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Compiler-Assisted Compaction/Restoration of
SIMD Instructions
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Abstract—Vector processors (e.g., SIMD or GPUs) are ubiquitous in high performance systems. All the supercomputers in the world
exploit data-level parallelism (DLP), for example by using single instructions to operate over several data elements. Improving vector
processing is therefore key for exascale computing. However, despite its potential, vector code generation and execution have
significant challenges. Among these challenges, control flow divergence is one of the main performance limiting factors. Most modern
vector instruction sets, including SIMD, rely on predication to support divergence control. Nevertheless, the performance and energy
consumption in predicated codes is usually insensitive to the number of active elements in a predicated mask. Since the trend is that
vector register size increases, the energy efficiency of exascale computing systems will become sub-optimal.
This paper proposes a novel approach to improve execution efficiency in predicated vector codes, the Compiler-Assisted
Compaction/Restoration (CACR) technique. Baseline CR delays predicated SIMD instructions with inactive elements, compacting
active elements from instances of the same instruction of consecutive loop iterations. Compacted elements form an equivalent dense
vector instruction. After executing the dense instructions, their results are restored to the original instructions. However, CR has a
significant performance and energy penalty when it fails to find active elements, either due to lack of resources when unrolling or
because of inter-loop dependencies. In CACR, the compiler analyzes the code looking for key information required to configure CR.
Then, it passes this information to the processor via new instructions inserted in the code. This prevents CR from waiting for active
elements on scenarios when it would fail to form dense instructions. Simulated results (gem5) show that CACR improves performance
by up to 29% and reduces dynamic energy by up to 24.2% on average, for a a set of applications with predicated execution. The
baseline CR only achieves 18.6% performance and 14% energy improvements for the same configuration and applications.

Index Terms—SIMD, predication, LLVM, density-time performance.
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1 INTRODUCTION

THE end of Dennard’s scaling supposed the stagnation
of CPU clock frequency. In this scenario, computer

architects and software developers are forced to exploit
parallelism to achieve an exascale level of performance.
Parallelism can be extracted either at the instruction, data or
thread levels. While both instruction-level parallelism (ILP)
and thread-level parallelism (TLP) are being extensively
studied, there are still many unexplored opportunities to
achieve significant performance and energy improvements
from data-level parallelism (DLP).

Developers usually rely on vector computations in order
to expose DLP to the hardware [1], [2]. A vector instruction
is a single instruction that operates over multiple data
streams (SIMD). Early vector machines exploited DLP with
long vectors of thousands of bits. They appeared in the
early 1970s and dominated supercomputer designs for two
decades [2], [3], [4], [5], [6]. The late 1990s brought the
introduction of SIMD extensions to scalar instruction set ar-
chitectures (ISA). Their goal was to improve the efficiency of
multimedia applications, using short 128-bit vectors [7], [8].
Such SIMD extensions have become ubiquitous in today’s
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computer architectures [9], [10], [11], [12]. Indeed, all the
supercomputers in the Top 500 exploit DLP in some way.

Processors with longer SIMD vector lengths appeared in
the last years, such as the 512-bit SIMD implementations
from Intel [9], [13] and Fujitsu [14]. Wider vector designs
are less popular nowadays, although NEC’s SX-Aurora pro-
cessor was recently released and uses 16,384-bit vectors [15].
DLP exploitation is not limited to SIMD extensions. GPUs
are alternative architecture designs that benefit from DLP
with a massive amount of threads executing the same in-
struction in a lock-step model.

Vectorized applications offer better performance, higher
energy efficiency and greater resource utilization [16]. How-
ever, the code vectorization process has several obstacles
to overcome, such as horizontal operations1, data structure
conversion, or divergence control, the most challenging
being the latter one [17]. Ultimately, the effectiveness of a
vector architecture depends on its ability to vectorize large
quantities of code [18].

While there are many ways to implement divergence
control [19], predicated execution is the most common
in current vector architectures. The predicated execution
model consists in guarding instructions by predicates in-
stead of branches. The predicates, or mask operands, are
used to store the correct combined results back to memory.
However, current SIMD extensions to scalar ISAs execute

1. Horizontal instructions, such as shuffles, that move or compute a
value from a particular vector register lane to/with another one.
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all elements in a predicated instruction independently of
the values stored in the mask operand. As such, the exe-
cution time of the predicated instruction just depends on
the architecture vector length (VL) and it is independent
of the percentage of active elements in the mask register.
This means that current SIMD implementations have VL-
time performance, wasting a significant portion of energy
on unnecessary computations and increasing contention of
vector functional units (VFUs). Ideally, the execution time
and energy consumption of predicated instructions should
be proportional to the mask density (i.e. fraction of true/-
false values). Such an implementation would have density-
time performance and energy efficiency.

With the current trend of increasing the register size
[16], SIMD implementations with VL-time performance will
become extremely energy inefficient when executing predi-
cated instructions. Thus, there is an urgent need in exascale
computations towards SIMD implementations with density-
time performance for predicated executions.

In [20] we proposed a novel hardware mechanism,
Compaction/Restoration (CR). CR achieves density-time
performance and energy in SIMD codes without program-
mer intervention. CR identifies code sections with SIMD
instructions guarded by a mask, defined from now on as
compactable instructions. CR delays the execution of com-
pactable instructions with inactive elements. Active ele-
ments are extracted and copied into a single equivalent dense
instruction. The dense instruction is filled up with active ele-
ments from instances of the same instruction from later loop
iterations that are naturally unrolled by the out-of-order
processor. Dense instructions will have, in the best case,
all the elements active. Therefore, compactable instructions
are executed efficiently with density-time performance, via
a single dense instruction. Then, dense results are restored
to the original predicated SIMD instructions.

