a speculative mechanism, InvisiFence
requires rolling back in case of consistency violations. Vi-
olations are detected using read and write sets as in hard-
ware transactional memory and entail post-retirement register
checkpointing and a flusheable SB. TUS, on the other hand,
only relies on simpler in-window speculation and is able to
coalesce stores and reduce SB stalls with a non-speculative so-

lution. Hence, TUS does not require SB/L1 flashing extensions
nor post-retirement register checkpointing. In this work, we
limited our evaluation to in-window speculation techniques.

VIII. CONCLUSIONS

We have presented a mechanism, Temporarily Unauthorized
Stores (TUS), to write to the first-level cache without requiring
permission, thus draining the store buffer faster. Cache lines
written without permission remain invisible to the coherence
protocol (i.e., they are unauthorized). TUS enables store co-
alescing of temporal stores writing to non-consecutive cache
lines using the write combining buffers, initially designed for
non-temporal stores. Cache lines involved in coalescing oper-
ations are made visible to the coherence protocol atomically.
This process is performed non-speculatively thanks to the use
of a predetermined global order in acquiring and blocking
write permissions and the use of not visible bits at the first-
level cache, that are reset in bulk when making the atomic
group of cache lines visible to the coherence protocol.

Our evaluation using gem5 demonstrates that, compared
to our baseline processor, TUS improves performance by
3.2% (3.5%) on average for SB-bound SPEC CPU2017 and
Tensorflow (Parsec) benchmarks, while reducing the EDP of
the processor by 6.4% (5.1%) on average. TUS outperforms
all state-of-the-art approaches because it avoids both SB-stalls
on long-latency L1D misses and supports store coalescing.
When configured with a 32-entry SB, TUS yields an average
performance improvement of 2% compared to our 114-entry
SB baseline while reducing SB energy per search by a factor
of 2×, SB area by 21%, and store-to-load forwarding latency
from 5 to 3 cycles.

REFERENCES

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan, “Checkpoint processing
and recovery: An efficient, scalable alternative to reorder buffers,” IEEE
Micro, vol. 23, no. 6, pp. 11–19, 2003.

[3] R. Alves, A. Ros, D. Black-Schaffer, and S. Kaxiras, “Filter caching for
free: The untapped potential of the store buffer,” in 46th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2019, pp. 436–448.

[4] AMD, “Amd64 architecture programmer’s manual, volumes 1-
5,” https://www.amd.com/en/support/tech-docs/amd64-architecture-
programmers-manual-volumes-1-5, 2023.

[5] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 25th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2019, pp. 399–411.

[6] V. Balaji and B. Lucia:, “Improving locality of irregular updates with
hardware assisted propagation blocking,” in 28th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Apr. 2022, pp. 543–557.

https://www.amd.com/en/support/tech-docs/amd64-architecture-programmers-manual-volumes-1-5
https://www.amd.com/en/support/tech-docs/amd64-architecture-programmers-manual-volumes-1-5


[7] R. Bera, A. V. Nori, , O. Mutlu, and S. Subramoney, “Dspatch:
Dual spatial pattern prefetcher,” in 52nd IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), Oct. 2019.

[8] E. Bhatia, G. Chacon, S. H. Pugsley, E. Teran, P. V. Gratz, and D. A.
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