However, delaying the execution of instructions can
have a performance and energy penalty if the hardware
cannot make up for the time invested in the compaction
process. This happens when CR fails to find active elements
to form dense instructions, either due to lack of resources
when unrolling or because of inter-loop dependencies. In
this work, we improve the effectiveness of CR with com-
piler support. Our compiler analyzes predicated loops of
compactable instructions and provides the hardware with
critical information in order to re-configure CR timeouts for
optimal performance. This prevents CR from waiting for ac-
tive elements when it would fail to form dense instructions.

CR improves energy consumption by requiring less ac-
cesses to the VFU than the baseline. Moreover, performance
improves for applications that suffer from contention in the
VFU (e.g. due to partially pipelined instructions, such as
divisions or square roots, which block the VFU [21]).

2 THE DIVERGENCE CONTROL FLOW PROBLEM

On a scalar code, whenever there is a code section that
needs to be guarded, the developer can use a conditional
statement. However, in a vector architecture, conditional
statements do not have a binary nature, since each element
of the vector register can provide a different result to the
conditional test. This is known as the divergence control

problem, and appears frequently in vectorized codes [17].
Previous studies indicate that at least 10% of the most
common vectorizable loops have divergence control is-
sues [22]. Different mechanisms to implement divergence
control in the context of SIMD instruction sets have been
proposed [19]. From all the proposals, predicated execution
is considered the most effective and compiler-friendly.

The main issue with predicated execution in SIMD
architectures is its low energy efficiency. Measured mask
density2 is between 18-20% on typical benchmarks [23], [24],
[25]. This means that sparse predicated masks are common
on modern codes. Therefore, the nature of SIMD archi-
tectures translates into a waste of energy in unnecessary
computations (up to 80%) and increases contention in the
VFU, which can hurt performance. In the next section we
introduce CR, a hardware proposal that achieves density-
time performance and energy efficiency in predicated SIMD
instructions without any code transformations.

3 THE CR MECHANISM

3.1 Overview
CR targets SIMD extensions available in current processors,
such as AVX-512 [9]), where the vector length (VL) equals
the VFU width. CR creates a dense version of each predicated
instruction (compactable instructions) within the vectorized
loop. The loop is naturally unrolled by the out-of-order pro-
cessor. The active elements from several dynamic instances
of the same compactable instruction are extracted and com-
pacted into a dense instruction (one dense instruction per
program counter, or PC). Compactable instructions are no
longer executed unless the CR mechanism fails to compact.
Dense instructions delay execution until dense registers are
full or a timeout happens.

In the best scenario, dense instructions have source reg-
isters with all elements active and are executed instead of
the original instructions. As a result, the number of accesses
to the VFU and their contention decreases. This is crucial for
performance and energy efficiency. We have measured the
package power (whole processor) using RAPL in a Skylake-
X i7-7820X CPU (8-Cores), using both FIRESTARTER3 and
likwid-bench4 (peakflops). We set the frequency to 3.3Ghz
for both scalar and AVX512, running in "single" mode and
making sure power measurements are taken at the same
temperature (45C). FIRESTARTER reports 120W for AVX512
and 103W for Scalar, with an idle power of 15W. This means
an increment of 16.5% (or 36,3% if idle power is subtracted).
Likwid-bench reports an increment from 62W to 73W when
going from scalar to AVX512, meaning an increment of
17.7% (55.3% if the 15W are subtracted). Our processor does
not allow to measure core/uncore power (PP0/PP1 RAPL),
but Intel’s Chief Architect MIC Processor stated in 2011 that
VFU can add up to 75% of the power dissipated by the
core [26]. Once the dense instructions are executed, results
are restored back to the original destination registers.

CR can be implemented in any architecture with pred-
ication support. Modern SIMD architectures with variable-
length vectors, such as RISC-V [27] and arm Scalable Vector

2. Percentage of active elements in the mask register.
3. https://tu-dresden.de/zih/forschung/projekte/firestarter
4. https://hpc.fau.de/research/tools/likwid/
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Figure 1. CR basic functionality
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Figure 2. Baseline/CR time diagram. Fetch (F), Decode (DE), Issue (I),
Dispatch (DI), Execute (E), Commit (C), Compact (CM), Restore (R)

Extension (SVE) [28] can also benefit from CR. These pro-
cessors know the register length at run-time and CR needs
the same information. In this paper, we have tested CR in
a simulated out-of-order processor with 512-bit VFUs. Sec-
tion 3.2 describes the new hardware components to support
CR, while Section 3.3 contains a detailed description of the
changes required to an out-of-order pipeline to implement
CR. Afterwards, we describe the different phases in the CR
mechanism: i) detection of compactable instructions (Sec-
tion 3.4), ii) compaction of dense instructions (Section 3.6),
iii) execution of dense instructions (Section 3.7), and iv)
restoration of compacted instructions (Section 3.8). Next,
we present a case study with CR (Section 3.10). Finally, we
discuss other considerations (Section 3.11).

3.1.1 Basic Functionality Example
CR basic functionality is shown in Figure 1. In this case,
two predicated instructions with 50% mask densities, cor-
responding to two loop iterations for the same PC, are
compacted. After compaction, they are executed and their
results are restored to the original registers. Figure 2 shows
a time diagram of the same example comparing the baseline
to CR. In the baseline, the second predicated instruction
cannot access the VFU as it is busy executing operations
of the same type. In CR, the execution of the first instruction
is delayed until the dense registers become full (best case
scenario). After compaction, only one instruction is executed
reducing VFU contention. Finally, a pipelined restoration
phase happens and results are committed.

3.2 CR Hardware Components
CR hardware components are described below.

1) The compactable instruction table (CIT) is a direct-
mapped table which contains the information regarding
dense instructions and their compactable instructions. It
is needed to perform the compaction (Section 3.6) and
restoration (Section 3.8) phases. Table 1 defines the func-
tionality and size of every CIT entry. In this case, we target
double-precision operations although smaller types could
be supported (e.g. machine learning). It would require more
bits per entry but the chances of finding a non-true element
would be higher, increasing CR efficiency. The number of
CIT entries should be smaller than the maximum amount

of in-flight instructions. In our design, CIT entries must be
filled with at least one compactable. Thus, the maximum
number of entries is ReorderBuffer(ROB)Entries/2 al-
though we did not exceed half of its capacity.

Table 1
CIT entry fields, size in bits

Dense instruction information
Capacity Number of elements the dense instruction may handle 4
Alloc Occupancy Number of elements allocated by compactable instructions 4
Insert Occupancy Number of elements inserted by compactable instructions 4
Last Insertion Cycle the latest compacted instruction was inserted 6
isSquash/isTimeout Whether dense instruction was squashed/timeout triggered 1
Insertd Whether dense instruction was inserted 1

Compactable Instruction Information
Mask Instruction mask bits 8
Dest Reg Idx Reorder Buffer entry where instruction is stored 8
Allocate Whether instruction is allocated 1
Insertc Whether instruction is inserted 1

2) The dense ticket table (DTT) is a direct-mapped table
which keeps track of the latest created dense instruction for
every PC. It facilitates the accesses to the CIT, since there
can be multiple dense instructions for the same PC waiting
to be executed. The DTT holds a set of unique keys or
tickets, representing CIT entry identifiers. Every dense and
compactable instruction keeps a ticket to access the CIT.
The number of DTT entries is limited by the number of
instructions in every loop iteration, a maximum of 60 in our
applications. By indexing DTT entries using the 10 lowest
PC bits, we avoid conflicts. If no entry exists for a particular
PC, a new one is created and a new ticket is chosen from
the DTT. If a new dense instruction is created, the existing
DTT entry for that PC gets a new ticket. Tickets are restored
as the associated dense instructions commit. The ticket size
is limited by the number of in-flight dense instructions (i.e.
log2ROBEntries/2 bits).

3) The compaction unit moves active lanes5 from source
vector registers in compactable instructions to the assigned
dense registers. It happens separately for every source
register as they become ready. Section 3.6 describes the
compaction phase.

4) The restoration unit restores the results of an executed
dense instruction back to the original destination registers.
The dense destination register elements are moved to the
corresponding active lanes of the destination registers. Sec-
tion 3.8 describes the restoration phase.

3.3 CR in an Out-of-Order Processor

Next, the main functional changes to incorporate CR into a
classic out-of-order processor are described. Figure 3 depicts
the whole process in a state-diagram style.

1) Decode: In case a predicated instruction is found a
signal is sent to Issue stage.

2) Issue: If the signal from Decode is active and the mask
register is ready, a logic decides whether the instruction has
to be compacted or not (see Section 3.4). If so, it is marked
as compactable. Then, the DTT and CIT are accessed to
know if it is the first compactable instruction for that PC or
if existing dense instructions for that PC are already fully

5. Position in a vector register that contains an element.
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Figure 3. CR overview when incorporated to an out-of-order processor

occupied. In case a new dense instruction is required, a
dense instruction is created and its operands are renamed.
To keep renaming logic simple, dense registers belong to a
specific physical register range. The DTT creates and stores a
new ticket, which is provided to the compactable instruction
and employed to create a new CIT entry. In the CIT entry,
the capacity field is updated with the total number of lanes in
the dense register. A reservation station (RS) and a re-order
buffer (ROB) entry are allocated for the dense instruction.
Also, a dense destination register is reserved in the register
alias table (RAT) to allow operand forwarding. Candidates
to be compacted on it are given the DTT ticket after their
mask operand becomes ready and the alloc occupancy, mask,
dest reg idx and allocate CIT fields are updated.

3) Dispatch: As compactable operands become ready,
the compaction phase triggers, their reservation station (RS)
are freed and the insert occupancy, insertc and last insertion
fields in the CIT are updated. Once dense operands are
full, a timeout occurs, or a squash happens, the instruction
becomes ready to execute. If dense operands are not ready
(insertd=false), the instruction will not execute.

4) Execution: The dense instruction is executed and
compacted instructions are bypassed (Section 3.7). If the
dense destination register is used by subsequent dense
instructions, it is forwarded (Section 3.9).

5) Writeback: The dense instruction is written in the ROB
and the restoration is performed to copy the results to the
original destination registers (Section 3.8).

6) Commit: Dense and compacted instructions commit
sequentially, ensuring speculation and exception handling
are performed in-order.

3.4 Detecting Compactable Instructions
Our base CR implementation considers all predicated loops
as compaction candidates. However, in a preliminary anal-
ysis (Section 6) and in the evaluation (Section 7) we observe
that several factors should be considered to enable an more
efficient CR: i) predicated instruction latency, ii) number of
instructions per iteration, iii) inter-loop dependencies and
horizontal instructions6, iv) arithmetic intensity (AI)7, v)

6. This refers to dependencies after vectorization, that may come from
a reduction or “clever” data reuse between loop iterations (e.g., shuffle
or a permute of a register to reuse data).

7. Simplified to the ratio of memory µops to total µops.

mask densities and vi) processor events that hide latencies.
The first four factors can be statically determined and

have important effects on performance. For instance, inter-
loop dependencies cause an execution serialization. On the
compiler-assisted CR version, the compiler inserts new in-
structions that pass this information to the CR hardware.
When CR is not provided with compiler information it tries
to adapt dynamically to the code requirements. On the other
hand, mask densities are fundamental and input-dependent
(see Section 6). Finally, some processor events, such as cache
misses, pause the core backend, hiding CR latencies.

Compaction candidate SIMD instructions cause a CIT
allocation, becoming compactable. CR distinguishes between
CIT allocation and insertion. Allocation is done in program
order, while insertion may happen out of order. Allocation
reserves the CIT entries which will be later filled in the inser-
tion step. Insertion is performed as compactable instructions
become ready. Ensuring program order in insertion is critical
to enable dense register forwarding (described in Section 3.9).

3.5 Populating Dense Instructions
In order to populate a dense register, compactable instruc-
tions delay execution until the register is full or a timeout
triggers. The ROB is used as a buffer to obtain candidates
for compaction. Some events, such as cache misses, pause
the core backend until they are resolved. For this reason,
regular processor behavior may hide the delayed execution
and it may not affect performance in many situations (e.g.
irregular memory accesses).

3.6 Compaction Phase
In this phase, active elements from compactable instructions
in an RS are moved into the RS belonging to the dense
instruction. The CIT is accessed to obtain information about
the compaction. It occurs as source operands of compactable
instructions become ready, and after CIT insertion is done.
The compaction phase does not require extra ports or
buffers since the VFU already reads all inputs from the
RS simultaneously. When compaction finalizes, compactable
instructions are called compacted.

3.7 Execution of Compacted Instructions
Once the dense instruction is ready in the RS, it is exe-
cuted. Dense instructions can be ready due to three reasons:



TPDS CLASS FILES, 5

i) dense operands are completely populated; ii) a squash
happens; or iii) a timeout is triggered.

The first case is the ideal scenario for CR, minimizing the
number of VFU accesses as a result. In this case, compacted
instructions are not executed (they are bypassed to the next
pipeline stages). It also facilitates dense register forwarding
to dependent instructions. When a squash happens, CR
removes allocated, but not yet inserted, compacted instruc-
tions from the CIT entry, forcing the dense to become ready.

Finally, multiple timeout policies are incorporated into
CR to avoid delaying too much the execution of predicated
SIMD instructions. Postponing the execution of predicated
instructions increases the utilization of internal processor re-
sources, potentially stalling the pipeline and slowing down
the whole application. For this reason, two timeout policies
are created. They stop the allocation/insertion of new CIT
entries and trigger the dense instruction execution.

1) Resource occupancy. The lack of free hardware
resources prevents instructions from entering into the
pipeline, and thus, it may not allow dense operands to be
completely populated. This situation may lead to perfor-
mance degradation. For this reason, if resources are occu-
pied above a certain threshold, the CIT forces the execution
of dense instructions whose last insertion field is higher than
a timeout. CR considers the occupancy in the reservation
station (RS), the ROB, and the Load-Store Queue (LSQ).

2) Hard timeout. A dense instruction could have allo-
cated but not inserted compacted instructions waiting for
dependencies to be freed or data to be available due to a
cache miss. If the dependency is associated to another dense
instruction, execution is blocked. For this reason, if the dense
maximum commit time is exceeded execution is forced.

If a timeout is triggered, the remaining allocated but
not yet inserted compactable instructions referring to that
CIT entry will execute the regularly. Section 6.1 studies the
impact of the timeout policies.

3.8 Restoration Phase
In the Restoration phase, the elements from dense destina-
tion registers are moved into the active lanes of the destina-
tion vector registers associated to the original compacted in-
structions. Restoration is performed in the writeback stage,
after the dense instruction is executed and after its result
is placed on its ROB entry. It happens in parallel with the
dense register forwarding. Restoration can be done in parallel
for every compacted instruction. The CIT is accessed to get
the information of every compacted instruction. The dense
instruction keeps the ticket provided in the compaction
phase to know its corresponding CIT entry.

In the Restoration phase, multiple data values must be
written to the ROB. This phase is usually out of the critical
path of execution, as the dense version of the instruction
continues executing. Thus, this phase can be handled by
buffering writes to the ROB not requiring extra ports.

3.9 Dense Register Forwarding
A dense register can be forwarded if it is fully occupied
or if subsequent dense instruction share the same inserted
compacted instructions positions. The insertc CIT entry bit
provides this information for every allocated compactable

1 for (i←0; i≤N_ELEMENT; i+=VL)
2 vmovapd r2, &B[i]
3 vaddpd r1, r2, <imm>
4 vmovapd r3, &C[i]
5 vmovapd r4, &D[i]
6 vcmppd k1, r3, <zero>, <NE>
7 vsqrtpd r5 {k1}, r4
8 vmulpd r5 {k1}, r5, r3
9 vsubpd r1 {k1}, r1, r5

10 vmovapd &A[i], r1

Figure 4. SIMD loop in Intel’s pseudo-assembly

instruction. If not, the remaining compactable instructions
will be compacted. An efficient dense register forwarding
reduces CR latencies and hides the restoration process.

3.10 CR Case Study

To illustrate how the CR mechanism works, we refer to the
code from Figure 4. It is used to describe the different phases
in CR: activation, compaction, execution, and restoration.
For the sake of simplicity, in this particular example, we
assume a 128-bit vector length architecture. Thus, each
vector register may hold 2 double precision elements. In this
case, a vector multiplication (vmulpd, line 8), a subtraction
(vsubpd, line 9), and a square root (vsqrtpd, line 7) represent
the 3 predicated instructions in this loop. They are guarded
by a mask register k1 created in line 6. This mask is built by
comparing each element in array C to a zero-filled vector.
In this case, we assume that the compiler marks this loop
as suitable for CR. Figure 5 shows the compaction and
restoration processes for the instructions vsqrtpd and vmulpd.

Activation Phase. In the issue stage, there are two in-
stances of these instructions (with identifiers 20, 21, 43 and
44). Mask registers r210 and r211 are read as they become
ready. Since their mask density is low (50%), CR is enabled
for this loop. Then, two dense instructions for these PCs are
created and the CIT allocation is performed, allocating two
CIT entries with capacity 2. The alloc occupancy, mask, dest
reg idx and allocate fields are updated for every compactable
instruction, since the mask registers are ready and the re-
name stage has been previously accessed. A ROB and an RS
entry are allocated for each dense instruction. Two tickets
are created and stored in DTT.

Compaction Phase. As operands become ready, the in-
structions are moved to the dispatch stage. The CIT insertion
is performed, updating the corresponding insert occupancy,
insertc and last insertion CIT fields. After that, the com-
paction for the dense vsqrtpd instruction starts. This process
is shown in Figure 5. In this case, the active element in
register r220 (A) is moved to the dense RS entry (RS1)
using the CIT information. After that, the RS belonging
to ID:20 is released. Similarly, in the next loop iteration,
CR compacts the active element from register r230 (B) into
RS1. This dense instruction is ready for execution. The same
process is done with instruction vmulpd, where the second
operand is compacted moving the active lane in r122 (C)
and r132 (D) to the dense instruction in RS3. However, the
first operand in the compactable instruction is dependent
of vsqrtpd, an already compacted one. The CIT notices this
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vsqrtpd r180 <- r220 {r210}
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Figure 5. Example of the Compaction (left) and Restoration (right) phases

situation and skips its compaction, notifying that a dense
register forwarding is going to happen. In particular, d300.

Execution Phase. The dense vsqrtpd instruction executes
as compaction finishes and its destination register d300 is
forwarded to the dense vmulpd, which will then execute.

Restoration Phase. After execution, the restoration
phase occurs for the dense instructions vsqrtpd and vmulpd.
A brief overview is depicted in Figure 5. The CIT contains
the information regarding every inserted compactable in-
struction for every dense. In vsqrtpd, the restoration unit
reads the dense output d300 and the original mask values
from the instructions with ID 20 and 43, inserted in the CIT.
Then, the restoration unit moves the d300 elements to the
destination entries in the ROB, performing an offset calcu-
lation depending on the mask values and the compacted
instruction insertion order. For example, the register r180
(instruction ID:20) receives the first element from the dense
register d300 (H) and it is placed in the second lane, where
the mask register r210 contains a true element. The register
r240 gets the second element (G), as the accumulated ca-
pacity is one, and it is placed in the first lane, specified by
mask r211. The same process is done with the dense vmulpd,
moving S and T to the second and first lanes of registers
r190 and r250 respectively.

3.11 Other Considerations
The CIT is squashed in the event of a branch mispredic-
tion. Two scenarios must be considered: a) mispredicted
instructions created an entry within a dense instruction, but
operands were not ready and thus, not compacted; and b)
operands were ready and compacted. In the first case, the
CIT would be waiting forever for this instruction. In the
second case, a false version of the dense register would be
created, since some lanes belong to mispredicted instruc-
tions operands. The first scenario is handled by making the
CIT aware of mispredictions. The second scenario is not
critical because results are written into mispredicted ROB
entries in the restoration phase, but never commit.

Page faults need a special handling as they are attended
at commit but a dense instruction may be blocking its at-
tendance. A timeout is required to force the dense execution

and of every instruction prior to it. Precise exceptions are
also feasible with CR. If an exception occurs while a dense
instruction is executing, such as arithmetic overflow, the
exception is restored to the corresponding compacted in-
struction to be handled. A challenge to be faced in the future
is the implementation of dense horizontal instructions. At
the moment a dense register is created, the original element
positions are lost so the operation cannot be done.

4 COMPILER-ASSISTED CR

To close the gap to density-time performance, we provide
the hardware with relevant information to guide the deci-
sion on whether to compact or not. This information is also
critical to configure the aggressiveness of the CR timeouts.
Indeed, the arithmetic intensity, the presence of high-latency
instructions (e.g., div, sqrt, exp, log), the µop count and the
presence of horizontal operations are application character-
istics retrievable at compile-time. To this end, we extended
the compiler to analyze the applications and convey such
information to the hardware, by inserting new instructions
before each target loop. We use one instruction for each
piece of information, but this can be optimized by inserting
a single instruction with a 32-bit immediate that contains all
the information.

The compiler support to assist CR is implemented in
LLVM [29]. LLVM is a compiler framework for program
analysis and transformation, which facilitates retrieving
high-level information at compile-time.

We implemented the compiler support as an LLVM Loop
Pass, which is executed on each loop independently. We
parse all instructions of the loop, checking their type. For
vector instructions, we further analyze the following in
order to provide useful information to the CR:

• We check if the vector instruction is a memory oper-
ation (load or store), which is then used to compute
the arithmetic intensity.

• We check if the vector instruction is a high-latency
operation (e.g. div, sqrt, log), to help CR estimate the
predicated instruction cost.
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Table 2
Configuration of the gem5 simulations

Chip details
Core 1 out-of-order core, single threaded, 2.0GHz

Core details
Fetch, decode, rename bandwidth 4 insts/cycle
Dispatch, issue, commit bandwidth 8 insts/cycle
Branch predictor, Branch target buffer L-TAGE 64KB, 8K+8K entries
Fetch Buffer, Decode Buffer 16B, 56-µops
Fetch, Load and Store Queues 32 entries, 128 entries, 72 entries
Physical Registers 200 integer + 360 floating point
Issue Queue, Re-order Buffer 128 entries, 352 entries
Functional Units 1 Int ALU + 3 Int/FP/SIMD ALU
Instruction Latencies (Int) add (1c.), mul (4c.), div (22c.)
Instruction Latencies (FP) add (5c.), mul (5c.), div (22c.)

Instruction Latencies (Icelake SIMD)
add (4c.), mul (4c.), div (14c., 8c. issue),
sqrt (16c., 10c. issue)

Instruction Latencies (KNL SIMD)
add (6c.), mul (10c.), div (30c., 16c. issue),
sqrt (40c., 20c. issue)

L1 instruction cache 32KB, 8-way, 1 cycle access latency
L1 data cache 32KB, 8-way, 4 cycle access latency
L2 unified cache 1MB, 16-way, 14 cycle access latency
L3 unified cache 16MB, 16-way, 36 cycle access latency
Prefetcher IPCP++

CR structures
Compaction Unit 1 pipelined unit, 2 stages
Restoration Unit 1 pipelined unit, 2 stages
Dense Ticket Table 64 entries, 8 bits per entry
Compactable Instruction Table 160 entries, 170 bits per entry

• We check if the vector instruction is a horizontal
operation (shuffle, permute, reductions, horizontal
addition and horizontal subtraction), which would
disable CR.

Next, we compute the total number of static loop µops
as follows: pointer loads and stores count as three µops,
arithmetic instructions that have one operand in memory
count as two µops. The rest of instructions count as one
µop. We focus on the Intel’s X86_64 target only, since
identifying arithmetic instructions with one operand in
memory is target dependent. Adding support for other
target architectures is straightforward. µops count is used
to determine resource utilization (e.g., reorder buffer), and
get an approximation of how many loop iterations can
we unroll for the given architecture. Finally we detect the
LLVM intrinsics and instructions corresponding to the vec-
tor horizontal, shuffle, permute and reduction operations.
The presence of any such operation would usually disable
the CR mechanism.

Once the analysis is complete, we precede the loop with
four instructions to convey to the hardware the information
retrieved by the compiler (arithmetic intensity, number of
high-latency instructions, total number of µops, and the
presence of horizontal operations). The hardware can then
take a better informed decision on how to configure CR,
leveraging this data. Details about how this information is
used is discussed in Section 6.2.

5 EXPERIMENTAL METHODOLOGY

5.1 Full-System Simulation Infrastructure
We employ gem5 [30] to simulate an x86 full-system en-
vironment that models the application, the operating sys-
tem and the architecture in detail. We simulate a one-core
processor using the detailed out-of-order CPU and memory
models of gem5, extended with the proposed architectural
support for CR. Table 2 summarizes the main simulation

parameters, including the selected size of the CIT and the
compaction/restoration hardware configurations. The ticket
size and the number of entries in the CIT and in the DTT are
defined by the ROB size. We have a CIT design supporting
AVX-512 instructions, double precision elements, and up to
eight compactable instructions per entry. Thus, each CIT
entry requires a total of 170 bits: 26 bits for the dense instruc-
tion information; and 8 times 18 bits for the compactable
instruction information (Table 1 lists all the fields in the
CIT). As explained in Section 3, the CR mechanism requires
accessing to the corresponding hardware structures several
times. These latencies are modeled in detail in our simulator.

The simulated system is a 16.04 Ubuntu with a 4.9.4
Linux kernel. The ISA is extended to support SSE, AVX-
2 and AVX-512 instructions. These extensions have been
developed to simulate an x86 Icelake processor. Concerning
the SIMD units, two micro architectures are modeled: a
latency and a throughput-oriented implementation based
on Icelake (ICE) [21] and the Knights Landing (KNL) [13].
They represent two scenarios with different VFU contention
and employ pipelined VFUs with different execution and
issue latencies as measured on real hardware by A. Fog [21].

Power consumption is evaluated with McPAT [31] using
a process technology of 22nm, a voltage of 0.6V and the
default clock gating scheme for the core. We do not measure
power for uncore (memory controller, network, etc). We
incorporate the changes suggested by Xi Vaidya et al. [32]
to improve the accuracy of the models. The CIT structure is
modeled in CACTI 6.5 [33], adding the appropriate counters
in gem5 to measure the extra power introduced by it. The
CR units have been modeled in RTL [34], [35]. Results for a
22nm technology show area requirements of 5000µm2. It is
almost three orders of magnitude smaller than a 512-bit VFU
modeled in McPAT (4.45 mm2). In terms of power, every
unit consumes 11.25mW of peak power (combined leakage
plus dynamic), almost two orders of magnitude smaller than
the power of the 512-bit VFU computed by McPAT (0.92W).

5.2 Benchmarks

To test CR we use ten real unmodified predicated AVX-512 ap-
plications. We employ an image filter (B-Filter), a signal con-
volution (Convol), an image processor (G-Blur), a K-means
clustering (Kmeans), k-nearest neighbors (KNN), an N-Body
(N-Body) application [36], a quadratic equation (Quadr), a
Box-Muller number generator (RNG) [37], a sound distorter
(S-Distort) and a raytracing kernel (Ray) [25].
Section 6 makes use of a SIMD micro-benchmark to explore
the design space. This micro-benchmark is hand-coded us-
ing Intel’s AVX-512 intrinsics. The mask density, the percent-
age of costly instructions and the number of instructions in
each loop iteration can be changed.

Fung and Vaidya et al. studied the mask densities in
several applications [23] [24]. They show that they are
usually input-dependent and range between 15-60%. Since
input selection for these applications may strongly impact
mask density, we consider values from 25% to 50% for all
the codes. These values capture almost entirely the mask
density range from the representative applications. Also,
we apply static masks (25% and 50%) during the whole
simulation as the most relevant previous work on SIMD
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control flow divergence [23], [24] does. Moreover, Vaidya et
al. [24] also demonstrate that the true-value position inside
the mask register leads to no variability in performance. For
the sake of clarity we will omit the combination possibilities
of the true-value positions inside the mask.

Figure 6 shows the instruction breakdown of the main
loop in the ROI of each benchmark. Loops contain between
20 and 73 µops. The predicated instruction percentage is
between 17% (KNN) and 62% (B-Filter).

6 TIMEOUT POLICIES

6.1 Without Compiler Support

Next, we measure the impact of the timeout policies dis-
cussed in Section 3.7. In this case, the micro-benchmark is
used with different timeout policies. Figure 7 depicts the
performance degradation obtained by combining the orig-
inal timeout policies, normalized to the best configuration.
The timeout policies consider the occupancy in different re-
sources (RS, LSQ and ROB) and different timeouts (from 18
to 32 cycles). All policies take into account the hard timeout,
since it is required for the execution of the benchmarks.

Selecting the optimal timeout policy is fundamental for
CR, preventing the CPU from waiting too much for dense
register population. Results show up to a 10% slowdown
when only the issue queue is considered. The best outcome
is obtained when considering all resources.

6.2 With Compiler Support

This section describes how to utilize the information pro-
vided by the compiler in order to optimize the CR hard-
ware. As discussed in Section 4, the compiler provides the
CR hardware with four key pieces of information: a) the
arithmetic intensity, b) the presence of high-latency instruc-
tions (e.g., div, sqrt, exp, log), c) the total µop count and

d) the presence of inter-loop dependencies or horizontal
operations. We define the unroll factor (UF) as the ROB
size divided by µop count. Given the huge amount of
combinations and for the sake of clarity, we omit micro-
benchmark raw data and focus on key insights from our
design space exploration.

Our analysis reveals the following key insights: When
the arithmetic intensity is high or medium, there are no
loop dependencies and there are high-latency operations,
Icelake needs an UF of at least four times for CR to improve
performance and energy, while an UF of two suffices for
KNL. Under the same conditions, but with loop dependen-
cies, both platforms require an UF of four to break even,
while eight provides energy and performance gains. On the
other hand, with medium or high AI, loop dependencies
and no high-latency instructions, CR only provides energy
improvements when it can unroll at least 8 times, but it
provides no performance improvement.

The hard timeout should be set to 100+ cycles for high
AI and the loop UF mentioned in each scenario can be
achieved. Resource utilization timeout should be set to 95%
occupancy. For medium and low AI and matching UF, the
hard timeout should be set around 40 cycles, and resource
utilization timeout to 85% usage. When loop cannot be
matched CR should be disabled. Finally, when AI is low,
and there are loop dependencies, CR should be disabled.

7 EVALUATION

7.1 Predicated SIMD Applications
First we will compare the best per-benchmark statically
selected CR configuration against the compiler-assisted CR
and the baseline conservative CR. Our previous work did
not use the best statically selected configuration, but an
adaptive approach that was quite conservative [20]. CR is
evaluated with ten different applications. We will measure
the performance, energy efficiency and VFU access reduc-
tion on each application. As described in Section 5, we
explore two different mask densities (25% and 50%) and two
processor configurations with different instruction latencies.

Results are normalized to a regular no-CR execution.
In all the experiments, the KNL-like configuration pro-
vides more optimization opportunities for CR, since there
is more contention in the VFU. Moreover, we can see that
the performance and energy effects of CR greatly depend
on the presence of high-latency instructions that block the
VFU. In addition, lower mask densities (i.e. 25%) lead to
more compaction opportunities. The CR hardware decided
to disable compaction for Convol and G-Blur, given the
information provided by the compiler.

Figure 8 depicts the results in terms of speedup. Sig-
nificant speedups are obtained for some of the evaluated
benchmarks with CACR. This is the case of Quadr, RNG
and Ray in KNL. All of them contain a high percentage of
long latency SIMD instructions per loop iteration (as shown
in Figure 6). They achieve performance improvements up
to 100%, 93% and 64% respectively. CACR outperforms the
original CR, even doubling the performance for Quadr. B-
Filter and S-Distort also contain long latency SIMD instruc-
tions. However, their higher number of instructions per
loop iteration prevents CR from unrolling more than four
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Figure 8. Performance improvement (%) for KNL (top) and ICE (bottom). Normalized to a non-CR scenario

iterations. This means that we can use CR to improve energy
efficiency, but we miss the opportunity to extract instruction
level parallelism between dense instructions. Nevertheless
CACR improves performance for these applications by 4.5%
and 11.1% respectively. When running with ICE latencies,
VFU contention is only present for Quadr and RNG. Indeed,
CACR is able to improve performance by 45% and 100%
respectively. For all other applications, the compiler-assisted
CR does not have a significant effect on performance.

Figure 9 shows the instruction reduction factor for CACR
and CR. We can see how CACR is able to reduce the number
of VFU accesses by a factor of around 3.6x for Quadr,
Ray, S-Distord and B-Filter. RNG and Kmeans instruction
reduction is limited to around 2x. This is due to the fact
that these applications have loop dependencies and non-
predicated instructions.

The application memory access pattern is important for
both approaches CR, since it can hide the dense register
compaction/restoration. Kmeans and KNN have a contigu-
ous memory access pattern and no long latency predicated
instructions. However, the large amount of instructions
and the low percentage of predicated instructions in KNN
prevent both CRs from achieving their potential, limiting
compaction factor to 27%. KNN also contains horizontal op-
erations, blocking dense register forwarding. CACR disables
CR for Convol and G-Blur, so no instruction reduction.

For all the applications, the long latencies of the KNL
configuration enable higher VFU access reductions that
lead to better dynamic energy results (Figure 10). Energy
reduction ranges from 3% to 80% for KNL and a 25% mask
density, and between 2% and 68% for ICE. In KNL there is
a higher contention in the VFU than in ICE. As a result, a
higher occupancy of dense registers is achieved. We have
measured the dense register forwarding, in particular, at the
lane level. If a dense register lane can be forwarded, the
compaction phase can be avoided for that lane, reducing
latency and energy consumption. For instance, 72% of dense
lanes can be forwarded in B-Filter, 65% in S-Distort, 73% in
Kmeans, 46% in KNN, 77% in RNG and 46% in G-Blur.

Finally, Figure 10 shows the energy improvements of
CACR and CR. We can see that the CACR is able to improve
energy for all the applications, without any performance
impact. Energy improvements can reach up to 80% for

Quadr in KNL and 70% for RNG in ICE. The huge difference
with benchmarks like N-Body come from the performance
improvements, that reduce leakage energy significantly. The
more predicated instructions (especially those that benefit
from dense register forwarding), the better the energy.

7.2 Comparison with Other Proposals
This section compares CACR with disable inactive lanes
(DIL) [38], an alternative hardware proposal to reduce
power consumption in the VFU. DIL reads the mask
operands before executing predicated instructions and dis-
ables the lanes in the VFU with inactive elements. This so-
lution reduces power consumption at the cost of increasing
the complexity of the VFU design. However, DIL does not
reduce the contention in the VFU. Interestingly, CR and DIL
can be combined to further reduce the power consumption
of CR when a timeout avoids compaction.

As expected, DIL and CR+DIL do not improve perfor-
mance over the baseline and CR, respectively. Figure 11
shows the average energy reduction of the three techniques
over a baseline without CR. DIL reduces energy between
8% and 16% as it reduces the dynamic power in the VFU.
CR achieves higher energy reductions than DIL due to the
increased performance in some of the benchmarks, and thus,
a reduction on leakage power. However, in benchmarks in
which CR provides no performance benefits, DIL achieves
better energy reduction. Thus, CR+DIL provides the best
energy results with a reduction between 25% and 55%.

8 RELATED WORK

Sparse to dense transformations have been broadly stud-
ied from the software standpoint for some time. Harrison
et al. and Pichon et al. proposed reordering techniques
and implemented math libraries to mitigate the sparsity
problem [39] [40]. However, our approach is a hardware
mechanism to improve execution efficiency in the context of
sparse predicated SIMD instructions.

Smith et al. [19] explored several alternatives to im-
plement conditional operations in vector ISAs. One of the
proposals, Register compress/expand, is similar to CR. It com-
presses the active elements of a long vector into a dense
one using new instructions, such as IOTA. It is supported
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in multiple vector supercomputers [3], [4], [41]. A similar
instruction, vcompress, is available in AVX-512 [9]. The key
differences with CR are: i) CR does not require new in-
structions; ii) CR is transparent to the programmer; and iii)
the authors assume a traditional vector architecture with
a vector length (VL) much longer than the VFU width.
In contrast, CR targets short vectors available in modern
processors with SIMD extensions. Shorter vector registers
limit the impact of the compress/expand approach.

Some divergence control proposals assume an architec-
ture with several scalar datapaths [42], [43], [44]. These de-
signs can dynamically manipulate the VL of each datapath
and execute them optimally, but the ALU design (64-bit)
is different from the VFUs (512/1024-bit) in current SIMD

extensions where CR may be applied.
Vaidya et al. [24] propose two micro-architectural tech-

niques to improve the performance of predicated instruc-
tions in GPUs. They rely on the fact that the VL is usually
multiple of the number of hardware execution units (or
ALU-width). The first idea, called Basic Cycle Compression
(BCC), detects contiguous blocks of disabled lanes coincid-
ing in the same execution cycle and suppresses the rest
of the instruction stages. The slots are used to execute
subsequent instructions. It only works when all lanes in a
contiguous block are disabled and that is not the case for
many divergent applications. The CR proposal does not re-
quire zero mask densities to operate and its benefit depends
on the percentage of active elements. The second and more
complex idea is a generalization of BCC, called Swizzled
Cycle Compression (SCC). SCC is a hardware version of
Register compress/expand. Instead of pushing the active lanes
to the beginning of a register, SCC reorders them in a single
instruction to obtain blocks of dead lanes padded to the
ALU-width and suppresses them. Performance is limited
by the complexity of the shuffling algorithm. This proposal
does not benefit from active elements from different loop
iterations and it does not perform dense forwarding.

Other proposals for GPUs [45] improve the performance
and energy efficiency of divergent applications with Dy-
namic Warp Formation and Variable Warp Sizing respectively.
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Both prove these situations with significative benchmarks
and motivate the existence of a variable warp size. Also in
the GPU domain, Brunie et al. [46] propose the execution
of two instructions from different disjoint paths (similar to
multiple “scalar” datapaths). Khorasani et al. [47] introduce
the concept of Collaborative Context Collection (CCC), a soft-
ware solution that collects the relevant registers of divergent
threads and delays their execution until the best warp lane
utilization is obtained. The goal is similar to CR. However, it
needs shared memory regions to keep track of the divergent
operations for every thread, with significant performance
overhead and programmer intervention. GPUs work at a
thread level, with individual register information per thread
and individual simple ALUs for each “lane” equivalent,
so they do not require data movement to optimize ALU
energy (what CR does). GPU optimizations work more as a
scheduling optimizer while CR works as a data defragmenter
at a register/RS/ROB level.

Finally, Park et al. present SIMD Defragmenter [48], a
compiler optimization that tries to extract additional DLP
by fusing groups of compatible instructions (e.g., two 128-
bit additions into a 256-bit addition). This approach does not
deal with predication nor extracts DLP from different itera-
tions, but we believe it is complimentary to our proposal.

9 CONCLUSIONS

In this paper we propose the Compiler-Assisted Com-
paction/Restoration (CACR) hardware design, which is ca-
pable of achieving density-time performance and energy
efficiency with predicated SIMD instructions. CR creates a
dense instruction with several dynamic predicated instruc-
tions for a certain PC. The active elements of these regular
SIMD instructions are compacted into a dense instruction.
Then, dense instructions are executed and their results are
restored to the original instructions.

This can be achieved without programmer intervention.
However, CR induces a performance and energy penalty
when it fails to find active elements, either due to lack of
resources when unrolling or because of inter-loop depen-
dencies. In order to optimize CR’s timeout strategies, in
CACR the compiler gathers critical information regarding
arithmetic intensity, the presence of high-latency instruc-
tions (e.g., div, sqrt), µop count and the presence of inter-
loop dependencies/horizontal operations. Then, it passes
this information to the hardware via new instructions.

Our evaluation in a simulated environment (gem5)
shows that CACR improves average performance by up to
29% and reduces average dynamic energy by up to 24.2% on
real unmodified predicated applications. Our original CR
implementation (without compiler support) only achieves
18.6% performance and 14% energy improvements. This is
because it uses an adaptive timeout policy, that needs to be
very conservative to prevent performance degradation.
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